| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Virtual Memory Map support |
| * |
| * (C) 2007 sgi. Christoph Lameter. |
| * |
| * Virtual memory maps allow VM primitives pfn_to_page, page_to_pfn, |
| * virt_to_page, page_address() to be implemented as a base offset |
| * calculation without memory access. |
| * |
| * However, virtual mappings need a page table and TLBs. Many Linux |
| * architectures already map their physical space using 1-1 mappings |
| * via TLBs. For those arches the virtual memory map is essentially |
| * for free if we use the same page size as the 1-1 mappings. In that |
| * case the overhead consists of a few additional pages that are |
| * allocated to create a view of memory for vmemmap. |
| * |
| * The architecture is expected to provide a vmemmap_populate() function |
| * to instantiate the mapping. |
| */ |
| #include <linux/mm.h> |
| #include <linux/mmzone.h> |
| #include <linux/memblock.h> |
| #include <linux/memremap.h> |
| #include <linux/highmem.h> |
| #include <linux/slab.h> |
| #include <linux/spinlock.h> |
| #include <linux/vmalloc.h> |
| #include <linux/sched.h> |
| |
| #include <asm/dma.h> |
| #include <asm/pgalloc.h> |
| |
| /* |
| * Allocate a block of memory to be used to back the virtual memory map |
| * or to back the page tables that are used to create the mapping. |
| * Uses the main allocators if they are available, else bootmem. |
| */ |
| |
| static void * __ref __earlyonly_bootmem_alloc(int node, |
| unsigned long size, |
| unsigned long align, |
| unsigned long goal) |
| { |
| return memblock_alloc_try_nid_raw(size, align, goal, |
| MEMBLOCK_ALLOC_ACCESSIBLE, node); |
| } |
| |
| void * __meminit vmemmap_alloc_block(unsigned long size, int node) |
| { |
| /* If the main allocator is up use that, fallback to bootmem. */ |
| if (slab_is_available()) { |
| gfp_t gfp_mask = GFP_KERNEL|__GFP_RETRY_MAYFAIL|__GFP_NOWARN; |
| int order = get_order(size); |
| static bool warned; |
| struct page *page; |
| |
| page = alloc_pages_node(node, gfp_mask, order); |
| if (page) |
| return page_address(page); |
| |
| if (!warned) { |
| warn_alloc(gfp_mask & ~__GFP_NOWARN, NULL, |
| "vmemmap alloc failure: order:%u", order); |
| warned = true; |
| } |
| return NULL; |
| } else |
| return __earlyonly_bootmem_alloc(node, size, size, |
| __pa(MAX_DMA_ADDRESS)); |
| } |
| |
| static void * __meminit altmap_alloc_block_buf(unsigned long size, |
| struct vmem_altmap *altmap); |
| |
| /* need to make sure size is all the same during early stage */ |
| void * __meminit vmemmap_alloc_block_buf(unsigned long size, int node, |
| struct vmem_altmap *altmap) |
| { |
| void *ptr; |
| |
| if (altmap) |
| return altmap_alloc_block_buf(size, altmap); |
| |
| ptr = sparse_buffer_alloc(size); |
| if (!ptr) |
| ptr = vmemmap_alloc_block(size, node); |
| return ptr; |
| } |
| |
| static unsigned long __meminit vmem_altmap_next_pfn(struct vmem_altmap *altmap) |
| { |
| return altmap->base_pfn + altmap->reserve + altmap->alloc |
| + altmap->align; |
| } |
| |
| static unsigned long __meminit vmem_altmap_nr_free(struct vmem_altmap *altmap) |
| { |
| unsigned long allocated = altmap->alloc + altmap->align; |
| |
| if (altmap->free > allocated) |
| return altmap->free - allocated; |
| return 0; |
| } |
| |
| static void * __meminit altmap_alloc_block_buf(unsigned long size, |
