| // SPDX-License-Identifier: GPL-2.0-only |
| /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com |
| * Copyright (c) 2016,2017 Facebook |
| */ |
| #include <linux/bpf.h> |
| #include <linux/btf.h> |
| #include <linux/err.h> |
| #include <linux/slab.h> |
| #include <linux/mm.h> |
| #include <linux/filter.h> |
| #include <linux/perf_event.h> |
| #include <uapi/linux/btf.h> |
| #include <linux/rcupdate_trace.h> |
| #include <linux/btf_ids.h> |
| |
| #include "map_in_map.h" |
| |
| #define ARRAY_CREATE_FLAG_MASK \ |
| (BPF_F_NUMA_NODE | BPF_F_MMAPABLE | BPF_F_ACCESS_MASK | \ |
| BPF_F_PRESERVE_ELEMS | BPF_F_INNER_MAP) |
| |
| static void bpf_array_free_percpu(struct bpf_array *array) |
| { |
| int i; |
| |
| for (i = 0; i < array->map.max_entries; i++) { |
| free_percpu(array->pptrs[i]); |
| cond_resched(); |
| } |
| } |
| |
| static int bpf_array_alloc_percpu(struct bpf_array *array) |
| { |
| void __percpu *ptr; |
| int i; |
| |
| for (i = 0; i < array->map.max_entries; i++) { |
| ptr = bpf_map_alloc_percpu(&array->map, array->elem_size, 8, |
| GFP_USER | __GFP_NOWARN); |
| if (!ptr) { |
| bpf_array_free_percpu(array); |
| return -ENOMEM; |
| } |
| array->pptrs[i] = ptr; |
| cond_resched(); |
| } |
| |
| return 0; |
| } |
| |
| /* Called from syscall */ |
| int array_map_alloc_check(union bpf_attr *attr) |
| { |
| bool percpu = attr->map_type == BPF_MAP_TYPE_PERCPU_ARRAY; |
| int numa_node = bpf_map_attr_numa_node(attr); |
| |
| /* check sanity of attributes */ |
| if (attr->max_entries == 0 || attr->key_size != 4 || |
| attr->value_size == 0 || |
| attr->map_flags & ~ARRAY_CREATE_FLAG_MASK || |
| !bpf_map_flags_access_ok(attr->map_flags) || |
| (percpu && numa_node != NUMA_NO_NODE)) |
| return -EINVAL; |
| |
| if (attr->map_type != BPF_MAP_TYPE_ARRAY && |
| attr->map_flags & (BPF_F_MMAPABLE | BPF_F_INNER_MAP)) |
| return -EINVAL; |
| |
| if (attr->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY && |
| attr->map_flags & BPF_F_PRESERVE_ELEMS) |
| return -EINVAL; |
| |
| /* avoid overflow on round_up(map->value_size) */ |
| if (attr->value_size > INT_MAX) |
| return -E2BIG; |
| |
| return 0; |
| } |
| |
| static struct bpf_map *array_map_alloc(union bpf_attr *attr) |
| { |
| bool percpu = attr->map_type == BPF_MAP_TYPE_PERCPU_ARRAY; |
| int numa_node = bpf_map_attr_numa_node(attr); |
| u32 elem_size, index_mask, max_entries; |
| bool bypass_spec_v1 = bpf_bypass_spec_v1(NULL); |
| u64 array_size, mask64; |
| struct bpf_array *array; |
| |
| elem_size = round_up(attr->value_size, 8); |
| |
| max_entries = attr->max_entries; |
| |
| /* On 32 bit archs roundup_pow_of_two() with max_entries that has |
| * upper most bit set in u32 space is undefined behavior due to |
| * resulting 1U << 32, so do it manually here in u64 space. |
| */ |
| mask64 = fls_long(max_entries - 1); |
| mask64 = 1ULL << mask64; |
| mask64 -= 1; |
| |
| index_mask = mask64; |
| if (!bypass_spec_v1) { |
| /* round up array size to nearest power of 2, |
| * since cpu will speculate within index_mask limits |
| */ |
| max_entries = index_mask + 1; |
| /* Check for overflows. */ |
| if (max_entries < attr->max_entries) |
| return ERR_PTR(-E2BIG); |
| } |
| |
| array_size = sizeof(*array); |
| if (percpu) { |
| array_size += (u64) max_entries * sizeof(void *); |
| } else { |
| /* rely on vmalloc() to return page-aligned memory and |
| * ensure array->value is exactly page-aligned |
| */ |
| if (attr->map_flags & BPF_F_MMAPABLE) { |
| array_size = PAGE_ALIGN(array_size); |
| array_size += PAGE_ALIGN((u64) max_entries * elem_size); |
| } else { |
| array_size += (u64) max_entries * elem_size; |
| } |
| } |
| |
| /* allocate all map elements and zero-initialize them */ |
| if (attr->map_flags & BPF_F_MMAPABLE) { |
| void *data; |
| |
| /* kmalloc'ed memory can't be mmap'ed, use explicit vmalloc */ |
| data = bpf_map_area_mmapable_alloc(array_size, numa_node); |
| if (!data) |
| return ERR_PTR(-ENOMEM); |
| array = data + PAGE_ALIGN(sizeof(struct bpf_array)) |
| - offsetof(struct bpf_array, value); |
| } else { |
| array = bpf_map_area_alloc(array_size, numa_node); |
| } |
| if (!array) |
| return ERR_PTR(-ENOMEM); |
| array->index_mask = index_mask; |
| array->map.bypass_spec_v1 = bypass_spec_v1; |
| |
| /* copy mandatory map attributes */ |
| bpf_map_init_from_attr(&array->map, attr); |
| array->elem_size = elem_size; |
| |
| if (percpu && bpf_array_alloc_percpu(array)) { |
| bpf_map_area_free(array); |
| return ERR_PTR(-ENOMEM); |
| } |
| |
| return &array->map; |
| } |
| |
| static void *array_map_elem_ptr(struct bpf_array* array, u32 index) |
| { |
| return array->value + (u64)array->elem_size * index; |
| } |
| |
| /* Called from syscall or from eBPF program */ |
| static void *array_map_lookup_elem(struct bpf_map *map, void *key) |
| { |
| struct bpf_array *array = container_of(map, struct bpf_array, map); |
| u32 index = *(u32 *)key; |
| |
| if (unlikely(index >= array->map.max_entries)) |
| return NULL; |
| |
| return array->value + (u64)array->elem_size * (index & array->index_mask); |
| } |
| |
| static int array_map_direct_value_addr(const struct bpf_map *map, u64 *imm, |
| u32 off) |
| { |
| struct bpf_array *array = container_of(map, struct bpf_array, map); |
| |
| if (map->max_entries != 1) |
| return -ENOTSUPP; |
| if (off >= map->value_size) |
| return -EINVAL; |
