blob: d246840797b676aaea160078ef1b395eda600e38 [file] [log] [blame] [edit]
// SPDX-License-Identifier: GPL-2.0-only
/*
* ARMv8 PMUv3 Performance Events handling code.
*
* Copyright (C) 2012 ARM Limited
* Author: Will Deacon <will.deacon@arm.com>
*
* This code is based heavily on the ARMv7 perf event code.
*/
#include <asm/irq_regs.h>
#include <asm/perf_event.h>
#include <asm/virt.h>
#include <clocksource/arm_arch_timer.h>
#include <linux/acpi.h>
#include <linux/bitfield.h>
#include <linux/clocksource.h>
#include <linux/of.h>
#include <linux/perf/arm_pmu.h>
#include <linux/perf/arm_pmuv3.h>
#include <linux/platform_device.h>
#include <linux/sched_clock.h>
#include <linux/smp.h>
#include <linux/nmi.h>
/* ARMv8 Cortex-A53 specific event types. */
#define ARMV8_A53_PERFCTR_PREF_LINEFILL 0xC2
/* ARMv8 Cavium ThunderX specific event types. */
#define ARMV8_THUNDER_PERFCTR_L1D_CACHE_MISS_ST 0xE9
#define ARMV8_THUNDER_PERFCTR_L1D_CACHE_PREF_ACCESS 0xEA
#define ARMV8_THUNDER_PERFCTR_L1D_CACHE_PREF_MISS 0xEB
#define ARMV8_THUNDER_PERFCTR_L1I_CACHE_PREF_ACCESS 0xEC
#define ARMV8_THUNDER_PERFCTR_L1I_CACHE_PREF_MISS 0xED
/*
* ARMv8 Architectural defined events, not all of these may
* be supported on any given implementation. Unsupported events will
* be disabled at run-time based on the PMCEID registers.
*/
static const unsigned armv8_pmuv3_perf_map[PERF_COUNT_HW_MAX] = {
PERF_MAP_ALL_UNSUPPORTED,
[PERF_COUNT_HW_CPU_CYCLES] = ARMV8_PMUV3_PERFCTR_CPU_CYCLES,
[PERF_COUNT_HW_INSTRUCTIONS] = ARMV8_PMUV3_PERFCTR_INST_RETIRED,
[PERF_COUNT_HW_CACHE_REFERENCES] = ARMV8_PMUV3_PERFCTR_L1D_CACHE,
[PERF_COUNT_HW_CACHE_MISSES] = ARMV8_PMUV3_PERFCTR_L1D_CACHE_REFILL,
[PERF_COUNT_HW_BRANCH_MISSES] = ARMV8_PMUV3_PERFCTR_BR_MIS_PRED,
[PERF_COUNT_HW_BUS_CYCLES] = ARMV8_PMUV3_PERFCTR_BUS_CYCLES,
[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = ARMV8_PMUV3_PERFCTR_STALL_FRONTEND,
[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = ARMV8_PMUV3_PERFCTR_STALL_BACKEND,
};
static const unsigned armv8_pmuv3_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
[PERF_COUNT_HW_CACHE_OP_MAX]
[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
PERF_CACHE_MAP_ALL_UNSUPPORTED,
[C(L1D)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV8_PMUV3_PERFCTR_L1D_CACHE,
[C(L1D)][C(OP_READ)][C(RESULT_MISS)] = ARMV8_PMUV3_PERFCTR_L1D_CACHE_REFILL,
[C(L1I)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV8_PMUV3_PERFCTR_L1I_CACHE,
[C(L1I)][C(OP_READ)][C(RESULT_MISS)] = ARMV8_PMUV3_PERFCTR_L1I_CACHE_REFILL,
[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = ARMV8_PMUV3_PERFCTR_L1D_TLB_REFILL,
[C(DTLB)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV8_PMUV3_PERFCTR_L1D_TLB,
[C(ITLB)][C(OP_READ)][C(RESULT_MISS)] = ARMV8_PMUV3_PERFCTR_L1I_TLB_REFILL,
[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV8_PMUV3_PERFCTR_L1I_TLB,
[C(LL)][C(OP_READ)][C(RESULT_MISS)] = ARMV8_PMUV3_PERFCTR_LL_CACHE_MISS_RD,
[C(LL)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV8_PMUV3_PERFCTR_LL_CACHE_RD,
[C(BPU)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV8_PMUV3_PERFCTR_BR_PRED,
[C(BPU)][C(OP_READ)][C(RESULT_MISS)] = ARMV8_PMUV3_PERFCTR_BR_MIS_PRED,
};
static const unsigned armv8_a53_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
[PERF_COUNT_HW_CACHE_OP_MAX]
[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
PERF_CACHE_MAP_ALL_UNSUPPORTED,
[C(L1D)][C(OP_PREFETCH)][C(RESULT_MISS)] = ARMV8_A53_PERFCTR_PREF_LINEFILL,
[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_BUS_ACCESS_RD,
[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_BUS_ACCESS_WR,
};
static const unsigned armv8_a57_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
[PERF_COUNT_HW_CACHE_OP_MAX]
[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
PERF_CACHE_MAP_ALL_UNSUPPORTED,
[C(L1D)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_L1D_CACHE_RD,
[C(L1D)][C(OP_READ)][C(RESULT_MISS)] = ARMV8_IMPDEF_PERFCTR_L1D_CACHE_REFILL_RD,
[C(L1D)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_L1D_CACHE_WR,
[C(L1D)][C(OP_WRITE)][C(RESULT_MISS)] = ARMV8_IMPDEF_PERFCTR_L1D_CACHE_REFILL_WR,
[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = ARMV8_IMPDEF_PERFCTR_L1D_TLB_REFILL_RD,
[C(DTLB)][C(OP_WRITE)][C(RESULT_MISS)] = ARMV8_IMPDEF_PERFCTR_L1D_TLB_REFILL_WR,
[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_BUS_ACCESS_RD,
[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_BUS_ACCESS_WR,
};
static const unsigned armv8_a73_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
[PERF_COUNT_HW_CACHE_OP_MAX]
[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
PERF_CACHE_MAP_ALL_UNSUPPORTED,
[C(L1D)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_L1D_CACHE_RD,
[C(L1D)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_L1D_CACHE_WR,
};
static const unsigned armv8_thunder_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
[PERF_COUNT_HW_CACHE_OP_MAX]
[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
PERF_CACHE_MAP_ALL_UNSUPPORTED,
[C(L1D)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_L1D_CACHE_RD,
[C(L1D)][C(OP_READ)][C(RESULT_MISS)] = ARMV8_IMPDEF_PERFCTR_L1D_CACHE_REFILL_RD,
[C(L1D)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_L1D_CACHE_WR,
[C(L1D)][C(OP_WRITE)][C(RESULT_MISS)] = ARMV8_THUNDER_PERFCTR_L1D_CACHE_MISS_ST,
[C(L1D)][C(OP_PREFETCH)][C(RESULT_ACCESS)] = ARMV8_THUNDER_PERFCTR_L1D_CACHE_PREF_ACCESS,
[C(L1D)][C(OP_PREFETCH)][C(RESULT_MISS)] = ARMV8_THUNDER_PERFCTR_L1D_CACHE_PREF_MISS,
[C(L1I)][C(OP_PREFETCH)][C(RESULT_ACCESS)] = ARMV8_THUNDER_PERFCTR_L1I_CACHE_PREF_ACCESS,
[C(L1I)][C(OP_PREFETCH)][C(RESULT_MISS)] = ARMV8_THUNDER_PERFCTR_L1I_CACHE_PREF_MISS,
[C(DTLB)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_L1D_TLB_RD,
[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = ARMV8_IMPDEF_PERFCTR_L1D_TLB_REFILL_RD,
[C(DTLB)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_L1D_TLB_WR,
[C(DTLB)][C(OP_WRITE)][C(RESULT_MISS)] = ARMV8_IMPDEF_PERFCTR_L1D_TLB_REFILL_WR,
};
static const unsigned armv8_vulcan_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
[PERF_COUNT_HW_CACHE_OP_MAX]
[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
PERF_CACHE_MAP_ALL_UNSUPPORTED,
[C(L1D)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_L1D_CACHE_RD,
[C(L1D)][C(OP_READ)][C(RESULT_MISS)] = ARMV8_IMPDEF_PERFCTR_L1D_CACHE_REFILL_RD,
[C(L1D)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_L1D_CACHE_WR,
[C(L1D)][C(OP_WRITE)][C(RESULT_MISS)] = ARMV8_IMPDEF_PERFCTR_L1D_CACHE_REFILL_WR,
[C(DTLB)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_L1D_TLB_RD,
[C(DTLB)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_L1D_TLB_WR,
[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = ARMV8_IMPDEF_PERFCTR_L1D_TLB_REFILL_RD,
[C(DTLB)][C(OP_WRITE)][C(RESULT_MISS)] = ARMV8_IMPDEF_PERFCTR_L1D_TLB_REFILL_WR,
[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_BUS_ACCESS_RD,
[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_BUS_ACCESS_WR,
};
static ssize_t
armv8pmu_events_sysfs_show(struct device *dev,
struct device_attribute *attr, char *page)
{
struct perf_pmu_events_attr *pmu_attr;
pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr);
return sprintf(page, "event=0x%04llx\n", pmu_attr->id);
}
#define ARMV8_EVENT_ATTR(name, config) \
PMU_EVENT_ATTR_ID(name, armv8pmu_events_sysfs_show, config)
static struct attribute *armv8_pmuv3_event_attrs[] = {
/*
* Don't expose the sw_incr event in /sys. It's not usable as writes to
* PMSWINC_EL0 will trap as PMUSERENR.{SW,EN}=={0,0} and event rotation
* means we don't have a fixed event<->counter relationship regardless.
