blob: 6a2707fe7a78c09d04f84a78d0b498d7a960d73d [file] [log] [blame] [edit]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2015-2016 MediaTek Inc.
* Author: Yong Wu <yong.wu@mediatek.com>
*/
#include <linux/arm-smccc.h>
#include <linux/bitfield.h>
#include <linux/bug.h>
#include <linux/clk.h>
#include <linux/component.h>
#include <linux/device.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/iommu.h>
#include <linux/iopoll.h>
#include <linux/io-pgtable.h>
#include <linux/list.h>
#include <linux/mfd/syscon.h>
#include <linux/module.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/of_platform.h>
#include <linux/pci.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/regmap.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/soc/mediatek/infracfg.h>
#include <linux/soc/mediatek/mtk_sip_svc.h>
#include <asm/barrier.h>
#include <soc/mediatek/smi.h>
#include <dt-bindings/memory/mtk-memory-port.h>
#define REG_MMU_PT_BASE_ADDR 0x000
#define REG_MMU_INVALIDATE 0x020
#define F_ALL_INVLD 0x2
#define F_MMU_INV_RANGE 0x1
#define REG_MMU_INVLD_START_A 0x024
#define REG_MMU_INVLD_END_A 0x028
#define REG_MMU_INV_SEL_GEN2 0x02c
#define REG_MMU_INV_SEL_GEN1 0x038
#define F_INVLD_EN0 BIT(0)
#define F_INVLD_EN1 BIT(1)
#define REG_MMU_MISC_CTRL 0x048
#define F_MMU_IN_ORDER_WR_EN_MASK (BIT(1) | BIT(17))
#define F_MMU_STANDARD_AXI_MODE_MASK (BIT(3) | BIT(19))
#define REG_MMU_DCM_DIS 0x050
#define F_MMU_DCM BIT(8)
#define REG_MMU_WR_LEN_CTRL 0x054
#define F_MMU_WR_THROT_DIS_MASK (BIT(5) | BIT(21))
#define REG_MMU_CTRL_REG 0x110
#define F_MMU_TF_PROT_TO_PROGRAM_ADDR (2 << 4)
#define F_MMU_PREFETCH_RT_REPLACE_MOD BIT(4)
#define F_MMU_TF_PROT_TO_PROGRAM_ADDR_MT8173 (2 << 5)
#define REG_MMU_IVRP_PADDR 0x114
#define REG_MMU_VLD_PA_RNG 0x118
#define F_MMU_VLD_PA_RNG(EA, SA) (((EA) << 8) | (SA))
#define REG_MMU_INT_CONTROL0 0x120
#define F_L2_MULIT_HIT_EN BIT(0)
#define F_TABLE_WALK_FAULT_INT_EN BIT(1)
#define F_PREETCH_FIFO_OVERFLOW_INT_EN BIT(2)
#define F_MISS_FIFO_OVERFLOW_INT_EN BIT(3)
#define F_PREFETCH_FIFO_ERR_INT_EN BIT(5)
#define F_MISS_FIFO_ERR_INT_EN BIT(6)
#define F_INT_CLR_BIT BIT(12)
#define REG_MMU_INT_MAIN_CONTROL 0x124
/* mmu0 | mmu1 */
#define F_INT_TRANSLATION_FAULT (BIT(0) | BIT(7))
#define F_INT_MAIN_MULTI_HIT_FAULT (BIT(1) | BIT(8))
#define F_INT_INVALID_PA_FAULT (BIT(2) | BIT(9))
#define F_INT_ENTRY_REPLACEMENT_FAULT (BIT(3) | BIT(10))
#define F_INT_TLB_MISS_FAULT (BIT(4) | BIT(11))
#define F_INT_MISS_TRANSACTION_FIFO_FAULT (BIT(5) | BIT(12))
#define F_INT_PRETETCH_TRANSATION_FIFO_FAULT (BIT(6) | BIT(13))
#define REG_MMU_CPE_DONE 0x12C
#define REG_MMU_FAULT_ST1 0x134
#define F_REG_MMU0_FAULT_MASK GENMASK(6, 0)
#define F_REG_MMU1_FAULT_MASK GENMASK(13, 7)
#define REG_MMU0_FAULT_VA 0x13c
#define F_MMU_INVAL_VA_31_12_MASK GENMASK(31, 12)
#define F_MMU_INVAL_VA_34_32_MASK GENMASK(11, 9)
#define F_MMU_INVAL_PA_34_32_MASK GENMASK(8, 6)
#define F_MMU_FAULT_VA_WRITE_BIT BIT(1)
#define F_MMU_FAULT_VA_LAYER_BIT BIT(0)
#define REG_MMU0_INVLD_PA 0x140
#define REG_MMU1_FAULT_VA 0x144
#define REG_MMU1_INVLD_PA 0x148
#define REG_MMU0_INT_ID 0x150
#define REG_MMU1_INT_ID 0x154
#define F_MMU_INT_ID_COMM_ID(a) (((a) >> 9) & 0x7)
#define F_MMU_INT_ID_SUB_COMM_ID(a) (((a) >> 7) & 0x3)
#define F_MMU_INT_ID_COMM_ID_EXT(a) (((a) >> 10) & 0x7)
#define F_MMU_INT_ID_SUB_COMM_ID_EXT(a) (((a) >> 7) & 0x7)
/* Macro for 5 bits length port ID field (default) */
#define F_MMU_INT_ID_LARB_ID(a) (((a) >> 7) & 0x7)
#define F_MMU_INT_ID_PORT_ID(a) (((a) >> 2) & 0x1f)
/* Macro for 6 bits length port ID field */
#define F_MMU_INT_ID_LARB_ID_WID_6(a) (((a) >> 8) & 0x7)
#define F_MMU_INT_ID_PORT_ID_WID_6(a) (((a) >> 2) & 0x3f)
#define MTK_PROTECT_PA_ALIGN 256
#define MTK_IOMMU_BANK_SZ 0x1000
#define PERICFG_IOMMU_1 0x714
#define HAS_4GB_MODE BIT(0)
/* HW will use the EMI clock if there isn't the "bclk". */
#define HAS_BCLK BIT(1)
#define HAS_VLD_PA_RNG BIT(2)
#define RESET_AXI BIT(3)
#define OUT_ORDER_WR_EN BIT(4)
#define HAS_SUB_COMM_2BITS BIT(5)
#define HAS_SUB_COMM_3BITS BIT(6)
#define WR_THROT_EN BIT(7)
#define HAS_LEGACY_IVRP_PADDR BIT(8)
#define IOVA_34_EN BIT(9)
#define SHARE_PGTABLE BIT(10) /* 2 HW share pgtable */
#define DCM_DISABLE BIT(11)
#define STD_AXI_MODE BIT(12) /* For non MM iommu */
/* 2 bits: iommu type */
#define MTK_IOMMU_TYPE_MM (0x0 << 13)
#define MTK_IOMMU_TYPE_INFRA (0x1 << 13)
#define MTK_IOMMU_TYPE_MASK (0x3 << 13)
/* PM and clock always on. e.g. infra iommu */
#define PM_CLK_AO BIT(15)
#define IFA_IOMMU_PCIE_SUPPORT BIT(16)
#define PGTABLE_PA_35_EN BIT(17)
#define TF_PORT_TO_ADDR_MT8173 BIT(18)
#define INT_ID_PORT_WIDTH_6 BIT(19)
#define CFG_IFA_MASTER_IN_ATF BIT(20)
#define MTK_IOMMU_HAS_FLAG_MASK(pdata, _x, mask) \
((((pdata)->flags) & (mask)) == (_x))
#define MTK_IOMMU_HAS_FLAG(pdata, _x) MTK_IOMMU_HAS_FLAG_MASK(pdata, _x, _x)
#define MTK_IOMMU_IS_TYPE(pdata, _x) MTK_IOMMU_HAS_FLAG_MASK(pdata, _x,\
MTK_IOMMU_TYPE_MASK)
#define MTK_INVALID_LARBID MTK_LARB_NR_MAX
#define MTK_LARB_COM_MAX 8
#define MTK_LARB_SUBCOM_MAX 8
#define MTK_IOMMU_GROUP_MAX 8
#define MTK_IOMMU_BANK_MAX 5
enum mtk_iommu_plat {
M4U_MT2712,
M4U_MT6779,
M4U_MT6795,
M4U_MT8167,
M4U_MT8173,
M4U_MT8183,
M4U_MT8186,
M4U_MT8188,
M4U_MT8192,
M4U_MT8195,
M4U_MT8365,
};
struct mtk_iommu_iova_region {
dma_addr_t iova_base;
unsigned long long size;
};
struct mtk_iommu_suspend_reg {
u32 misc_ctrl;
u32 dcm_dis;
u32 ctrl_reg;
u32 vld_pa_rng;
u32 wr_len_ctrl;
u32 int_control[MTK_IOMMU_BANK_MAX];
u32 int_main_control[MTK_IOMMU_BANK_MAX];
u32 ivrp_paddr[MTK_IOMMU_BANK_MAX];
};
struct mtk_iommu_plat_data {
enum mtk_iommu_plat m4u_plat;
u32 flags;
u32 inv_sel_reg;
char *pericfg_comp_str;
struct list_head *hw_list;
/*
* The IOMMU HW may support 16GB iova. In order to balance the IOVA ranges,
* different masters will be put in different iova ranges, for example vcodec
* is in 4G-8G and cam is in 8G-12G. Meanwhile, some masters may have the
* special IOVA range requirement, like CCU can only support the address
* 0x40000000-0x44000000.
