| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Key setup facility for FS encryption support. |
| * |
| * Copyright (C) 2015, Google, Inc. |
| * |
| * Originally written by Michael Halcrow, Ildar Muslukhov, and Uday Savagaonkar. |
| * Heavily modified since then. |
| */ |
| |
| #include <crypto/skcipher.h> |
| #include <linux/random.h> |
| |
| #include "fscrypt_private.h" |
| |
| struct fscrypt_mode fscrypt_modes[] = { |
| [FSCRYPT_MODE_AES_256_XTS] = { |
| .friendly_name = "AES-256-XTS", |
| .cipher_str = "xts(aes)", |
| .keysize = 64, |
| .security_strength = 32, |
| .ivsize = 16, |
| .blk_crypto_mode = BLK_ENCRYPTION_MODE_AES_256_XTS, |
| }, |
| [FSCRYPT_MODE_AES_256_CTS] = { |
| .friendly_name = "AES-256-CBC-CTS", |
| .cipher_str = "cts(cbc(aes))", |
| .keysize = 32, |
| .security_strength = 32, |
| .ivsize = 16, |
| }, |
| [FSCRYPT_MODE_AES_128_CBC] = { |
| .friendly_name = "AES-128-CBC-ESSIV", |
| .cipher_str = "essiv(cbc(aes),sha256)", |
| .keysize = 16, |
| .security_strength = 16, |
| .ivsize = 16, |
| .blk_crypto_mode = BLK_ENCRYPTION_MODE_AES_128_CBC_ESSIV, |
| }, |
| [FSCRYPT_MODE_AES_128_CTS] = { |
| .friendly_name = "AES-128-CBC-CTS", |
| .cipher_str = "cts(cbc(aes))", |
| .keysize = 16, |
| .security_strength = 16, |
| .ivsize = 16, |
| }, |
| [FSCRYPT_MODE_SM4_XTS] = { |
| .friendly_name = "SM4-XTS", |
| .cipher_str = "xts(sm4)", |
| .keysize = 32, |
| .security_strength = 16, |
| .ivsize = 16, |
| .blk_crypto_mode = BLK_ENCRYPTION_MODE_SM4_XTS, |
| }, |
| [FSCRYPT_MODE_SM4_CTS] = { |
| .friendly_name = "SM4-CBC-CTS", |
| .cipher_str = "cts(cbc(sm4))", |
| .keysize = 16, |
| .security_strength = 16, |
| .ivsize = 16, |
| }, |
| [FSCRYPT_MODE_ADIANTUM] = { |
| .friendly_name = "Adiantum", |
| .cipher_str = "adiantum(xchacha12,aes)", |
| .keysize = 32, |
| .security_strength = 32, |
| .ivsize = 32, |
| .blk_crypto_mode = BLK_ENCRYPTION_MODE_ADIANTUM, |
| }, |
| [FSCRYPT_MODE_AES_256_HCTR2] = { |
| .friendly_name = "AES-256-HCTR2", |
| .cipher_str = "hctr2(aes)", |
| .keysize = 32, |
| .security_strength = 32, |
| .ivsize = 32, |
| }, |
| }; |
| |
| static DEFINE_MUTEX(fscrypt_mode_key_setup_mutex); |
| |
| static struct fscrypt_mode * |
| select_encryption_mode(const union fscrypt_policy *policy, |
| const struct inode *inode) |
| { |
| BUILD_BUG_ON(ARRAY_SIZE(fscrypt_modes) != FSCRYPT_MODE_MAX + 1); |
| |
| if (S_ISREG(inode->i_mode)) |
| return &fscrypt_modes[fscrypt_policy_contents_mode(policy)]; |
| |
| if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) |
| return &fscrypt_modes[fscrypt_policy_fnames_mode(policy)]; |
| |
| WARN_ONCE(1, "fscrypt: filesystem tried to load encryption info for inode %lu, which is not encryptable (file type %d)\n", |
| inode->i_ino, (inode->i_mode & S_IFMT)); |
| return ERR_PTR(-EINVAL); |
| } |
| |
| /* Create a symmetric cipher object for the given encryption mode and key */ |
| static struct crypto_skcipher * |
| fscrypt_allocate_skcipher(struct fscrypt_mode *mode, const u8 *raw_key, |
| const struct inode *inode) |
| { |
| struct crypto_skcipher *tfm; |
| int err; |
| |
| tfm = crypto_alloc_skcipher(mode->cipher_str, 0, 0); |
| if (IS_ERR(tfm)) { |
| if (PTR_ERR(tfm) == -ENOENT) { |
| fscrypt_warn(inode, |
| "Missing crypto API support for %s (API name: \"%s\")", |
| mode->friendly_name, mode->cipher_str); |
| return ERR_PTR(-ENOPKG); |
| } |
| fscrypt_err(inode, "Error allocating '%s' transform: %ld", |
| mode->cipher_str, PTR_ERR(tfm)); |
| return tfm; |
| } |
| if (!xchg(&mode->logged_cryptoapi_impl, 1)) { |