*/
ARMV8_EVENT_ATTR(l1i_cache_refill, ARMV8_PMUV3_PERFCTR_L1I_CACHE_REFILL),
ARMV8_EVENT_ATTR(l1i_tlb_refill, ARMV8_PMUV3_PERFCTR_L1I_TLB_REFILL),
ARMV8_EVENT_ATTR(l1d_cache_refill, ARMV8_PMUV3_PERFCTR_L1D_CACHE_REFILL),
ARMV8_EVENT_ATTR(l1d_cache, ARMV8_PMUV3_PERFCTR_L1D_CACHE),
ARMV8_EVENT_ATTR(l1d_tlb_refill, ARMV8_PMUV3_PERFCTR_L1D_TLB_REFILL),
ARMV8_EVENT_ATTR(ld_retired, ARMV8_PMUV3_PERFCTR_LD_RETIRED),
ARMV8_EVENT_ATTR(st_retired, ARMV8_PMUV3_PERFCTR_ST_RETIRED),
ARMV8_EVENT_ATTR(inst_retired, ARMV8_PMUV3_PERFCTR_INST_RETIRED),
ARMV8_EVENT_ATTR(exc_taken, ARMV8_PMUV3_PERFCTR_EXC_TAKEN),
ARMV8_EVENT_ATTR(exc_return, ARMV8_PMUV3_PERFCTR_EXC_RETURN),
ARMV8_EVENT_ATTR(cid_write_retired, ARMV8_PMUV3_PERFCTR_CID_WRITE_RETIRED),
ARMV8_EVENT_ATTR(pc_write_retired, ARMV8_PMUV3_PERFCTR_PC_WRITE_RETIRED),
ARMV8_EVENT_ATTR(br_immed_retired, ARMV8_PMUV3_PERFCTR_BR_IMMED_RETIRED),
ARMV8_EVENT_ATTR(br_return_retired, ARMV8_PMUV3_PERFCTR_BR_RETURN_RETIRED),
ARMV8_EVENT_ATTR(unaligned_ldst_retired, ARMV8_PMUV3_PERFCTR_UNALIGNED_LDST_RETIRED),
ARMV8_EVENT_ATTR(br_mis_pred, ARMV8_PMUV3_PERFCTR_BR_MIS_PRED),
ARMV8_EVENT_ATTR(cpu_cycles, ARMV8_PMUV3_PERFCTR_CPU_CYCLES),
ARMV8_EVENT_ATTR(br_pred, ARMV8_PMUV3_PERFCTR_BR_PRED),
ARMV8_EVENT_ATTR(mem_access, ARMV8_PMUV3_PERFCTR_MEM_ACCESS),
ARMV8_EVENT_ATTR(l1i_cache, ARMV8_PMUV3_PERFCTR_L1I_CACHE),
ARMV8_EVENT_ATTR(l1d_cache_wb, ARMV8_PMUV3_PERFCTR_L1D_CACHE_WB),
ARMV8_EVENT_ATTR(l2d_cache, ARMV8_PMUV3_PERFCTR_L2D_CACHE),
ARMV8_EVENT_ATTR(l2d_cache_refill, ARMV8_PMUV3_PERFCTR_L2D_CACHE_REFILL),
ARMV8_EVENT_ATTR(l2d_cache_wb, ARMV8_PMUV3_PERFCTR_L2D_CACHE_WB),
ARMV8_EVENT_ATTR(bus_access, ARMV8_PMUV3_PERFCTR_BUS_ACCESS),
ARMV8_EVENT_ATTR(memory_error, ARMV8_PMUV3_PERFCTR_MEMORY_ERROR),
ARMV8_EVENT_ATTR(inst_spec, ARMV8_PMUV3_PERFCTR_INST_SPEC),
ARMV8_EVENT_ATTR(ttbr_write_retired, ARMV8_PMUV3_PERFCTR_TTBR_WRITE_RETIRED),
ARMV8_EVENT_ATTR(bus_cycles, ARMV8_PMUV3_PERFCTR_BUS_CYCLES),
/* Don't expose the chain event in /sys, since it's useless in isolation */
ARMV8_EVENT_ATTR(l1d_cache_allocate, ARMV8_PMUV3_PERFCTR_L1D_CACHE_ALLOCATE),
ARMV8_EVENT_ATTR(l2d_cache_allocate, ARMV8_PMUV3_PERFCTR_L2D_CACHE_ALLOCATE),
ARMV8_EVENT_ATTR(br_retired, ARMV8_PMUV3_PERFCTR_BR_RETIRED),
ARMV8_EVENT_ATTR(br_mis_pred_retired, ARMV8_PMUV3_PERFCTR_BR_MIS_PRED_RETIRED),
ARMV8_EVENT_ATTR(stall_frontend, ARMV8_PMUV3_PERFCTR_STALL_FRONTEND),
ARMV8_EVENT_ATTR(stall_backend, ARMV8_PMUV3_PERFCTR_STALL_BACKEND),
ARMV8_EVENT_ATTR(l1d_tlb, ARMV8_PMUV3_PERFCTR_L1D_TLB),
ARMV8_EVENT_ATTR(l1i_tlb, ARMV8_PMUV3_PERFCTR_L1I_TLB),
ARMV8_EVENT_ATTR(l2i_cache, ARMV8_PMUV3_PERFCTR_L2I_CACHE),
ARMV8_EVENT_ATTR(l2i_cache_refill, ARMV8_PMUV3_PERFCTR_L2I_CACHE_REFILL),
ARMV8_EVENT_ATTR(l3d_cache_allocate, ARMV8_PMUV3_PERFCTR_L3D_CACHE_ALLOCATE),
ARMV8_EVENT_ATTR(l3d_cache_refill, ARMV8_PMUV3_PERFCTR_L3D_CACHE_REFILL),
ARMV8_EVENT_ATTR(l3d_cache, ARMV8_PMUV3_PERFCTR_L3D_CACHE),
ARMV8_EVENT_ATTR(l3d_cache_wb, ARMV8_PMUV3_PERFCTR_L3D_CACHE_WB),
ARMV8_EVENT_ATTR(l2d_tlb_refill, ARMV8_PMUV3_PERFCTR_L2D_TLB_REFILL),
ARMV8_EVENT_ATTR(l2i_tlb_refill, ARMV8_PMUV3_PERFCTR_L2I_TLB_REFILL),
ARMV8_EVENT_ATTR(l2d_tlb, ARMV8_PMUV3_PERFCTR_L2D_TLB),
ARMV8_EVENT_ATTR(l2i_tlb, ARMV8_PMUV3_PERFCTR_L2I_TLB),
ARMV8_EVENT_ATTR(remote_access, ARMV8_PMUV3_PERFCTR_REMOTE_ACCESS),
ARMV8_EVENT_ATTR(ll_cache, ARMV8_PMUV3_PERFCTR_LL_CACHE),
ARMV8_EVENT_ATTR(ll_cache_miss, ARMV8_PMUV3_PERFCTR_LL_CACHE_MISS),
ARMV8_EVENT_ATTR(dtlb_walk, ARMV8_PMUV3_PERFCTR_DTLB_WALK),
ARMV8_EVENT_ATTR(itlb_walk, ARMV8_PMUV3_PERFCTR_ITLB_WALK),
ARMV8_EVENT_ATTR(ll_cache_rd, ARMV8_PMUV3_PERFCTR_LL_CACHE_RD),
ARMV8_EVENT_ATTR(ll_cache_miss_rd, ARMV8_PMUV3_PERFCTR_LL_CACHE_MISS_RD),
ARMV8_EVENT_ATTR(remote_access_rd, ARMV8_PMUV3_PERFCTR_REMOTE_ACCESS_RD),
ARMV8_EVENT_ATTR(l1d_cache_lmiss_rd, ARMV8_PMUV3_PERFCTR_L1D_CACHE_LMISS_RD),
ARMV8_EVENT_ATTR(op_retired, ARMV8_PMUV3_PERFCTR_OP_RETIRED),
ARMV8_EVENT_ATTR(op_spec, ARMV8_PMUV3_PERFCTR_OP_SPEC),
ARMV8_EVENT_ATTR(stall, ARMV8_PMUV3_PERFCTR_STALL),
ARMV8_EVENT_ATTR(stall_slot_backend, ARMV8_PMUV3_PERFCTR_STALL_SLOT_BACKEND),
ARMV8_EVENT_ATTR(stall_slot_frontend, ARMV8_PMUV3_PERFCTR_STALL_SLOT_FRONTEND),
ARMV8_EVENT_ATTR(stall_slot, ARMV8_PMUV3_PERFCTR_STALL_SLOT),
ARMV8_EVENT_ATTR(sample_pop, ARMV8_SPE_PERFCTR_SAMPLE_POP),
ARMV8_EVENT_ATTR(sample_feed, ARMV8_SPE_PERFCTR_SAMPLE_FEED),