| struct vmem_altmap *altmap) |
| { |
| unsigned long pfn, nr_pfns, nr_align; |
| |
| if (size & ~PAGE_MASK) { |
| pr_warn_once("%s: allocations must be multiple of PAGE_SIZE (%ld)\n", |
| __func__, size); |
| return NULL; |
| } |
| |
| pfn = vmem_altmap_next_pfn(altmap); |
| nr_pfns = size >> PAGE_SHIFT; |
| nr_align = 1UL << find_first_bit(&nr_pfns, BITS_PER_LONG); |
| nr_align = ALIGN(pfn, nr_align) - pfn; |
| if (nr_pfns + nr_align > vmem_altmap_nr_free(altmap)) |
| return NULL; |
| |
| altmap->alloc += nr_pfns; |
| altmap->align += nr_align; |
| pfn += nr_align; |
| |
| pr_debug("%s: pfn: %#lx alloc: %ld align: %ld nr: %#lx\n", |
| __func__, pfn, altmap->alloc, altmap->align, nr_pfns); |
| return __va(__pfn_to_phys(pfn)); |
| } |
| |
| void __meminit vmemmap_verify(pte_t *pte, int node, |
| unsigned long start, unsigned long end) |
| { |
| unsigned long pfn = pte_pfn(ptep_get(pte)); |
| int actual_node = early_pfn_to_nid(pfn); |
| |
| if (node_distance(actual_node, node) > LOCAL_DISTANCE) |
| pr_warn_once("[%lx-%lx] potential offnode page_structs\n", |
| start, end - 1); |
| } |
| |
| pte_t * __meminit vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node, |
| struct vmem_altmap *altmap, |
| struct page *reuse) |
| { |
| pte_t *pte = pte_offset_kernel(pmd, addr); |
| if (pte_none(ptep_get(pte))) { |
| pte_t entry; |
| void *p; |
| |
| if (!reuse) { |
| p = vmemmap_alloc_block_buf(PAGE_SIZE, node, altmap); |
| if (!p) |
| return NULL; |
| } else { |
| /* |
| * When a PTE/PMD entry is freed from the init_mm |
| * there's a free_pages() call to this page allocated |
| * above. Thus this get_page() is paired with the |
| * put_page_testzero() on the freeing path. |
| * This can only called by certain ZONE_DEVICE path, |
| * and through vmemmap_populate_compound_pages() when |
| * slab is available. |
| */ |
| get_page(reuse); |
| p = page_to_virt(reuse); |
| } |
| entry = pfn_pte(__pa(p) >> PAGE_SHIFT, PAGE_KERNEL); |
| set_pte_at(&init_mm, addr, pte, entry); |
| } |
| return pte; |
| } |
| |
| static void * __meminit vmemmap_alloc_block_zero(unsigned long size, int node) |
| { |
| void *p = vmemmap_alloc_block(size, node); |
| |
| if (!p) |
| return NULL; |
| memset(p, 0, size); |
| |
| return p; |
| } |
| |
| pmd_t * __meminit vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node) |
| { |
| pmd_t *pmd = pmd_offset(pud, addr); |
| if (pmd_none(*pmd)) { |
| void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node); |
| if (!p) |
| return NULL; |
| pmd_populate_kernel(&init_mm, pmd, p); |
| } |
| return pmd; |
| } |
| |
| void __weak __meminit pmd_init(void *addr) |
| { |
| } |
| |
| pud_t * __meminit vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node) |
| { |
| pud_t *pud = pud_offset(p4d, addr); |
| if (pud_none(*pud)) { |
| void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node); |
| if (!p) |
| return NULL; |
| pmd_init(p); |
| pud_populate(&init_mm, pud, p); |
| } |
| return pud; |
| } |
| |
| void __weak __meminit pud_init(void *addr) |
| { |
| } |
| |
| p4d_t * __meminit vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node) |
| { |
| p4d_t *p4d = p4d_offset(pgd, addr); |
| if (p4d_none(*p4d)) { |
| void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node); |
| if (!p) |
| return NULL; |
| pud_init(p); |
| p4d_populate(&init_mm, p4d, p); |
| } |
| return p4d; |
| } |
| |