| /* |
| * fscrypt performance can vary greatly depending on which |
| * crypto algorithm implementation is used. Help people debug |
| * performance problems by logging the ->cra_driver_name the |
| * first time a mode is used. |
| */ |
| pr_info("fscrypt: %s using implementation \"%s\"\n", |
| mode->friendly_name, crypto_skcipher_driver_name(tfm)); |
| } |
| if (WARN_ON_ONCE(crypto_skcipher_ivsize(tfm) != mode->ivsize)) { |
| err = -EINVAL; |
| goto err_free_tfm; |
| } |
| crypto_skcipher_set_flags(tfm, CRYPTO_TFM_REQ_FORBID_WEAK_KEYS); |
| err = crypto_skcipher_setkey(tfm, raw_key, mode->keysize); |
| if (err) |
| goto err_free_tfm; |
| |
| return tfm; |
| |
| err_free_tfm: |
| crypto_free_skcipher(tfm); |
| return ERR_PTR(err); |
| } |
| |
| /* |
| * Prepare the crypto transform object or blk-crypto key in @prep_key, given the |
| * raw key, encryption mode (@ci->ci_mode), flag indicating which encryption |
| * implementation (fs-layer or blk-crypto) will be used (@ci->ci_inlinecrypt), |
| * and IV generation method (@ci->ci_policy.flags). |
| */ |
| int fscrypt_prepare_key(struct fscrypt_prepared_key *prep_key, |
| const u8 *raw_key, const struct fscrypt_inode_info *ci) |
| { |
| struct crypto_skcipher *tfm; |
| |
| if (fscrypt_using_inline_encryption(ci)) |
| return fscrypt_prepare_inline_crypt_key(prep_key, raw_key, |
| ci->ci_mode->keysize, |
| false, ci); |
| |
| tfm = fscrypt_allocate_skcipher(ci->ci_mode, raw_key, ci->ci_inode); |
| if (IS_ERR(tfm)) |
| return PTR_ERR(tfm); |
| /* |
| * Pairs with the smp_load_acquire() in fscrypt_is_key_prepared(). |
| * I.e., here we publish ->tfm with a RELEASE barrier so that |
| * concurrent tasks can ACQUIRE it. Note that this concurrency is only |
| * possible for per-mode keys, not for per-file keys. |
| */ |
| smp_store_release(&prep_key->tfm, tfm); |
| return 0; |
| } |
| |
| /* Destroy a crypto transform object and/or blk-crypto key. */ |
| void fscrypt_destroy_prepared_key(struct super_block *sb, |
| struct fscrypt_prepared_key *prep_key) |
| { |
| crypto_free_skcipher(prep_key->tfm); |
| fscrypt_destroy_inline_crypt_key(sb, prep_key); |
| memzero_explicit(prep_key, sizeof(*prep_key)); |
| } |
| |
| /* Given a per-file encryption key, set up the file's crypto transform object */ |
| int fscrypt_set_per_file_enc_key(struct fscrypt_inode_info *ci, |
| const u8 *raw_key) |
| { |
| ci->ci_owns_key = true; |
| return fscrypt_prepare_key(&ci->ci_enc_key, raw_key, ci); |
| } |
| |
| static int setup_per_mode_enc_key(struct fscrypt_inode_info *ci, |
| struct fscrypt_master_key *mk, |
| struct fscrypt_prepared_key *keys, |
| u8 hkdf_context, bool include_fs_uuid) |
| { |
| const struct inode *inode = ci->ci_inode; |
| const struct super_block *sb = inode->i_sb; |
| struct fscrypt_mode *mode = ci->ci_mode; |
| const u8 mode_num = mode - fscrypt_modes; |
| struct fscrypt_prepared_key *prep_key; |
| u8 mode_key[FSCRYPT_MAX_STANDARD_KEY_SIZE]; |
| u8 hkdf_info[sizeof(mode_num) + sizeof(sb->s_uuid)]; |
| unsigned int hkdf_infolen = 0; |
| bool use_hw_wrapped_key = false; |
| int err; |
| |
| if (WARN_ON_ONCE(mode_num > FSCRYPT_MODE_MAX)) |
| return -EINVAL; |
| |
| if (mk->mk_secret.is_hw_wrapped && S_ISREG(inode->i_mode)) { |
| /* Using a hardware-wrapped key for file contents encryption */ |
| if (!fscrypt_using_inline_encryption(ci)) { |
| if (sb->s_flags & SB_INLINECRYPT) |
| fscrypt_warn(ci->ci_inode, |
| "Hardware-wrapped key required, but no suitable inline encryption capabilities are available"); |
| else |