ARMV8_EVENT_ATTR(sample_filtrate, ARMV8_SPE_PERFCTR_SAMPLE_FILTRATE),
ARMV8_EVENT_ATTR(sample_collision, ARMV8_SPE_PERFCTR_SAMPLE_COLLISION),
ARMV8_EVENT_ATTR(cnt_cycles, ARMV8_AMU_PERFCTR_CNT_CYCLES),
ARMV8_EVENT_ATTR(stall_backend_mem, ARMV8_AMU_PERFCTR_STALL_BACKEND_MEM),
ARMV8_EVENT_ATTR(l1i_cache_lmiss, ARMV8_PMUV3_PERFCTR_L1I_CACHE_LMISS),
ARMV8_EVENT_ATTR(l2d_cache_lmiss_rd, ARMV8_PMUV3_PERFCTR_L2D_CACHE_LMISS_RD),
ARMV8_EVENT_ATTR(l2i_cache_lmiss, ARMV8_PMUV3_PERFCTR_L2I_CACHE_LMISS),
ARMV8_EVENT_ATTR(l3d_cache_lmiss_rd, ARMV8_PMUV3_PERFCTR_L3D_CACHE_LMISS_RD),
ARMV8_EVENT_ATTR(trb_wrap, ARMV8_PMUV3_PERFCTR_TRB_WRAP),
ARMV8_EVENT_ATTR(trb_trig, ARMV8_PMUV3_PERFCTR_TRB_TRIG),
ARMV8_EVENT_ATTR(trcextout0, ARMV8_PMUV3_PERFCTR_TRCEXTOUT0),
ARMV8_EVENT_ATTR(trcextout1, ARMV8_PMUV3_PERFCTR_TRCEXTOUT1),
ARMV8_EVENT_ATTR(trcextout2, ARMV8_PMUV3_PERFCTR_TRCEXTOUT2),
ARMV8_EVENT_ATTR(trcextout3, ARMV8_PMUV3_PERFCTR_TRCEXTOUT3),
ARMV8_EVENT_ATTR(cti_trigout4, ARMV8_PMUV3_PERFCTR_CTI_TRIGOUT4),
ARMV8_EVENT_ATTR(cti_trigout5, ARMV8_PMUV3_PERFCTR_CTI_TRIGOUT5),
ARMV8_EVENT_ATTR(cti_trigout6, ARMV8_PMUV3_PERFCTR_CTI_TRIGOUT6),
ARMV8_EVENT_ATTR(cti_trigout7, ARMV8_PMUV3_PERFCTR_CTI_TRIGOUT7),
ARMV8_EVENT_ATTR(ldst_align_lat, ARMV8_PMUV3_PERFCTR_LDST_ALIGN_LAT),
ARMV8_EVENT_ATTR(ld_align_lat, ARMV8_PMUV3_PERFCTR_LD_ALIGN_LAT),
ARMV8_EVENT_ATTR(st_align_lat, ARMV8_PMUV3_PERFCTR_ST_ALIGN_LAT),
ARMV8_EVENT_ATTR(mem_access_checked, ARMV8_MTE_PERFCTR_MEM_ACCESS_CHECKED),
ARMV8_EVENT_ATTR(mem_access_checked_rd, ARMV8_MTE_PERFCTR_MEM_ACCESS_CHECKED_RD),
ARMV8_EVENT_ATTR(mem_access_checked_wr, ARMV8_MTE_PERFCTR_MEM_ACCESS_CHECKED_WR),
NULL,
};
static umode_t
armv8pmu_event_attr_is_visible(struct kobject *kobj,
struct attribute *attr, int unused)
{
struct device *dev = kobj_to_dev(kobj);
struct pmu *pmu = dev_get_drvdata(dev);
struct arm_pmu *cpu_pmu = container_of(pmu, struct arm_pmu, pmu);
struct perf_pmu_events_attr *pmu_attr;
pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr.attr);
if (pmu_attr->id < ARMV8_PMUV3_MAX_COMMON_EVENTS &&
test_bit(pmu_attr->id, cpu_pmu->pmceid_bitmap))
return attr->mode;
if (pmu_attr->id >= ARMV8_PMUV3_EXT_COMMON_EVENT_BASE) {
u64 id = pmu_attr->id - ARMV8_PMUV3_EXT_COMMON_EVENT_BASE;
if (id < ARMV8_PMUV3_MAX_COMMON_EVENTS &&
test_bit(id, cpu_pmu->pmceid_ext_bitmap))
return attr->mode;
}
return 0;
}
static const struct attribute_group armv8_pmuv3_events_attr_group = {
.name = "events",
.attrs = armv8_pmuv3_event_attrs,
.is_visible = armv8pmu_event_attr_is_visible,
};
/* User ABI */
#define ATTR_CFG_FLD_event_CFG config
#define ATTR_CFG_FLD_event_LO 0
#define ATTR_CFG_FLD_event_HI 15
#define ATTR_CFG_FLD_long_CFG config1
#define ATTR_CFG_FLD_long_LO 0
#define ATTR_CFG_FLD_long_HI 0
#define ATTR_CFG_FLD_rdpmc_CFG config1
#define ATTR_CFG_FLD_rdpmc_LO 1
#define ATTR_CFG_FLD_rdpmc_HI 1
#define ATTR_CFG_FLD_threshold_count_CFG config1 /* PMEVTYPER.TC[0] */
#define ATTR_CFG_FLD_threshold_count_LO 2
#define ATTR_CFG_FLD_threshold_count_HI 2
#define ATTR_CFG_FLD_threshold_compare_CFG config1 /* PMEVTYPER.TC[2:1] */
#define ATTR_CFG_FLD_threshold_compare_LO 3
#define ATTR_CFG_FLD_threshold_compare_HI 4
#define ATTR_CFG_FLD_threshold_CFG config1 /* PMEVTYPER.TH */
#define ATTR_CFG_FLD_threshold_LO 5
#define ATTR_CFG_FLD_threshold_HI 16
GEN_PMU_FORMAT_ATTR(event);
GEN_PMU_FORMAT_ATTR(long);
GEN_PMU_FORMAT_ATTR(rdpmc);
GEN_PMU_FORMAT_ATTR(threshold_count);
GEN_PMU_FORMAT_ATTR(threshold_compare);
GEN_PMU_FORMAT_ATTR(threshold);
static int sysctl_perf_user_access __read_mostly;
static bool armv8pmu_event_is_64bit(struct perf_event *event)
{
return ATTR_CFG_GET_FLD(&event->attr, long);
}
static bool armv8pmu_event_want_user_access(struct perf_event *event)
{
return ATTR_CFG_GET_FLD(&event->attr, rdpmc);
}
static u32 armv8pmu_event_get_threshold(struct perf_event_attr *attr)
{
return ATTR_CFG_GET_FLD(attr, threshold);
}
static u8 armv8pmu_event_threshold_control(struct perf_event_attr *attr)
{
u8 th_compare = ATTR_CFG_GET_FLD(attr, threshold_compare);
u8 th_count = ATTR_CFG_GET_FLD(attr, threshold_count);
/*
* The count bit is always the bottom bit of the full control field, and
* the comparison is the upper two bits, but it's not explicitly
* labelled in the Arm ARM. For the Perf interface we split it into two
* fields, so reconstruct it here.