| pgd_t * __meminit vmemmap_pgd_populate(unsigned long addr, int node) |
| { |
| pgd_t *pgd = pgd_offset_k(addr); |
| if (pgd_none(*pgd)) { |
| void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node); |
| if (!p) |
| return NULL; |
| pgd_populate(&init_mm, pgd, p); |
| } |
| return pgd; |
| } |
| |
| static pte_t * __meminit vmemmap_populate_address(unsigned long addr, int node, |
| struct vmem_altmap *altmap, |
| struct page *reuse) |
| { |
| pgd_t *pgd; |
| p4d_t *p4d; |
| pud_t *pud; |
| pmd_t *pmd; |
| pte_t *pte; |
| |
| pgd = vmemmap_pgd_populate(addr, node); |
| if (!pgd) |
| return NULL; |
| p4d = vmemmap_p4d_populate(pgd, addr, node); |
| if (!p4d) |
| return NULL; |
| pud = vmemmap_pud_populate(p4d, addr, node); |
| if (!pud) |
| return NULL; |
| pmd = vmemmap_pmd_populate(pud, addr, node); |
| if (!pmd) |
| return NULL; |
| pte = vmemmap_pte_populate(pmd, addr, node, altmap, reuse); |
| if (!pte) |
| return NULL; |
| vmemmap_verify(pte, node, addr, addr + PAGE_SIZE); |
| |
| return pte; |
| } |
| |
| static int __meminit vmemmap_populate_range(unsigned long start, |
| unsigned long end, int node, |
| struct vmem_altmap *altmap, |
| struct page *reuse) |
| { |
| unsigned long addr = start; |
| pte_t *pte; |
| |
| for (; addr < end; addr += PAGE_SIZE) { |
| pte = vmemmap_populate_address(addr, node, altmap, reuse); |
| if (!pte) |
| return -ENOMEM; |
| } |
| |
| return 0; |
| } |
| |
| int __meminit vmemmap_populate_basepages(unsigned long start, unsigned long end, |
| int node, struct vmem_altmap *altmap) |
| { |
| return vmemmap_populate_range(start, end, node, altmap, NULL); |
| } |
| |
| void __weak __meminit vmemmap_set_pmd(pmd_t *pmd, void *p, int node, |
| unsigned long addr, unsigned long next) |
| { |
| } |
| |
| int __weak __meminit vmemmap_check_pmd(pmd_t *pmd, int node, |
| unsigned long addr, unsigned long next) |
| { |
| return 0; |
| } |
| |
| int __meminit vmemmap_populate_hugepages(unsigned long start, unsigned long end, |
| int node, struct vmem_altmap *altmap) |
| { |
| unsigned long addr; |
| unsigned long next; |
| pgd_t *pgd; |
| p4d_t *p4d; |
| pud_t *pud; |
| pmd_t *pmd; |
| |
| for (addr = start; addr < end; addr = next) { |
| next = pmd_addr_end(addr, end); |
| |
| pgd = vmemmap_pgd_populate(addr, node); |
| if (!pgd) |
| return -ENOMEM; |
| |
| p4d = vmemmap_p4d_populate(pgd, addr, node); |
| if (!p4d) |
| return -ENOMEM; |
| |
| pud = vmemmap_pud_populate(p4d, addr, node); |
| if (!pud) |
| return -ENOMEM; |
| |
| pmd = pmd_offset(pud, addr); |
| if (pmd_none(READ_ONCE(*pmd))) { |
| void *p; |
| |
| p = vmemmap_alloc_block_buf(PMD_SIZE, node, altmap); |
| if (p) { |
| vmemmap_set_pmd(pmd, p, node, addr, next); |
| continue; |
| } else if (altmap) { |
| /* |
| * No fallback: In any case we care about, the |
| * altmap should be reasonably sized and aligned |
| * such that vmemmap_alloc_block_buf() will always |
| * succeed. For consistency with the PTE case, |
| * return an error here as failure could indicate |
| * a configuration issue with the size of the altmap. |
| */ |
| return -ENOMEM; |
| } |
| } else if (vmemmap_check_pmd(pmd, node, addr, next)) |
| continue; |
| if (vmemmap_populate_basepages(addr, next, node, altmap)) |
| return -ENOMEM; |
| } |
| return 0; |
| } |
| |
| #ifndef vmemmap_populate_compound_pages |
| /* |