| fscrypt_warn(ci->ci_inode, |
| "Hardware-wrapped keys require inline encryption (-o inlinecrypt)"); |
| return -EINVAL; |
| } |
| use_hw_wrapped_key = true; |
| } |
| |
| prep_key = &keys[mode_num]; |
| if (fscrypt_is_key_prepared(prep_key, ci)) { |
| ci->ci_enc_key = *prep_key; |
| return 0; |
| } |
| |
| mutex_lock(&fscrypt_mode_key_setup_mutex); |
| |
| if (fscrypt_is_key_prepared(prep_key, ci)) |
| goto done_unlock; |
| |
| if (use_hw_wrapped_key) { |
| err = fscrypt_prepare_inline_crypt_key(prep_key, |
| mk->mk_secret.raw, |
| mk->mk_secret.size, true, |
| ci); |
| if (err) |
| goto out_unlock; |
| goto done_unlock; |
| } |
| |
| BUILD_BUG_ON(sizeof(mode_num) != 1); |
| BUILD_BUG_ON(sizeof(sb->s_uuid) != 16); |
| BUILD_BUG_ON(sizeof(hkdf_info) != 17); |
| hkdf_info[hkdf_infolen++] = mode_num; |
| if (include_fs_uuid) { |
| memcpy(&hkdf_info[hkdf_infolen], &sb->s_uuid, |
| sizeof(sb->s_uuid)); |
| hkdf_infolen += sizeof(sb->s_uuid); |
| } |
| err = fscrypt_hkdf_expand(&mk->mk_secret.hkdf, |
| hkdf_context, hkdf_info, hkdf_infolen, |
| mode_key, mode->keysize); |
| if (err) |
| goto out_unlock; |
| err = fscrypt_prepare_key(prep_key, mode_key, ci); |
| memzero_explicit(mode_key, mode->keysize); |
| if (err) |
| goto out_unlock; |
| done_unlock: |
| ci->ci_enc_key = *prep_key; |
| err = 0; |
| out_unlock: |
| mutex_unlock(&fscrypt_mode_key_setup_mutex); |
| return err; |
| } |
| |
| /* |
| * Derive a SipHash key from the given fscrypt master key and the given |
| * application-specific information string. |
| * |
| * Note that the KDF produces a byte array, but the SipHash APIs expect the key |
| * as a pair of 64-bit words. Therefore, on big endian CPUs we have to do an |
| * endianness swap in order to get the same results as on little endian CPUs. |
| */ |
| static int fscrypt_derive_siphash_key(const struct fscrypt_master_key *mk, |
| u8 context, const u8 *info, |
| unsigned int infolen, siphash_key_t *key) |
| { |
| int err; |
| |
| err = fscrypt_hkdf_expand(&mk->mk_secret.hkdf, context, info, infolen, |
| (u8 *)key, sizeof(*key)); |
| if (err) |
| return err; |
| |
| BUILD_BUG_ON(sizeof(*key) != 16); |
| BUILD_BUG_ON(ARRAY_SIZE(key->key) != 2); |
| le64_to_cpus(&key->key[0]); |
| le64_to_cpus(&key->key[1]); |
| return 0; |
| } |
| |
| int fscrypt_derive_dirhash_key(struct fscrypt_inode_info *ci, |
| const struct fscrypt_master_key *mk) |
| { |
| int err; |
| |
| err = fscrypt_derive_siphash_key(mk, HKDF_CONTEXT_DIRHASH_KEY, |
| ci->ci_nonce, FSCRYPT_FILE_NONCE_SIZE, |
| &ci->ci_dirhash_key); |
| if (err) |
| return err; |
| ci->ci_dirhash_key_initialized = true; |
| return 0; |
| } |
| |
| void fscrypt_hash_inode_number(struct fscrypt_inode_info *ci, |
| const struct fscrypt_master_key *mk) |
| { |
| WARN_ON_ONCE(ci->ci_inode->i_ino == 0); |
| WARN_ON_ONCE(!mk->mk_ino_hash_key_initialized); |
| |
| ci->ci_hashed_ino = (u32)siphash_1u64(ci->ci_inode->i_ino, |
| &mk->mk_ino_hash_key); |
| } |
| |
| static int fscrypt_setup_iv_ino_lblk_32_key(struct fscrypt_inode_info *ci, |
| struct fscrypt_master_key *mk) |
| { |
| int err; |
| |
| err = setup_per_mode_enc_key(ci, mk, mk->mk_iv_ino_lblk_32_keys, |
| HKDF_CONTEXT_IV_INO_LBLK_32_KEY, true); |
| if (err) |
| return err; |
| |
| /* pairs with smp_store_release() below */ |
| if (!smp_load_acquire(&mk->mk_ino_hash_key_initialized)) { |
| |
| mutex_lock(&fscrypt_mode_key_setup_mutex); |
| |
| if (mk->mk_ino_hash_key_initialized) |
| goto unlock; |
| |
| err = fscrypt_derive_siphash_key(mk, |
| HKDF_CONTEXT_INODE_HASH_KEY, |