*/
return (th_compare << 1) | th_count;
}
static struct attribute *armv8_pmuv3_format_attrs[] = {
&format_attr_event.attr,
&format_attr_long.attr,
&format_attr_rdpmc.attr,
&format_attr_threshold.attr,
&format_attr_threshold_compare.attr,
&format_attr_threshold_count.attr,
NULL,
};
static const struct attribute_group armv8_pmuv3_format_attr_group = {
.name = "format",
.attrs = armv8_pmuv3_format_attrs,
};
static ssize_t slots_show(struct device *dev, struct device_attribute *attr,
char *page)
{
struct pmu *pmu = dev_get_drvdata(dev);
struct arm_pmu *cpu_pmu = container_of(pmu, struct arm_pmu, pmu);
u32 slots = FIELD_GET(ARMV8_PMU_SLOTS, cpu_pmu->reg_pmmir);
return sysfs_emit(page, "0x%08x\n", slots);
}
static DEVICE_ATTR_RO(slots);
static ssize_t bus_slots_show(struct device *dev, struct device_attribute *attr,
char *page)
{
struct pmu *pmu = dev_get_drvdata(dev);
struct arm_pmu *cpu_pmu = container_of(pmu, struct arm_pmu, pmu);
u32 bus_slots = FIELD_GET(ARMV8_PMU_BUS_SLOTS, cpu_pmu->reg_pmmir);
return sysfs_emit(page, "0x%08x\n", bus_slots);
}
static DEVICE_ATTR_RO(bus_slots);
static ssize_t bus_width_show(struct device *dev, struct device_attribute *attr,
char *page)
{
struct pmu *pmu = dev_get_drvdata(dev);
struct arm_pmu *cpu_pmu = container_of(pmu, struct arm_pmu, pmu);
u32 bus_width = FIELD_GET(ARMV8_PMU_BUS_WIDTH, cpu_pmu->reg_pmmir);
u32 val = 0;
/* Encoded as Log2(number of bytes), plus one */
if (bus_width > 2 && bus_width < 13)
val = 1 << (bus_width - 1);
return sysfs_emit(page, "0x%08x\n", val);
}
static DEVICE_ATTR_RO(bus_width);
static u32 threshold_max(struct arm_pmu *cpu_pmu)
{
/*
* PMMIR.THWIDTH is readable and non-zero on aarch32, but it would be
* impossible to write the threshold in the upper 32 bits of PMEVTYPER.
*/
if (IS_ENABLED(CONFIG_ARM))
return 0;
/*
* The largest value that can be written to PMEVTYPER<n>_EL0.TH is
* (2 ^ PMMIR.THWIDTH) - 1.
*/
return (1 << FIELD_GET(ARMV8_PMU_THWIDTH, cpu_pmu->reg_pmmir)) - 1;
}
static ssize_t threshold_max_show(struct device *dev,
struct device_attribute *attr, char *page)
{
struct pmu *pmu = dev_get_drvdata(dev);
struct arm_pmu *cpu_pmu = container_of(pmu, struct arm_pmu, pmu);
return sysfs_emit(page, "0x%08x\n", threshold_max(cpu_pmu));
}
static DEVICE_ATTR_RO(threshold_max);
static struct attribute *armv8_pmuv3_caps_attrs[] = {
&dev_attr_slots.attr,
&dev_attr_bus_slots.attr,
&dev_attr_bus_width.attr,
&dev_attr_threshold_max.attr,
NULL,
};
static const struct attribute_group armv8_pmuv3_caps_attr_group = {
.name = "caps",
.attrs = armv8_pmuv3_caps_attrs,
};
/*
* Perf Events' indices
*/
#define ARMV8_IDX_CYCLE_COUNTER 0
#define ARMV8_IDX_COUNTER0 1
#define ARMV8_IDX_CYCLE_COUNTER_USER 32
/*
* We unconditionally enable ARMv8.5-PMU long event counter support
* (64-bit events) where supported. Indicate if this arm_pmu has long
* event counter support.
*
* On AArch32, long counters make no sense (you can't access the top
* bits), so we only enable this on AArch64.
*/
static bool armv8pmu_has_long_event(struct arm_pmu *cpu_pmu)
{
return (IS_ENABLED(CONFIG_ARM64) && is_pmuv3p5(cpu_pmu->pmuver));
}
static bool armv8pmu_event_has_user_read(struct perf_event *event)
{
return event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT;
}
/*
* We must chain two programmable counters for 64 bit events,
* except when we have allocated the 64bit cycle counter (for CPU
* cycles event) or when user space counter access is enabled.
*/
static bool armv8pmu_event_is_chained(struct perf_event *event)
{
int idx = event->hw.idx;
struct arm_pmu *cpu_pmu = to_arm_pmu(event->pmu);
return !armv8pmu_event_has_user_read(event) &&
armv8pmu_event_is_64bit(event) &&
!armv8pmu_has_long_event(cpu_pmu) &&
(idx != ARMV8_IDX_CYCLE_COUNTER);
}
/*
* ARMv8 low level PMU access
*/
/*
* Perf Event to low level counters mapping
*/
#define ARMV8_IDX_TO_COUNTER(x) \
(((x) - ARMV8_IDX_COUNTER0) & ARMV8_PMU_COUNTER_MASK)
static u64 armv8pmu_pmcr_read(void)
{
return read_pmcr();
}
static void armv8pmu_pmcr_write(u64 val)
{
val &= ARMV8_PMU_PMCR_MASK;
isb();
write_pmcr(val);
}
static int armv8pmu_has_overflowed(u32 pmovsr)
{
return pmovsr & ARMV8_PMU_OVERFLOWED_MASK;
}
static int armv8pmu_counter_has_overflowed(u32 pmnc, int idx)
{
return pmnc & BIT(ARMV8_IDX_TO_COUNTER(idx));
}
static u64 armv8pmu_read_evcntr(int idx)
{
u32 counter = ARMV8_IDX_TO_COUNTER(idx);
return read_pmevcntrn(counter);
}
static u64 armv8pmu_read_hw_counter(struct perf_event *event)
{
int idx = event->hw.idx;
u64 val = armv8pmu_read_evcntr(idx);
if (armv8pmu_event_is_chained(event))
val = (val << 32) | armv8pmu_read_evcntr(idx - 1);
return val;
}
/*
* The cycle counter is always a 64-bit counter. When ARMV8_PMU_PMCR_LP
* is set the event counters also become 64-bit counters. Unless the
* user has requested a long counter (attr.config1) then we want to
* interrupt upon 32-bit overflow - we achieve this by applying a bias.