| |
| *imm = (unsigned long)array->value; |
| return 0; |
| } |
| |
| static int array_map_direct_value_meta(const struct bpf_map *map, u64 imm, |
| u32 *off) |
| { |
| struct bpf_array *array = container_of(map, struct bpf_array, map); |
| u64 base = (unsigned long)array->value; |
| u64 range = array->elem_size; |
| |
| if (map->max_entries != 1) |
| return -ENOTSUPP; |
| if (imm < base || imm >= base + range) |
| return -ENOENT; |
| |
| *off = imm - base; |
| return 0; |
| } |
| |
| /* emit BPF instructions equivalent to C code of array_map_lookup_elem() */ |
| static int array_map_gen_lookup(struct bpf_map *map, struct bpf_insn *insn_buf) |
| { |
| struct bpf_array *array = container_of(map, struct bpf_array, map); |
| struct bpf_insn *insn = insn_buf; |
| u32 elem_size = array->elem_size; |
| const int ret = BPF_REG_0; |
| const int map_ptr = BPF_REG_1; |
| const int index = BPF_REG_2; |
| |
| if (map->map_flags & BPF_F_INNER_MAP) |
| return -EOPNOTSUPP; |
| |
| *insn++ = BPF_ALU64_IMM(BPF_ADD, map_ptr, offsetof(struct bpf_array, value)); |
| *insn++ = BPF_LDX_MEM(BPF_W, ret, index, 0); |
| if (!map->bypass_spec_v1) { |
| *insn++ = BPF_JMP_IMM(BPF_JGE, ret, map->max_entries, 4); |
| *insn++ = BPF_ALU32_IMM(BPF_AND, ret, array->index_mask); |
| } else { |
| *insn++ = BPF_JMP_IMM(BPF_JGE, ret, map->max_entries, 3); |
| } |
| |
| if (is_power_of_2(elem_size)) { |
| *insn++ = BPF_ALU64_IMM(BPF_LSH, ret, ilog2(elem_size)); |
| } else { |
| *insn++ = BPF_ALU64_IMM(BPF_MUL, ret, elem_size); |
| } |
| *insn++ = BPF_ALU64_REG(BPF_ADD, ret, map_ptr); |
| *insn++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1); |
| *insn++ = BPF_MOV64_IMM(ret, 0); |
| return insn - insn_buf; |
| } |
| |
| /* Called from eBPF program */ |
| static void *percpu_array_map_lookup_elem(struct bpf_map *map, void *key) |
| { |
| struct bpf_array *array = container_of(map, struct bpf_array, map); |
| u32 index = *(u32 *)key; |
| |
| if (unlikely(index >= array->map.max_entries)) |
| return NULL; |
| |
| return this_cpu_ptr(array->pptrs[index & array->index_mask]); |
| } |
| |
| /* emit BPF instructions equivalent to C code of percpu_array_map_lookup_elem() */ |
| static int percpu_array_map_gen_lookup(struct bpf_map *map, struct bpf_insn *insn_buf) |
| { |
| struct bpf_array *array = container_of(map, struct bpf_array, map); |
| struct bpf_insn *insn = insn_buf; |
| |
| if (!bpf_jit_supports_percpu_insn()) |
| return -EOPNOTSUPP; |
| |
| if (map->map_flags & BPF_F_INNER_MAP) |
| return -EOPNOTSUPP; |
| |
| BUILD_BUG_ON(offsetof(struct bpf_array, map) != 0); |
| *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, offsetof(struct bpf_array, pptrs)); |
| |
| *insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_2, 0); |
| if (!map->bypass_spec_v1) { |
| *insn++ = BPF_JMP_IMM(BPF_JGE, BPF_REG_0, map->max_entries, 6); |
| *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_0, array->index_mask); |
| } else { |
| *insn++ = BPF_JMP_IMM(BPF_JGE, BPF_REG_0, map->max_entries, 5); |
| } |
| |
| *insn++ = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3); |
| *insn++ = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1); |
| *insn++ = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_0, 0); |
| *insn++ = BPF_MOV64_PERCPU_REG(BPF_REG_0, BPF_REG_0); |
| *insn++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1); |
| *insn++ = BPF_MOV64_IMM(BPF_REG_0, 0); |
| return insn - insn_buf; |
| } |
| |
| static void *percpu_array_map_lookup_percpu_elem(struct bpf_map *map, void *key, u32 cpu) |
| { |
| struct bpf_array *array = container_of(map, struct bpf_array, map); |
| u32 index = *(u32 *)key; |
| |
| if (cpu >= nr_cpu_ids) |
| return NULL; |
| |
| if (unlikely(index >= array->map.max_entries)) |
| return NULL; |
| |
| return per_cpu_ptr(array->pptrs[index & array->index_mask], cpu); |
| } |
| |
| int bpf_percpu_array_copy(struct bpf_map *map, void *key, void *value) |
| { |
| struct bpf_array *array = container_of(map, struct bpf_array, map); |
| u32 index = *(u32 *)key; |
| void __percpu *pptr; |
| int cpu, off = 0; |
| u32 size; |
| |
| if (unlikely(index >= array->map.max_entries)) |
| return -ENOENT; |
| |
| /* per_cpu areas are zero-filled and bpf programs can only |
| * access 'value_size' of them, so copying rounded areas |
| * will not leak any kernel data |
| */ |
| size = array->elem_size; |
| rcu_read_lock(); |
| pptr = array->pptrs[index & array->index_mask]; |
| for_each_possible_cpu(cpu) { |
| copy_map_value_long(map, value + off, per_cpu_ptr(pptr, cpu)); |
| check_and_init_map_value(map, value + off); |
| off += size; |
| } |
| rcu_read_unlock(); |
| return 0; |
| } |
| |
| /* Called from syscall */ |
| static int array_map_get_next_key(struct bpf_map *map, void *key, void *next_key) |
| { |
| struct bpf_array *array = container_of(map, struct bpf_array, map); |
| u32 index = key ? *(u32 *)key : U32_MAX; |
| u32 *next = (u32 *)next_key; |
| |
| if (index >= array->map.max_entries) { |
| *next = 0; |
| return 0; |
| } |
| |
| if (index == array->map.max_entries - 1) |
| return -ENOENT; |
| |
| *next = index + 1; |
| return 0; |
| } |
| |
| /* Called from syscall or from eBPF program */ |
| static long array_map_update_elem(struct bpf_map *map, void *key, void *value, |
| u64 map_flags) |
| { |
| struct bpf_array *array = container_of(map, struct bpf_array, map); |