| NULL, 0, &mk->mk_ino_hash_key); |
| if (err) |
| goto unlock; |
| /* pairs with smp_load_acquire() above */ |
| smp_store_release(&mk->mk_ino_hash_key_initialized, true); |
| unlock: |
| mutex_unlock(&fscrypt_mode_key_setup_mutex); |
| if (err) |
| return err; |
| } |
| |
| /* |
| * New inodes may not have an inode number assigned yet. |
| * Hashing their inode number is delayed until later. |
| */ |
| if (ci->ci_inode->i_ino) |
| fscrypt_hash_inode_number(ci, mk); |
| return 0; |
| } |
| |
| static int fscrypt_setup_v2_file_key(struct fscrypt_inode_info *ci, |
| struct fscrypt_master_key *mk, |
| bool need_dirhash_key) |
| { |
| int err; |
| |
| if (mk->mk_secret.is_hw_wrapped && |
| !(ci->ci_policy.v2.flags & (FSCRYPT_POLICY_FLAG_IV_INO_LBLK_64 | |
| FSCRYPT_POLICY_FLAG_IV_INO_LBLK_32))) { |
| fscrypt_warn(ci->ci_inode, |
| "Hardware-wrapped keys are only supported with IV_INO_LBLK policies"); |
| return -EINVAL; |
| } |
| |
| if (ci->ci_policy.v2.flags & FSCRYPT_POLICY_FLAG_DIRECT_KEY) { |
| /* |
| * DIRECT_KEY: instead of deriving per-file encryption keys, the |
| * per-file nonce will be included in all the IVs. But unlike |
| * v1 policies, for v2 policies in this case we don't encrypt |
| * with the master key directly but rather derive a per-mode |
| * encryption key. This ensures that the master key is |
| * consistently used only for HKDF, avoiding key reuse issues. |
| */ |
| err = setup_per_mode_enc_key(ci, mk, mk->mk_direct_keys, |
| HKDF_CONTEXT_DIRECT_KEY, false); |
| } else if (ci->ci_policy.v2.flags & |
| FSCRYPT_POLICY_FLAG_IV_INO_LBLK_64) { |
| /* |
| * IV_INO_LBLK_64: encryption keys are derived from (master_key, |
| * mode_num, filesystem_uuid), and inode number is included in |
| * the IVs. This format is optimized for use with inline |
| * encryption hardware compliant with the UFS standard. |
| */ |
| err = setup_per_mode_enc_key(ci, mk, mk->mk_iv_ino_lblk_64_keys, |
| HKDF_CONTEXT_IV_INO_LBLK_64_KEY, |
| true); |
| } else if (ci->ci_policy.v2.flags & |
| FSCRYPT_POLICY_FLAG_IV_INO_LBLK_32) { |
| err = fscrypt_setup_iv_ino_lblk_32_key(ci, mk); |
| } else { |
| u8 derived_key[FSCRYPT_MAX_STANDARD_KEY_SIZE]; |
| |
| err = fscrypt_hkdf_expand(&mk->mk_secret.hkdf, |
| HKDF_CONTEXT_PER_FILE_ENC_KEY, |
| ci->ci_nonce, FSCRYPT_FILE_NONCE_SIZE, |
| derived_key, ci->ci_mode->keysize); |
| if (err) |
| return err; |
| |
| err = fscrypt_set_per_file_enc_key(ci, derived_key); |
| memzero_explicit(derived_key, ci->ci_mode->keysize); |
| } |
| if (err) |
| return err; |
| |
| /* Derive a secret dirhash key for directories that need it. */ |
| if (need_dirhash_key) { |
| err = fscrypt_derive_dirhash_key(ci, mk); |
| if (err) |
| return err; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Check whether the size of the given master key (@mk) is appropriate for the |
| * encryption settings which a particular file will use (@ci). |
| * |
| * If the file uses a v1 encryption policy, then the master key must be at least |
| * as long as the derived key, as this is a requirement of the v1 KDF. |
| * |
| * Otherwise, the KDF can accept any size key, so we enforce a slightly looser |
| * requirement: we require that the size of the master key be at least the |
| * maximum security strength of any algorithm whose key will be derived from it |
| * (but in practice we only need to consider @ci->ci_mode, since any other |
| * possible subkeys such as DIRHASH and INODE_HASH will never increase the |
| * required key size over @ci->ci_mode). This allows AES-256-XTS keys to be |