*/
static bool armv8pmu_event_needs_bias(struct perf_event *event)
{
struct arm_pmu *cpu_pmu = to_arm_pmu(event->pmu);
struct hw_perf_event *hwc = &event->hw;
int idx = hwc->idx;
if (armv8pmu_event_is_64bit(event))
return false;
if (armv8pmu_has_long_event(cpu_pmu) ||
idx == ARMV8_IDX_CYCLE_COUNTER)
return true;
return false;
}
static u64 armv8pmu_bias_long_counter(struct perf_event *event, u64 value)
{
if (armv8pmu_event_needs_bias(event))
value |= GENMASK_ULL(63, 32);
return value;
}
static u64 armv8pmu_unbias_long_counter(struct perf_event *event, u64 value)
{
if (armv8pmu_event_needs_bias(event))
value &= ~GENMASK_ULL(63, 32);
return value;
}
static u64 armv8pmu_read_counter(struct perf_event *event)
{
struct hw_perf_event *hwc = &event->hw;
int idx = hwc->idx;
u64 value;
if (idx == ARMV8_IDX_CYCLE_COUNTER)
value = read_pmccntr();
else
value = armv8pmu_read_hw_counter(event);
return armv8pmu_unbias_long_counter(event, value);
}
static void armv8pmu_write_evcntr(int idx, u64 value)
{
u32 counter = ARMV8_IDX_TO_COUNTER(idx);
write_pmevcntrn(counter, value);
}
static void armv8pmu_write_hw_counter(struct perf_event *event,
u64 value)
{
int idx = event->hw.idx;
if (armv8pmu_event_is_chained(event)) {
armv8pmu_write_evcntr(idx, upper_32_bits(value));
armv8pmu_write_evcntr(idx - 1, lower_32_bits(value));
} else {
armv8pmu_write_evcntr(idx, value);
}
}
static void armv8pmu_write_counter(struct perf_event *event, u64 value)
{
struct hw_perf_event *hwc = &event->hw;
int idx = hwc->idx;
value = armv8pmu_bias_long_counter(event, value);
if (idx == ARMV8_IDX_CYCLE_COUNTER)
write_pmccntr(value);
else
armv8pmu_write_hw_counter(event, value);
}
static void armv8pmu_write_evtype(int idx, unsigned long val)
{
u32 counter = ARMV8_IDX_TO_COUNTER(idx);
unsigned long mask = ARMV8_PMU_EVTYPE_EVENT |
ARMV8_PMU_INCLUDE_EL2 |
ARMV8_PMU_EXCLUDE_EL0 |
ARMV8_PMU_EXCLUDE_EL1;
if (IS_ENABLED(CONFIG_ARM64))
mask |= ARMV8_PMU_EVTYPE_TC | ARMV8_PMU_EVTYPE_TH;
val &= mask;
write_pmevtypern(counter, val);
}
static void armv8pmu_write_event_type(struct perf_event *event)
{
struct hw_perf_event *hwc = &event->hw;
int idx = hwc->idx;
/*
* For chained events, the low counter is programmed to count
* the event of interest and the high counter is programmed
* with CHAIN event code with filters set to count at all ELs.
*/
if (armv8pmu_event_is_chained(event)) {
u32 chain_evt = ARMV8_PMUV3_PERFCTR_CHAIN |
ARMV8_PMU_INCLUDE_EL2;
armv8pmu_write_evtype(idx - 1, hwc->config_base);
armv8pmu_write_evtype(idx, chain_evt);
} else {
if (idx == ARMV8_IDX_CYCLE_COUNTER)
write_pmccfiltr(hwc->config_base);
else
armv8pmu_write_evtype(idx, hwc->config_base);
}
}
static u32 armv8pmu_event_cnten_mask(struct perf_event *event)
{
int counter = ARMV8_IDX_TO_COUNTER(event->hw.idx);
u32 mask = BIT(counter);
if (armv8pmu_event_is_chained(event))
mask |= BIT(counter - 1);
return mask;
}
static void armv8pmu_enable_counter(u32 mask)
{
/*
* Make sure event configuration register writes are visible before we
* enable the counter.
* */
isb();
write_pmcntenset(mask);
}
static void armv8pmu_enable_event_counter(struct perf_event *event)
{
struct perf_event_attr *attr = &event->attr;
u32 mask = armv8pmu_event_cnten_mask(event);
kvm_set_pmu_events(mask, attr);
/* We rely on the hypervisor switch code to enable guest counters */
if (!kvm_pmu_counter_deferred(attr))
armv8pmu_enable_counter(mask);
}
static void armv8pmu_disable_counter(u32 mask)
{
write_pmcntenclr(mask);
/*
* Make sure the effects of disabling the counter are visible before we
* start configuring the event.
*/
isb();
}
static void armv8pmu_disable_event_counter(struct perf_event *event)
{
struct perf_event_attr *attr = &event->attr;
u32 mask = armv8pmu_event_cnten_mask(event);
kvm_clr_pmu_events(mask);
/* We rely on the hypervisor switch code to disable guest counters */
if (!kvm_pmu_counter_deferred(attr))
armv8pmu_disable_counter(mask);
}
static void armv8pmu_enable_intens(u32 mask)
{
write_pmintenset(mask);
}
static void armv8pmu_enable_event_irq(struct perf_event *event)
{
u32 counter = ARMV8_IDX_TO_COUNTER(event->hw.idx);
armv8pmu_enable_intens(BIT(counter));
}
static void armv8pmu_disable_intens(u32 mask)
{
write_pmintenclr(mask);
isb();
/* Clear the overflow flag in case an interrupt is pending. */
write_pmovsclr(mask);
isb();
}
static void armv8pmu_disable_event_irq(struct perf_event *event)
{
u32 counter = ARMV8_IDX_TO_COUNTER(event->hw.idx);
armv8pmu_disable_intens(BIT(counter));
}
static u32 armv8pmu_getreset_flags(void)
{
u32 value;
/* Read */
value = read_pmovsclr();
/* Write to clear flags */
value &= ARMV8_PMU_OVERFLOWED_MASK;
write_pmovsclr(value);
return value;
}
static void update_pmuserenr(u64 val)
{
lockdep_assert_irqs_disabled();
/*
* The current PMUSERENR_EL0 value might be the value for the guest.
* If that's the case, have KVM keep tracking of the register value
* for the host EL0 so that KVM can restore it before returning to
* the host EL0. Otherwise, update the register now.
*/
if (kvm_set_pmuserenr(val))
return;
write_pmuserenr(val);
}
static void armv8pmu_disable_user_access(void)
{
update_pmuserenr(0);
}
static void armv8pmu_enable_user_access(struct arm_pmu *cpu_pmu)
{
int i;
struct pmu_hw_events *cpuc = this_cpu_ptr(cpu_pmu->hw_events);
/* Clear any unused counters to avoid leaking their contents */
for_each_clear_bit(i, cpuc->used_mask, cpu_pmu->num_events) {
if (i == ARMV8_IDX_CYCLE_COUNTER)
write_pmccntr(0);
else
armv8pmu_write_evcntr(i, 0);
}
update_pmuserenr(ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_CR);
}
static void armv8pmu_enable_event(struct perf_event *event)
{
/*
* Enable counter and interrupt, and set the counter to count
* the event that we're interested in.
*/
armv8pmu_disable_event_counter(event);
armv8pmu_write_event_type(event);
armv8pmu_enable_event_irq(event);
armv8pmu_enable_event_counter(event);
}
static void armv8pmu_disable_event(struct perf_event *event)
{
armv8pmu_disable_event_counter(event);
armv8pmu_disable_event_irq(event);
}
static void armv8pmu_start(struct arm_pmu *cpu_pmu)
{
struct perf_event_context *ctx;
int nr_user = 0;
ctx = perf_cpu_task_ctx();
if (ctx)
nr_user = ctx->nr_user;
if (sysctl_perf_user_access && nr_user)
armv8pmu_enable_user_access(cpu_pmu);
else
armv8pmu_disable_user_access();
/* Enable all counters */
armv8pmu_pmcr_write(armv8pmu_pmcr_read() | ARMV8_PMU_PMCR_E);
kvm_vcpu_pmu_resync_el0();
}
static void armv8pmu_stop(struct arm_pmu *cpu_pmu)
{
/* Disable all counters */
armv8pmu_pmcr_write(armv8pmu_pmcr_read() & ~ARMV8_PMU_PMCR_E);
}
static irqreturn_t armv8pmu_handle_irq(struct arm_pmu *cpu_pmu)
{
u32 pmovsr;
struct perf_sample_data data;
struct pmu_hw_events *cpuc = this_cpu_ptr(cpu_pmu->hw_events);
struct pt_regs *regs;
int idx;
/*
* Get and reset the IRQ flags
*/
pmovsr = armv8pmu_getreset_flags();
/*
* Did an overflow occur?
*/
if (!armv8pmu_has_overflowed(pmovsr))
return IRQ_NONE;
/*
* Handle the counter(s) overflow(s)
*/
regs = get_irq_regs();
/*
* Stop the PMU while processing the counter overflows
* to prevent skews in group events.
*/
armv8pmu_stop(cpu_pmu);
for (idx = 0; idx < cpu_pmu->num_events; ++idx) {
struct perf_event *event = cpuc->events[idx];
struct hw_perf_event *hwc;
/* Ignore if we don't have an event. */
if (!event)
continue;
/*
* We have a single interrupt for all counters. Check that
* each counter has overflowed before we process it.