| u32 index = *(u32 *)key; |
| char *val; |
| |
| if (unlikely((map_flags & ~BPF_F_LOCK) > BPF_EXIST)) |
| /* unknown flags */ |
| return -EINVAL; |
| |
| if (unlikely(index >= array->map.max_entries)) |
| /* all elements were pre-allocated, cannot insert a new one */ |
| return -E2BIG; |
| |
| if (unlikely(map_flags & BPF_NOEXIST)) |
| /* all elements already exist */ |
| return -EEXIST; |
| |
| if (unlikely((map_flags & BPF_F_LOCK) && |
| !btf_record_has_field(map->record, BPF_SPIN_LOCK))) |
| return -EINVAL; |
| |
| if (array->map.map_type == BPF_MAP_TYPE_PERCPU_ARRAY) { |
| val = this_cpu_ptr(array->pptrs[index & array->index_mask]); |
| copy_map_value(map, val, value); |
| bpf_obj_free_fields(array->map.record, val); |
| } else { |
| val = array->value + |
| (u64)array->elem_size * (index & array->index_mask); |
| if (map_flags & BPF_F_LOCK) |
| copy_map_value_locked(map, val, value, false); |
| else |
| copy_map_value(map, val, value); |
| bpf_obj_free_fields(array->map.record, val); |
| } |
| return 0; |
| } |
| |
| int bpf_percpu_array_update(struct bpf_map *map, void *key, void *value, |
| u64 map_flags) |
| { |
| struct bpf_array *array = container_of(map, struct bpf_array, map); |
| u32 index = *(u32 *)key; |
| void __percpu *pptr; |
| int cpu, off = 0; |
| u32 size; |
| |
| if (unlikely(map_flags > BPF_EXIST)) |
| /* unknown flags */ |
| return -EINVAL; |
| |
| if (unlikely(index >= array->map.max_entries)) |
| /* all elements were pre-allocated, cannot insert a new one */ |
| return -E2BIG; |
| |
| if (unlikely(map_flags == BPF_NOEXIST)) |
| /* all elements already exist */ |
| return -EEXIST; |
| |
| /* the user space will provide round_up(value_size, 8) bytes that |
| * will be copied into per-cpu area. bpf programs can only access |
| * value_size of it. During lookup the same extra bytes will be |
| * returned or zeros which were zero-filled by percpu_alloc, |
| * so no kernel data leaks possible |
| */ |
| size = array->elem_size; |
| rcu_read_lock(); |
| pptr = array->pptrs[index & array->index_mask]; |
| for_each_possible_cpu(cpu) { |
| copy_map_value_long(map, per_cpu_ptr(pptr, cpu), value + off); |
| bpf_obj_free_fields(array->map.record, per_cpu_ptr(pptr, cpu)); |
| off += size; |
| } |
| rcu_read_unlock(); |
| return 0; |
| } |
| |
| /* Called from syscall or from eBPF program */ |
| static long array_map_delete_elem(struct bpf_map *map, void *key) |
| { |
| return -EINVAL; |
| } |
| |
| static void *array_map_vmalloc_addr(struct bpf_array *array) |
| { |
| return (void *)round_down((unsigned long)array, PAGE_SIZE); |
| } |
| |
| static void array_map_free_timers_wq(struct bpf_map *map) |
| { |
| struct bpf_array *array = container_of(map, struct bpf_array, map); |
| int i; |
| |
| /* We don't reset or free fields other than timer and workqueue |
| * on uref dropping to zero. |
| */ |
| if (btf_record_has_field(map->record, BPF_TIMER | BPF_WORKQUEUE)) { |
| for (i = 0; i < array->map.max_entries; i++) { |
| if (btf_record_has_field(map->record, BPF_TIMER)) |
| bpf_obj_free_timer(map->record, array_map_elem_ptr(array, i)); |
| if (btf_record_has_field(map->record, BPF_WORKQUEUE)) |
| bpf_obj_free_workqueue(map->record, array_map_elem_ptr(array, i)); |
| } |
| } |
| } |
| |
| /* Called when map->refcnt goes to zero, either from workqueue or from syscall */ |
| static void array_map_free(struct bpf_map *map) |
| { |
| struct bpf_array *array = container_of(map, struct bpf_array, map); |
| int i; |
| |
| if (!IS_ERR_OR_NULL(map->record)) { |
| if (array->map.map_type == BPF_MAP_TYPE_PERCPU_ARRAY) { |
| for (i = 0; i < array->map.max_entries; i++) { |
| void __percpu *pptr = array->pptrs[i & array->index_mask]; |
| int cpu; |
| |
| for_each_possible_cpu(cpu) { |
| bpf_obj_free_fields(map->record, per_cpu_ptr(pptr, cpu)); |
| cond_resched(); |
| } |
| } |
| } else { |
| for (i = 0; i < array->map.max_entries; i++) |
| bpf_obj_free_fields(map->record, array_map_elem_ptr(array, i)); |
| } |
| } |
| |
| if (array->map.map_type == BPF_MAP_TYPE_PERCPU_ARRAY) |
| bpf_array_free_percpu(array); |
| |
| if (array->map.map_flags & BPF_F_MMAPABLE) |
| bpf_map_area_free(array_map_vmalloc_addr(array)); |
| else |
| bpf_map_area_free(array); |
| } |
| |
| static void array_map_seq_show_elem(struct bpf_map *map, void *key, |
| struct seq_file *m) |
| { |
| void *value; |
| |
| rcu_read_lock(); |
| |
| value = array_map_lookup_elem(map, key); |
| if (!value) { |
| rcu_read_unlock(); |
| return; |
| } |
| |
| if (map->btf_key_type_id) |
| seq_printf(m, "%u: ", *(u32 *)key); |
| btf_type_seq_show(map->btf, map->btf_value_type_id, value, m); |
| seq_puts(m, "\n"); |
| |
| rcu_read_unlock(); |
| } |
| |
| static void percpu_array_map_seq_show_elem(struct bpf_map *map, void *key, |
| struct seq_file *m) |
| { |
| struct bpf_array *array = container_of(map, struct bpf_array, map); |
| u32 index = *(u32 *)key; |
| void __percpu *pptr; |
| int cpu; |
| |
| rcu_read_lock(); |
| |
| seq_printf(m, "%u: {\n", *(u32 *)key); |
| pptr = array->pptrs[index & array->index_mask]; |
| for_each_possible_cpu(cpu) { |
| seq_printf(m, "\tcpu%d: ", cpu); |
| btf_type_seq_show(map->btf, map->btf_value_type_id, |
| per_cpu_ptr(pptr, cpu), m); |
| seq_puts(m, "\n"); |
| } |
| seq_puts(m, "}\n"); |
| |
| rcu_read_unlock(); |
| } |
| |
