| // SPDX-License-Identifier: GPL-2.0 | 
 | /* | 
 |  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds | 
 |  * | 
 |  *  Swap reorganised 29.12.95, Stephen Tweedie. | 
 |  *  kswapd added: 7.1.96  sct | 
 |  *  Removed kswapd_ctl limits, and swap out as many pages as needed | 
 |  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel. | 
 |  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). | 
 |  *  Multiqueue VM started 5.8.00, Rik van Riel. | 
 |  */ | 
 |  | 
 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt | 
 |  | 
 | #include <linux/mm.h> | 
 | #include <linux/sched/mm.h> | 
 | #include <linux/module.h> | 
 | #include <linux/gfp.h> | 
 | #include <linux/kernel_stat.h> | 
 | #include <linux/swap.h> | 
 | #include <linux/pagemap.h> | 
 | #include <linux/init.h> | 
 | #include <linux/highmem.h> | 
 | #include <linux/vmpressure.h> | 
 | #include <linux/vmstat.h> | 
 | #include <linux/file.h> | 
 | #include <linux/writeback.h> | 
 | #include <linux/blkdev.h> | 
 | #include <linux/buffer_head.h>	/* for buffer_heads_over_limit */ | 
 | #include <linux/mm_inline.h> | 
 | #include <linux/backing-dev.h> | 
 | #include <linux/rmap.h> | 
 | #include <linux/topology.h> | 
 | #include <linux/cpu.h> | 
 | #include <linux/cpuset.h> | 
 | #include <linux/compaction.h> | 
 | #include <linux/notifier.h> | 
 | #include <linux/delay.h> | 
 | #include <linux/kthread.h> | 
 | #include <linux/freezer.h> | 
 | #include <linux/memcontrol.h> | 
 | #include <linux/migrate.h> | 
 | #include <linux/delayacct.h> | 
 | #include <linux/sysctl.h> | 
 | #include <linux/memory-tiers.h> | 
 | #include <linux/oom.h> | 
 | #include <linux/pagevec.h> | 
 | #include <linux/prefetch.h> | 
 | #include <linux/printk.h> | 
 | #include <linux/dax.h> | 
 | #include <linux/psi.h> | 
 | #include <linux/pagewalk.h> | 
 | #include <linux/shmem_fs.h> | 
 | #include <linux/ctype.h> | 
 | #include <linux/debugfs.h> | 
 | #include <linux/khugepaged.h> | 
 | #include <linux/rculist_nulls.h> | 
 | #include <linux/random.h> | 
 | #include <linux/mmu_notifier.h> | 
 |  | 
 | #include <asm/tlbflush.h> | 
 | #include <asm/div64.h> | 
 |  | 
 | #include <linux/swapops.h> | 
 | #include <linux/balloon_compaction.h> | 
 | #include <linux/sched/sysctl.h> | 
 |  | 
 | #include "internal.h" | 
 | #include "swap.h" | 
 |  | 
 | #define CREATE_TRACE_POINTS | 
 | #include <trace/events/vmscan.h> | 
 |  | 
 | #undef CREATE_TRACE_POINTS | 
 | #include <trace/hooks/vmscan.h> | 
 |  | 
 | struct scan_control { | 
 | 	/* How many pages shrink_list() should reclaim */ | 
 | 	unsigned long nr_to_reclaim; | 
 |  | 
 | 	/* | 
 | 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes | 
 | 	 * are scanned. | 
 | 	 */ | 
 | 	nodemask_t	*nodemask; | 
 |  | 
 | 	/* | 
 | 	 * The memory cgroup that hit its limit and as a result is the | 
 | 	 * primary target of this reclaim invocation. | 
 | 	 */ | 
 | 	struct mem_cgroup *target_mem_cgroup; | 
 |  | 
 | 	/* | 
 | 	 * Scan pressure balancing between anon and file LRUs | 
 | 	 */ | 
 | 	unsigned long	anon_cost; | 
 | 	unsigned long	file_cost; | 
 |  | 
 | #ifdef CONFIG_MEMCG | 
 | 	/* Swappiness value for proactive reclaim. Always use sc_swappiness()! */ | 
 | 	int *proactive_swappiness; | 
 | #endif | 
 |  | 
 | 	/* Can active folios be deactivated as part of reclaim? */ | 
 | #define DEACTIVATE_ANON 1 | 
 | #define DEACTIVATE_FILE 2 | 
 | 	unsigned int may_deactivate:2; | 
 | 	unsigned int force_deactivate:1; | 
 | 	unsigned int skipped_deactivate:1; | 
 |  | 
 | 	/* Writepage batching in laptop mode; RECLAIM_WRITE */ | 
 | 	unsigned int may_writepage:1; | 
 |  | 
 | 	/* Can mapped folios be reclaimed? */ | 
 | 	unsigned int may_unmap:1; | 
 |  | 
 | 	/* Can folios be swapped as part of reclaim? */ | 
 | 	unsigned int may_swap:1; | 
 |  | 
 | 	/* Not allow cache_trim_mode to be turned on as part of reclaim? */ | 
 | 	unsigned int no_cache_trim_mode:1; | 
 |  | 
 | 	/* Has cache_trim_mode failed at least once? */ | 
 | 	unsigned int cache_trim_mode_failed:1; | 
 |  | 
 | 	/* Proactive reclaim invoked by userspace through memory.reclaim */ | 
 | 	unsigned int proactive:1; | 
 |  | 
 | 	/* | 
 | 	 * Cgroup memory below memory.low is protected as long as we | 
 | 	 * don't threaten to OOM. If any cgroup is reclaimed at | 
 | 	 * reduced force or passed over entirely due to its memory.low | 
 | 	 * setting (memcg_low_skipped), and nothing is reclaimed as a | 
 | 	 * result, then go back for one more cycle that reclaims the protected | 
 | 	 * memory (memcg_low_reclaim) to avert OOM. | 
 | 	 */ | 
 | 	unsigned int memcg_low_reclaim:1; | 
 | 	unsigned int memcg_low_skipped:1; | 
 |  | 
 | 	/* Shared cgroup tree walk failed, rescan the whole tree */ | 
 | 	unsigned int memcg_full_walk:1; | 
 |  | 
 | 	unsigned int hibernation_mode:1; | 
 |  | 
 | 	/* One of the zones is ready for compaction */ | 
 | 	unsigned int compaction_ready:1; | 
 |  | 
 | 	/* There is easily reclaimable cold cache in the current node */ | 
 | 	unsigned int cache_trim_mode:1; | 
 |  | 
 | 	/* The file folios on the current node are dangerously low */ | 
 | 	unsigned int file_is_tiny:1; | 
 |  | 
 | 	/* Always discard instead of demoting to lower tier memory */ | 
 | 	unsigned int no_demotion:1; | 
 |  | 
 | 	/* Allocation order */ | 
 | 	s8 order; | 
 |  | 
 | 	/* Scan (total_size >> priority) pages at once */ | 
 | 	s8 priority; | 
 |  | 
 | 	/* The highest zone to isolate folios for reclaim from */ | 
 | 	s8 reclaim_idx; | 
 |  | 
 | 	/* This context's GFP mask */ | 
 | 	gfp_t gfp_mask; | 
 |  | 
 | 	/* Incremented by the number of inactive pages that were scanned */ | 
 | 	unsigned long nr_scanned; | 
 |  | 
 | 	/* Number of pages freed so far during a call to shrink_zones() */ | 
 | 	unsigned long nr_reclaimed; | 
 |  | 
 | 	struct { | 
 | 		unsigned int dirty; | 
 | 		unsigned int unqueued_dirty; | 
 | 		unsigned int congested; | 
 | 		unsigned int writeback; | 
 | 		unsigned int immediate; | 
 | 		unsigned int file_taken; | 
 | 		unsigned int taken; | 
 | 	} nr; | 
 |  | 
 | 	/* for recording the reclaimed slab by now */ | 
 | 	struct reclaim_state reclaim_state; | 
 | }; | 
 |  | 
 | #ifdef ARCH_HAS_PREFETCHW | 
 | #define prefetchw_prev_lru_folio(_folio, _base, _field)			\ | 
 | 	do {								\ | 
 | 		if ((_folio)->lru.prev != _base) {			\ | 
 | 			struct folio *prev;				\ | 
 | 									\ | 
 | 			prev = lru_to_folio(&(_folio->lru));		\ | 
 | 			prefetchw(&prev->_field);			\ | 
 | 		}							\ | 
 | 	} while (0) | 
 | #else | 
 | #define prefetchw_prev_lru_folio(_folio, _base, _field) do { } while (0) | 