* Here list the iova ranges this SoC supports and which larbs/ports are in
* which region.
*
* 16GB iova all use one pgtable, but each a region is a iommu group.
*/
struct {
unsigned int iova_region_nr;
const struct mtk_iommu_iova_region *iova_region;
/*
* Indicate the correspondance between larbs, ports and regions.
*
* The index is the same as iova_region and larb port numbers are
* described as bit positions.
* For example, storing BIT(0) at index 2,1 means "larb 1, port0 is in region 2".
* [2] = { [1] = BIT(0) }
*/
const u32 (*iova_region_larb_msk)[MTK_LARB_NR_MAX];
};
/*
* The IOMMU HW may have 5 banks. Each bank has a independent pgtable.
* Here list how many banks this SoC supports/enables and which ports are in which bank.
*/
struct {
u8 banks_num;
bool banks_enable[MTK_IOMMU_BANK_MAX];
unsigned int banks_portmsk[MTK_IOMMU_BANK_MAX];
};
unsigned char larbid_remap[MTK_LARB_COM_MAX][MTK_LARB_SUBCOM_MAX];
};
struct mtk_iommu_bank_data {
void __iomem *base;
int irq;
u8 id;
struct device *parent_dev;
struct mtk_iommu_data *parent_data;
spinlock_t tlb_lock; /* lock for tlb range flush */
struct mtk_iommu_domain *m4u_dom; /* Each bank has a domain */
};
struct mtk_iommu_data {
struct device *dev;
struct clk *bclk;
phys_addr_t protect_base; /* protect memory base */
struct mtk_iommu_suspend_reg reg;
struct iommu_group *m4u_group[MTK_IOMMU_GROUP_MAX];
bool enable_4GB;
struct iommu_device iommu;
const struct mtk_iommu_plat_data *plat_data;
struct device *smicomm_dev;
struct mtk_iommu_bank_data *bank;
struct mtk_iommu_domain *share_dom;
struct regmap *pericfg;
struct mutex mutex; /* Protect m4u_group/m4u_dom above */
/*
* In the sharing pgtable case, list data->list to the global list like m4ulist.
* In the non-sharing pgtable case, list data->list to the itself hw_list_head.
*/
struct list_head *hw_list;
struct list_head hw_list_head;
struct list_head list;
struct mtk_smi_larb_iommu larb_imu[MTK_LARB_NR_MAX];
};
struct mtk_iommu_domain {
struct io_pgtable_cfg cfg;
struct io_pgtable_ops *iop;
struct mtk_iommu_bank_data *bank;
struct iommu_domain domain;
struct mutex mutex; /* Protect "data" in this structure */
};
static int mtk_iommu_bind(struct device *dev)
{
struct mtk_iommu_data *data = dev_get_drvdata(dev);
return component_bind_all(dev, &data->larb_imu);
}
static void mtk_iommu_unbind(struct device *dev)
{
struct mtk_iommu_data *data = dev_get_drvdata(dev);
component_unbind_all(dev, &data->larb_imu);
}
static const struct iommu_ops mtk_iommu_ops;
static int mtk_iommu_hw_init(const struct mtk_iommu_data *data, unsigned int bankid);
#define MTK_IOMMU_TLB_ADDR(iova) ({ \
dma_addr_t _addr = iova; \
((lower_32_bits(_addr) & GENMASK(31, 12)) | upper_32_bits(_addr));\
})
/*
* In M4U 4GB mode, the physical address is remapped as below:
*
* CPU Physical address:
* ====================
*
* 0 1G 2G 3G 4G 5G
* |---A---|---B---|---C---|---D---|---E---|
* +--I/O--+------------Memory-------------+
*
* IOMMU output physical address:
* =============================
*
* 4G 5G 6G 7G 8G
* |---E---|---B---|---C---|---D---|
* +------------Memory-------------+
*
* The Region 'A'(I/O) can NOT be mapped by M4U; For Region 'B'/'C'/'D', the
* bit32 of the CPU physical address always is needed to set, and for Region
* 'E', the CPU physical address keep as is.
* Additionally, The iommu consumers always use the CPU phyiscal address.
*/
#define MTK_IOMMU_4GB_MODE_REMAP_BASE 0x140000000UL
static LIST_HEAD(m4ulist); /* List all the M4U HWs */
#define for_each_m4u(data, head) list_for_each_entry(data, head, list)
#define MTK_IOMMU_IOVA_SZ_4G (SZ_4G - SZ_8M) /* 8M as gap */
static const struct mtk_iommu_iova_region single_domain[] = {
{.iova_base = 0, .size = MTK_IOMMU_IOVA_SZ_4G},
};
#define MT8192_MULTI_REGION_NR_MAX 6
#define MT8192_MULTI_REGION_NR (IS_ENABLED(CONFIG_ARCH_DMA_ADDR_T_64BIT) ? \
MT8192_MULTI_REGION_NR_MAX : 1)
static const struct mtk_iommu_iova_region mt8192_multi_dom[MT8192_MULTI_REGION_NR] = {
{ .iova_base = 0x0, .size = MTK_IOMMU_IOVA_SZ_4G}, /* 0 ~ 4G, */
#if IS_ENABLED(CONFIG_ARCH_DMA_ADDR_T_64BIT)
{ .iova_base = SZ_4G, .size = MTK_IOMMU_IOVA_SZ_4G}, /* 4G ~ 8G */
{ .iova_base = SZ_4G * 2, .size = MTK_IOMMU_IOVA_SZ_4G}, /* 8G ~ 12G */
{ .iova_base = SZ_4G * 3, .size = MTK_IOMMU_IOVA_SZ_4G}, /* 12G ~ 16G */
{ .iova_base = 0x240000000ULL, .size = 0x4000000}, /* CCU0 */
{ .iova_base = 0x244000000ULL, .size = 0x4000000}, /* CCU1 */
#endif
};
/* If 2 M4U share a domain(use the same hwlist), Put the corresponding info in first data.*/
static struct mtk_iommu_data *mtk_iommu_get_frst_data(struct list_head *hwlist)
{
return list_first_entry(hwlist, struct mtk_iommu_data, list);
}
static struct mtk_iommu_domain *to_mtk_domain(struct iommu_domain *dom)
{
return container_of(dom, struct mtk_iommu_domain, domain);
}
static void mtk_iommu_tlb_flush_all(struct mtk_iommu_data *data)
{
/* Tlb flush all always is in bank0. */
struct mtk_iommu_bank_data *bank = &data->bank[0];
void __iomem *base = bank->base;
unsigned long flags;
spin_lock_irqsave(&bank->tlb_lock, flags);
writel_relaxed(F_INVLD_EN1 | F_INVLD_EN0, base + data->plat_data->inv_sel_reg);
writel_relaxed(F_ALL_INVLD, base + REG_MMU_INVALIDATE);
wmb(); /* Make sure the tlb flush all done */
spin_unlock_irqrestore(&bank->tlb_lock, flags);
}
static void mtk_iommu_tlb_flush_range_sync(unsigned long iova, size_t size,
struct mtk_iommu_bank_data *bank)
{
struct list_head *head = bank->parent_data->hw_list;
struct mtk_iommu_bank_data *curbank;
struct mtk_iommu_data *data;
bool check_pm_status;
unsigned long flags;
void __iomem *base;
int ret;
u32 tmp;
for_each_m4u(data, head) {
/*
* To avoid resume the iommu device frequently when the iommu device
* is not active, it doesn't always call pm_runtime_get here, then tlb
* flush depends on the tlb flush all in the runtime resume.
*
* There are 2 special cases:
*
* Case1: The iommu dev doesn't have power domain but has bclk. This case
* should also avoid the tlb flush while the dev is not active to mute
* the tlb timeout log. like mt8173.
*
* Case2: The power/clock of infra iommu is always on, and it doesn't
* have the device link with the master devices. This case should avoid
* the PM status check.