*/
if (!armv8pmu_counter_has_overflowed(pmovsr, idx))
continue;
hwc = &event->hw;
armpmu_event_update(event);
perf_sample_data_init(&data, 0, hwc->last_period);
if (!armpmu_event_set_period(event))
continue;
/*
* Perf event overflow will queue the processing of the event as
* an irq_work which will be taken care of in the handling of
* IPI_IRQ_WORK.
*/
if (perf_event_overflow(event, &data, regs))
cpu_pmu->disable(event);
}
armv8pmu_start(cpu_pmu);
return IRQ_HANDLED;
}
static int armv8pmu_get_single_idx(struct pmu_hw_events *cpuc,
struct arm_pmu *cpu_pmu)
{
int idx;
for (idx = ARMV8_IDX_COUNTER0; idx < cpu_pmu->num_events; idx++) {
if (!test_and_set_bit(idx, cpuc->used_mask))
return idx;
}
return -EAGAIN;
}
static int armv8pmu_get_chain_idx(struct pmu_hw_events *cpuc,
struct arm_pmu *cpu_pmu)
{
int idx;
/*
* Chaining requires two consecutive event counters, where
* the lower idx must be even.
*/
for (idx = ARMV8_IDX_COUNTER0 + 1; idx < cpu_pmu->num_events; idx += 2) {
if (!test_and_set_bit(idx, cpuc->used_mask)) {
/* Check if the preceding even counter is available */
if (!test_and_set_bit(idx - 1, cpuc->used_mask))
return idx;
/* Release the Odd counter */
clear_bit(idx, cpuc->used_mask);
}
}
return -EAGAIN;
}
static int armv8pmu_get_event_idx(struct pmu_hw_events *cpuc,
struct perf_event *event)
{
struct arm_pmu *cpu_pmu = to_arm_pmu(event->pmu);
struct hw_perf_event *hwc = &event->hw;
unsigned long evtype = hwc->config_base & ARMV8_PMU_EVTYPE_EVENT;
/* Always prefer to place a cycle counter into the cycle counter. */
if ((evtype == ARMV8_PMUV3_PERFCTR_CPU_CYCLES) &&
!armv8pmu_event_get_threshold(&event->attr)) {
if (!test_and_set_bit(ARMV8_IDX_CYCLE_COUNTER, cpuc->used_mask))
return ARMV8_IDX_CYCLE_COUNTER;
else if (armv8pmu_event_is_64bit(event) &&
armv8pmu_event_want_user_access(event) &&
!armv8pmu_has_long_event(cpu_pmu))
return -EAGAIN;
}
/*
* Otherwise use events counters
*/
if (armv8pmu_event_is_chained(event))
return armv8pmu_get_chain_idx(cpuc, cpu_pmu);
else
return armv8pmu_get_single_idx(cpuc, cpu_pmu);
}
static void armv8pmu_clear_event_idx(struct pmu_hw_events *cpuc,
struct perf_event *event)
{
int idx = event->hw.idx;
clear_bit(idx, cpuc->used_mask);
if (armv8pmu_event_is_chained(event))
clear_bit(idx - 1, cpuc->used_mask);
}
static int armv8pmu_user_event_idx(struct perf_event *event)
{
if (!sysctl_perf_user_access || !armv8pmu_event_has_user_read(event))
return 0;
/*
* We remap the cycle counter index to 32 to
* match the offset applied to the rest of
* the counter indices.
*/
if (event->hw.idx == ARMV8_IDX_CYCLE_COUNTER)
return ARMV8_IDX_CYCLE_COUNTER_USER;
return event->hw.idx;
}
/*
* Add an event filter to a given event.
*/
static int armv8pmu_set_event_filter(struct hw_perf_event *event,
struct perf_event_attr *attr)
{
unsigned long config_base = 0;
struct perf_event *perf_event = container_of(attr, struct perf_event,
attr);
struct arm_pmu *cpu_pmu = to_arm_pmu(perf_event->pmu);
u32 th;
if (attr->exclude_idle) {
pr_debug("ARM performance counters do not support mode exclusion\n");
return -EOPNOTSUPP;
}
/*
* If we're running in hyp mode, then we *are* the hypervisor.
* Therefore we ignore exclude_hv in this configuration, since
* there's no hypervisor to sample anyway. This is consistent
* with other architectures (x86 and Power).
*/
if (is_kernel_in_hyp_mode()) {
if (!attr->exclude_kernel && !attr->exclude_host)
config_base |= ARMV8_PMU_INCLUDE_EL2;
if (attr->exclude_guest)
config_base |= ARMV8_PMU_EXCLUDE_EL1;
if (attr->exclude_host)
config_base |= ARMV8_PMU_EXCLUDE_EL0;
} else {
if (!attr->exclude_hv && !attr->exclude_host)
config_base |= ARMV8_PMU_INCLUDE_EL2;
}
/*
* Filter out !VHE kernels and guest kernels
*/
if (attr->exclude_kernel)
config_base |= ARMV8_PMU_EXCLUDE_EL1;
if (attr->exclude_user)
config_base |= ARMV8_PMU_EXCLUDE_EL0;
/*
* If FEAT_PMUv3_TH isn't implemented, then THWIDTH (threshold_max) will
* be 0 and will also trigger this check, preventing it from being used.
*/
th = armv8pmu_event_get_threshold(attr);
if (th > threshold_max(cpu_pmu)) {
pr_debug("PMU event threshold exceeds max value\n");
return -EINVAL;
}
if (th) {
config_base |= FIELD_PREP(ARMV8_PMU_EVTYPE_TH, th);
config_base |= FIELD_PREP(ARMV8_PMU_EVTYPE_TC,
armv8pmu_event_threshold_control(attr));
}
/*
* Install the filter into config_base as this is used to
* construct the event type.
*/
event->config_base = config_base;
return 0;
}
static void armv8pmu_reset(void *info)
{
struct arm_pmu *cpu_pmu = (struct arm_pmu *)info;
u64 pmcr;
/* The counter and interrupt enable registers are unknown at reset. */
armv8pmu_disable_counter(U32_MAX);
armv8pmu_disable_intens(U32_MAX);
/* Clear the counters we flip at guest entry/exit */
kvm_clr_pmu_events(U32_MAX);
/*
* Initialize & Reset PMNC. Request overflow interrupt for
* 64 bit cycle counter but cheat in armv8pmu_write_counter().
*/
pmcr = ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C | ARMV8_PMU_PMCR_LC;
/* Enable long event counter support where available */
if (armv8pmu_has_long_event(cpu_pmu))
pmcr |= ARMV8_PMU_PMCR_LP;
armv8pmu_pmcr_write(pmcr);
}
static int __armv8_pmuv3_map_event_id(struct arm_pmu *armpmu,
struct perf_event *event)
{
if (event->attr.type == PERF_TYPE_HARDWARE &&
event->attr.config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS) {
if (test_bit(ARMV8_PMUV3_PERFCTR_PC_WRITE_RETIRED,
armpmu->pmceid_bitmap))
return ARMV8_PMUV3_PERFCTR_PC_WRITE_RETIRED;
if (test_bit(ARMV8_PMUV3_PERFCTR_BR_RETIRED,
armpmu->pmceid_bitmap))
return ARMV8_PMUV3_PERFCTR_BR_RETIRED;
return HW_OP_UNSUPPORTED;
}
return armpmu_map_event(event, &armv8_pmuv3_perf_map,
&armv8_pmuv3_perf_cache_map,
ARMV8_PMU_EVTYPE_EVENT);
}
static int __armv8_pmuv3_map_event(struct perf_event *event,
const unsigned (*extra_event_map)
[PERF_COUNT_HW_MAX],
const unsigned (*extra_cache_map)
[PERF_COUNT_HW_CACHE_MAX]
[PERF_COUNT_HW_CACHE_OP_MAX]
[PERF_COUNT_HW_CACHE_RESULT_MAX])
{
int hw_event_id;
struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
hw_event_id = __armv8_pmuv3_map_event_id(armpmu, event);
/*
* CHAIN events only work when paired with an adjacent counter, and it
* never makes sense for a user to open one in isolation, as they'll be
* rotated arbitrarily.