 | #endif | 
 |  | 
 | /* | 
 |  * From 0 .. MAX_SWAPPINESS.  Higher means more swappy. | 
 |  */ | 
 | int vm_swappiness = 60; | 
 |  | 
 | #ifdef CONFIG_MEMCG | 
 |  | 
 | /* Returns true for reclaim through cgroup limits or cgroup interfaces. */ | 
 | static bool cgroup_reclaim(struct scan_control *sc) | 
 | { | 
 | 	return sc->target_mem_cgroup; | 
 | } | 
 |  | 
 | /* | 
 |  * Returns true for reclaim on the root cgroup. This is true for direct | 
 |  * allocator reclaim and reclaim through cgroup interfaces on the root cgroup. | 
 |  */ | 
 | static bool root_reclaim(struct scan_control *sc) | 
 | { | 
 | 	return !sc->target_mem_cgroup || mem_cgroup_is_root(sc->target_mem_cgroup); | 
 | } | 
 |  | 
 | /** | 
 |  * writeback_throttling_sane - is the usual dirty throttling mechanism available? | 
 |  * @sc: scan_control in question | 
 |  * | 
 |  * The normal page dirty throttling mechanism in balance_dirty_pages() is | 
 |  * completely broken with the legacy memcg and direct stalling in | 
 |  * shrink_folio_list() is used for throttling instead, which lacks all the | 
 |  * niceties such as fairness, adaptive pausing, bandwidth proportional | 
 |  * allocation and configurability. | 
 |  * | 
 |  * This function tests whether the vmscan currently in progress can assume | 
 |  * that the normal dirty throttling mechanism is operational. | 
 |  */ | 
 | static bool writeback_throttling_sane(struct scan_control *sc) | 
 | { | 
 | 	if (!cgroup_reclaim(sc)) | 
 | 		return true; | 
 | #ifdef CONFIG_CGROUP_WRITEBACK | 
 | 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) | 
 | 		return true; | 
 | #endif | 
 | 	return false; | 
 | } | 
 |  | 
 | static int sc_swappiness(struct scan_control *sc, struct mem_cgroup *memcg) | 
 | { | 
 | 	if (sc->proactive && sc->proactive_swappiness) | 
 | 		return *sc->proactive_swappiness; | 
 | 	return mem_cgroup_swappiness(memcg); | 
 | } | 
 | #else | 
 | static bool cgroup_reclaim(struct scan_control *sc) | 
 | { | 
 | 	return false; | 
 | } | 
 |  | 
 | static bool root_reclaim(struct scan_control *sc) | 
 | { | 
 | 	return true; | 
 | } | 
 |  | 
 | static bool writeback_throttling_sane(struct scan_control *sc) | 
 | { | 
 | 	return true; | 
 | } | 
 |  | 
 | static int sc_swappiness(struct scan_control *sc, struct mem_cgroup *memcg) | 
 | { | 
 | 	return READ_ONCE(vm_swappiness); | 
 | } | 
 | #endif | 
 |  | 
 | /* for_each_managed_zone_pgdat - helper macro to iterate over all managed zones in a pgdat up to | 
 |  * and including the specified highidx | 
 |  * @zone: The current zone in the iterator | 
 |  * @pgdat: The pgdat which node_zones are being iterated | 
 |  * @idx: The index variable | 
 |  * @highidx: The index of the highest zone to return | 
 |  * | 
 |  * This macro iterates through all managed zones up to and including the specified highidx. | 
 |  * The zone iterator enters an invalid state after macro call and must be reinitialized | 
 |  * before it can be used again. | 
 |  */ | 
 | #define for_each_managed_zone_pgdat(zone, pgdat, idx, highidx)	\ | 
 | 	for ((idx) = 0, (zone) = (pgdat)->node_zones;		\ | 
 | 	    (idx) <= (highidx);					\ | 
 | 	    (idx)++, (zone)++)					\ | 
 | 		if (!managed_zone(zone))			\ | 
 | 			continue;				\ | 
 | 		else | 
 |  | 
 | static void set_task_reclaim_state(struct task_struct *task, | 
 | 				   struct reclaim_state *rs) | 
 | { | 
 | 	/* Check for an overwrite */ | 
 | 	WARN_ON_ONCE(rs && task->reclaim_state); | 
 |  | 
 | 	/* Check for the nulling of an already-nulled member */ | 
 | 	WARN_ON_ONCE(!rs && !task->reclaim_state); | 
 |  | 
 | 	task->reclaim_state = rs; | 
 | } | 
 |  | 
 | /* | 
 |  * flush_reclaim_state(): add pages reclaimed outside of LRU-based reclaim to | 
 |  * scan_control->nr_reclaimed. | 
 |  */ | 
 | static void flush_reclaim_state(struct scan_control *sc) | 
 | { | 
 | 	/* | 
 | 	 * Currently, reclaim_state->reclaimed includes three types of pages | 
 | 	 * freed outside of vmscan: | 
 | 	 * (1) Slab pages. | 
 | 	 * (2) Clean file pages from pruned inodes (on highmem systems). | 
 | 	 * (3) XFS freed buffer pages. | 
 | 	 * | 
 | 	 * For all of these cases, we cannot universally link the pages to a | 
 | 	 * single memcg. For example, a memcg-aware shrinker can free one object | 
 | 	 * charged to the target memcg, causing an entire page to be freed. | 
 | 	 * If we count the entire page as reclaimed from the memcg, we end up | 
 | 	 * overestimating the reclaimed amount (potentially under-reclaiming). | 
 | 	 * | 
 | 	 * Only count such pages for global reclaim to prevent under-reclaiming | 
 | 	 * from the target memcg; preventing unnecessary retries during memcg | 
 | 	 * charging and false positives from proactive reclaim. | 
 | 	 * | 
 | 	 * For uncommon cases where the freed pages were actually mostly | 
 | 	 * charged to the target memcg, we end up underestimating the reclaimed | 
 | 	 * amount. This should be fine. The freed pages will be uncharged | 
 | 	 * anyway, even if they are not counted here properly, and we will be | 
 | 	 * able to make forward progress in charging (which is usually in a | 
 | 	 * retry loop). | 
 | 	 * | 
 | 	 * We can go one step further, and report the uncharged objcg pages in | 
 | 	 * memcg reclaim, to make reporting more accurate and reduce | 
 | 	 * underestimation, but it's probably not worth the complexity for now. | 
 | 	 */ | 
 | 	if (current->reclaim_state && root_reclaim(sc)) { | 
 | 		sc->nr_reclaimed += current->reclaim_state->reclaimed; | 
 | 		current->reclaim_state->reclaimed = 0; | 
 | 	} | 
 | } | 
 |  | 
 | static bool can_demote(int nid, struct scan_control *sc, | 
 | 		       struct mem_cgroup *memcg) | 
 | { | 
 | 	int demotion_nid; | 
 |  | 
 | 	if (!numa_demotion_enabled) | 
 | 		return false; | 
 | 	if (sc && sc->no_demotion) | 
 | 		return false; | 
 |  | 
 | 	demotion_nid = next_demotion_node(nid); | 
 | 	if (demotion_nid == NUMA_NO_NODE) | 
 | 		return false; | 
 |  | 
 | 	/* If demotion node isn't in the cgroup's mems_allowed, fall back */ | 
 | 	return mem_cgroup_node_allowed(memcg, demotion_nid); | 
 | } | 
 |  | 
 | static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg, | 
 | 					  int nid, | 
 | 					  struct scan_control *sc) | 
 | { | 
 | 	if (memcg == NULL) { | 
 | 		/* | 
 | 		 * For non-memcg reclaim, is there | 
 | 		 * space in any swap device? | 
 | 		 */ | 
 | 		if (get_nr_swap_pages() > 0) | 
 | 			return true; | 
 | 	} else { | 
 | 		/* Is the memcg below its swap limit? */ | 