| static int array_map_check_btf(const struct bpf_map *map, |
| const struct btf *btf, |
| const struct btf_type *key_type, |
| const struct btf_type *value_type) |
| { |
| u32 int_data; |
| |
| /* One exception for keyless BTF: .bss/.data/.rodata map */ |
| if (btf_type_is_void(key_type)) { |
| if (map->map_type != BPF_MAP_TYPE_ARRAY || |
| map->max_entries != 1) |
| return -EINVAL; |
| |
| if (BTF_INFO_KIND(value_type->info) != BTF_KIND_DATASEC) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| if (BTF_INFO_KIND(key_type->info) != BTF_KIND_INT) |
| return -EINVAL; |
| |
| int_data = *(u32 *)(key_type + 1); |
| /* bpf array can only take a u32 key. This check makes sure |
| * that the btf matches the attr used during map_create. |
| */ |
| if (BTF_INT_BITS(int_data) != 32 || BTF_INT_OFFSET(int_data)) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| static int array_map_mmap(struct bpf_map *map, struct vm_area_struct *vma) |
| { |
| struct bpf_array *array = container_of(map, struct bpf_array, map); |
| pgoff_t pgoff = PAGE_ALIGN(sizeof(*array)) >> PAGE_SHIFT; |
| |
| if (!(map->map_flags & BPF_F_MMAPABLE)) |
| return -EINVAL; |
| |
| if (vma->vm_pgoff * PAGE_SIZE + (vma->vm_end - vma->vm_start) > |
| PAGE_ALIGN((u64)array->map.max_entries * array->elem_size)) |
| return -EINVAL; |
| |
| return remap_vmalloc_range(vma, array_map_vmalloc_addr(array), |
| vma->vm_pgoff + pgoff); |
| } |
| |
| static bool array_map_meta_equal(const struct bpf_map *meta0, |
| const struct bpf_map *meta1) |
| { |
| if (!bpf_map_meta_equal(meta0, meta1)) |
| return false; |
| return meta0->map_flags & BPF_F_INNER_MAP ? true : |
| meta0->max_entries == meta1->max_entries; |
| } |
| |
| struct bpf_iter_seq_array_map_info { |
| struct bpf_map *map; |
| void *percpu_value_buf; |
| u32 index; |
| }; |
| |
| static void *bpf_array_map_seq_start(struct seq_file *seq, loff_t *pos) |
| { |
| struct bpf_iter_seq_array_map_info *info = seq->private; |
| struct bpf_map *map = info->map; |
| struct bpf_array *array; |
| u32 index; |
| |
| if (info->index >= map->max_entries) |
| return NULL; |
| |
| if (*pos == 0) |
| ++*pos; |
| array = container_of(map, struct bpf_array, map); |
| index = info->index & array->index_mask; |
| if (info->percpu_value_buf) |
| return array->pptrs[index]; |
| return array_map_elem_ptr(array, index); |
| } |
| |
| static void *bpf_array_map_seq_next(struct seq_file *seq, void *v, loff_t *pos) |
| { |
| struct bpf_iter_seq_array_map_info *info = seq->private; |
| struct bpf_map *map = info->map; |
| struct bpf_array *array; |
| u32 index; |
| |
| ++*pos; |
| ++info->index; |
| if (info->index >= map->max_entries) |
| return NULL; |
| |
| array = container_of(map, struct bpf_array, map); |
| index = info->index & array->index_mask; |
| if (info->percpu_value_buf) |
| return array->pptrs[index]; |
| return array_map_elem_ptr(array, index); |
| } |
| |
| static int __bpf_array_map_seq_show(struct seq_file *seq, void *v) |
| { |
| struct bpf_iter_seq_array_map_info *info = seq->private; |
| struct bpf_iter__bpf_map_elem ctx = {}; |
| struct bpf_map *map = info->map; |
| struct bpf_array *array = container_of(map, struct bpf_array, map); |
| struct bpf_iter_meta meta; |
| struct bpf_prog *prog; |
| int off = 0, cpu = 0; |
| void __percpu **pptr; |
| u32 size; |
| |
| meta.seq = seq; |
| prog = bpf_iter_get_info(&meta, v == NULL); |
| if (!prog) |
| return 0; |
| |
| ctx.meta = &meta; |
| ctx.map = info->map; |
| if (v) { |
| ctx.key = &info->index; |
| |
| if (!info->percpu_value_buf) { |
| ctx.value = v; |
| } else { |
| pptr = v; |
| size = array->elem_size; |
| for_each_possible_cpu(cpu) { |
| copy_map_value_long(map, info->percpu_value_buf + off, |
| per_cpu_ptr(pptr, cpu)); |
| check_and_init_map_value(map, info->percpu_value_buf + off); |
| off += size; |
| } |
| ctx.value = info->percpu_value_buf; |
| } |
| } |
| |
| return bpf_iter_run_prog(prog, &ctx); |
| } |
| |
| static int bpf_array_map_seq_show(struct seq_file *seq, void *v) |
| { |
| return __bpf_array_map_seq_show(seq, v); |
| } |
| |
| static void bpf_array_map_seq_stop(struct seq_file *seq, void *v) |
| { |
| if (!v) |
| (void)__bpf_array_map_seq_show(seq, NULL); |
| } |
| |
| static int bpf_iter_init_array_map(void *priv_data, |
| struct bpf_iter_aux_info *aux) |
| { |
| struct bpf_iter_seq_array_map_info *seq_info = priv_data; |
| struct bpf_map *map = aux->map; |
| struct bpf_array *array = container_of(map, struct bpf_array, map); |
| void *value_buf; |
| u32 buf_size; |
| |
| if (map->map_type == BPF_MAP_TYPE_PERCPU_ARRAY) { |
| buf_size = array->elem_size * num_possible_cpus(); |
| value_buf = kmalloc(buf_size, GFP_USER | __GFP_NOWARN); |
| if (!value_buf) |
| return -ENOMEM; |
| |
| seq_info->percpu_value_buf = value_buf; |
| } |
| |
| /* bpf_iter_attach_map() acquires a map uref, and the uref may be |
| * released before or in the middle of iterating map elements, so |
| * acquire an extra map uref for iterator. |
| */ |
| bpf_map_inc_with_uref(map); |
| seq_info->map = map; |
| return 0; |
| } |
| |
| static void bpf_iter_fini_array_map(void *priv_data) |
| { |
| struct bpf_iter_seq_array_map_info *seq_info = priv_data; |
| |
| bpf_map_put_with_uref(seq_info->map); |
| kfree(seq_info->percpu_value_buf); |
| } |
| |
| static const struct seq_operations bpf_array_map_seq_ops = { |