*/
if (hw_event_id == ARMV8_PMUV3_PERFCTR_CHAIN)
return -EINVAL;
if (armv8pmu_event_is_64bit(event))
event->hw.flags |= ARMPMU_EVT_64BIT;
/*
* User events must be allocated into a single counter, and so
* must not be chained.
*
* Most 64-bit events require long counter support, but 64-bit
* CPU_CYCLES events can be placed into the dedicated cycle
* counter when this is free.
*/
if (armv8pmu_event_want_user_access(event)) {
if (!(event->attach_state & PERF_ATTACH_TASK))
return -EINVAL;
if (armv8pmu_event_is_64bit(event) &&
(hw_event_id != ARMV8_PMUV3_PERFCTR_CPU_CYCLES) &&
!armv8pmu_has_long_event(armpmu))
return -EOPNOTSUPP;
event->hw.flags |= PERF_EVENT_FLAG_USER_READ_CNT;
}
/* Only expose micro/arch events supported by this PMU */
if ((hw_event_id > 0) && (hw_event_id < ARMV8_PMUV3_MAX_COMMON_EVENTS)
&& test_bit(hw_event_id, armpmu->pmceid_bitmap)) {
return hw_event_id;
}
return armpmu_map_event(event, extra_event_map, extra_cache_map,
ARMV8_PMU_EVTYPE_EVENT);
}
static int armv8_pmuv3_map_event(struct perf_event *event)
{
return __armv8_pmuv3_map_event(event, NULL, NULL);
}
static int armv8_a53_map_event(struct perf_event *event)
{
return __armv8_pmuv3_map_event(event, NULL, &armv8_a53_perf_cache_map);
}
static int armv8_a57_map_event(struct perf_event *event)
{
return __armv8_pmuv3_map_event(event, NULL, &armv8_a57_perf_cache_map);
}
static int armv8_a73_map_event(struct perf_event *event)
{
return __armv8_pmuv3_map_event(event, NULL, &armv8_a73_perf_cache_map);
}
static int armv8_thunder_map_event(struct perf_event *event)
{
return __armv8_pmuv3_map_event(event, NULL,
&armv8_thunder_perf_cache_map);
}
static int armv8_vulcan_map_event(struct perf_event *event)
{
return __armv8_pmuv3_map_event(event, NULL,
&armv8_vulcan_perf_cache_map);
}
struct armv8pmu_probe_info {
struct arm_pmu *pmu;
bool present;
};
static void __armv8pmu_probe_pmu(void *info)
{
struct armv8pmu_probe_info *probe = info;
struct arm_pmu *cpu_pmu = probe->pmu;
u64 pmceid_raw[2];
u32 pmceid[2];
int pmuver;
pmuver = read_pmuver();
if (!pmuv3_implemented(pmuver))
return;
cpu_pmu->pmuver = pmuver;
probe->present = true;
/* Read the nb of CNTx counters supported from PMNC */
cpu_pmu->num_events = FIELD_GET(ARMV8_PMU_PMCR_N, armv8pmu_pmcr_read());
/* Add the CPU cycles counter */
cpu_pmu->num_events += 1;
pmceid[0] = pmceid_raw[0] = read_pmceid0();
pmceid[1] = pmceid_raw[1] = read_pmceid1();
bitmap_from_arr32(cpu_pmu->pmceid_bitmap,
pmceid, ARMV8_PMUV3_MAX_COMMON_EVENTS);
pmceid[0] = pmceid_raw[0] >> 32;
pmceid[1] = pmceid_raw[1] >> 32;
bitmap_from_arr32(cpu_pmu->pmceid_ext_bitmap,
pmceid, ARMV8_PMUV3_MAX_COMMON_EVENTS);
/* store PMMIR register for sysfs */
if (is_pmuv3p4(pmuver))
cpu_pmu->reg_pmmir = read_pmmir();
else
cpu_pmu->reg_pmmir = 0;
}
static int armv8pmu_probe_pmu(struct arm_pmu *cpu_pmu)
{
struct armv8pmu_probe_info probe = {
.pmu = cpu_pmu,
.present = false,
};
int ret;
ret = smp_call_function_any(&cpu_pmu->supported_cpus,
__armv8pmu_probe_pmu,
&probe, 1);
if (ret)
return ret;
return probe.present ? 0 : -ENODEV;
}
static void armv8pmu_disable_user_access_ipi(void *unused)
{
armv8pmu_disable_user_access();
}
static int armv8pmu_proc_user_access_handler(const struct ctl_table *table, int write,
void *buffer, size_t *lenp, loff_t *ppos)
{
int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
if (ret || !write || sysctl_perf_user_access)
return ret;
on_each_cpu(armv8pmu_disable_user_access_ipi, NULL, 1);
return 0;
}
static struct ctl_table armv8_pmu_sysctl_table[] = {
{
.procname = "perf_user_access",
.data = &sysctl_perf_user_access,
.maxlen = sizeof(unsigned int),
.mode = 0644,
.proc_handler = armv8pmu_proc_user_access_handler,
.extra1 = SYSCTL_ZERO,
.extra2 = SYSCTL_ONE,
},
};
static void armv8_pmu_register_sysctl_table(void)
{
static u32 tbl_registered = 0;
if (!cmpxchg_relaxed(&tbl_registered, 0, 1))
register_sysctl("kernel", armv8_pmu_sysctl_table);
}
static int armv8_pmu_init(struct arm_pmu *cpu_pmu, char *name,
int (*map_event)(struct perf_event *event))
{
int ret = armv8pmu_probe_pmu(cpu_pmu);
if (ret)
return ret;
cpu_pmu->handle_irq = armv8pmu_handle_irq;
cpu_pmu->enable = armv8pmu_enable_event;
cpu_pmu->disable = armv8pmu_disable_event;
cpu_pmu->read_counter = armv8pmu_read_counter;
cpu_pmu->write_counter = armv8pmu_write_counter;
cpu_pmu->get_event_idx = armv8pmu_get_event_idx;
cpu_pmu->clear_event_idx = armv8pmu_clear_event_idx;
cpu_pmu->start = armv8pmu_start;
cpu_pmu->stop = armv8pmu_stop;
cpu_pmu->reset = armv8pmu_reset;
cpu_pmu->set_event_filter = armv8pmu_set_event_filter;
cpu_pmu->pmu.event_idx = armv8pmu_user_event_idx;
cpu_pmu->name = name;
cpu_pmu->map_event = map_event;
cpu_pmu->attr_groups[ARMPMU_ATTR_GROUP_EVENTS] = &armv8_pmuv3_events_attr_group;
cpu_pmu->attr_groups[ARMPMU_ATTR_GROUP_FORMATS] = &armv8_pmuv3_format_attr_group;
cpu_pmu->attr_groups[ARMPMU_ATTR_GROUP_CAPS] = &armv8_pmuv3_caps_attr_group;
armv8_pmu_register_sysctl_table();
return 0;
}
#define PMUV3_INIT_SIMPLE(name) \
static int name##_pmu_init(struct arm_pmu *cpu_pmu) \
{ \
return armv8_pmu_init(cpu_pmu, #name, armv8_pmuv3_map_event); \
}
#define PMUV3_INIT_MAP_EVENT(name, map_event) \
static int name##_pmu_init(struct arm_pmu *cpu_pmu) \
{ \
return armv8_pmu_init(cpu_pmu, #name, map_event); \
}
PMUV3_INIT_SIMPLE(armv8_pmuv3)
PMUV3_INIT_SIMPLE(armv8_cortex_a34)
PMUV3_INIT_SIMPLE(armv8_cortex_a55)
PMUV3_INIT_SIMPLE(armv8_cortex_a65)
PMUV3_INIT_SIMPLE(armv8_cortex_a75)
PMUV3_INIT_SIMPLE(armv8_cortex_a76)
PMUV3_INIT_SIMPLE(armv8_cortex_a77)
PMUV3_INIT_SIMPLE(armv8_cortex_a78)
PMUV3_INIT_SIMPLE(armv9_cortex_a510)
PMUV3_INIT_SIMPLE(armv9_cortex_a520)
PMUV3_INIT_SIMPLE(armv9_cortex_a710)
PMUV3_INIT_SIMPLE(armv9_cortex_a715)
PMUV3_INIT_SIMPLE(armv9_cortex_a720)
PMUV3_INIT_SIMPLE(armv9_cortex_a725)
PMUV3_INIT_SIMPLE(armv8_cortex_x1)