 | 		if (mem_cgroup_get_nr_swap_pages(memcg) > 0) | 
 | 			return true; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * The page can not be swapped. | 
 | 	 * | 
 | 	 * Can it be reclaimed from this node via demotion? | 
 | 	 */ | 
 | 	return can_demote(nid, sc, memcg); | 
 | } | 
 |  | 
 | /* | 
 |  * This misses isolated folios which are not accounted for to save counters. | 
 |  * As the data only determines if reclaim or compaction continues, it is | 
 |  * not expected that isolated folios will be a dominating factor. | 
 |  */ | 
 | unsigned long zone_reclaimable_pages(struct zone *zone) | 
 | { | 
 | 	unsigned long nr; | 
 |  | 
 | 	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) + | 
 | 		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE); | 
 | 	if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL)) | 
 | 		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) + | 
 | 			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON); | 
 | 	/* | 
 | 	 * If there are no reclaimable file-backed or anonymous pages, | 
 | 	 * ensure zones with sufficient free pages are not skipped. | 
 | 	 * This prevents zones like DMA32 from being ignored in reclaim | 
 | 	 * scenarios where they can still help alleviate memory pressure. | 
 | 	 */ | 
 | 	if (nr == 0) | 
 | 		nr = zone_page_state_snapshot(zone, NR_FREE_PAGES); | 
 | 	return nr; | 
 | } | 
 |  | 
 | /** | 
 |  * lruvec_lru_size -  Returns the number of pages on the given LRU list. | 
 |  * @lruvec: lru vector | 
 |  * @lru: lru to use | 
 |  * @zone_idx: zones to consider (use MAX_NR_ZONES - 1 for the whole LRU list) | 
 |  */ | 
 | static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, | 
 | 				     int zone_idx) | 
 | { | 
 | 	unsigned long size = 0; | 
 | 	int zid; | 
 | 	struct zone *zone; | 
 |  | 
 | 	for_each_managed_zone_pgdat(zone, lruvec_pgdat(lruvec), zid, zone_idx) { | 
 | 		if (!mem_cgroup_disabled()) | 
 | 			size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid); | 
 | 		else | 
 | 			size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru); | 
 | 	} | 
 | 	return size; | 
 | } | 
 |  | 
 | static unsigned long drop_slab_node(int nid) | 
 | { | 
 | 	unsigned long freed = 0; | 
 | 	struct mem_cgroup *memcg = NULL; | 
 |  | 
 | 	memcg = mem_cgroup_iter(NULL, NULL, NULL); | 
 | 	do { | 
 | 		freed += shrink_slab(GFP_KERNEL, nid, memcg, 0); | 
 | 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); | 
 |  | 
 | 	return freed; | 
 | } | 
 |  | 
 | void drop_slab(void) | 
 | { | 
 | 	int nid; | 
 | 	int shift = 0; | 
 | 	unsigned long freed; | 
 |  | 
 | 	do { | 
 | 		freed = 0; | 
 | 		for_each_online_node(nid) { | 
 | 			if (fatal_signal_pending(current)) | 
 | 				return; | 
 |  | 
 | 			freed += drop_slab_node(nid); | 
 | 		} | 
 | 	} while ((freed >> shift++) > 1); | 
 | } | 
 |  | 
 | #define CHECK_RECLAIMER_OFFSET(type)					\ | 
 | 	do {								\ | 
 | 		BUILD_BUG_ON(PGSTEAL_##type - PGSTEAL_KSWAPD !=		\ | 
 | 			     PGDEMOTE_##type - PGDEMOTE_KSWAPD);	\ | 
 | 		BUILD_BUG_ON(PGSTEAL_##type - PGSTEAL_KSWAPD !=		\ | 
 | 			     PGSCAN_##type - PGSCAN_KSWAPD);		\ | 
 | 	} while (0) | 
 |  | 
 | static int reclaimer_offset(struct scan_control *sc) | 
 | { | 
 | 	CHECK_RECLAIMER_OFFSET(DIRECT); | 
 | 	CHECK_RECLAIMER_OFFSET(KHUGEPAGED); | 
 | 	CHECK_RECLAIMER_OFFSET(PROACTIVE); | 
 |  | 
 | 	if (current_is_kswapd()) | 
 | 		return 0; | 
 | 	if (current_is_khugepaged()) | 
 | 		return PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD; | 
 | 	if (sc->proactive) | 
 | 		return PGSTEAL_PROACTIVE - PGSTEAL_KSWAPD; | 
 | 	return PGSTEAL_DIRECT - PGSTEAL_KSWAPD; | 
 | } | 
 |  | 
 | static inline int is_page_cache_freeable(struct folio *folio) | 
 | { | 
 | 	/* | 
 | 	 * A freeable page cache folio is referenced only by the caller | 
 | 	 * that isolated the folio, the page cache and optional filesystem | 
 | 	 * private data at folio->private. | 
 | 	 */ | 
 | 	return folio_ref_count(folio) - folio_test_private(folio) == | 
 | 		1 + folio_nr_pages(folio); | 
 | } | 
 |  | 
 | /* | 
 |  * We detected a synchronous write error writing a folio out.  Probably | 
 |  * -ENOSPC.  We need to propagate that into the address_space for a subsequent | 
 |  * fsync(), msync() or close(). | 
 |  * | 
 |  * The tricky part is that after writepage we cannot touch the mapping: nothing | 
 |  * prevents it from being freed up.  But we have a ref on the folio and once | 
 |  * that folio is locked, the mapping is pinned. | 
 |  * | 
 |  * We're allowed to run sleeping folio_lock() here because we know the caller has | 
 |  * __GFP_FS. | 
 |  */ | 
 | static void handle_write_error(struct address_space *mapping, | 
 | 				struct folio *folio, int error) | 
 | { | 
 | 	folio_lock(folio); | 
 | 	if (folio_mapping(folio) == mapping) | 
 | 		mapping_set_error(mapping, error); | 
 | 	folio_unlock(folio); | 
 | } | 
 |  | 
 | static bool skip_throttle_noprogress(pg_data_t *pgdat) | 
 | { | 
 | 	int reclaimable = 0, write_pending = 0; | 
 | 	int i; | 
 | 	struct zone *zone; | 
 | 	/* | 
 | 	 * If kswapd is disabled, reschedule if necessary but do not | 
 | 	 * throttle as the system is likely near OOM. | 
 | 	 */ | 
 | 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) | 
 | 		return true; | 
 |  | 
 | 	/* | 
 | 	 * If there are a lot of dirty/writeback folios then do not | 
 | 	 * throttle as throttling will occur when the folios cycle | 
 | 	 * towards the end of the LRU if still under writeback. | 
 | 	 */ | 
 | 	for_each_managed_zone_pgdat(zone, pgdat, i, MAX_NR_ZONES - 1) { | 
 | 		reclaimable += zone_reclaimable_pages(zone); | 
 | 		write_pending += zone_page_state_snapshot(zone, | 
 | 						  NR_ZONE_WRITE_PENDING); | 
 | 	} | 
 | 	if (2 * write_pending <= reclaimable) | 
 | 		return true; | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason) | 
 | { | 
 | 	wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason]; | 
 | 	long timeout, ret; | 
 | 	DEFINE_WAIT(wait); | 
 |  | 
 | 	/* | 
 | 	 * Do not throttle user workers, kthreads other than kswapd or | 
 | 	 * workqueues. They may be required for reclaim to make | 
 | 	 * forward progress (e.g. journalling workqueues or kthreads). | 
 | 	 */ | 
 | 	if (!current_is_kswapd() && | 
 | 	    current->flags & (PF_USER_WORKER|PF_KTHREAD)) { | 
 | 		cond_resched(); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * These figures are pulled out of thin air. | 
 | 	 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many | 
 | 	 * parallel reclaimers which is a short-lived event so the timeout is | 