| .start = bpf_array_map_seq_start, |
| .next = bpf_array_map_seq_next, |
| .stop = bpf_array_map_seq_stop, |
| .show = bpf_array_map_seq_show, |
| }; |
| |
| static const struct bpf_iter_seq_info iter_seq_info = { |
| .seq_ops = &bpf_array_map_seq_ops, |
| .init_seq_private = bpf_iter_init_array_map, |
| .fini_seq_private = bpf_iter_fini_array_map, |
| .seq_priv_size = sizeof(struct bpf_iter_seq_array_map_info), |
| }; |
| |
| static long bpf_for_each_array_elem(struct bpf_map *map, bpf_callback_t callback_fn, |
| void *callback_ctx, u64 flags) |
| { |
| u32 i, key, num_elems = 0; |
| struct bpf_array *array; |
| bool is_percpu; |
| u64 ret = 0; |
| void *val; |
| |
| if (flags != 0) |
| return -EINVAL; |
| |
| is_percpu = map->map_type == BPF_MAP_TYPE_PERCPU_ARRAY; |
| array = container_of(map, struct bpf_array, map); |
| if (is_percpu) |
| migrate_disable(); |
| for (i = 0; i < map->max_entries; i++) { |
| if (is_percpu) |
| val = this_cpu_ptr(array->pptrs[i]); |
| else |
| val = array_map_elem_ptr(array, i); |
| num_elems++; |
| key = i; |
| ret = callback_fn((u64)(long)map, (u64)(long)&key, |
| (u64)(long)val, (u64)(long)callback_ctx, 0); |
| /* return value: 0 - continue, 1 - stop and return */ |
| if (ret) |
| break; |
| } |
| |
| if (is_percpu) |
| migrate_enable(); |
| return num_elems; |
| } |
| |
| static u64 array_map_mem_usage(const struct bpf_map *map) |
| { |
| struct bpf_array *array = container_of(map, struct bpf_array, map); |
| bool percpu = map->map_type == BPF_MAP_TYPE_PERCPU_ARRAY; |
| u32 elem_size = array->elem_size; |
| u64 entries = map->max_entries; |
| u64 usage = sizeof(*array); |
| |
| if (percpu) { |
| usage += entries * sizeof(void *); |
| usage += entries * elem_size * num_possible_cpus(); |
| } else { |
| if (map->map_flags & BPF_F_MMAPABLE) { |
| usage = PAGE_ALIGN(usage); |
| usage += PAGE_ALIGN(entries * elem_size); |
| } else { |
| usage += entries * elem_size; |
| } |
| } |
| return usage; |
| } |
| |
| BTF_ID_LIST_SINGLE(array_map_btf_ids, struct, bpf_array) |
| const struct bpf_map_ops array_map_ops = { |
| .map_meta_equal = array_map_meta_equal, |
| .map_alloc_check = array_map_alloc_check, |
| .map_alloc = array_map_alloc, |
| .map_free = array_map_free, |
| .map_get_next_key = array_map_get_next_key, |
| .map_release_uref = array_map_free_timers_wq, |
| .map_lookup_elem = array_map_lookup_elem, |
| .map_update_elem = array_map_update_elem, |
| .map_delete_elem = array_map_delete_elem, |
| .map_gen_lookup = array_map_gen_lookup, |
| .map_direct_value_addr = array_map_direct_value_addr, |
| .map_direct_value_meta = array_map_direct_value_meta, |
| .map_mmap = array_map_mmap, |
| .map_seq_show_elem = array_map_seq_show_elem, |
| .map_check_btf = array_map_check_btf, |
| .map_lookup_batch = generic_map_lookup_batch, |
| .map_update_batch = generic_map_update_batch, |
| .map_set_for_each_callback_args = map_set_for_each_callback_args, |
| .map_for_each_callback = bpf_for_each_array_elem, |
| .map_mem_usage = array_map_mem_usage, |
| .map_btf_id = &array_map_btf_ids[0], |
| .iter_seq_info = &iter_seq_info, |
| }; |
| |
| const struct bpf_map_ops percpu_array_map_ops = { |
| .map_meta_equal = bpf_map_meta_equal, |
| .map_alloc_check = array_map_alloc_check, |
| .map_alloc = array_map_alloc, |
| .map_free = array_map_free, |
| .map_get_next_key = array_map_get_next_key, |
| .map_lookup_elem = percpu_array_map_lookup_elem, |
| .map_gen_lookup = percpu_array_map_gen_lookup, |
| .map_update_elem = array_map_update_elem, |
| .map_delete_elem = array_map_delete_elem, |
| .map_lookup_percpu_elem = percpu_array_map_lookup_percpu_elem, |
| .map_seq_show_elem = percpu_array_map_seq_show_elem, |
| .map_check_btf = array_map_check_btf, |
| .map_lookup_batch = generic_map_lookup_batch, |
| .map_update_batch = generic_map_update_batch, |
| .map_set_for_each_callback_args = map_set_for_each_callback_args, |
| .map_for_each_callback = bpf_for_each_array_elem, |
| .map_mem_usage = array_map_mem_usage, |
| .map_btf_id = &array_map_btf_ids[0], |
| .iter_seq_info = &iter_seq_info, |
| }; |
| |
| static int fd_array_map_alloc_check(union bpf_attr *attr) |
| { |
| /* only file descriptors can be stored in this type of map */ |
| if (attr->value_size != sizeof(u32)) |
| return -EINVAL; |
| /* Program read-only/write-only not supported for special maps yet. */ |
| if (attr->map_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG)) |
| return -EINVAL; |
| return array_map_alloc_check(attr); |
| } |
| |
| static void fd_array_map_free(struct bpf_map *map) |
| { |
| struct bpf_array *array = container_of(map, struct bpf_array, map); |
| int i; |
| |
| /* make sure it's empty */ |
| for (i = 0; i < array->map.max_entries; i++) |
| BUG_ON(array->ptrs[i] != NULL); |
| |
| bpf_map_area_free(array); |
| } |
| |
| static void *fd_array_map_lookup_elem(struct bpf_map *map, void *key) |
| { |
| return ERR_PTR(-EOPNOTSUPP); |
| } |
| |
| /* only called from syscall */ |
| int bpf_fd_array_map_lookup_elem(struct bpf_map *map, void *key, u32 *value) |
| { |
| void **elem, *ptr; |
| int ret = 0; |
| |
| if (!map->ops->map_fd_sys_lookup_elem) |
| return -ENOTSUPP; |
| |
| rcu_read_lock(); |
| elem = array_map_lookup_elem(map, key); |
| if (elem && (ptr = READ_ONCE(*elem))) |
| *value = map->ops->map_fd_sys_lookup_elem(ptr); |
| else |
| ret = -ENOENT; |