*/
check_pm_status = !MTK_IOMMU_HAS_FLAG(data->plat_data, PM_CLK_AO);
if (check_pm_status) {
if (pm_runtime_get_if_in_use(data->dev) <= 0)
continue;
}
curbank = &data->bank[bank->id];
base = curbank->base;
spin_lock_irqsave(&curbank->tlb_lock, flags);
writel_relaxed(F_INVLD_EN1 | F_INVLD_EN0,
base + data->plat_data->inv_sel_reg);
writel_relaxed(MTK_IOMMU_TLB_ADDR(iova), base + REG_MMU_INVLD_START_A);
writel_relaxed(MTK_IOMMU_TLB_ADDR(iova + size - 1),
base + REG_MMU_INVLD_END_A);
writel_relaxed(F_MMU_INV_RANGE, base + REG_MMU_INVALIDATE);
/* tlb sync */
ret = readl_poll_timeout_atomic(base + REG_MMU_CPE_DONE,
tmp, tmp != 0, 10, 1000);
/* Clear the CPE status */
writel_relaxed(0, base + REG_MMU_CPE_DONE);
spin_unlock_irqrestore(&curbank->tlb_lock, flags);
if (ret) {
dev_warn(data->dev,
"Partial TLB flush timed out, falling back to full flush\n");
mtk_iommu_tlb_flush_all(data);
}
if (check_pm_status)
pm_runtime_put(data->dev);
}
}
static irqreturn_t mtk_iommu_isr(int irq, void *dev_id)
{
struct mtk_iommu_bank_data *bank = dev_id;
struct mtk_iommu_data *data = bank->parent_data;
struct mtk_iommu_domain *dom = bank->m4u_dom;
unsigned int fault_larb = MTK_INVALID_LARBID, fault_port = 0, sub_comm = 0;
u32 int_state, regval, va34_32, pa34_32;
const struct mtk_iommu_plat_data *plat_data = data->plat_data;
void __iomem *base = bank->base;
u64 fault_iova, fault_pa;
bool layer, write;
/* Read error info from registers */
int_state = readl_relaxed(base + REG_MMU_FAULT_ST1);
if (int_state & F_REG_MMU0_FAULT_MASK) {
regval = readl_relaxed(base + REG_MMU0_INT_ID);
fault_iova = readl_relaxed(base + REG_MMU0_FAULT_VA);
fault_pa = readl_relaxed(base + REG_MMU0_INVLD_PA);
} else {
regval = readl_relaxed(base + REG_MMU1_INT_ID);
fault_iova = readl_relaxed(base + REG_MMU1_FAULT_VA);
fault_pa = readl_relaxed(base + REG_MMU1_INVLD_PA);
}
layer = fault_iova & F_MMU_FAULT_VA_LAYER_BIT;
write = fault_iova & F_MMU_FAULT_VA_WRITE_BIT;
if (MTK_IOMMU_HAS_FLAG(plat_data, IOVA_34_EN)) {
va34_32 = FIELD_GET(F_MMU_INVAL_VA_34_32_MASK, fault_iova);
fault_iova = fault_iova & F_MMU_INVAL_VA_31_12_MASK;
fault_iova |= (u64)va34_32 << 32;
}
pa34_32 = FIELD_GET(F_MMU_INVAL_PA_34_32_MASK, fault_iova);
fault_pa |= (u64)pa34_32 << 32;
if (MTK_IOMMU_IS_TYPE(plat_data, MTK_IOMMU_TYPE_MM)) {
if (MTK_IOMMU_HAS_FLAG(plat_data, HAS_SUB_COMM_2BITS)) {
fault_larb = F_MMU_INT_ID_COMM_ID(regval);
sub_comm = F_MMU_INT_ID_SUB_COMM_ID(regval);
fault_port = F_MMU_INT_ID_PORT_ID(regval);
} else if (MTK_IOMMU_HAS_FLAG(plat_data, HAS_SUB_COMM_3BITS)) {
fault_larb = F_MMU_INT_ID_COMM_ID_EXT(regval);
sub_comm = F_MMU_INT_ID_SUB_COMM_ID_EXT(regval);
fault_port = F_MMU_INT_ID_PORT_ID(regval);
} else if (MTK_IOMMU_HAS_FLAG(plat_data, INT_ID_PORT_WIDTH_6)) {
fault_port = F_MMU_INT_ID_PORT_ID_WID_6(regval);
fault_larb = F_MMU_INT_ID_LARB_ID_WID_6(regval);
} else {
fault_port = F_MMU_INT_ID_PORT_ID(regval);
fault_larb = F_MMU_INT_ID_LARB_ID(regval);
}
fault_larb = data->plat_data->larbid_remap[fault_larb][sub_comm];
}
if (!dom || report_iommu_fault(&dom->domain, bank->parent_dev, fault_iova,
write ? IOMMU_FAULT_WRITE : IOMMU_FAULT_READ)) {
dev_err_ratelimited(
bank->parent_dev,
"fault type=0x%x iova=0x%llx pa=0x%llx master=0x%x(larb=%d port=%d) layer=%d %s\n",
int_state, fault_iova, fault_pa, regval, fault_larb, fault_port,
layer, write ? "write" : "read");
}
/* Interrupt clear */
regval = readl_relaxed(base + REG_MMU_INT_CONTROL0);
regval |= F_INT_CLR_BIT;
writel_relaxed(regval, base + REG_MMU_INT_CONTROL0);
mtk_iommu_tlb_flush_all(data);
return IRQ_HANDLED;
}
static unsigned int mtk_iommu_get_bank_id(struct device *dev,
const struct mtk_iommu_plat_data *plat_data)
{
struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
unsigned int i, portmsk = 0, bankid = 0;
if (plat_data->banks_num == 1)
return bankid;
for (i = 0; i < fwspec->num_ids; i++)
portmsk |= BIT(MTK_M4U_TO_PORT(fwspec->ids[i]));
for (i = 0; i < plat_data->banks_num && i < MTK_IOMMU_BANK_MAX; i++) {
if (!plat_data->banks_enable[i])
continue;
if (portmsk & plat_data->banks_portmsk[i]) {
bankid = i;
break;
}
}
return bankid; /* default is 0 */
}
static int mtk_iommu_get_iova_region_id(struct device *dev,
const struct mtk_iommu_plat_data *plat_data)
{
struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
unsigned int portidmsk = 0, larbid;
const u32 *rgn_larb_msk;
int i;
if (plat_data->iova_region_nr == 1)
return 0;
larbid = MTK_M4U_TO_LARB(fwspec->ids[0]);
for (i = 0; i < fwspec->num_ids; i++)
portidmsk |= BIT(MTK_M4U_TO_PORT(fwspec->ids[i]));
for (i = 0; i < plat_data->iova_region_nr; i++) {
rgn_larb_msk = plat_data->iova_region_larb_msk[i];
if (!rgn_larb_msk)
continue;
if ((rgn_larb_msk[larbid] & portidmsk) == portidmsk)
return i;
}
dev_err(dev, "Can NOT find the region for larb(%d-%x).\n",
larbid, portidmsk);
return -EINVAL;
}
static int mtk_iommu_config(struct mtk_iommu_data *data, struct device *dev,
bool enable, unsigned int regionid)
{
struct mtk_smi_larb_iommu *larb_mmu;
unsigned int larbid, portid;
struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
const struct mtk_iommu_iova_region *region;
unsigned long portid_msk = 0;
struct arm_smccc_res res;
int i, ret = 0;
for (i = 0; i < fwspec->num_ids; ++i) {
portid = MTK_M4U_TO_PORT(fwspec->ids[i]);
portid_msk |= BIT(portid);
}
if (MTK_IOMMU_IS_TYPE(data->plat_data, MTK_IOMMU_TYPE_MM)) {
/* All ports should be in the same larb. just use 0 here */
larbid = MTK_M4U_TO_LARB(fwspec->ids[0]);
larb_mmu = &data->larb_imu[larbid];
region = data->plat_data->iova_region + regionid;
for_each_set_bit(portid, &portid_msk, 32)
larb_mmu->bank[portid] = upper_32_bits(region->iova_base);
dev_dbg(dev, "%s iommu for larb(%s) port 0x%lx region %d rgn-bank %d.\n",
enable ? "enable" : "disable", dev_name(larb_mmu->dev),
portid_msk, regionid, upper_32_bits(region->iova_base));
if (enable)
larb_mmu->mmu |= portid_msk;
else
larb_mmu->mmu &= ~portid_msk;
} else if (MTK_IOMMU_IS_TYPE(data->plat_data, MTK_IOMMU_TYPE_INFRA)) {
if (MTK_IOMMU_HAS_FLAG(data->plat_data, CFG_IFA_MASTER_IN_ATF)) {
arm_smccc_smc(MTK_SIP_KERNEL_IOMMU_CONTROL,
IOMMU_ATF_CMD_CONFIG_INFRA_IOMMU,
portid_msk, enable, 0, 0, 0, 0, &res);
ret = res.a0;
} else {
/* PCI dev has only one output id, enable the next writing bit for PCIe */
if (dev_is_pci(dev)) {
if (fwspec->num_ids != 1) {
dev_err(dev, "PCI dev can only have one port.\n");
return -ENODEV;
}
portid_msk |= BIT(portid + 1);
}
ret = regmap_update_bits(data->pericfg, PERICFG_IOMMU_1,
(u32)portid_msk, enable ? (u32)portid_msk : 0);
}
if (ret)
dev_err(dev, "%s iommu(%s) inframaster 0x%lx fail(%d).\n",
enable ? "enable" : "disable",
dev_name(data->dev), portid_msk, ret);
}
return ret;
}
static int mtk_iommu_domain_finalise(struct mtk_iommu_domain *dom,
struct mtk_iommu_data *data,
unsigned int region_id)
{
struct mtk_iommu_domain *share_dom = data->share_dom;
const struct mtk_iommu_iova_region *region;
/* Share pgtable when 2 MM IOMMU share the pgtable or one IOMMU use multiple iova ranges */
if (share_dom) {
dom->iop = share_dom->iop;
dom->cfg = share_dom->cfg;
dom->domain.pgsize_bitmap = share_dom->cfg.pgsize_bitmap;
goto update_iova_region;
}
dom->cfg = (struct io_pgtable_cfg) {