 | 	 * short. Failing to make progress or waiting on writeback are | 
 | 	 * potentially long-lived events so use a longer timeout. This is shaky | 
 | 	 * logic as a failure to make progress could be due to anything from | 
 | 	 * writeback to a slow device to excessive referenced folios at the tail | 
 | 	 * of the inactive LRU. | 
 | 	 */ | 
 | 	switch(reason) { | 
 | 	case VMSCAN_THROTTLE_WRITEBACK: | 
 | 		timeout = HZ/10; | 
 |  | 
 | 		if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) { | 
 | 			WRITE_ONCE(pgdat->nr_reclaim_start, | 
 | 				node_page_state(pgdat, NR_THROTTLED_WRITTEN)); | 
 | 		} | 
 |  | 
 | 		break; | 
 | 	case VMSCAN_THROTTLE_CONGESTED: | 
 | 		fallthrough; | 
 | 	case VMSCAN_THROTTLE_NOPROGRESS: | 
 | 		if (skip_throttle_noprogress(pgdat)) { | 
 | 			cond_resched(); | 
 | 			return; | 
 | 		} | 
 |  | 
 | 		timeout = 1; | 
 |  | 
 | 		break; | 
 | 	case VMSCAN_THROTTLE_ISOLATED: | 
 | 		timeout = HZ/50; | 
 | 		break; | 
 | 	default: | 
 | 		WARN_ON_ONCE(1); | 
 | 		timeout = HZ; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE); | 
 | 	ret = schedule_timeout(timeout); | 
 | 	finish_wait(wqh, &wait); | 
 |  | 
 | 	if (reason == VMSCAN_THROTTLE_WRITEBACK) | 
 | 		atomic_dec(&pgdat->nr_writeback_throttled); | 
 |  | 
 | 	trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout), | 
 | 				jiffies_to_usecs(timeout - ret), | 
 | 				reason); | 
 | } | 
 |  | 
 | /* | 
 |  * Account for folios written if tasks are throttled waiting on dirty | 
 |  * folios to clean. If enough folios have been cleaned since throttling | 
 |  * started then wakeup the throttled tasks. | 
 |  */ | 
 | void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio, | 
 | 							int nr_throttled) | 
 | { | 
 | 	unsigned long nr_written; | 
 |  | 
 | 	node_stat_add_folio(folio, NR_THROTTLED_WRITTEN); | 
 |  | 
 | 	/* | 
 | 	 * This is an inaccurate read as the per-cpu deltas may not | 
 | 	 * be synchronised. However, given that the system is | 
 | 	 * writeback throttled, it is not worth taking the penalty | 
 | 	 * of getting an accurate count. At worst, the throttle | 
 | 	 * timeout guarantees forward progress. | 
 | 	 */ | 
 | 	nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) - | 
 | 		READ_ONCE(pgdat->nr_reclaim_start); | 
 |  | 
 | 	if (nr_written > SWAP_CLUSTER_MAX * nr_throttled) | 
 | 		wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]); | 
 | } | 
 |  | 
 | /* possible outcome of pageout() */ | 
 | typedef enum { | 
 | 	/* failed to write folio out, folio is locked */ | 
 | 	PAGE_KEEP, | 
 | 	/* move folio to the active list, folio is locked */ | 
 | 	PAGE_ACTIVATE, | 
 | 	/* folio has been sent to the disk successfully, folio is unlocked */ | 
 | 	PAGE_SUCCESS, | 
 | 	/* folio is clean and locked */ | 
 | 	PAGE_CLEAN, | 
 | } pageout_t; | 
 |  | 
 | /* | 
 |  * pageout is called by shrink_folio_list() for each dirty folio. | 
 |  */ | 
 | static pageout_t pageout(struct folio *folio, struct address_space *mapping, | 
 | 			 struct swap_iocb **plug, struct list_head *folio_list) | 
 | { | 
 | 	int (*writeout)(struct folio *, struct writeback_control *); | 
 |  | 
 | 	/* | 
 | 	 * We no longer attempt to writeback filesystem folios here, other | 
 | 	 * than tmpfs/shmem.  That's taken care of in page-writeback. | 
 | 	 * If we find a dirty filesystem folio at the end of the LRU list, | 
 | 	 * typically that means the filesystem is saturating the storage | 
 | 	 * with contiguous writes and telling it to write a folio here | 
 | 	 * would only make the situation worse by injecting an element | 
 | 	 * of random access. | 
 | 	 * | 
 | 	 * If the folio is swapcache, write it back even if that would | 
 | 	 * block, for some throttling. This happens by accident, because | 
 | 	 * swap_backing_dev_info is bust: it doesn't reflect the | 
 | 	 * congestion state of the swapdevs.  Easy to fix, if needed. | 
 | 	 */ | 
 | 	if (!is_page_cache_freeable(folio)) | 
 | 		return PAGE_KEEP; | 
 | 	if (!mapping) { | 
 | 		/* | 
 | 		 * Some data journaling orphaned folios can have | 
 | 		 * folio->mapping == NULL while being dirty with clean buffers. | 
 | 		 */ | 
 | 		if (folio_test_private(folio)) { | 
 | 			if (try_to_free_buffers(folio)) { | 
 | 				folio_clear_dirty(folio); | 
 | 				pr_info("%s: orphaned folio\n", __func__); | 
 | 				return PAGE_CLEAN; | 
 | 			} | 
 | 		} | 
 | 		return PAGE_KEEP; | 
 | 	} | 
 | 	if (shmem_mapping(mapping)) | 
 | 		writeout = shmem_writeout; | 
 | 	else if (folio_test_anon(folio)) | 
 | 		writeout = swap_writeout; | 
 | 	else | 
 | 		return PAGE_ACTIVATE; | 
 |  | 
 | 	if (folio_clear_dirty_for_io(folio)) { | 
 | 		int res; | 
 | 		struct writeback_control wbc = { | 
 | 			.sync_mode = WB_SYNC_NONE, | 
 | 			.nr_to_write = SWAP_CLUSTER_MAX, | 
 | 			.range_start = 0, | 
 | 			.range_end = LLONG_MAX, | 
 | 			.for_reclaim = 1, | 
 | 			.swap_plug = plug, | 
 | 		}; | 
 |  | 
 | 		/* | 
 | 		 * The large shmem folio can be split if CONFIG_THP_SWAP is | 
 | 		 * not enabled or contiguous swap entries are failed to | 
 | 		 * allocate. | 
 | 		 */ | 
 | 		if (shmem_mapping(mapping) && folio_test_large(folio)) | 
 | 			wbc.list = folio_list; | 
 |  | 
 | 		folio_set_reclaim(folio); | 
 | 		res = writeout(folio, &wbc); | 
 | 		if (res < 0) | 
 | 			handle_write_error(mapping, folio, res); | 
 | 		if (res == AOP_WRITEPAGE_ACTIVATE) { | 
 | 			folio_clear_reclaim(folio); | 
 | 			return PAGE_ACTIVATE; | 
 | 		} | 
 |  | 
 | 		if (!folio_test_writeback(folio)) { | 
 | 			/* synchronous write? */ | 
 | 			folio_clear_reclaim(folio); | 
 | 		} | 
 | 		trace_mm_vmscan_write_folio(folio); | 
 | 		node_stat_add_folio(folio, NR_VMSCAN_WRITE); | 
 | 		return PAGE_SUCCESS; | 
 | 	} | 
 |  | 
 | 	return PAGE_CLEAN; | 
 | } | 
 |  | 
 | /* | 
 |  * Same as remove_mapping, but if the folio is removed from the mapping, it | 
 |  * gets returned with a refcount of 0. | 
 |  */ | 
 | static int __remove_mapping(struct address_space *mapping, struct folio *folio, | 
 | 			    bool reclaimed, struct mem_cgroup *target_memcg) | 
 | { | 
 | 	int refcount; | 
 | 	void *shadow = NULL; | 
 |  | 
 | 	BUG_ON(!folio_test_locked(folio)); | 
 | 	BUG_ON(mapping != folio_mapping(folio)); | 
 |  | 
 | 	if (!folio_test_swapcache(folio)) | 
 | 		spin_lock(&mapping->host->i_lock); | 
 | 	xa_lock_irq(&mapping->i_pages); | 
 | 	/* | 
 | 	 * The non racy check for a busy folio. | 
 | 	 * | 
 | 	 * Must be careful with the order of the tests. When someone has | 
 | 	 * a ref to the folio, it may be possible that they dirty it then | 