| * derived from a 256-bit master key, which is cryptographically sufficient, |
| * rather than requiring a 512-bit master key which is unnecessarily long. (We |
| * still allow 512-bit master keys if the user chooses to use them, though.) |
| */ |
| static bool fscrypt_valid_master_key_size(const struct fscrypt_master_key *mk, |
| const struct fscrypt_inode_info *ci) |
| { |
| unsigned int min_keysize; |
| |
| if (ci->ci_policy.version == FSCRYPT_POLICY_V1) |
| min_keysize = ci->ci_mode->keysize; |
| else |
| min_keysize = ci->ci_mode->security_strength; |
| |
| if (mk->mk_secret.size < min_keysize) { |
| fscrypt_warn(NULL, |
| "key with %s %*phN is too short (got %u bytes, need %u+ bytes)", |
| master_key_spec_type(&mk->mk_spec), |
| master_key_spec_len(&mk->mk_spec), |
| (u8 *)&mk->mk_spec.u, |
| mk->mk_secret.size, min_keysize); |
| return false; |
| } |
| return true; |
| } |
| |
| /* |
| * Find the master key, then set up the inode's actual encryption key. |
| * |
| * If the master key is found in the filesystem-level keyring, then it is |
| * returned in *mk_ret with its semaphore read-locked. This is needed to ensure |
| * that only one task links the fscrypt_inode_info into ->mk_decrypted_inodes |
| * (as multiple tasks may race to create an fscrypt_inode_info for the same |
| * inode), and to synchronize the master key being removed with a new inode |
| * starting to use it. |
| */ |
| static int setup_file_encryption_key(struct fscrypt_inode_info *ci, |
| bool need_dirhash_key, |
| struct fscrypt_master_key **mk_ret) |
| { |
| struct super_block *sb = ci->ci_inode->i_sb; |
| struct fscrypt_key_specifier mk_spec; |
| struct fscrypt_master_key *mk; |
| int err; |
| |
| err = fscrypt_policy_to_key_spec(&ci->ci_policy, &mk_spec); |
| if (err) |
| return err; |
| |
| mk = fscrypt_find_master_key(sb, &mk_spec); |
| if (unlikely(!mk)) { |
| const union fscrypt_policy *dummy_policy = |
| fscrypt_get_dummy_policy(sb); |
| |
| /* |
| * Add the test_dummy_encryption key on-demand. In principle, |
| * it should be added at mount time. Do it here instead so that |
| * the individual filesystems don't need to worry about adding |
| * this key at mount time and cleaning up on mount failure. |
| */ |
| if (dummy_policy && |
| fscrypt_policies_equal(dummy_policy, &ci->ci_policy)) { |
| err = fscrypt_add_test_dummy_key(sb, &mk_spec); |
| if (err) |
| return err; |
| mk = fscrypt_find_master_key(sb, &mk_spec); |
| } |
| } |
| if (unlikely(!mk)) { |
| if (ci->ci_policy.version != FSCRYPT_POLICY_V1) |
| return -ENOKEY; |
| |
| err = fscrypt_select_encryption_impl(ci, false); |
| if (err) |
| return err; |
| |
| /* |
| * As a legacy fallback for v1 policies, search for the key in |
| * the current task's subscribed keyrings too. Don't move this |
| * to before the search of ->s_master_keys, since users |
| * shouldn't be able to override filesystem-level keys. |
| */ |
| return fscrypt_setup_v1_file_key_via_subscribed_keyrings(ci); |
| } |
| down_read(&mk->mk_sem); |
| |
| if (!mk->mk_present) { |
| /* FS_IOC_REMOVE_ENCRYPTION_KEY has been executed on this key */ |
| err = -ENOKEY; |
| goto out_release_key; |
| } |
| |
| if (!fscrypt_valid_master_key_size(mk, ci)) { |
| err = -ENOKEY; |
| goto out_release_key; |
| } |
| |
| err = fscrypt_select_encryption_impl(ci, mk->mk_secret.is_hw_wrapped); |
| if (err) |
| goto out_release_key; |
| |
| switch (ci->ci_policy.version) { |
| case FSCRYPT_POLICY_V1: |
| if (WARN_ON(mk->mk_secret.is_hw_wrapped)) { |
| /* |