| rcu_read_unlock(); |
| |
| return ret; |
| } |
| |
| /* only called from syscall */ |
| int bpf_fd_array_map_update_elem(struct bpf_map *map, struct file *map_file, |
| void *key, void *value, u64 map_flags) |
| { |
| struct bpf_array *array = container_of(map, struct bpf_array, map); |
| void *new_ptr, *old_ptr; |
| u32 index = *(u32 *)key, ufd; |
| |
| if (map_flags != BPF_ANY) |
| return -EINVAL; |
| |
| if (index >= array->map.max_entries) |
| return -E2BIG; |
| |
| ufd = *(u32 *)value; |
| new_ptr = map->ops->map_fd_get_ptr(map, map_file, ufd); |
| if (IS_ERR(new_ptr)) |
| return PTR_ERR(new_ptr); |
| |
| if (map->ops->map_poke_run) { |
| mutex_lock(&array->aux->poke_mutex); |
| old_ptr = xchg(array->ptrs + index, new_ptr); |
| map->ops->map_poke_run(map, index, old_ptr, new_ptr); |
| mutex_unlock(&array->aux->poke_mutex); |
| } else { |
| old_ptr = xchg(array->ptrs + index, new_ptr); |
| } |
| |
| if (old_ptr) |
| map->ops->map_fd_put_ptr(map, old_ptr, true); |
| return 0; |
| } |
| |
| static long __fd_array_map_delete_elem(struct bpf_map *map, void *key, bool need_defer) |
| { |
| struct bpf_array *array = container_of(map, struct bpf_array, map); |
| void *old_ptr; |
| u32 index = *(u32 *)key; |
| |
| if (index >= array->map.max_entries) |
| return -E2BIG; |
| |
| if (map->ops->map_poke_run) { |
| mutex_lock(&array->aux->poke_mutex); |
| old_ptr = xchg(array->ptrs + index, NULL); |
| map->ops->map_poke_run(map, index, old_ptr, NULL); |
| mutex_unlock(&array->aux->poke_mutex); |
| } else { |
| old_ptr = xchg(array->ptrs + index, NULL); |
| } |
| |
| if (old_ptr) { |
| map->ops->map_fd_put_ptr(map, old_ptr, need_defer); |
| return 0; |
| } else { |
| return -ENOENT; |
| } |
| } |
| |
| static long fd_array_map_delete_elem(struct bpf_map *map, void *key) |
| { |
| return __fd_array_map_delete_elem(map, key, true); |
| } |
| |
| static void *prog_fd_array_get_ptr(struct bpf_map *map, |
| struct file *map_file, int fd) |
| { |
| struct bpf_prog *prog = bpf_prog_get(fd); |
| |
| if (IS_ERR(prog)) |
| return prog; |
| |
| if (!bpf_prog_map_compatible(map, prog)) { |
| bpf_prog_put(prog); |
| return ERR_PTR(-EINVAL); |
| } |
| |
| return prog; |
| } |
| |
| static void prog_fd_array_put_ptr(struct bpf_map *map, void *ptr, bool need_defer) |
| { |
| /* bpf_prog is freed after one RCU or tasks trace grace period */ |
| bpf_prog_put(ptr); |
| } |
| |
| static u32 prog_fd_array_sys_lookup_elem(void *ptr) |
| { |
| return ((struct bpf_prog *)ptr)->aux->id; |
| } |
| |
| /* decrement refcnt of all bpf_progs that are stored in this map */ |
| static void bpf_fd_array_map_clear(struct bpf_map *map, bool need_defer) |
| { |
| struct bpf_array *array = container_of(map, struct bpf_array, map); |
| int i; |
| |
| for (i = 0; i < array->map.max_entries; i++) |
| __fd_array_map_delete_elem(map, &i, need_defer); |
| } |
| |
| static void prog_array_map_seq_show_elem(struct bpf_map *map, void *key, |
| struct seq_file *m) |
| { |
| void **elem, *ptr; |
| u32 prog_id; |
| |
| rcu_read_lock(); |
| |
| elem = array_map_lookup_elem(map, key); |
| if (elem) { |
| ptr = READ_ONCE(*elem); |
| if (ptr) { |
| seq_printf(m, "%u: ", *(u32 *)key); |
| prog_id = prog_fd_array_sys_lookup_elem(ptr); |
| btf_type_seq_show(map->btf, map->btf_value_type_id, |
| &prog_id, m); |
| seq_puts(m, "\n"); |
| } |
| } |
| |
| rcu_read_unlock(); |
| } |
| |
| struct prog_poke_elem { |
| struct list_head list; |
| struct bpf_prog_aux *aux; |
| }; |
| |
| static int prog_array_map_poke_track(struct bpf_map *map, |
| struct bpf_prog_aux *prog_aux) |
| { |
| struct prog_poke_elem *elem; |
| struct bpf_array_aux *aux; |
| int ret = 0; |
| |
| aux = container_of(map, struct bpf_array, map)->aux; |
| mutex_lock(&aux->poke_mutex); |
| list_for_each_entry(elem, &aux->poke_progs, list) { |
| if (elem->aux == prog_aux) |
| goto out; |
| } |
| |
| elem = kmalloc(sizeof(*elem), GFP_KERNEL); |
| if (!elem) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| |
| INIT_LIST_HEAD(&elem->list); |
| /* We must track the program's aux info at this point in time |
| * since the program pointer itself may not be stable yet, see |
| * also comment in prog_array_map_poke_run(). |
| */ |
| elem->aux = prog_aux; |
| |
| list_add_tail(&elem->list, &aux->poke_progs); |
| out: |
| mutex_unlock(&aux->poke_mutex); |
| return ret; |
| } |
| |
| static void prog_array_map_poke_untrack(struct bpf_map *map, |
| struct bpf_prog_aux *prog_aux) |
| { |
| struct prog_poke_elem *elem, *tmp; |
| struct bpf_array_aux *aux; |
| |
| aux = container_of(map, struct bpf_array, map)->aux; |
| mutex_lock(&aux->poke_mutex); |
| list_for_each_entry_safe(elem, tmp, &aux->poke_progs, list) { |
| if (elem->aux == prog_aux) { |
| list_del_init(&elem->list); |
| kfree(elem); |
| break; |
| } |
| } |
| mutex_unlock(&aux->poke_mutex); |
| } |
| |
| void __weak bpf_arch_poke_desc_update(struct bpf_jit_poke_descriptor *poke, |
| struct bpf_prog *new, struct bpf_prog *old) |
| { |
| WARN_ON_ONCE(1); |
| } |
| |
| static void prog_array_map_poke_run(struct bpf_map *map, u32 key, |
| struct bpf_prog *old, |
| struct bpf_prog *new) |
| { |
| struct prog_poke_elem *elem; |
| struct bpf_array_aux *aux; |
| |
| aux = container_of(map, struct bpf_array, map)->aux; |
| WARN_ON_ONCE(!mutex_is_locked(&aux->poke_mutex)); |
| |