 | 	 * drop the reference. So if the dirty flag is tested before the | 
 | 	 * refcount here, then the following race may occur: | 
 | 	 * | 
 | 	 * get_user_pages(&page); | 
 | 	 * [user mapping goes away] | 
 | 	 * write_to(page); | 
 | 	 *				!folio_test_dirty(folio)    [good] | 
 | 	 * folio_set_dirty(folio); | 
 | 	 * folio_put(folio); | 
 | 	 *				!refcount(folio)   [good, discard it] | 
 | 	 * | 
 | 	 * [oops, our write_to data is lost] | 
 | 	 * | 
 | 	 * Reversing the order of the tests ensures such a situation cannot | 
 | 	 * escape unnoticed. The smp_rmb is needed to ensure the folio->flags | 
 | 	 * load is not satisfied before that of folio->_refcount. | 
 | 	 * | 
 | 	 * Note that if the dirty flag is always set via folio_mark_dirty, | 
 | 	 * and thus under the i_pages lock, then this ordering is not required. | 
 | 	 */ | 
 | 	refcount = 1 + folio_nr_pages(folio); | 
 | 	if (!folio_ref_freeze(folio, refcount)) | 
 | 		goto cannot_free; | 
 | 	/* note: atomic_cmpxchg in folio_ref_freeze provides the smp_rmb */ | 
 | 	if (unlikely(folio_test_dirty(folio))) { | 
 | 		folio_ref_unfreeze(folio, refcount); | 
 | 		goto cannot_free; | 
 | 	} | 
 |  | 
 | 	if (folio_test_swapcache(folio)) { | 
 | 		swp_entry_t swap = folio->swap; | 
 |  | 
 | 		if (reclaimed && !mapping_exiting(mapping)) | 
 | 			shadow = workingset_eviction(folio, target_memcg); | 
 | 		__delete_from_swap_cache(folio, swap, shadow); | 
 | 		memcg1_swapout(folio, swap); | 
 | 		xa_unlock_irq(&mapping->i_pages); | 
 | 		put_swap_folio(folio, swap); | 
 | 	} else { | 
 | 		void (*free_folio)(struct folio *); | 
 |  | 
 | 		free_folio = mapping->a_ops->free_folio; | 
 | 		/* | 
 | 		 * Remember a shadow entry for reclaimed file cache in | 
 | 		 * order to detect refaults, thus thrashing, later on. | 
 | 		 * | 
 | 		 * But don't store shadows in an address space that is | 
 | 		 * already exiting.  This is not just an optimization, | 
 | 		 * inode reclaim needs to empty out the radix tree or | 
 | 		 * the nodes are lost.  Don't plant shadows behind its | 
 | 		 * back. | 
 | 		 * | 
 | 		 * We also don't store shadows for DAX mappings because the | 
 | 		 * only page cache folios found in these are zero pages | 
 | 		 * covering holes, and because we don't want to mix DAX | 
 | 		 * exceptional entries and shadow exceptional entries in the | 
 | 		 * same address_space. | 
 | 		 */ | 
 | 		if (reclaimed && folio_is_file_lru(folio) && | 
 | 		    !mapping_exiting(mapping) && !dax_mapping(mapping)) | 
 | 			shadow = workingset_eviction(folio, target_memcg); | 
 | 		__filemap_remove_folio(folio, shadow); | 
 | 		xa_unlock_irq(&mapping->i_pages); | 
 | 		if (mapping_shrinkable(mapping)) | 
 | 			inode_add_lru(mapping->host); | 
 | 		spin_unlock(&mapping->host->i_lock); | 
 |  | 
 | 		if (free_folio) | 
 | 			free_folio(folio); | 
 | 	} | 
 |  | 
 | 	return 1; | 
 |  | 
 | cannot_free: | 
 | 	xa_unlock_irq(&mapping->i_pages); | 
 | 	if (!folio_test_swapcache(folio)) | 
 | 		spin_unlock(&mapping->host->i_lock); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * remove_mapping() - Attempt to remove a folio from its mapping. | 
 |  * @mapping: The address space. | 
 |  * @folio: The folio to remove. | 
 |  * | 
 |  * If the folio is dirty, under writeback or if someone else has a ref | 
 |  * on it, removal will fail. | 
 |  * Return: The number of pages removed from the mapping.  0 if the folio | 
 |  * could not be removed. | 
 |  * Context: The caller should have a single refcount on the folio and | 
 |  * hold its lock. | 
 |  */ | 
 | long remove_mapping(struct address_space *mapping, struct folio *folio) | 
 | { | 
 | 	if (__remove_mapping(mapping, folio, false, NULL)) { | 
 | 		/* | 
 | 		 * Unfreezing the refcount with 1 effectively | 
 | 		 * drops the pagecache ref for us without requiring another | 
 | 		 * atomic operation. | 
 | 		 */ | 
 | 		folio_ref_unfreeze(folio, 1); | 
 | 		return folio_nr_pages(folio); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * folio_putback_lru - Put previously isolated folio onto appropriate LRU list. | 
 |  * @folio: Folio to be returned to an LRU list. | 
 |  * | 
 |  * Add previously isolated @folio to appropriate LRU list. | 
 |  * The folio may still be unevictable for other reasons. | 
 |  * | 
 |  * Context: lru_lock must not be held, interrupts must be enabled. | 
 |  */ | 
 | void folio_putback_lru(struct folio *folio) | 
 | { | 
 | 	folio_add_lru(folio); | 
 | 	folio_put(folio);		/* drop ref from isolate */ | 
 | } | 
 |  | 
 | enum folio_references { | 
 | 	FOLIOREF_RECLAIM, | 
 | 	FOLIOREF_RECLAIM_CLEAN, | 
 | 	FOLIOREF_KEEP, | 
 | 	FOLIOREF_ACTIVATE, | 
 | }; | 
 |  | 
 | #ifdef CONFIG_LRU_GEN | 
 | /* | 
 |  * Only used on a mapped folio in the eviction (rmap walk) path, where promotion | 
 |  * needs to be done by taking the folio off the LRU list and then adding it back | 
 |  * with PG_active set. In contrast, the aging (page table walk) path uses | 
 |  * folio_update_gen(). | 
 |  */ | 
 | static bool lru_gen_set_refs(struct folio *folio) | 
 | { | 
 | 	/* see the comment on LRU_REFS_FLAGS */ | 
 | 	if (!folio_test_referenced(folio) && !folio_test_workingset(folio)) { | 
 | 		set_mask_bits(&folio->flags, LRU_REFS_MASK, BIT(PG_referenced)); | 
 | 		return false; | 
 | 	} | 
 |  | 
 | 	set_mask_bits(&folio->flags, LRU_REFS_FLAGS, BIT(PG_workingset)); | 
 | 	return true; | 
 | } | 
 | #else | 
 | static bool lru_gen_set_refs(struct folio *folio) | 
 | { | 
 | 	return false; | 
 | } | 
 | #endif /* CONFIG_LRU_GEN */ | 
 |  | 
 | static enum folio_references folio_check_references(struct folio *folio, | 
 | 						  struct scan_control *sc) | 
 | { | 
 | 	int referenced_ptes, referenced_folio; | 
 | 	unsigned long vm_flags; | 
 |  | 
 | 	referenced_ptes = folio_referenced(folio, 1, sc->target_mem_cgroup, | 
 | 					   &vm_flags); | 
 |  | 
 | 	/* | 
 | 	 * The supposedly reclaimable folio was found to be in a VM_LOCKED vma. | 
 | 	 * Let the folio, now marked Mlocked, be moved to the unevictable list. | 
 | 	 */ | 
 | 	if (vm_flags & VM_LOCKED) | 
 | 		return FOLIOREF_ACTIVATE; | 
 |  | 
 | 	/* | 
 | 	 * There are two cases to consider. | 
 | 	 * 1) Rmap lock contention: rotate. | 
 | 	 * 2) Skip the non-shared swapbacked folio mapped solely by | 
 | 	 *    the exiting or OOM-reaped process. | 
 | 	 */ | 
 | 	if (referenced_ptes == -1) | 
 | 		return FOLIOREF_KEEP; | 
 |  | 
 | 	if (lru_gen_enabled()) { | 
 | 		if (!referenced_ptes) | 
 | 			return FOLIOREF_RECLAIM; | 
 |  | 