| * This should never happen, as adding a v1 policy key |
| * that is hardware-wrapped isn't allowed. |
| */ |
| err = -EINVAL; |
| goto out_release_key; |
| } |
| err = fscrypt_setup_v1_file_key(ci, mk->mk_secret.raw); |
| break; |
| case FSCRYPT_POLICY_V2: |
| err = fscrypt_setup_v2_file_key(ci, mk, need_dirhash_key); |
| break; |
| default: |
| WARN_ON_ONCE(1); |
| err = -EINVAL; |
| break; |
| } |
| if (err) |
| goto out_release_key; |
| |
| *mk_ret = mk; |
| return 0; |
| |
| out_release_key: |
| up_read(&mk->mk_sem); |
| fscrypt_put_master_key(mk); |
| return err; |
| } |
| |
| static void put_crypt_info(struct fscrypt_inode_info *ci) |
| { |
| struct fscrypt_master_key *mk; |
| |
| if (!ci) |
| return; |
| |
| if (ci->ci_direct_key) |
| fscrypt_put_direct_key(ci->ci_direct_key); |
| else if (ci->ci_owns_key) |
| fscrypt_destroy_prepared_key(ci->ci_inode->i_sb, |
| &ci->ci_enc_key); |
| |
| mk = ci->ci_master_key; |
| if (mk) { |
| /* |
| * Remove this inode from the list of inodes that were unlocked |
| * with the master key. In addition, if we're removing the last |
| * inode from an incompletely removed key, then complete the |
| * full removal of the key. |
| */ |
| spin_lock(&mk->mk_decrypted_inodes_lock); |
| list_del(&ci->ci_master_key_link); |
| spin_unlock(&mk->mk_decrypted_inodes_lock); |
| fscrypt_put_master_key_activeref(ci->ci_inode->i_sb, mk); |
| } |
| memzero_explicit(ci, sizeof(*ci)); |
| kmem_cache_free(fscrypt_inode_info_cachep, ci); |
| } |
| |
| static int |
| fscrypt_setup_encryption_info(struct inode *inode, |
| const union fscrypt_policy *policy, |
| const u8 nonce[FSCRYPT_FILE_NONCE_SIZE], |
| bool need_dirhash_key) |
| { |
| struct fscrypt_inode_info *crypt_info; |
| struct fscrypt_mode *mode; |
| struct fscrypt_master_key *mk = NULL; |
| int res; |
| |
| res = fscrypt_initialize(inode->i_sb); |
| if (res) |
| return res; |
| |
| crypt_info = kmem_cache_zalloc(fscrypt_inode_info_cachep, GFP_KERNEL); |
| if (!crypt_info) |
| return -ENOMEM; |
| |
| crypt_info->ci_inode = inode; |
| crypt_info->ci_policy = *policy; |
| memcpy(crypt_info->ci_nonce, nonce, FSCRYPT_FILE_NONCE_SIZE); |
| |
| mode = select_encryption_mode(&crypt_info->ci_policy, inode); |
| if (IS_ERR(mode)) { |
| res = PTR_ERR(mode); |
| goto out; |
| } |
| WARN_ON_ONCE(mode->ivsize > FSCRYPT_MAX_IV_SIZE); |
| crypt_info->ci_mode = mode; |
| |
| crypt_info->ci_data_unit_bits = |
| fscrypt_policy_du_bits(&crypt_info->ci_policy, inode); |
| crypt_info->ci_data_units_per_block_bits = |
| inode->i_blkbits - crypt_info->ci_data_unit_bits; |
| |
| res = setup_file_encryption_key(crypt_info, need_dirhash_key, &mk); |
| if (res) |
| goto out; |
| |
| /* |
| * For existing inodes, multiple tasks may race to set ->i_crypt_info. |
| * So use cmpxchg_release(). This pairs with the smp_load_acquire() in |
| * fscrypt_get_inode_info(). I.e., here we publish ->i_crypt_info with |
| * a RELEASE barrier so that other tasks can ACQUIRE it. |
| */ |
| if (cmpxchg_release(&inode->i_crypt_info, NULL, crypt_info) == NULL) { |
| /* |
| * We won the race and set ->i_crypt_info to our crypt_info. |
| * Now link it into the master key's inode list. |
| */ |
| if (mk) { |
| crypt_info->ci_master_key = mk; |
| refcount_inc(&mk->mk_active_refs); |
| spin_lock(&mk->mk_decrypted_inodes_lock); |
| list_add(&crypt_info->ci_master_key_link, |
| &mk->mk_decrypted_inodes); |
| spin_unlock(&mk->mk_decrypted_inodes_lock); |
| } |
| crypt_info = NULL; |
| } |
| res = 0; |
| out: |
| if (mk) { |
| up_read(&mk->mk_sem); |