.quirks = IO_PGTABLE_QUIRK_ARM_NS |
IO_PGTABLE_QUIRK_NO_PERMS |
IO_PGTABLE_QUIRK_ARM_MTK_EXT,
.pgsize_bitmap = mtk_iommu_ops.pgsize_bitmap,
.ias = MTK_IOMMU_HAS_FLAG(data->plat_data, IOVA_34_EN) ? 34 : 32,
.iommu_dev = data->dev,
};
if (MTK_IOMMU_HAS_FLAG(data->plat_data, PGTABLE_PA_35_EN))
dom->cfg.quirks |= IO_PGTABLE_QUIRK_ARM_MTK_TTBR_EXT;
if (MTK_IOMMU_HAS_FLAG(data->plat_data, HAS_4GB_MODE))
dom->cfg.oas = data->enable_4GB ? 33 : 32;
else
dom->cfg.oas = 35;
dom->iop = alloc_io_pgtable_ops(ARM_V7S, &dom->cfg, data);
if (!dom->iop) {
dev_err(data->dev, "Failed to alloc io pgtable\n");
return -ENOMEM;
}
/* Update our support page sizes bitmap */
dom->domain.pgsize_bitmap = dom->cfg.pgsize_bitmap;
data->share_dom = dom;
update_iova_region:
/* Update the iova region for this domain */
region = data->plat_data->iova_region + region_id;
dom->domain.geometry.aperture_start = region->iova_base;
dom->domain.geometry.aperture_end = region->iova_base + region->size - 1;
dom->domain.geometry.force_aperture = true;
return 0;
}
static struct iommu_domain *mtk_iommu_domain_alloc_paging(struct device *dev)
{
struct mtk_iommu_domain *dom;
dom = kzalloc(sizeof(*dom), GFP_KERNEL);
if (!dom)
return NULL;
mutex_init(&dom->mutex);
return &dom->domain;
}
static void mtk_iommu_domain_free(struct iommu_domain *domain)
{
kfree(to_mtk_domain(domain));
}
static int mtk_iommu_attach_device(struct iommu_domain *domain,
struct device *dev)
{
struct mtk_iommu_data *data = dev_iommu_priv_get(dev), *frstdata;
struct mtk_iommu_domain *dom = to_mtk_domain(domain);
struct list_head *hw_list = data->hw_list;
struct device *m4udev = data->dev;
struct mtk_iommu_bank_data *bank;
unsigned int bankid;
int ret, region_id;
region_id = mtk_iommu_get_iova_region_id(dev, data->plat_data);
if (region_id < 0)
return region_id;
bankid = mtk_iommu_get_bank_id(dev, data->plat_data);
mutex_lock(&dom->mutex);
if (!dom->bank) {
/* Data is in the frstdata in sharing pgtable case. */
frstdata = mtk_iommu_get_frst_data(hw_list);
mutex_lock(&frstdata->mutex);
ret = mtk_iommu_domain_finalise(dom, frstdata, region_id);
mutex_unlock(&frstdata->mutex);
if (ret) {
mutex_unlock(&dom->mutex);
return ret;
}
dom->bank = &data->bank[bankid];
}
mutex_unlock(&dom->mutex);
mutex_lock(&data->mutex);
bank = &data->bank[bankid];
if (!bank->m4u_dom) { /* Initialize the M4U HW for each a BANK */
ret = pm_runtime_resume_and_get(m4udev);
if (ret < 0) {
dev_err(m4udev, "pm get fail(%d) in attach.\n", ret);
goto err_unlock;
}
ret = mtk_iommu_hw_init(data, bankid);
if (ret) {
pm_runtime_put(m4udev);
goto err_unlock;
}
bank->m4u_dom = dom;
writel(dom->cfg.arm_v7s_cfg.ttbr, bank->base + REG_MMU_PT_BASE_ADDR);
pm_runtime_put(m4udev);
}
mutex_unlock(&data->mutex);
if (region_id > 0) {
ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(34));
if (ret) {
dev_err(m4udev, "Failed to set dma_mask for %s(%d).\n", dev_name(dev), ret);
return ret;
}
}
return mtk_iommu_config(data, dev, true, region_id);
err_unlock:
mutex_unlock(&data->mutex);
return ret;
}
static int mtk_iommu_identity_attach(struct iommu_domain *identity_domain,
struct device *dev)
{
struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
struct mtk_iommu_data *data = dev_iommu_priv_get(dev);
if (domain == identity_domain || !domain)
return 0;
mtk_iommu_config(data, dev, false, 0);
return 0;
}
static struct iommu_domain_ops mtk_iommu_identity_ops = {
.attach_dev = mtk_iommu_identity_attach,
};
static struct iommu_domain mtk_iommu_identity_domain = {
.type = IOMMU_DOMAIN_IDENTITY,
.ops = &mtk_iommu_identity_ops,
};
static int mtk_iommu_map(struct iommu_domain *domain, unsigned long iova,
phys_addr_t paddr, size_t pgsize, size_t pgcount,
int prot, gfp_t gfp, size_t *mapped)
{
struct mtk_iommu_domain *dom = to_mtk_domain(domain);
/* The "4GB mode" M4U physically can not use the lower remap of Dram. */
if (dom->bank->parent_data->enable_4GB)
paddr |= BIT_ULL(32);
/* Synchronize with the tlb_lock */
return dom->iop->map_pages(dom->iop, iova, paddr, pgsize, pgcount, prot, gfp, mapped);
}
static size_t mtk_iommu_unmap(struct iommu_domain *domain,
unsigned long iova, size_t pgsize, size_t pgcount,
struct iommu_iotlb_gather *gather)
{
struct mtk_iommu_domain *dom = to_mtk_domain(domain);
iommu_iotlb_gather_add_range(gather, iova, pgsize * pgcount);
return dom->iop->unmap_pages(dom->iop, iova, pgsize, pgcount, gather);
}
static void mtk_iommu_flush_iotlb_all(struct iommu_domain *domain)
{
struct mtk_iommu_domain *dom = to_mtk_domain(domain);
if (dom->bank)
mtk_iommu_tlb_flush_all(dom->bank->parent_data);
}
static void mtk_iommu_iotlb_sync(struct iommu_domain *domain,
struct iommu_iotlb_gather *gather)
{
struct mtk_iommu_domain *dom = to_mtk_domain(domain);
size_t length = gather->end - gather->start + 1;
mtk_iommu_tlb_flush_range_sync(gather->start, length, dom->bank);
}
static int mtk_iommu_sync_map(struct iommu_domain *domain, unsigned long iova,
size_t size)
{
struct mtk_iommu_domain *dom = to_mtk_domain(domain);
mtk_iommu_tlb_flush_range_sync(iova, size, dom->bank);
return 0;
}
static phys_addr_t mtk_iommu_iova_to_phys(struct iommu_domain *domain,
dma_addr_t iova)
{
struct mtk_iommu_domain *dom = to_mtk_domain(domain);
phys_addr_t pa;
pa = dom->iop->iova_to_phys(dom->iop, iova);
if (IS_ENABLED(CONFIG_PHYS_ADDR_T_64BIT) &&
dom->bank->parent_data->enable_4GB &&
pa >= MTK_IOMMU_4GB_MODE_REMAP_BASE)
pa &= ~BIT_ULL(32);
return pa;
}
static struct iommu_device *mtk_iommu_probe_device(struct device *dev)
{
struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
struct mtk_iommu_data *data = dev_iommu_priv_get(dev);
struct device_link *link;
struct device *larbdev;
unsigned int larbid, larbidx, i;
if (!MTK_IOMMU_IS_TYPE(data->plat_data, MTK_IOMMU_TYPE_MM))
return &data->iommu;
/*
* Link the consumer device with the smi-larb device(supplier).
* The device that connects with each a larb is a independent HW.
* All the ports in each a device should be in the same larbs.
*/
larbid = MTK_M4U_TO_LARB(fwspec->ids[0]);
if (larbid >= MTK_LARB_NR_MAX)
return ERR_PTR(-EINVAL);
for (i = 1; i < fwspec->num_ids; i++) {
larbidx = MTK_M4U_TO_LARB(fwspec->ids[i]);
if (larbid != larbidx) {
dev_err(dev, "Can only use one larb. Fail@larb%d-%d.\n",
larbid, larbidx);
return ERR_PTR(-EINVAL);
}
}
larbdev = data->larb_imu[larbid].dev;
if (!larbdev)
return ERR_PTR(-EINVAL);
link = device_link_add(dev, larbdev,
DL_FLAG_PM_RUNTIME | DL_FLAG_STATELESS);
if (!link)
dev_err(dev, "Unable to link %s\n", dev_name(larbdev));
return &data->iommu;
}
static void mtk_iommu_release_device(struct device *dev)
{
struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
struct mtk_iommu_data *data;
struct device *larbdev;
unsigned int larbid;
data = dev_iommu_priv_get(dev);
if (MTK_IOMMU_IS_TYPE(data->plat_data, MTK_IOMMU_TYPE_MM)) {
larbid = MTK_M4U_TO_LARB(fwspec->ids[0]);
larbdev = data->larb_imu[larbid].dev;
device_link_remove(dev, larbdev);
}
}
static int mtk_iommu_get_group_id(struct device *dev, const struct mtk_iommu_plat_data *plat_data)
{
unsigned int bankid;
/*
* If the bank function is enabled, each bank is a iommu group/domain.
* Otherwise, each iova region is a iommu group/domain.