 | 		return lru_gen_set_refs(folio) ? FOLIOREF_ACTIVATE : FOLIOREF_KEEP; | 
 | 	} | 
 |  | 
 | 	referenced_folio = folio_test_clear_referenced(folio); | 
 |  | 
 | 	if (referenced_ptes) { | 
 | 		/* | 
 | 		 * All mapped folios start out with page table | 
 | 		 * references from the instantiating fault, so we need | 
 | 		 * to look twice if a mapped file/anon folio is used more | 
 | 		 * than once. | 
 | 		 * | 
 | 		 * Mark it and spare it for another trip around the | 
 | 		 * inactive list.  Another page table reference will | 
 | 		 * lead to its activation. | 
 | 		 * | 
 | 		 * Note: the mark is set for activated folios as well | 
 | 		 * so that recently deactivated but used folios are | 
 | 		 * quickly recovered. | 
 | 		 */ | 
 | 		folio_set_referenced(folio); | 
 |  | 
 | 		if (referenced_folio || referenced_ptes > 1) | 
 | 			return FOLIOREF_ACTIVATE; | 
 |  | 
 | 		/* | 
 | 		 * Activate file-backed executable folios after first usage. | 
 | 		 */ | 
 | 		if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) | 
 | 			return FOLIOREF_ACTIVATE; | 
 |  | 
 | 		return FOLIOREF_KEEP; | 
 | 	} | 
 |  | 
 | 	/* Reclaim if clean, defer dirty folios to writeback */ | 
 | 	if (referenced_folio && folio_is_file_lru(folio)) | 
 | 		return FOLIOREF_RECLAIM_CLEAN; | 
 |  | 
 | 	return FOLIOREF_RECLAIM; | 
 | } | 
 |  | 
 | /* Check if a folio is dirty or under writeback */ | 
 | static void folio_check_dirty_writeback(struct folio *folio, | 
 | 				       bool *dirty, bool *writeback) | 
 | { | 
 | 	struct address_space *mapping; | 
 |  | 
 | 	/* | 
 | 	 * Anonymous folios are not handled by flushers and must be written | 
 | 	 * from reclaim context. Do not stall reclaim based on them. | 
 | 	 * MADV_FREE anonymous folios are put into inactive file list too. | 
 | 	 * They could be mistakenly treated as file lru. So further anon | 
 | 	 * test is needed. | 
 | 	 */ | 
 | 	if (!folio_is_file_lru(folio) || | 
 | 	    (folio_test_anon(folio) && !folio_test_swapbacked(folio))) { | 
 | 		*dirty = false; | 
 | 		*writeback = false; | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* By default assume that the folio flags are accurate */ | 
 | 	*dirty = folio_test_dirty(folio); | 
 | 	*writeback = folio_test_writeback(folio); | 
 |  | 
 | 	/* Verify dirty/writeback state if the filesystem supports it */ | 
 | 	if (!folio_test_private(folio)) | 
 | 		return; | 
 |  | 
 | 	mapping = folio_mapping(folio); | 
 | 	if (mapping && mapping->a_ops->is_dirty_writeback) | 
 | 		mapping->a_ops->is_dirty_writeback(folio, dirty, writeback); | 
 | } | 
 |  | 
 | struct folio *alloc_migrate_folio(struct folio *src, unsigned long private) | 
 | { | 
 | 	struct folio *dst; | 
 | 	nodemask_t *allowed_mask; | 
 | 	struct migration_target_control *mtc; | 
 |  | 
 | 	mtc = (struct migration_target_control *)private; | 
 |  | 
 | 	allowed_mask = mtc->nmask; | 
 | 	/* | 
 | 	 * make sure we allocate from the target node first also trying to | 
 | 	 * demote or reclaim pages from the target node via kswapd if we are | 
 | 	 * low on free memory on target node. If we don't do this and if | 
 | 	 * we have free memory on the slower(lower) memtier, we would start | 
 | 	 * allocating pages from slower(lower) memory tiers without even forcing | 
 | 	 * a demotion of cold pages from the target memtier. This can result | 
 | 	 * in the kernel placing hot pages in slower(lower) memory tiers. | 
 | 	 */ | 
 | 	mtc->nmask = NULL; | 
 | 	mtc->gfp_mask |= __GFP_THISNODE; | 
 | 	dst = alloc_migration_target(src, (unsigned long)mtc); | 
 | 	if (dst) | 
 | 		return dst; | 
 |  | 
 | 	mtc->gfp_mask &= ~__GFP_THISNODE; | 
 | 	mtc->nmask = allowed_mask; | 
 |  | 
 | 	return alloc_migration_target(src, (unsigned long)mtc); | 
 | } | 
 |  | 
 | /* | 
 |  * Take folios on @demote_folios and attempt to demote them to another node. | 
 |  * Folios which are not demoted are left on @demote_folios. | 
 |  */ | 
 | static unsigned int demote_folio_list(struct list_head *demote_folios, | 
 | 				     struct pglist_data *pgdat) | 
 | { | 
 | 	int target_nid = next_demotion_node(pgdat->node_id); | 
 | 	unsigned int nr_succeeded; | 
 | 	nodemask_t allowed_mask; | 
 |  | 
 | 	struct migration_target_control mtc = { | 
 | 		/* | 
 | 		 * Allocate from 'node', or fail quickly and quietly. | 
 | 		 * When this happens, 'page' will likely just be discarded | 
 | 		 * instead of migrated. | 
 | 		 */ | 
 | 		.gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) | __GFP_NOWARN | | 
 | 			__GFP_NOMEMALLOC | GFP_NOWAIT, | 
 | 		.nid = target_nid, | 
 | 		.nmask = &allowed_mask, | 
 | 		.reason = MR_DEMOTION, | 
 | 	}; | 
 |  | 
 | 	if (list_empty(demote_folios)) | 
 | 		return 0; | 
 |  | 
 | 	if (target_nid == NUMA_NO_NODE) | 
 | 		return 0; | 
 |  | 
 | 	node_get_allowed_targets(pgdat, &allowed_mask); | 
 |  | 
 | 	/* Demotion ignores all cpuset and mempolicy settings */ | 
 | 	migrate_pages(demote_folios, alloc_migrate_folio, NULL, | 
 | 		      (unsigned long)&mtc, MIGRATE_ASYNC, MR_DEMOTION, | 
 | 		      &nr_succeeded); | 
 |  | 
 | 	return nr_succeeded; | 
 | } | 
 |  | 
 | static bool may_enter_fs(struct folio *folio, gfp_t gfp_mask) | 
 | { | 
 | 	if (gfp_mask & __GFP_FS) | 
 | 		return true; | 
 | 	if (!folio_test_swapcache(folio) || !(gfp_mask & __GFP_IO)) | 
 | 		return false; | 
 | 	/* | 
 | 	 * We can "enter_fs" for swap-cache with only __GFP_IO | 
 | 	 * providing this isn't SWP_FS_OPS. | 
 | 	 * ->flags can be updated non-atomicially (scan_swap_map_slots), | 
 | 	 * but that will never affect SWP_FS_OPS, so the data_race | 
 | 	 * is safe. | 
 | 	 */ | 
 | 	return !data_race(folio_swap_flags(folio) & SWP_FS_OPS); | 
 | } | 
 |  | 
 | /* | 
 |  * shrink_folio_list() returns the number of reclaimed pages | 
 |  */ | 
 | static unsigned int shrink_folio_list(struct list_head *folio_list, | 
 | 		struct pglist_data *pgdat, struct scan_control *sc, | 
 | 		struct reclaim_stat *stat, bool ignore_references, | 
 | 		struct mem_cgroup *memcg) | 
 | { | 
 | 	struct folio_batch free_folios; | 
 | 	LIST_HEAD(ret_folios); | 
 | 	LIST_HEAD(demote_folios); | 
 | 	unsigned int nr_reclaimed = 0, nr_demoted = 0; | 
 | 	unsigned int pgactivate = 0; | 
 | 	bool do_demote_pass; | 
 | 	struct swap_iocb *plug = NULL; | 
 |  | 
 | 	folio_batch_init(&free_folios); | 
 | 	memset(stat, 0, sizeof(*stat)); | 
 | 	cond_resched(); | 
 | 	do_demote_pass = can_demote(pgdat->node_id, sc, memcg); | 
 |  | 
 | retry: | 
 | 	while (!list_empty(folio_list)) { | 
 | 		struct address_space *mapping; | 
 | 		struct folio *folio; | 