PMUV3_INIT_SIMPLE(armv9_cortex_x2)
PMUV3_INIT_SIMPLE(armv9_cortex_x3)
PMUV3_INIT_SIMPLE(armv9_cortex_x4)
PMUV3_INIT_SIMPLE(armv9_cortex_x925)
PMUV3_INIT_SIMPLE(armv8_neoverse_e1)
PMUV3_INIT_SIMPLE(armv8_neoverse_n1)
PMUV3_INIT_SIMPLE(armv9_neoverse_n2)
PMUV3_INIT_SIMPLE(armv9_neoverse_n3)
PMUV3_INIT_SIMPLE(armv8_neoverse_v1)
PMUV3_INIT_SIMPLE(armv8_neoverse_v2)
PMUV3_INIT_SIMPLE(armv8_neoverse_v3)
PMUV3_INIT_SIMPLE(armv8_neoverse_v3ae)
PMUV3_INIT_SIMPLE(armv8_nvidia_carmel)
PMUV3_INIT_SIMPLE(armv8_nvidia_denver)
PMUV3_INIT_MAP_EVENT(armv8_cortex_a35, armv8_a53_map_event)
PMUV3_INIT_MAP_EVENT(armv8_cortex_a53, armv8_a53_map_event)
PMUV3_INIT_MAP_EVENT(armv8_cortex_a57, armv8_a57_map_event)
PMUV3_INIT_MAP_EVENT(armv8_cortex_a72, armv8_a57_map_event)
PMUV3_INIT_MAP_EVENT(armv8_cortex_a73, armv8_a73_map_event)
PMUV3_INIT_MAP_EVENT(armv8_cavium_thunder, armv8_thunder_map_event)
PMUV3_INIT_MAP_EVENT(armv8_brcm_vulcan, armv8_vulcan_map_event)
static const struct of_device_id armv8_pmu_of_device_ids[] = {
{.compatible = "arm,armv8-pmuv3", .data = armv8_pmuv3_pmu_init},
{.compatible = "arm,cortex-a34-pmu", .data = armv8_cortex_a34_pmu_init},
{.compatible = "arm,cortex-a35-pmu", .data = armv8_cortex_a35_pmu_init},
{.compatible = "arm,cortex-a53-pmu", .data = armv8_cortex_a53_pmu_init},
{.compatible = "arm,cortex-a55-pmu", .data = armv8_cortex_a55_pmu_init},
{.compatible = "arm,cortex-a57-pmu", .data = armv8_cortex_a57_pmu_init},
{.compatible = "arm,cortex-a65-pmu", .data = armv8_cortex_a65_pmu_init},
{.compatible = "arm,cortex-a72-pmu", .data = armv8_cortex_a72_pmu_init},
{.compatible = "arm,cortex-a73-pmu", .data = armv8_cortex_a73_pmu_init},
{.compatible = "arm,cortex-a75-pmu", .data = armv8_cortex_a75_pmu_init},
{.compatible = "arm,cortex-a76-pmu", .data = armv8_cortex_a76_pmu_init},
{.compatible = "arm,cortex-a77-pmu", .data = armv8_cortex_a77_pmu_init},
{.compatible = "arm,cortex-a78-pmu", .data = armv8_cortex_a78_pmu_init},
{.compatible = "arm,cortex-a510-pmu", .data = armv9_cortex_a510_pmu_init},
{.compatible = "arm,cortex-a520-pmu", .data = armv9_cortex_a520_pmu_init},
{.compatible = "arm,cortex-a710-pmu", .data = armv9_cortex_a710_pmu_init},
{.compatible = "arm,cortex-a715-pmu", .data = armv9_cortex_a715_pmu_init},
{.compatible = "arm,cortex-a720-pmu", .data = armv9_cortex_a720_pmu_init},
{.compatible = "arm,cortex-a725-pmu", .data = armv9_cortex_a725_pmu_init},
{.compatible = "arm,cortex-x1-pmu", .data = armv8_cortex_x1_pmu_init},
{.compatible = "arm,cortex-x2-pmu", .data = armv9_cortex_x2_pmu_init},
{.compatible = "arm,cortex-x3-pmu", .data = armv9_cortex_x3_pmu_init},
{.compatible = "arm,cortex-x4-pmu", .data = armv9_cortex_x4_pmu_init},
{.compatible = "arm,cortex-x925-pmu", .data = armv9_cortex_x925_pmu_init},
{.compatible = "arm,neoverse-e1-pmu", .data = armv8_neoverse_e1_pmu_init},
{.compatible = "arm,neoverse-n1-pmu", .data = armv8_neoverse_n1_pmu_init},
{.compatible = "arm,neoverse-n2-pmu", .data = armv9_neoverse_n2_pmu_init},
{.compatible = "arm,neoverse-n3-pmu", .data = armv9_neoverse_n3_pmu_init},
{.compatible = "arm,neoverse-v1-pmu", .data = armv8_neoverse_v1_pmu_init},
{.compatible = "arm,neoverse-v2-pmu", .data = armv8_neoverse_v2_pmu_init},
{.compatible = "arm,neoverse-v3-pmu", .data = armv8_neoverse_v3_pmu_init},
{.compatible = "arm,neoverse-v3ae-pmu", .data = armv8_neoverse_v3ae_pmu_init},
{.compatible = "cavium,thunder-pmu", .data = armv8_cavium_thunder_pmu_init},
{.compatible = "brcm,vulcan-pmu", .data = armv8_brcm_vulcan_pmu_init},
{.compatible = "nvidia,carmel-pmu", .data = armv8_nvidia_carmel_pmu_init},
{.compatible = "nvidia,denver-pmu", .data = armv8_nvidia_denver_pmu_init},
{},
};
static int armv8_pmu_device_probe(struct platform_device *pdev)
{
return arm_pmu_device_probe(pdev, armv8_pmu_of_device_ids, NULL);
}
static struct platform_driver armv8_pmu_driver = {
.driver = {
.name = ARMV8_PMU_PDEV_NAME,
.of_match_table = armv8_pmu_of_device_ids,
.suppress_bind_attrs = true,
},
.probe = armv8_pmu_device_probe,
};
static int __init armv8_pmu_driver_init(void)
{
int ret;
if (acpi_disabled)
ret = platform_driver_register(&armv8_pmu_driver);
else
ret = arm_pmu_acpi_probe(armv8_pmuv3_pmu_init);
if (!ret)
lockup_detector_retry_init();
return ret;
}
device_initcall(armv8_pmu_driver_init)
void arch_perf_update_userpage(struct perf_event *event,
struct perf_event_mmap_page *userpg, u64 now)
{
struct clock_read_data *rd;
unsigned int seq;
u64 ns;
userpg->cap_user_time = 0;
userpg->cap_user_time_zero = 0;
userpg->cap_user_time_short = 0;
userpg->cap_user_rdpmc = armv8pmu_event_has_user_read(event);
if (userpg->cap_user_rdpmc) {
if (event->hw.flags & ARMPMU_EVT_64BIT)
userpg->pmc_width = 64;
else
userpg->pmc_width = 32;
}
do {
rd = sched_clock_read_begin(&seq);
if (rd->read_sched_clock != arch_timer_read_counter)
return;
userpg->time_mult = rd->mult;
userpg->time_shift = rd->shift;
userpg->time_zero = rd->epoch_ns;
userpg->time_cycles = rd->epoch_cyc;
userpg->time_mask = rd->sched_clock_mask;
/*
* Subtract the cycle base, such that software that
* doesn't know about cap_user_time_short still 'works'
* assuming no wraps.
*/
ns = mul_u64_u32_shr(rd->epoch_cyc, rd->mult, rd->shift);
userpg->time_zero -= ns;
} while (sched_clock_read_retry(seq));
userpg->time_offset = userpg->time_zero - now;
/*
* time_shift is not expected to be greater than 31 due to
* the original published conversion algorithm shifting a
* 32-bit value (now specifies a 64-bit value) - refer
* perf_event_mmap_page documentation in perf_event.h.
*/
if (userpg->time_shift == 32) {
userpg->time_shift = 31;
userpg->time_mult >>= 1;
}
/*
* Internal timekeeping for enabled/running/stopped times
* is always computed with the sched_clock.
*/
userpg->cap_user_time = 1;
userpg->cap_user_time_zero = 1;
userpg->cap_user_time_short = 1;
}