| * For compound pages bigger than section size (e.g. x86 1G compound |
| * pages with 2M subsection size) fill the rest of sections as tail |
| * pages. |
| * |
| * Note that memremap_pages() resets @nr_range value and will increment |
| * it after each range successful onlining. Thus the value or @nr_range |
| * at section memmap populate corresponds to the in-progress range |
| * being onlined here. |
| */ |
| static bool __meminit reuse_compound_section(unsigned long start_pfn, |
| struct dev_pagemap *pgmap) |
| { |
| unsigned long nr_pages = pgmap_vmemmap_nr(pgmap); |
| unsigned long offset = start_pfn - |
| PHYS_PFN(pgmap->ranges[pgmap->nr_range].start); |
| |
| return !IS_ALIGNED(offset, nr_pages) && nr_pages > PAGES_PER_SUBSECTION; |
| } |
| |
| static pte_t * __meminit compound_section_tail_page(unsigned long addr) |
| { |
| pte_t *pte; |
| |
| addr -= PAGE_SIZE; |
| |
| /* |
| * Assuming sections are populated sequentially, the previous section's |
| * page data can be reused. |
| */ |
| pte = pte_offset_kernel(pmd_off_k(addr), addr); |
| if (!pte) |
| return NULL; |
| |
| return pte; |
| } |
| |
| static int __meminit vmemmap_populate_compound_pages(unsigned long start_pfn, |
| unsigned long start, |
| unsigned long end, int node, |
| struct dev_pagemap *pgmap) |
| { |
| unsigned long size, addr; |
| pte_t *pte; |
| int rc; |
| |
| if (reuse_compound_section(start_pfn, pgmap)) { |
| pte = compound_section_tail_page(start); |
| if (!pte) |
| return -ENOMEM; |
| |
| /* |
| * Reuse the page that was populated in the prior iteration |
| * with just tail struct pages. |
| */ |
| return vmemmap_populate_range(start, end, node, NULL, |
| pte_page(ptep_get(pte))); |
| } |
| |
| size = min(end - start, pgmap_vmemmap_nr(pgmap) * sizeof(struct page)); |
| for (addr = start; addr < end; addr += size) { |
| unsigned long next, last = addr + size; |
| |
| /* Populate the head page vmemmap page */ |
| pte = vmemmap_populate_address(addr, node, NULL, NULL); |
| if (!pte) |
| return -ENOMEM; |
| |
| /* Populate the tail pages vmemmap page */ |
| next = addr + PAGE_SIZE; |
| pte = vmemmap_populate_address(next, node, NULL, NULL); |
| if (!pte) |
| return -ENOMEM; |
| |
| /* |
| * Reuse the previous page for the rest of tail pages |
| * See layout diagram in Documentation/mm/vmemmap_dedup.rst |
| */ |
| next += PAGE_SIZE; |
| rc = vmemmap_populate_range(next, last, node, NULL, |
| pte_page(ptep_get(pte))); |
| if (rc) |
| return -ENOMEM; |
| } |
| |
| return 0; |
| } |
| |
| #endif |
| |
| struct page * __meminit __populate_section_memmap(unsigned long pfn, |
| unsigned long nr_pages, int nid, struct vmem_altmap *altmap, |
| struct dev_pagemap *pgmap) |
| { |
| unsigned long start = (unsigned long) pfn_to_page(pfn); |
| unsigned long end = start + nr_pages * sizeof(struct page); |
| int r; |
| |
| if (WARN_ON_ONCE(!IS_ALIGNED(pfn, PAGES_PER_SUBSECTION) || |
| !IS_ALIGNED(nr_pages, PAGES_PER_SUBSECTION))) |
| return NULL; |
| |
| if (vmemmap_can_optimize(altmap, pgmap)) |
| r = vmemmap_populate_compound_pages(pfn, start, end, nid, pgmap); |
| else |
| r = vmemmap_populate(start, end, nid, altmap); |
| |
| if (r < 0) |
| return NULL; |
| |
| if (system_state == SYSTEM_BOOTING) |
| memmap_boot_pages_add(DIV_ROUND_UP(end - start, PAGE_SIZE)); |
| else |
| memmap_pages_add(DIV_ROUND_UP(end - start, PAGE_SIZE)); |
| |
| return pfn_to_page(pfn); |
| } |