 | 		enum folio_references references = FOLIOREF_RECLAIM; | 
 | 		bool dirty, writeback; | 
 | 		unsigned int nr_pages; | 
 |  | 
 | 		cond_resched(); | 
 |  | 
 | 		folio = lru_to_folio(folio_list); | 
 | 		list_del(&folio->lru); | 
 |  | 
 | 		if (!folio_trylock(folio)) | 
 | 			goto keep; | 
 |  | 
 | 		if (folio_contain_hwpoisoned_page(folio)) { | 
 | 			/* | 
 | 			 * unmap_poisoned_folio() can't handle large | 
 | 			 * folio, just skip it. memory_failure() will | 
 | 			 * handle it if the UCE is triggered again. | 
 | 			 */ | 
 | 			if (folio_test_large(folio)) | 
 | 				goto keep_locked; | 
 |  | 
 | 			unmap_poisoned_folio(folio, folio_pfn(folio), false); | 
 | 			folio_unlock(folio); | 
 | 			folio_put(folio); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		VM_BUG_ON_FOLIO(folio_test_active(folio), folio); | 
 |  | 
 | 		nr_pages = folio_nr_pages(folio); | 
 |  | 
 | 		/* Account the number of base pages */ | 
 | 		sc->nr_scanned += nr_pages; | 
 |  | 
 | 		if (unlikely(!folio_evictable(folio))) | 
 | 			goto activate_locked; | 
 |  | 
 | 		if (!sc->may_unmap && folio_mapped(folio)) | 
 | 			goto keep_locked; | 
 |  | 
 | 		/* | 
 | 		 * The number of dirty pages determines if a node is marked | 
 | 		 * reclaim_congested. kswapd will stall and start writing | 
 | 		 * folios if the tail of the LRU is all dirty unqueued folios. | 
 | 		 */ | 
 | 		folio_check_dirty_writeback(folio, &dirty, &writeback); | 
 | 		if (dirty || writeback) | 
 | 			stat->nr_dirty += nr_pages; | 
 |  | 
 | 		if (dirty && !writeback) | 
 | 			stat->nr_unqueued_dirty += nr_pages; | 
 |  | 
 | 		/* | 
 | 		 * Treat this folio as congested if folios are cycling | 
 | 		 * through the LRU so quickly that the folios marked | 
 | 		 * for immediate reclaim are making it to the end of | 
 | 		 * the LRU a second time. | 
 | 		 */ | 
 | 		if (writeback && folio_test_reclaim(folio)) | 
 | 			stat->nr_congested += nr_pages; | 
 |  | 
 | 		/* | 
 | 		 * If a folio at the tail of the LRU is under writeback, there | 
 | 		 * are three cases to consider. | 
 | 		 * | 
 | 		 * 1) If reclaim is encountering an excessive number | 
 | 		 *    of folios under writeback and this folio has both | 
 | 		 *    the writeback and reclaim flags set, then it | 
 | 		 *    indicates that folios are being queued for I/O but | 
 | 		 *    are being recycled through the LRU before the I/O | 
 | 		 *    can complete. Waiting on the folio itself risks an | 
 | 		 *    indefinite stall if it is impossible to writeback | 
 | 		 *    the folio due to I/O error or disconnected storage | 
 | 		 *    so instead note that the LRU is being scanned too | 
 | 		 *    quickly and the caller can stall after the folio | 
 | 		 *    list has been processed. | 
 | 		 * | 
 | 		 * 2) Global or new memcg reclaim encounters a folio that is | 
 | 		 *    not marked for immediate reclaim, or the caller does not | 
 | 		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap, | 
 | 		 *    not to fs), or the folio belongs to a mapping where | 
 | 		 *    waiting on writeback during reclaim may lead to a deadlock. | 
 | 		 *    In this case mark the folio for immediate reclaim and | 
 | 		 *    continue scanning. | 
 | 		 * | 
 | 		 *    Require may_enter_fs() because we would wait on fs, which | 
 | 		 *    may not have submitted I/O yet. And the loop driver might | 
 | 		 *    enter reclaim, and deadlock if it waits on a folio for | 
 | 		 *    which it is needed to do the write (loop masks off | 
 | 		 *    __GFP_IO|__GFP_FS for this reason); but more thought | 
 | 		 *    would probably show more reasons. | 
 | 		 * | 
 | 		 * 3) Legacy memcg encounters a folio that already has the | 
 | 		 *    reclaim flag set. memcg does not have any dirty folio | 
 | 		 *    throttling so we could easily OOM just because too many | 
 | 		 *    folios are in writeback and there is nothing else to | 
 | 		 *    reclaim. Wait for the writeback to complete. | 
 | 		 * | 
 | 		 * In cases 1) and 2) we activate the folios to get them out of | 
 | 		 * the way while we continue scanning for clean folios on the | 
 | 		 * inactive list and refilling from the active list. The | 
 | 		 * observation here is that waiting for disk writes is more | 
 | 		 * expensive than potentially causing reloads down the line. | 
 | 		 * Since they're marked for immediate reclaim, they won't put | 
 | 		 * memory pressure on the cache working set any longer than it | 
 | 		 * takes to write them to disk. | 
 | 		 */ | 
 | 		if (folio_test_writeback(folio)) { | 
 | 			mapping = folio_mapping(folio); | 
 |  | 
 | 			/* Case 1 above */ | 
 | 			if (current_is_kswapd() && | 
 | 			    folio_test_reclaim(folio) && | 
 | 			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) { | 
 | 				stat->nr_immediate += nr_pages; | 
 | 				goto activate_locked; | 
 |  | 
 | 			/* Case 2 above */ | 
 | 			} else if (writeback_throttling_sane(sc) || | 
 | 			    !folio_test_reclaim(folio) || | 
 | 			    !may_enter_fs(folio, sc->gfp_mask) || | 
 | 			    (mapping && | 
 | 			     mapping_writeback_may_deadlock_on_reclaim(mapping))) { | 
 | 				/* | 
 | 				 * This is slightly racy - | 
 | 				 * folio_end_writeback() might have | 
 | 				 * just cleared the reclaim flag, then | 
 | 				 * setting the reclaim flag here ends up | 
 | 				 * interpreted as the readahead flag - but | 
 | 				 * that does not matter enough to care. | 
 | 				 * What we do want is for this folio to | 
 | 				 * have the reclaim flag set next time | 
 | 				 * memcg reclaim reaches the tests above, | 
 | 				 * so it will then wait for writeback to | 
 | 				 * avoid OOM; and it's also appropriate | 
 | 				 * in global reclaim. | 
 | 				 */ | 
 | 				folio_set_reclaim(folio); | 
 | 				stat->nr_writeback += nr_pages; | 
 | 				goto activate_locked; | 
 |  | 
 | 			/* Case 3 above */ | 
 | 			} else { | 
 | 				folio_unlock(folio); | 
 | 				folio_wait_writeback(folio); | 
 | 				/* then go back and try same folio again */ | 
 | 				list_add_tail(&folio->lru, folio_list); | 
 | 				continue; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		if (!ignore_references) | 
 | 			references = folio_check_references(folio, sc); | 
 |  | 
 | 		switch (references) { | 
 | 		case FOLIOREF_ACTIVATE: | 
 | 			goto activate_locked; | 
 | 		case FOLIOREF_KEEP: | 
 | 			stat->nr_ref_keep += nr_pages; | 
 | 			goto keep_locked; | 
 | 		case FOLIOREF_RECLAIM: | 
 | 		case FOLIOREF_RECLAIM_CLEAN: | 
 | 			; /* try to reclaim the folio below */ | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Before reclaiming the folio, try to relocate | 