*/
bankid = mtk_iommu_get_bank_id(dev, plat_data);
if (bankid)
return bankid;
return mtk_iommu_get_iova_region_id(dev, plat_data);
}
static struct iommu_group *mtk_iommu_device_group(struct device *dev)
{
struct mtk_iommu_data *c_data = dev_iommu_priv_get(dev), *data;
struct list_head *hw_list = c_data->hw_list;
struct iommu_group *group;
int groupid;
data = mtk_iommu_get_frst_data(hw_list);
if (!data)
return ERR_PTR(-ENODEV);
groupid = mtk_iommu_get_group_id(dev, data->plat_data);
if (groupid < 0)
return ERR_PTR(groupid);
mutex_lock(&data->mutex);
group = data->m4u_group[groupid];
if (!group) {
group = iommu_group_alloc();
if (!IS_ERR(group))
data->m4u_group[groupid] = group;
} else {
iommu_group_ref_get(group);
}
mutex_unlock(&data->mutex);
return group;
}
static int mtk_iommu_of_xlate(struct device *dev,
const struct of_phandle_args *args)
{
struct platform_device *m4updev;
if (args->args_count != 1) {
dev_err(dev, "invalid #iommu-cells(%d) property for IOMMU\n",
args->args_count);
return -EINVAL;
}
if (!dev_iommu_priv_get(dev)) {
/* Get the m4u device */
m4updev = of_find_device_by_node(args->np);
if (WARN_ON(!m4updev))
return -EINVAL;
dev_iommu_priv_set(dev, platform_get_drvdata(m4updev));
}
return iommu_fwspec_add_ids(dev, args->args, 1);
}
static void mtk_iommu_get_resv_regions(struct device *dev,
struct list_head *head)
{
struct mtk_iommu_data *data = dev_iommu_priv_get(dev);
unsigned int regionid = mtk_iommu_get_iova_region_id(dev, data->plat_data), i;
const struct mtk_iommu_iova_region *resv, *curdom;
struct iommu_resv_region *region;
int prot = IOMMU_WRITE | IOMMU_READ;
if ((int)regionid < 0)
return;
curdom = data->plat_data->iova_region + regionid;
for (i = 0; i < data->plat_data->iova_region_nr; i++) {
resv = data->plat_data->iova_region + i;
/* Only reserve when the region is inside the current domain */
if (resv->iova_base <= curdom->iova_base ||
resv->iova_base + resv->size >= curdom->iova_base + curdom->size)
continue;
region = iommu_alloc_resv_region(resv->iova_base, resv->size,
prot, IOMMU_RESV_RESERVED,
GFP_KERNEL);
if (!region)
return;
list_add_tail(&region->list, head);
}
}
static const struct iommu_ops mtk_iommu_ops = {
.identity_domain = &mtk_iommu_identity_domain,
.domain_alloc_paging = mtk_iommu_domain_alloc_paging,
.probe_device = mtk_iommu_probe_device,
.release_device = mtk_iommu_release_device,
.device_group = mtk_iommu_device_group,
.of_xlate = mtk_iommu_of_xlate,
.get_resv_regions = mtk_iommu_get_resv_regions,
.pgsize_bitmap = SZ_4K | SZ_64K | SZ_1M | SZ_16M,
.owner = THIS_MODULE,
.default_domain_ops = &(const struct iommu_domain_ops) {
.attach_dev = mtk_iommu_attach_device,
.map_pages = mtk_iommu_map,
.unmap_pages = mtk_iommu_unmap,
.flush_iotlb_all = mtk_iommu_flush_iotlb_all,
.iotlb_sync = mtk_iommu_iotlb_sync,
.iotlb_sync_map = mtk_iommu_sync_map,
.iova_to_phys = mtk_iommu_iova_to_phys,
.free = mtk_iommu_domain_free,
}
};
static int mtk_iommu_hw_init(const struct mtk_iommu_data *data, unsigned int bankid)
{
const struct mtk_iommu_bank_data *bankx = &data->bank[bankid];
const struct mtk_iommu_bank_data *bank0 = &data->bank[0];
u32 regval;
/*
* Global control settings are in bank0. May re-init these global registers
* since no sure if there is bank0 consumers.
*/
if (MTK_IOMMU_HAS_FLAG(data->plat_data, TF_PORT_TO_ADDR_MT8173)) {
regval = F_MMU_PREFETCH_RT_REPLACE_MOD |
F_MMU_TF_PROT_TO_PROGRAM_ADDR_MT8173;
} else {
regval = readl_relaxed(bank0->base + REG_MMU_CTRL_REG);
regval |= F_MMU_TF_PROT_TO_PROGRAM_ADDR;
}
writel_relaxed(regval, bank0->base + REG_MMU_CTRL_REG);
if (data->enable_4GB &&
MTK_IOMMU_HAS_FLAG(data->plat_data, HAS_VLD_PA_RNG)) {
/*
* If 4GB mode is enabled, the validate PA range is from
* 0x1_0000_0000 to 0x1_ffff_ffff. here record bit[32:30].
*/
regval = F_MMU_VLD_PA_RNG(7, 4);
writel_relaxed(regval, bank0->base + REG_MMU_VLD_PA_RNG);
}
if (MTK_IOMMU_HAS_FLAG(data->plat_data, DCM_DISABLE))
writel_relaxed(F_MMU_DCM, bank0->base + REG_MMU_DCM_DIS);
else
writel_relaxed(0, bank0->base + REG_MMU_DCM_DIS);
if (MTK_IOMMU_HAS_FLAG(data->plat_data, WR_THROT_EN)) {
/* write command throttling mode */
regval = readl_relaxed(bank0->base + REG_MMU_WR_LEN_CTRL);
regval &= ~F_MMU_WR_THROT_DIS_MASK;
writel_relaxed(regval, bank0->base + REG_MMU_WR_LEN_CTRL);
}
if (MTK_IOMMU_HAS_FLAG(data->plat_data, RESET_AXI)) {
/* The register is called STANDARD_AXI_MODE in this case */
regval = 0;
} else {
regval = readl_relaxed(bank0->base + REG_MMU_MISC_CTRL);
if (!MTK_IOMMU_HAS_FLAG(data->plat_data, STD_AXI_MODE))
regval &= ~F_MMU_STANDARD_AXI_MODE_MASK;
if (MTK_IOMMU_HAS_FLAG(data->plat_data, OUT_ORDER_WR_EN))
regval &= ~F_MMU_IN_ORDER_WR_EN_MASK;
}
writel_relaxed(regval, bank0->base + REG_MMU_MISC_CTRL);
/* Independent settings for each bank */
regval = F_L2_MULIT_HIT_EN |
F_TABLE_WALK_FAULT_INT_EN |
F_PREETCH_FIFO_OVERFLOW_INT_EN |
F_MISS_FIFO_OVERFLOW_INT_EN |
F_PREFETCH_FIFO_ERR_INT_EN |
F_MISS_FIFO_ERR_INT_EN;
writel_relaxed(regval, bankx->base + REG_MMU_INT_CONTROL0);
regval = F_INT_TRANSLATION_FAULT |
F_INT_MAIN_MULTI_HIT_FAULT |
F_INT_INVALID_PA_FAULT |
F_INT_ENTRY_REPLACEMENT_FAULT |
F_INT_TLB_MISS_FAULT |
F_INT_MISS_TRANSACTION_FIFO_FAULT |
F_INT_PRETETCH_TRANSATION_FIFO_FAULT;
writel_relaxed(regval, bankx->base + REG_MMU_INT_MAIN_CONTROL);
if (MTK_IOMMU_HAS_FLAG(data->plat_data, HAS_LEGACY_IVRP_PADDR))
regval = (data->protect_base >> 1) | (data->enable_4GB << 31);
else
regval = lower_32_bits(data->protect_base) |
upper_32_bits(data->protect_base);
writel_relaxed(regval, bankx->base + REG_MMU_IVRP_PADDR);
if (devm_request_irq(bankx->parent_dev, bankx->irq, mtk_iommu_isr, 0,
dev_name(bankx->parent_dev), (void *)bankx)) {
writel_relaxed(0, bankx->base + REG_MMU_PT_BASE_ADDR);
dev_err(bankx->parent_dev, "Failed @ IRQ-%d Request\n", bankx->irq);
return -ENODEV;
}
return 0;
}
static const struct component_master_ops mtk_iommu_com_ops = {
.bind = mtk_iommu_bind,
.unbind = mtk_iommu_unbind,
};
static int mtk_iommu_mm_dts_parse(struct device *dev, struct component_match **match,
struct mtk_iommu_data *data)
{
struct device_node *larbnode, *frst_avail_smicomm_node = NULL;
struct platform_device *plarbdev, *pcommdev;
struct device_link *link;
int i, larb_nr, ret;
larb_nr = of_count_phandle_with_args(dev->of_node, "mediatek,larbs", NULL);
if (larb_nr < 0)
return larb_nr;
if (larb_nr == 0 || larb_nr > MTK_LARB_NR_MAX)
return -EINVAL;
for (i = 0; i < larb_nr; i++) {
struct device_node *smicomm_node, *smi_subcomm_node;
u32 id;
larbnode = of_parse_phandle(dev->of_node, "mediatek,larbs", i);
if (!larbnode) {
ret = -EINVAL;
goto err_larbdev_put;
}
if (!of_device_is_available(larbnode)) {
of_node_put(larbnode);
continue;
}
ret = of_property_read_u32(larbnode, "mediatek,larb-id", &id);
if (ret)/* The id is consecutive if there is no this property */
id = i;
if (id >= MTK_LARB_NR_MAX) {
of_node_put(larbnode);
ret = -EINVAL;
goto err_larbdev_put;
}
plarbdev = of_find_device_by_node(larbnode);
of_node_put(larbnode);
if (!plarbdev) {
ret = -ENODEV;
goto err_larbdev_put;
}
if (data->larb_imu[id].dev) {
platform_device_put(plarbdev);
ret = -EEXIST;
goto err_larbdev_put;
}
data->larb_imu[id].dev = &plarbdev->dev;
if (!plarbdev->dev.driver) {
ret = -EPROBE_DEFER;
goto err_larbdev_put;
}
/* Get smi-(sub)-common dev from the last larb. */
smi_subcomm_node = of_parse_phandle(larbnode, "mediatek,smi", 0);
if (!smi_subcomm_node) {
ret = -EINVAL;
goto err_larbdev_put;
}
/*
* It may have two level smi-common. the node is smi-sub-common if it
* has a new mediatek,smi property. otherwise it is smi-commmon.
*/
smicomm_node = of_parse_phandle(smi_subcomm_node, "mediatek,smi", 0);
if (smicomm_node)
of_node_put(smi_subcomm_node);
else
smicomm_node = smi_subcomm_node;
/*
* All the larbs that connect to one IOMMU must connect with the same
* smi-common.