| fscrypt_put_master_key(mk); |
| } |
| put_crypt_info(crypt_info); |
| return res; |
| } |
| |
| /** |
| * fscrypt_get_encryption_info() - set up an inode's encryption key |
| * @inode: the inode to set up the key for. Must be encrypted. |
| * @allow_unsupported: if %true, treat an unsupported encryption policy (or |
| * unrecognized encryption context) the same way as the key |
| * being unavailable, instead of returning an error. Use |
| * %false unless the operation being performed is needed in |
| * order for files (or directories) to be deleted. |
| * |
| * Set up ->i_crypt_info, if it hasn't already been done. |
| * |
| * Note: unless ->i_crypt_info is already set, this isn't %GFP_NOFS-safe. So |
| * generally this shouldn't be called from within a filesystem transaction. |
| * |
| * Return: 0 if ->i_crypt_info was set or was already set, *or* if the |
| * encryption key is unavailable. (Use fscrypt_has_encryption_key() to |
| * distinguish these cases.) Also can return another -errno code. |
| */ |
| int fscrypt_get_encryption_info(struct inode *inode, bool allow_unsupported) |
| { |
| int res; |
| union fscrypt_context ctx; |
| union fscrypt_policy policy; |
| |
| if (fscrypt_has_encryption_key(inode)) |
| return 0; |
| |
| res = inode->i_sb->s_cop->get_context(inode, &ctx, sizeof(ctx)); |
| if (res < 0) { |
| if (res == -ERANGE && allow_unsupported) |
| return 0; |
| fscrypt_warn(inode, "Error %d getting encryption context", res); |
| return res; |
| } |
| |
| res = fscrypt_policy_from_context(&policy, &ctx, res); |
| if (res) { |
| if (allow_unsupported) |
| return 0; |
| fscrypt_warn(inode, |
| "Unrecognized or corrupt encryption context"); |
| return res; |
| } |
| |
| if (!fscrypt_supported_policy(&policy, inode)) { |
| if (allow_unsupported) |
| return 0; |
| return -EINVAL; |
| } |
| |
| res = fscrypt_setup_encryption_info(inode, &policy, |
| fscrypt_context_nonce(&ctx), |
| IS_CASEFOLDED(inode) && |
| S_ISDIR(inode->i_mode)); |
| |
| if (res == -ENOPKG && allow_unsupported) /* Algorithm unavailable? */ |
| res = 0; |
| if (res == -ENOKEY) |
| res = 0; |
| return res; |
| } |
| |
| /** |
| * fscrypt_prepare_new_inode() - prepare to create a new inode in a directory |
| * @dir: a possibly-encrypted directory |
| * @inode: the new inode. ->i_mode and ->i_blkbits must be set already. |
| * ->i_ino doesn't need to be set yet. |
| * @encrypt_ret: (output) set to %true if the new inode will be encrypted |
| * |
| * If the directory is encrypted, set up its ->i_crypt_info in preparation for |
| * encrypting the name of the new file. Also, if the new inode will be |
| * encrypted, set up its ->i_crypt_info and set *encrypt_ret=true. |
| * |
| * This isn't %GFP_NOFS-safe, and therefore it should be called before starting |
| * any filesystem transaction to create the inode. For this reason, ->i_ino |
| * isn't required to be set yet, as the filesystem may not have set it yet. |
| * |
| * This doesn't persist the new inode's encryption context. That still needs to |
| * be done later by calling fscrypt_set_context(). |
| * |
| * Return: 0 on success, -ENOKEY if the encryption key is missing, or another |
| * -errno code |
| */ |
| int fscrypt_prepare_new_inode(struct inode *dir, struct inode *inode, |
| bool *encrypt_ret) |
| { |
| const union fscrypt_policy *policy; |
| u8 nonce[FSCRYPT_FILE_NONCE_SIZE]; |
| |
| policy = fscrypt_policy_to_inherit(dir); |
| if (policy == NULL) |
| return 0; |
| if (IS_ERR(policy)) |
| return PTR_ERR(policy); |
| |
| if (WARN_ON_ONCE(inode->i_blkbits == 0)) |