| list_for_each_entry(elem, &aux->poke_progs, list) { |
| struct bpf_jit_poke_descriptor *poke; |
| int i; |
| |
| for (i = 0; i < elem->aux->size_poke_tab; i++) { |
| poke = &elem->aux->poke_tab[i]; |
| |
| /* Few things to be aware of: |
| * |
| * 1) We can only ever access aux in this context, but |
| * not aux->prog since it might not be stable yet and |
| * there could be danger of use after free otherwise. |
| * 2) Initially when we start tracking aux, the program |
| * is not JITed yet and also does not have a kallsyms |
| * entry. We skip these as poke->tailcall_target_stable |
| * is not active yet. The JIT will do the final fixup |
| * before setting it stable. The various |
| * poke->tailcall_target_stable are successively |
| * activated, so tail call updates can arrive from here |
| * while JIT is still finishing its final fixup for |
| * non-activated poke entries. |
| * 3) Also programs reaching refcount of zero while patching |
| * is in progress is okay since we're protected under |
| * poke_mutex and untrack the programs before the JIT |
| * buffer is freed. |
| */ |
| if (!READ_ONCE(poke->tailcall_target_stable)) |
| continue; |
| if (poke->reason != BPF_POKE_REASON_TAIL_CALL) |
| continue; |
| if (poke->tail_call.map != map || |
| poke->tail_call.key != key) |
| continue; |
| |
| bpf_arch_poke_desc_update(poke, new, old); |
| } |
| } |
| } |
| |
| static void prog_array_map_clear_deferred(struct work_struct *work) |
| { |
| struct bpf_map *map = container_of(work, struct bpf_array_aux, |
| work)->map; |
| bpf_fd_array_map_clear(map, true); |
| bpf_map_put(map); |
| } |
| |
| static void prog_array_map_clear(struct bpf_map *map) |
| { |
| struct bpf_array_aux *aux = container_of(map, struct bpf_array, |
| map)->aux; |
| bpf_map_inc(map); |
| schedule_work(&aux->work); |
| } |
| |
| static struct bpf_map *prog_array_map_alloc(union bpf_attr *attr) |
| { |
| struct bpf_array_aux *aux; |
| struct bpf_map *map; |
| |
| aux = kzalloc(sizeof(*aux), GFP_KERNEL_ACCOUNT); |
| if (!aux) |
| return ERR_PTR(-ENOMEM); |
| |
| INIT_WORK(&aux->work, prog_array_map_clear_deferred); |
| INIT_LIST_HEAD(&aux->poke_progs); |
| mutex_init(&aux->poke_mutex); |
| |
| map = array_map_alloc(attr); |
| if (IS_ERR(map)) { |
| kfree(aux); |
| return map; |
| } |
| |
| container_of(map, struct bpf_array, map)->aux = aux; |
| aux->map = map; |
| |
| return map; |
| } |
| |
| static void prog_array_map_free(struct bpf_map *map) |
| { |
| struct prog_poke_elem *elem, *tmp; |
| struct bpf_array_aux *aux; |
| |
| aux = container_of(map, struct bpf_array, map)->aux; |
| list_for_each_entry_safe(elem, tmp, &aux->poke_progs, list) { |
| list_del_init(&elem->list); |
| kfree(elem); |
| } |
| kfree(aux); |
| fd_array_map_free(map); |
| } |
| |
| /* prog_array->aux->{type,jited} is a runtime binding. |
| * Doing static check alone in the verifier is not enough. |
| * Thus, prog_array_map cannot be used as an inner_map |
| * and map_meta_equal is not implemented. |
| */ |
| const struct bpf_map_ops prog_array_map_ops = { |
| .map_alloc_check = fd_array_map_alloc_check, |
| .map_alloc = prog_array_map_alloc, |
| .map_free = prog_array_map_free, |
| .map_poke_track = prog_array_map_poke_track, |
| .map_poke_untrack = prog_array_map_poke_untrack, |
| .map_poke_run = prog_array_map_poke_run, |
| .map_get_next_key = array_map_get_next_key, |
| .map_lookup_elem = fd_array_map_lookup_elem, |
| .map_delete_elem = fd_array_map_delete_elem, |
| .map_fd_get_ptr = prog_fd_array_get_ptr, |
| .map_fd_put_ptr = prog_fd_array_put_ptr, |
| .map_fd_sys_lookup_elem = prog_fd_array_sys_lookup_elem, |
| .map_release_uref = prog_array_map_clear, |
| .map_seq_show_elem = prog_array_map_seq_show_elem, |
| .map_mem_usage = array_map_mem_usage, |
| .map_btf_id = &array_map_btf_ids[0], |
| }; |
| |
| static struct bpf_event_entry *bpf_event_entry_gen(struct file *perf_file, |
| struct file *map_file) |
| { |
| struct bpf_event_entry *ee; |
| |
| ee = kzalloc(sizeof(*ee), GFP_KERNEL); |
| if (ee) { |
| ee->event = perf_file->private_data; |
| ee->perf_file = perf_file; |
| ee->map_file = map_file; |
| } |
| |
| return ee; |
| } |
| |
| static void __bpf_event_entry_free(struct rcu_head *rcu) |
| { |
| struct bpf_event_entry *ee; |
| |
| ee = container_of(rcu, struct bpf_event_entry, rcu); |
| fput(ee->perf_file); |
| kfree(ee); |
| } |
| |
| static void bpf_event_entry_free_rcu(struct bpf_event_entry *ee) |
| { |
| call_rcu(&ee->rcu, __bpf_event_entry_free); |
| } |
| |
| static void *perf_event_fd_array_get_ptr(struct bpf_map *map, |
| struct file *map_file, int fd) |
| { |
| struct bpf_event_entry *ee; |
| struct perf_event *event; |
| struct file *perf_file; |
| u64 value; |
| |
| perf_file = perf_event_get(fd); |
| if (IS_ERR(perf_file)) |
| return perf_file; |
| |
| ee = ERR_PTR(-EOPNOTSUPP); |
| event = perf_file->private_data; |
| if (perf_event_read_local(event, &value, NULL, NULL) == -EOPNOTSUPP) |
| goto err_out; |
| |
| ee = bpf_event_entry_gen(perf_file, map_file); |
| if (ee) |
| return ee; |
| ee = ERR_PTR(-ENOMEM); |
| err_out: |
| fput(perf_file); |
| return ee; |
| } |
| |
| static void perf_event_fd_array_put_ptr(struct bpf_map *map, void *ptr, bool need_defer) |
| { |
| /* bpf_perf_event is freed after one RCU grace period */ |
| bpf_event_entry_free_rcu(ptr); |
| } |
| |