*/
if (!frst_avail_smicomm_node) {
frst_avail_smicomm_node = smicomm_node;
} else if (frst_avail_smicomm_node != smicomm_node) {
dev_err(dev, "mediatek,smi property is not right @larb%d.", id);
of_node_put(smicomm_node);
ret = -EINVAL;
goto err_larbdev_put;
} else {
of_node_put(smicomm_node);
}
component_match_add(dev, match, component_compare_dev, &plarbdev->dev);
platform_device_put(plarbdev);
}
if (!frst_avail_smicomm_node)
return -EINVAL;
pcommdev = of_find_device_by_node(frst_avail_smicomm_node);
of_node_put(frst_avail_smicomm_node);
if (!pcommdev)
return -ENODEV;
data->smicomm_dev = &pcommdev->dev;
link = device_link_add(data->smicomm_dev, dev,
DL_FLAG_STATELESS | DL_FLAG_PM_RUNTIME);
platform_device_put(pcommdev);
if (!link) {
dev_err(dev, "Unable to link %s.\n", dev_name(data->smicomm_dev));
return -EINVAL;
}
return 0;
err_larbdev_put:
for (i = MTK_LARB_NR_MAX - 1; i >= 0; i--) {
if (!data->larb_imu[i].dev)
continue;
put_device(data->larb_imu[i].dev);
}
return ret;
}
static int mtk_iommu_probe(struct platform_device *pdev)
{
struct mtk_iommu_data *data;
struct device *dev = &pdev->dev;
struct resource *res;
resource_size_t ioaddr;
struct component_match *match = NULL;
struct regmap *infracfg;
void *protect;
int ret, banks_num, i = 0;
u32 val;
char *p;
struct mtk_iommu_bank_data *bank;
void __iomem *base;
data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
if (!data)
return -ENOMEM;
data->dev = dev;
data->plat_data = of_device_get_match_data(dev);
/* Protect memory. HW will access here while translation fault.*/
protect = devm_kcalloc(dev, 2, MTK_PROTECT_PA_ALIGN, GFP_KERNEL);
if (!protect)
return -ENOMEM;
data->protect_base = ALIGN(virt_to_phys(protect), MTK_PROTECT_PA_ALIGN);
if (MTK_IOMMU_HAS_FLAG(data->plat_data, HAS_4GB_MODE)) {
infracfg = syscon_regmap_lookup_by_phandle(dev->of_node, "mediatek,infracfg");
if (IS_ERR(infracfg)) {
/*
* Legacy devicetrees will not specify a phandle to
* mediatek,infracfg: in that case, we use the older
* way to retrieve a syscon to infra.
*
* This is for retrocompatibility purposes only, hence
* no more compatibles shall be added to this.
*/
switch (data->plat_data->m4u_plat) {
case M4U_MT2712:
p = "mediatek,mt2712-infracfg";
break;
case M4U_MT8173:
p = "mediatek,mt8173-infracfg";
break;
default:
p = NULL;
}
infracfg = syscon_regmap_lookup_by_compatible(p);
if (IS_ERR(infracfg))
return PTR_ERR(infracfg);
}
ret = regmap_read(infracfg, REG_INFRA_MISC, &val);
if (ret)
return ret;
data->enable_4GB = !!(val & F_DDR_4GB_SUPPORT_EN);
}
banks_num = data->plat_data->banks_num;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!res)
return -EINVAL;
if (resource_size(res) < banks_num * MTK_IOMMU_BANK_SZ) {
dev_err(dev, "banknr %d. res %pR is not enough.\n", banks_num, res);
return -EINVAL;
}
base = devm_ioremap_resource(dev, res);
if (IS_ERR(base))
return PTR_ERR(base);
ioaddr = res->start;
data->bank = devm_kmalloc(dev, banks_num * sizeof(*data->bank), GFP_KERNEL);
if (!data->bank)
return -ENOMEM;
do {
if (!data->plat_data->banks_enable[i])
continue;
bank = &data->bank[i];
bank->id = i;
bank->base = base + i * MTK_IOMMU_BANK_SZ;
bank->m4u_dom = NULL;
bank->irq = platform_get_irq(pdev, i);
if (bank->irq < 0)
return bank->irq;
bank->parent_dev = dev;
bank->parent_data = data;
spin_lock_init(&bank->tlb_lock);
} while (++i < banks_num);
if (MTK_IOMMU_HAS_FLAG(data->plat_data, HAS_BCLK)) {
data->bclk = devm_clk_get(dev, "bclk");
if (IS_ERR(data->bclk))
return PTR_ERR(data->bclk);
}
if (MTK_IOMMU_HAS_FLAG(data->plat_data, PGTABLE_PA_35_EN)) {
ret = dma_set_mask(dev, DMA_BIT_MASK(35));
if (ret) {
dev_err(dev, "Failed to set dma_mask 35.\n");
return ret;
}
}
pm_runtime_enable(dev);
if (MTK_IOMMU_IS_TYPE(data->plat_data, MTK_IOMMU_TYPE_MM)) {
ret = mtk_iommu_mm_dts_parse(dev, &match, data);
if (ret) {
dev_err_probe(dev, ret, "mm dts parse fail\n");
goto out_runtime_disable;
}
} else if (MTK_IOMMU_IS_TYPE(data->plat_data, MTK_IOMMU_TYPE_INFRA) &&
!MTK_IOMMU_HAS_FLAG(data->plat_data, CFG_IFA_MASTER_IN_ATF)) {
p = data->plat_data->pericfg_comp_str;
data->pericfg = syscon_regmap_lookup_by_compatible(p);
if (IS_ERR(data->pericfg)) {
ret = PTR_ERR(data->pericfg);
goto out_runtime_disable;
}
}
platform_set_drvdata(pdev, data);
mutex_init(&data->mutex);
ret = iommu_device_sysfs_add(&data->iommu, dev, NULL,
"mtk-iommu.%pa", &ioaddr);
if (ret)
goto out_link_remove;
ret = iommu_device_register(&data->iommu, &mtk_iommu_ops, dev);
if (ret)
goto out_sysfs_remove;
if (MTK_IOMMU_HAS_FLAG(data->plat_data, SHARE_PGTABLE)) {
list_add_tail(&data->list, data->plat_data->hw_list);
data->hw_list = data->plat_data->hw_list;
} else {
INIT_LIST_HEAD(&data->hw_list_head);
list_add_tail(&data->list, &data->hw_list_head);
data->hw_list = &data->hw_list_head;
}
if (MTK_IOMMU_IS_TYPE(data->plat_data, MTK_IOMMU_TYPE_MM)) {
ret = component_master_add_with_match(dev, &mtk_iommu_com_ops, match);
if (ret)
goto out_list_del;
}
return ret;
out_list_del:
list_del(&data->list);
iommu_device_unregister(&data->iommu);
out_sysfs_remove:
iommu_device_sysfs_remove(&data->iommu);
out_link_remove:
if (MTK_IOMMU_IS_TYPE(data->plat_data, MTK_IOMMU_TYPE_MM))
device_link_remove(data->smicomm_dev, dev);
out_runtime_disable:
pm_runtime_disable(dev);
return ret;
}
static void mtk_iommu_remove(struct platform_device *pdev)
{
struct mtk_iommu_data *data = platform_get_drvdata(pdev);
struct mtk_iommu_bank_data *bank;
int i;
iommu_device_sysfs_remove(&data->iommu);
iommu_device_unregister(&data->iommu);
list_del(&data->list);
if (MTK_IOMMU_IS_TYPE(data->plat_data, MTK_IOMMU_TYPE_MM)) {
device_link_remove(data->smicomm_dev, &pdev->dev);
component_master_del(&pdev->dev, &mtk_iommu_com_ops);
}
pm_runtime_disable(&pdev->dev);
for (i = 0; i < data->plat_data->banks_num; i++) {
bank = &data->bank[i];
if (!bank->m4u_dom)
continue;
devm_free_irq(&pdev->dev, bank->irq, bank);
}
}
static int __maybe_unused mtk_iommu_runtime_suspend(struct device *dev)
{
struct mtk_iommu_data *data = dev_get_drvdata(dev);
struct mtk_iommu_suspend_reg *reg = &data->reg;
void __iomem *base;
int i = 0;
base = data->bank[i].base;
reg->wr_len_ctrl = readl_relaxed(base + REG_MMU_WR_LEN_CTRL);
reg->misc_ctrl = readl_relaxed(base + REG_MMU_MISC_CTRL);
reg->dcm_dis = readl_relaxed(base + REG_MMU_DCM_DIS);
reg->ctrl_reg = readl_relaxed(base + REG_MMU_CTRL_REG);
reg->vld_pa_rng = readl_relaxed(base + REG_MMU_VLD_PA_RNG);
do {
if (!data->plat_data->banks_enable[i])
continue;
base = data->bank[i].base;
reg->int_control[i] = readl_relaxed(base + REG_MMU_INT_CONTROL0);
reg->int_main_control[i] = readl_relaxed(base + REG_MMU_INT_MAIN_CONTROL);
reg->ivrp_paddr[i] = readl_relaxed(base + REG_MMU_IVRP_PADDR);
} while (++i < data->plat_data->banks_num);
clk_disable_unprepare(data->bclk);
return 0;
}
static int __maybe_unused mtk_iommu_runtime_resume(struct device *dev)
{
struct mtk_iommu_data *data = dev_get_drvdata(dev);
struct mtk_iommu_suspend_reg *reg = &data->reg;
struct mtk_iommu_domain *m4u_dom;
void __iomem *base;
int ret, i = 0;
ret = clk_prepare_enable(data->bclk);
if (ret) {
dev_err(data->dev, "Failed to enable clk(%d) in resume\n", ret);
return ret;
}
/*
* Uppon first resume, only enable the clk and return, since the values of the
* registers are not yet set.