| return -EINVAL; |
| |
| if (WARN_ON_ONCE(inode->i_mode == 0)) |
| return -EINVAL; |
| |
| /* |
| * Only regular files, directories, and symlinks are encrypted. |
| * Special files like device nodes and named pipes aren't. |
| */ |
| if (!S_ISREG(inode->i_mode) && |
| !S_ISDIR(inode->i_mode) && |
| !S_ISLNK(inode->i_mode)) |
| return 0; |
| |
| *encrypt_ret = true; |
| |
| get_random_bytes(nonce, FSCRYPT_FILE_NONCE_SIZE); |
| return fscrypt_setup_encryption_info(inode, policy, nonce, |
| IS_CASEFOLDED(dir) && |
| S_ISDIR(inode->i_mode)); |
| } |
| EXPORT_SYMBOL_GPL(fscrypt_prepare_new_inode); |
| |
| /** |
| * fscrypt_put_encryption_info() - free most of an inode's fscrypt data |
| * @inode: an inode being evicted |
| * |
| * Free the inode's fscrypt_inode_info. Filesystems must call this when the |
| * inode is being evicted. An RCU grace period need not have elapsed yet. |
| */ |
| void fscrypt_put_encryption_info(struct inode *inode) |
| { |
| put_crypt_info(inode->i_crypt_info); |
| inode->i_crypt_info = NULL; |
| } |
| EXPORT_SYMBOL(fscrypt_put_encryption_info); |
| |
| /** |
| * fscrypt_free_inode() - free an inode's fscrypt data requiring RCU delay |
| * @inode: an inode being freed |
| * |
| * Free the inode's cached decrypted symlink target, if any. Filesystems must |
| * call this after an RCU grace period, just before they free the inode. |
| */ |
| void fscrypt_free_inode(struct inode *inode) |
| { |
| if (IS_ENCRYPTED(inode) && S_ISLNK(inode->i_mode)) { |
| kfree(inode->i_link); |
| inode->i_link = NULL; |
| } |
| } |
| EXPORT_SYMBOL(fscrypt_free_inode); |
| |
| /** |
| * fscrypt_drop_inode() - check whether the inode's master key has been removed |
| * @inode: an inode being considered for eviction |
| * |
| * Filesystems supporting fscrypt must call this from their ->drop_inode() |
| * method so that encrypted inodes are evicted as soon as they're no longer in |
| * use and their master key has been removed. |
| * |
| * Return: 1 if fscrypt wants the inode to be evicted now, otherwise 0 |
| */ |
| int fscrypt_drop_inode(struct inode *inode) |
| { |
| const struct fscrypt_inode_info *ci = fscrypt_get_inode_info(inode); |
| |
| /* |
| * If ci is NULL, then the inode doesn't have an encryption key set up |
| * so it's irrelevant. If ci_master_key is NULL, then the master key |
| * was provided via the legacy mechanism of the process-subscribed |
| * keyrings, so we don't know whether it's been removed or not. |
| */ |
| if (!ci || !ci->ci_master_key) |
| return 0; |
| |
| /* |
| * With proper, non-racy use of FS_IOC_REMOVE_ENCRYPTION_KEY, all inodes |
| * protected by the key were cleaned by sync_filesystem(). But if |
| * userspace is still using the files, inodes can be dirtied between |
| * then and now. We mustn't lose any writes, so skip dirty inodes here. |
| */ |
| if (inode->i_state & I_DIRTY_ALL) |
| return 0; |
| |
| /* |
| * We can't take ->mk_sem here, since this runs in atomic context. |
| * Therefore, ->mk_present can change concurrently, and our result may |
| * immediately become outdated. But there's no correctness problem with |
| * unnecessarily evicting. Nor is there a correctness problem with not |
| * evicting while iput() is racing with the key being removed, since |
| * then the thread removing the key will either evict the inode itself |
| * or will correctly detect that it wasn't evicted due to the race. |
| */ |
| return !READ_ONCE(ci->ci_master_key->mk_present); |
| } |
| EXPORT_SYMBOL_GPL(fscrypt_drop_inode); |