| static void perf_event_fd_array_release(struct bpf_map *map, |
| struct file *map_file) |
| { |
| struct bpf_array *array = container_of(map, struct bpf_array, map); |
| struct bpf_event_entry *ee; |
| int i; |
| |
| if (map->map_flags & BPF_F_PRESERVE_ELEMS) |
| return; |
| |
| rcu_read_lock(); |
| for (i = 0; i < array->map.max_entries; i++) { |
| ee = READ_ONCE(array->ptrs[i]); |
| if (ee && ee->map_file == map_file) |
| __fd_array_map_delete_elem(map, &i, true); |
| } |
| rcu_read_unlock(); |
| } |
| |
| static void perf_event_fd_array_map_free(struct bpf_map *map) |
| { |
| if (map->map_flags & BPF_F_PRESERVE_ELEMS) |
| bpf_fd_array_map_clear(map, false); |
| fd_array_map_free(map); |
| } |
| |
| const struct bpf_map_ops perf_event_array_map_ops = { |
| .map_meta_equal = bpf_map_meta_equal, |
| .map_alloc_check = fd_array_map_alloc_check, |
| .map_alloc = array_map_alloc, |
| .map_free = perf_event_fd_array_map_free, |
| .map_get_next_key = array_map_get_next_key, |
| .map_lookup_elem = fd_array_map_lookup_elem, |
| .map_delete_elem = fd_array_map_delete_elem, |
| .map_fd_get_ptr = perf_event_fd_array_get_ptr, |
| .map_fd_put_ptr = perf_event_fd_array_put_ptr, |
| .map_release = perf_event_fd_array_release, |
| .map_check_btf = map_check_no_btf, |
| .map_mem_usage = array_map_mem_usage, |
| .map_btf_id = &array_map_btf_ids[0], |
| }; |
| |
| #ifdef CONFIG_CGROUPS |
| static void *cgroup_fd_array_get_ptr(struct bpf_map *map, |
| struct file *map_file /* not used */, |
| int fd) |
| { |
| return cgroup_get_from_fd(fd); |
| } |
| |
| static void cgroup_fd_array_put_ptr(struct bpf_map *map, void *ptr, bool need_defer) |
| { |
| /* cgroup_put free cgrp after a rcu grace period */ |
| cgroup_put(ptr); |
| } |
| |
| static void cgroup_fd_array_free(struct bpf_map *map) |
| { |
| bpf_fd_array_map_clear(map, false); |
| fd_array_map_free(map); |
| } |
| |
| const struct bpf_map_ops cgroup_array_map_ops = { |
| .map_meta_equal = bpf_map_meta_equal, |
| .map_alloc_check = fd_array_map_alloc_check, |
| .map_alloc = array_map_alloc, |
| .map_free = cgroup_fd_array_free, |
| .map_get_next_key = array_map_get_next_key, |
| .map_lookup_elem = fd_array_map_lookup_elem, |
| .map_delete_elem = fd_array_map_delete_elem, |
| .map_fd_get_ptr = cgroup_fd_array_get_ptr, |
| .map_fd_put_ptr = cgroup_fd_array_put_ptr, |
| .map_check_btf = map_check_no_btf, |
| .map_mem_usage = array_map_mem_usage, |
| .map_btf_id = &array_map_btf_ids[0], |
| }; |
| #endif |
| |
| static struct bpf_map *array_of_map_alloc(union bpf_attr *attr) |
| { |
| struct bpf_map *map, *inner_map_meta; |
| |
| inner_map_meta = bpf_map_meta_alloc(attr->inner_map_fd); |
| if (IS_ERR(inner_map_meta)) |
| return inner_map_meta; |
| |
| map = array_map_alloc(attr); |
| if (IS_ERR(map)) { |
| bpf_map_meta_free(inner_map_meta); |
| return map; |
| } |
| |
| map->inner_map_meta = inner_map_meta; |
| |
| return map; |
| } |
| |
| static void array_of_map_free(struct bpf_map *map) |
| { |
| /* map->inner_map_meta is only accessed by syscall which |
| * is protected by fdget/fdput. |
| */ |
| bpf_map_meta_free(map->inner_map_meta); |
| bpf_fd_array_map_clear(map, false); |
| fd_array_map_free(map); |
| } |
| |
| static void *array_of_map_lookup_elem(struct bpf_map *map, void *key) |
| { |
| struct bpf_map **inner_map = array_map_lookup_elem(map, key); |
| |
| if (!inner_map) |
| return NULL; |
| |
| return READ_ONCE(*inner_map); |
| } |
| |
| static int array_of_map_gen_lookup(struct bpf_map *map, |
| struct bpf_insn *insn_buf) |
| { |
| struct bpf_array *array = container_of(map, struct bpf_array, map); |
| u32 elem_size = array->elem_size; |
| struct bpf_insn *insn = insn_buf; |
| const int ret = BPF_REG_0; |
| const int map_ptr = BPF_REG_1; |
| const int index = BPF_REG_2; |
| |
| *insn++ = BPF_ALU64_IMM(BPF_ADD, map_ptr, offsetof(struct bpf_array, value)); |
| *insn++ = BPF_LDX_MEM(BPF_W, ret, index, 0); |
| if (!map->bypass_spec_v1) { |
| *insn++ = BPF_JMP_IMM(BPF_JGE, ret, map->max_entries, 6); |
| *insn++ = BPF_ALU32_IMM(BPF_AND, ret, array->index_mask); |
| } else { |
| *insn++ = BPF_JMP_IMM(BPF_JGE, ret, map->max_entries, 5); |
| } |
| if (is_power_of_2(elem_size)) |
| *insn++ = BPF_ALU64_IMM(BPF_LSH, ret, ilog2(elem_size)); |
| else |
| *insn++ = BPF_ALU64_IMM(BPF_MUL, ret, elem_size); |
| *insn++ = BPF_ALU64_REG(BPF_ADD, ret, map_ptr); |
| *insn++ = BPF_LDX_MEM(BPF_DW, ret, ret, 0); |
| *insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 1); |
| *insn++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1); |
| *insn++ = BPF_MOV64_IMM(ret, 0); |
| |
| return insn - insn_buf; |
| } |
| |
| const struct bpf_map_ops array_of_maps_map_ops = { |
| .map_alloc_check = fd_array_map_alloc_check, |
| .map_alloc = array_of_map_alloc, |
| .map_free = array_of_map_free, |
| .map_get_next_key = array_map_get_next_key, |
| .map_lookup_elem = array_of_map_lookup_elem, |
| .map_delete_elem = fd_array_map_delete_elem, |
| .map_fd_get_ptr = bpf_map_fd_get_ptr, |
| .map_fd_put_ptr = bpf_map_fd_put_ptr, |
| .map_fd_sys_lookup_elem = bpf_map_fd_sys_lookup_elem, |
| .map_gen_lookup = array_of_map_gen_lookup, |
| .map_lookup_batch = generic_map_lookup_batch, |
| .map_update_batch = generic_map_update_batch, |
| .map_check_btf = map_check_no_btf, |
| .map_mem_usage = array_map_mem_usage, |
| .map_btf_id = &array_map_btf_ids[0], |
| }; |