*/
if (!reg->wr_len_ctrl)
return 0;
base = data->bank[i].base;
writel_relaxed(reg->wr_len_ctrl, base + REG_MMU_WR_LEN_CTRL);
writel_relaxed(reg->misc_ctrl, base + REG_MMU_MISC_CTRL);
writel_relaxed(reg->dcm_dis, base + REG_MMU_DCM_DIS);
writel_relaxed(reg->ctrl_reg, base + REG_MMU_CTRL_REG);
writel_relaxed(reg->vld_pa_rng, base + REG_MMU_VLD_PA_RNG);
do {
m4u_dom = data->bank[i].m4u_dom;
if (!data->plat_data->banks_enable[i] || !m4u_dom)
continue;
base = data->bank[i].base;
writel_relaxed(reg->int_control[i], base + REG_MMU_INT_CONTROL0);
writel_relaxed(reg->int_main_control[i], base + REG_MMU_INT_MAIN_CONTROL);
writel_relaxed(reg->ivrp_paddr[i], base + REG_MMU_IVRP_PADDR);
writel(m4u_dom->cfg.arm_v7s_cfg.ttbr, base + REG_MMU_PT_BASE_ADDR);
} while (++i < data->plat_data->banks_num);
/*
* Users may allocate dma buffer before they call pm_runtime_get,
* in which case it will lack the necessary tlb flush.
* Thus, make sure to update the tlb after each PM resume.
*/
mtk_iommu_tlb_flush_all(data);
return 0;
}
static const struct dev_pm_ops mtk_iommu_pm_ops = {
SET_RUNTIME_PM_OPS(mtk_iommu_runtime_suspend, mtk_iommu_runtime_resume, NULL)
SET_LATE_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
pm_runtime_force_resume)
};
static const struct mtk_iommu_plat_data mt2712_data = {
.m4u_plat = M4U_MT2712,
.flags = HAS_4GB_MODE | HAS_BCLK | HAS_VLD_PA_RNG | SHARE_PGTABLE |
MTK_IOMMU_TYPE_MM,
.hw_list = &m4ulist,
.inv_sel_reg = REG_MMU_INV_SEL_GEN1,
.iova_region = single_domain,
.banks_num = 1,
.banks_enable = {true},
.iova_region_nr = ARRAY_SIZE(single_domain),
.larbid_remap = {{0}, {1}, {2}, {3}, {4}, {5}, {6}, {7}},
};
static const struct mtk_iommu_plat_data mt6779_data = {
.m4u_plat = M4U_MT6779,
.flags = HAS_SUB_COMM_2BITS | OUT_ORDER_WR_EN | WR_THROT_EN |
MTK_IOMMU_TYPE_MM | PGTABLE_PA_35_EN,
.inv_sel_reg = REG_MMU_INV_SEL_GEN2,
.banks_num = 1,
.banks_enable = {true},
.iova_region = single_domain,
.iova_region_nr = ARRAY_SIZE(single_domain),
.larbid_remap = {{0}, {1}, {2}, {3}, {5}, {7, 8}, {10}, {9}},
};
static const struct mtk_iommu_plat_data mt6795_data = {
.m4u_plat = M4U_MT6795,
.flags = HAS_4GB_MODE | HAS_BCLK | RESET_AXI |
HAS_LEGACY_IVRP_PADDR | MTK_IOMMU_TYPE_MM |
TF_PORT_TO_ADDR_MT8173,
.inv_sel_reg = REG_MMU_INV_SEL_GEN1,
.banks_num = 1,
.banks_enable = {true},
.iova_region = single_domain,
.iova_region_nr = ARRAY_SIZE(single_domain),
.larbid_remap = {{0}, {1}, {2}, {3}, {4}}, /* Linear mapping. */
};
static const struct mtk_iommu_plat_data mt8167_data = {
.m4u_plat = M4U_MT8167,
.flags = RESET_AXI | HAS_LEGACY_IVRP_PADDR | MTK_IOMMU_TYPE_MM,
.inv_sel_reg = REG_MMU_INV_SEL_GEN1,
.banks_num = 1,
.banks_enable = {true},
.iova_region = single_domain,
.iova_region_nr = ARRAY_SIZE(single_domain),
.larbid_remap = {{0}, {1}, {2}}, /* Linear mapping. */
};
static const struct mtk_iommu_plat_data mt8173_data = {
.m4u_plat = M4U_MT8173,
.flags = HAS_4GB_MODE | HAS_BCLK | RESET_AXI |
HAS_LEGACY_IVRP_PADDR | MTK_IOMMU_TYPE_MM |
TF_PORT_TO_ADDR_MT8173,
.inv_sel_reg = REG_MMU_INV_SEL_GEN1,
.banks_num = 1,
.banks_enable = {true},
.iova_region = single_domain,
.iova_region_nr = ARRAY_SIZE(single_domain),
.larbid_remap = {{0}, {1}, {2}, {3}, {4}, {5}}, /* Linear mapping. */
};
static const struct mtk_iommu_plat_data mt8183_data = {
.m4u_plat = M4U_MT8183,
.flags = RESET_AXI | MTK_IOMMU_TYPE_MM,
.inv_sel_reg = REG_MMU_INV_SEL_GEN1,
.banks_num = 1,
.banks_enable = {true},
.iova_region = single_domain,
.iova_region_nr = ARRAY_SIZE(single_domain),
.larbid_remap = {{0}, {4}, {5}, {6}, {7}, {2}, {3}, {1}},
};
static const unsigned int mt8186_larb_region_msk[MT8192_MULTI_REGION_NR_MAX][MTK_LARB_NR_MAX] = {
[0] = {~0, ~0, ~0}, /* Region0: all ports for larb0/1/2 */
[1] = {0, 0, 0, 0, ~0, 0, 0, ~0}, /* Region1: larb4/7 */
[2] = {0, 0, 0, 0, 0, 0, 0, 0, /* Region2: larb8/9/11/13/16/17/19/20 */
~0, ~0, 0, ~0, 0, ~(u32)(BIT(9) | BIT(10)), 0, 0,
/* larb13: the other ports except port9/10 */
~0, ~0, 0, ~0, ~0},
[3] = {0},
[4] = {[13] = BIT(9) | BIT(10)}, /* larb13 port9/10 */
[5] = {[14] = ~0}, /* larb14 */
};
static const struct mtk_iommu_plat_data mt8186_data_mm = {
.m4u_plat = M4U_MT8186,
.flags = HAS_BCLK | HAS_SUB_COMM_2BITS | OUT_ORDER_WR_EN |
WR_THROT_EN | IOVA_34_EN | MTK_IOMMU_TYPE_MM,
.larbid_remap = {{0}, {1, MTK_INVALID_LARBID, 8}, {4}, {7}, {2}, {9, 11, 19, 20},
{MTK_INVALID_LARBID, 14, 16},
{MTK_INVALID_LARBID, 13, MTK_INVALID_LARBID, 17}},
.inv_sel_reg = REG_MMU_INV_SEL_GEN2,
.banks_num = 1,
.banks_enable = {true},
.iova_region = mt8192_multi_dom,
.iova_region_nr = ARRAY_SIZE(mt8192_multi_dom),
.iova_region_larb_msk = mt8186_larb_region_msk,
};
static const struct mtk_iommu_plat_data mt8188_data_infra = {
.m4u_plat = M4U_MT8188,
.flags = WR_THROT_EN | DCM_DISABLE | STD_AXI_MODE | PM_CLK_AO |
MTK_IOMMU_TYPE_INFRA | IFA_IOMMU_PCIE_SUPPORT |
PGTABLE_PA_35_EN | CFG_IFA_MASTER_IN_ATF,
.inv_sel_reg = REG_MMU_INV_SEL_GEN2,
.banks_num = 1,
.banks_enable = {true},
.iova_region = single_domain,
.iova_region_nr = ARRAY_SIZE(single_domain),
};
static const u32 mt8188_larb_region_msk[MT8192_MULTI_REGION_NR_MAX][MTK_LARB_NR_MAX] = {
[0] = {~0, ~0, ~0, ~0}, /* Region0: all ports for larb0/1/2/3 */
[1] = {0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, ~0, ~0, ~0}, /* Region1: larb19(21)/21(22)/23 */
[2] = {0, 0, 0, 0, ~0, ~0, ~0, ~0, /* Region2: the other larbs. */
~0, ~0, ~0, ~0, ~0, ~0, ~0, ~0,
~0, ~0, ~0, ~0, ~0, 0, 0, 0,
0, ~0},
[3] = {0},
[4] = {[24] = BIT(0) | BIT(1)}, /* Only larb27(24) port0/1 */
[5] = {[24] = BIT(2) | BIT(3)}, /* Only larb27(24) port2/3 */
};
static const struct mtk_iommu_plat_data mt8188_data_vdo = {
.m4u_plat = M4U_MT8188,
.flags = HAS_BCLK | HAS_SUB_COMM_3BITS | OUT_ORDER_WR_EN |
WR_THROT_EN | IOVA_34_EN | SHARE_PGTABLE |
PGTABLE_PA_35_EN | MTK_IOMMU_TYPE_MM,
.hw_list = &m4ulist,
.inv_sel_reg = REG_MMU_INV_SEL_GEN2,
.banks_num = 1,
.banks_enable = {true},
.iova_region = mt8192_multi_dom,
.iova_region_nr = ARRAY_SIZE(mt8192_multi_dom),
.iova_region_larb_msk = mt8188_larb_region_msk,
.larbid_remap = {{2}, {0}, {21}, {0}, {19}, {9, 10,
11 /* 11a */, 25 /* 11c */},
{13, 0, 29 /* 16b */, 30 /* 17b */, 0}, {5}},
};
static const struct mtk_iommu_plat_data mt8188_data_vpp = {
.m4u_plat = M4U_MT8188,
.flags = HAS_BCLK | HAS_SUB_COMM_3BITS | OUT_ORDER_WR_EN |
WR_THROT_EN | IOVA_34_EN | SHARE_PGTABLE |
PGTABLE_PA_35_EN | MTK_IOMMU_TYPE_MM,
.hw_list = &m4ulist,
.inv_sel_reg = REG_MMU_INV_SEL_GEN2,
.banks_num = 1,
.banks_enable = {true},
.iova_region = mt8192_multi_dom,
.iova_region_nr = ARRAY_SIZE(mt8192_multi_dom),
.iova_region_larb_msk = mt8188_larb_region_msk,
.larbid_remap = {{1}, {3}, {23}, {7}, {MTK_INVALID_LARBID},
{12, 15, 24 /* 11b */}, {14, MTK_INVALID_LARBID,
16 /* 16a */, 17 /* 17a */, MTK_INVALID_LARBID,
27, 28 /* ccu0 */, MTK_INVALID_LARBID}, {4, 6}},
};
static const unsigned int mt8192_larb_region_msk[MT8192_MULTI_REGION_NR_MAX][MTK_LARB_NR_MAX] = {
[0] = {~0, ~0}, /* Region0: larb0/1 */
[1] = {0, 0, 0, 0, ~0, ~0, 0, ~0}, /* Region1: larb4/5/7 */
[2] = {0, 0, ~0, 0, 0, 0, 0, 0, /* Region2: larb2/9/11/13/14/16/17/18/19/20 */
0, ~0, 0, ~0, 0, ~(u32)(BIT(9) | BIT(10)), ~(u32)(BIT(4) | BIT(5)), 0,
~0, ~0, ~0, ~0, ~0},
[3] = {0},
[4] = {[13] = BIT(9) | BIT(10)}, /* larb13 port9/10 */
[5] = {[14] = BIT(4) | BIT(5)}, /* larb14 port4/5 */
};
static const struct mtk_iommu_plat_data mt8192_data = {
.m4u_plat = M4U_MT8192,
.flags = HAS_BCLK | HAS_SUB_COMM_2BITS | OUT_ORDER_WR_EN |
WR_THROT_EN | IOVA_34_EN | MTK_IOMMU_TYPE_MM,
.inv_sel_reg = REG_MMU_INV_SEL_GEN2,
.banks_num = 1,
.banks_enable = {true},
.iova_region = mt8192_multi_dom,
.iova_region_nr = ARRAY_SIZE(mt8192_multi_dom),
.iova_region_larb_msk = mt8192_larb_region_msk,
.larbid_remap = {{0}, {1}, {4, 5}, {7}, {2}, {9, 11, 19, 20},
{0, 14, 16}, {0, 13, 18, 17}},
};
static const struct mtk_iommu_plat_data mt8195_data_infra = {
.m4u_plat = M4U_MT8195,
.flags = WR_THROT_EN | DCM_DISABLE | STD_AXI_MODE | PM_CLK_AO |
MTK_IOMMU_TYPE_INFRA | IFA_IOMMU_PCIE_SUPPORT,
.pericfg_comp_str = "mediatek,mt8195-pericfg_ao",
.inv_sel_reg = REG_MMU_INV_SEL_GEN2,
.banks_num = 5,
.banks_enable = {true, false, false, false, true},
.banks_portmsk = {[0] = GENMASK(19, 16), /* PCIe */
[4] = GENMASK(31, 20), /* USB */
},
.iova_region = single_domain,
.iova_region_nr = ARRAY_SIZE(single_domain),
};
static const unsigned int mt8195_larb_region_msk[MT8192_MULTI_REGION_NR_MAX][MTK_LARB_NR_MAX] = {
[0] = {~0, ~0, ~0, ~0}, /* Region0: all ports for larb0/1/2/3 */
[1] = {0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, ~0, ~0, ~0, ~0, ~0, /* Region1: larb19/20/21/22/23/24 */
~0},
[2] = {0, 0, 0, 0, ~0, ~0, ~0, ~0, /* Region2: the other larbs. */
~0, ~0, ~0, ~0, ~0, ~0, ~0, ~0,
~0, ~0, 0, 0, 0, 0, 0, 0,
0, ~0, ~0, ~0, ~0},
[3] = {0},
[4] = {[18] = BIT(0) | BIT(1)}, /* Only larb18 port0/1 */
[5] = {[18] = BIT(2) | BIT(3)}, /* Only larb18 port2/3 */
};
static const struct mtk_iommu_plat_data mt8195_data_vdo = {
.m4u_plat = M4U_MT8195,
.flags = HAS_BCLK | HAS_SUB_COMM_2BITS | OUT_ORDER_WR_EN |
WR_THROT_EN | IOVA_34_EN | SHARE_PGTABLE | MTK_IOMMU_TYPE_MM,
.hw_list = &m4ulist,
.inv_sel_reg = REG_MMU_INV_SEL_GEN2,
.banks_num = 1,
.banks_enable = {true},
.iova_region = mt8192_multi_dom,
.iova_region_nr = ARRAY_SIZE(mt8192_multi_dom),
.iova_region_larb_msk = mt8195_larb_region_msk,
.larbid_remap = {{2, 0}, {21}, {24}, {7}, {19}, {9, 10, 11},
{13, 17, 15/* 17b */, 25}, {5}},
};
static const struct mtk_iommu_plat_data mt8195_data_vpp = {
.m4u_plat = M4U_MT8195,
.flags = HAS_BCLK | HAS_SUB_COMM_3BITS | OUT_ORDER_WR_EN |
WR_THROT_EN | IOVA_34_EN | SHARE_PGTABLE | MTK_IOMMU_TYPE_MM,
.hw_list = &m4ulist,
.inv_sel_reg = REG_MMU_INV_SEL_GEN2,
.banks_num = 1,
.banks_enable = {true},
.iova_region = mt8192_multi_dom,
.iova_region_nr = ARRAY_SIZE(mt8192_multi_dom),
.iova_region_larb_msk = mt8195_larb_region_msk,
.larbid_remap = {{1}, {3},
{22, MTK_INVALID_LARBID, MTK_INVALID_LARBID, MTK_INVALID_LARBID, 23},
{8}, {20}, {12},
/* 16: 16a; 29: 16b; 30: CCUtop0; 31: CCUtop1 */
{14, 16, 29, 26, 30, 31, 18},
{4, MTK_INVALID_LARBID, MTK_INVALID_LARBID, MTK_INVALID_LARBID, 6}},
};
static const struct mtk_iommu_plat_data mt8365_data = {
.m4u_plat = M4U_MT8365,
.flags = RESET_AXI | INT_ID_PORT_WIDTH_6,
.inv_sel_reg = REG_MMU_INV_SEL_GEN1,
.banks_num = 1,
.banks_enable = {true},
.iova_region = single_domain,
.iova_region_nr = ARRAY_SIZE(single_domain),
.larbid_remap = {{0}, {1}, {2}, {3}, {4}, {5}}, /* Linear mapping. */
};
static const struct of_device_id mtk_iommu_of_ids[] = {
{ .compatible = "mediatek,mt2712-m4u", .data = &mt2712_data},
{ .compatible = "mediatek,mt6779-m4u", .data = &mt6779_data},
{ .compatible = "mediatek,mt6795-m4u", .data = &mt6795_data},
{ .compatible = "mediatek,mt8167-m4u", .data = &mt8167_data},
{ .compatible = "mediatek,mt8173-m4u", .data = &mt8173_data},
{ .compatible = "mediatek,mt8183-m4u", .data = &mt8183_data},
{ .compatible = "mediatek,mt8186-iommu-mm", .data = &mt8186_data_mm}, /* mm: m4u */
{ .compatible = "mediatek,mt8188-iommu-infra", .data = &mt8188_data_infra},
{ .compatible = "mediatek,mt8188-iommu-vdo", .data = &mt8188_data_vdo},
{ .compatible = "mediatek,mt8188-iommu-vpp", .data = &mt8188_data_vpp},
{ .compatible = "mediatek,mt8192-m4u", .data = &mt8192_data},
{ .compatible = "mediatek,mt8195-iommu-infra", .data = &mt8195_data_infra},
{ .compatible = "mediatek,mt8195-iommu-vdo", .data = &mt8195_data_vdo},
{ .compatible = "mediatek,mt8195-iommu-vpp", .data = &mt8195_data_vpp},
{ .compatible = "mediatek,mt8365-m4u", .data = &mt8365_data},
{}
};
MODULE_DEVICE_TABLE(of, mtk_iommu_of_ids);
static struct platform_driver mtk_iommu_driver = {
.probe = mtk_iommu_probe,
.remove_new = mtk_iommu_remove,
.driver = {
.name = "mtk-iommu",
.of_match_table = mtk_iommu_of_ids,
.pm = &mtk_iommu_pm_ops,
}
};
module_platform_driver(mtk_iommu_driver);
MODULE_DESCRIPTION("IOMMU API for MediaTek M4U implementations");
MODULE_LICENSE("GPL v2");