 | 		 * its contents to another node. | 
 | 		 */ | 
 | 		if (do_demote_pass && | 
 | 		    (thp_migration_supported() || !folio_test_large(folio))) { | 
 | 			list_add(&folio->lru, &demote_folios); | 
 | 			folio_unlock(folio); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Anonymous process memory has backing store? | 
 | 		 * Try to allocate it some swap space here. | 
 | 		 * Lazyfree folio could be freed directly | 
 | 		 */ | 
 | 		if (folio_test_anon(folio) && folio_test_swapbacked(folio)) { | 
 | 			if (!folio_test_swapcache(folio)) { | 
 | 				if (!(sc->gfp_mask & __GFP_IO)) | 
 | 					goto keep_locked; | 
 | 				if (folio_maybe_dma_pinned(folio)) | 
 | 					goto keep_locked; | 
 | 				if (folio_test_large(folio)) { | 
 | 					/* cannot split folio, skip it */ | 
 | 					if (!can_split_folio(folio, 1, NULL)) | 
 | 						goto activate_locked; | 
 | 					/* | 
 | 					 * Split partially mapped folios right away. | 
 | 					 * We can free the unmapped pages without IO. | 
 | 					 */ | 
 | 					if (data_race(!list_empty(&folio->_deferred_list) && | 
 | 					    folio_test_partially_mapped(folio)) && | 
 | 					    split_folio_to_list(folio, folio_list)) | 
 | 						goto activate_locked; | 
 | 				} | 
 | 				if (folio_alloc_swap(folio, __GFP_HIGH | __GFP_NOWARN)) { | 
 | 					int __maybe_unused order = folio_order(folio); | 
 |  | 
 | 					if (!folio_test_large(folio)) | 
 | 						goto activate_locked_split; | 
 | 					/* Fallback to swap normal pages */ | 
 | 					if (split_folio_to_list(folio, folio_list)) | 
 | 						goto activate_locked; | 
 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | 
 | 					if (nr_pages >= HPAGE_PMD_NR) { | 
 | 						count_memcg_folio_events(folio, | 
 | 							THP_SWPOUT_FALLBACK, 1); | 
 | 						count_vm_event(THP_SWPOUT_FALLBACK); | 
 | 					} | 
 | #endif | 
 | 					count_mthp_stat(order, MTHP_STAT_SWPOUT_FALLBACK); | 
 | 					if (folio_alloc_swap(folio, __GFP_HIGH | __GFP_NOWARN)) | 
 | 						goto activate_locked_split; | 
 | 				} | 
 | 				/* | 
 | 				 * Normally the folio will be dirtied in unmap because its | 
 | 				 * pte should be dirty. A special case is MADV_FREE page. The | 
 | 				 * page's pte could have dirty bit cleared but the folio's | 
 | 				 * SwapBacked flag is still set because clearing the dirty bit | 
 | 				 * and SwapBacked flag has no lock protected. For such folio, | 
 | 				 * unmap will not set dirty bit for it, so folio reclaim will | 
 | 				 * not write the folio out. This can cause data corruption when | 
 | 				 * the folio is swapped in later. Always setting the dirty flag | 
 | 				 * for the folio solves the problem. | 
 | 				 */ | 
 | 				folio_mark_dirty(folio); | 
 | 			} | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * If the folio was split above, the tail pages will make | 
 | 		 * their own pass through this function and be accounted | 
 | 		 * then. | 
 | 		 */ | 
 | 		if ((nr_pages > 1) && !folio_test_large(folio)) { | 
 | 			sc->nr_scanned -= (nr_pages - 1); | 
 | 			nr_pages = 1; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * The folio is mapped into the page tables of one or more | 
 | 		 * processes. Try to unmap it here. | 
 | 		 */ | 
 | 		if (folio_mapped(folio)) { | 
 | 			enum ttu_flags flags = TTU_BATCH_FLUSH; | 
 | 			bool was_swapbacked = folio_test_swapbacked(folio); | 
 |  | 
 | 			if (folio_test_pmd_mappable(folio)) | 
 | 				flags |= TTU_SPLIT_HUGE_PMD; | 
 | 			/* | 
 | 			 * Without TTU_SYNC, try_to_unmap will only begin to | 
 | 			 * hold PTL from the first present PTE within a large | 
 | 			 * folio. Some initial PTEs might be skipped due to | 
 | 			 * races with parallel PTE writes in which PTEs can be | 
 | 			 * cleared temporarily before being written new present | 
 | 			 * values. This will lead to a large folio is still | 
 | 			 * mapped while some subpages have been partially | 
 | 			 * unmapped after try_to_unmap; TTU_SYNC helps | 
 | 			 * try_to_unmap acquire PTL from the first PTE, | 
 | 			 * eliminating the influence of temporary PTE values. | 
 | 			 */ | 
 | 			if (folio_test_large(folio)) | 
 | 				flags |= TTU_SYNC; | 
 |  | 
 | 			try_to_unmap(folio, flags); | 
 | 			if (folio_mapped(folio)) { | 
 | 				stat->nr_unmap_fail += nr_pages; | 
 | 				if (!was_swapbacked && | 
 | 				    folio_test_swapbacked(folio)) | 
 | 					stat->nr_lazyfree_fail += nr_pages; | 
 | 				goto activate_locked; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Folio is unmapped now so it cannot be newly pinned anymore. | 
 | 		 * No point in trying to reclaim folio if it is pinned. | 
 | 		 * Furthermore we don't want to reclaim underlying fs metadata | 
 | 		 * if the folio is pinned and thus potentially modified by the | 
 | 		 * pinning process as that may upset the filesystem. | 
 | 		 */ | 
 | 		if (folio_maybe_dma_pinned(folio)) | 
 | 			goto activate_locked; | 
 |  | 
 | 		mapping = folio_mapping(folio); | 
 | 		if (folio_test_dirty(folio)) { | 
 | 			/* | 
 | 			 * Only kswapd can writeback filesystem folios | 
 | 			 * to avoid risk of stack overflow. But avoid | 
 | 			 * injecting inefficient single-folio I/O into | 
 | 			 * flusher writeback as much as possible: only | 
 | 			 * write folios when we've encountered many | 
 | 			 * dirty folios, and when we've already scanned | 
 | 			 * the rest of the LRU for clean folios and see | 
 | 			 * the same dirty folios again (with the reclaim | 
 | 			 * flag set). | 
 | 			 */ | 
 | 			if (folio_is_file_lru(folio) && | 
 | 			    (!current_is_kswapd() || | 
 | 			     !folio_test_reclaim(folio) || | 
 | 			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) { | 
 | 				/* | 
 | 				 * Immediately reclaim when written back. | 
 | 				 * Similar in principle to folio_deactivate() | 
 | 				 * except we already have the folio isolated | 
 | 				 * and know it's dirty | 
 | 				 */ | 
 | 				node_stat_mod_folio(folio, NR_VMSCAN_IMMEDIATE, | 
 | 						nr_pages); | 
 | 				folio_set_reclaim(folio); | 
 |  | 
 | 				goto activate_locked; | 
 | 			} | 
 |  | 
 | 			if (references == FOLIOREF_RECLAIM_CLEAN) | 
 | 				goto keep_locked; | 
 | 			if (!may_enter_fs(folio, sc->gfp_mask)) | 
 | 				goto keep_locked; | 
 | 			if (!sc->may_writepage) | 
 | 				goto keep_locked; | 
 |  | 
 | 			/* | 
 | 			 * Folio is dirty. Flush the TLB if a writable entry | 
 | 			 * potentially exists to avoid CPU writes after I/O | 
 | 			 * starts and then write it out here. | 
 | 			 */ | 
 | 			try_to_unmap_flush_dirty(); | 
 | 			switch (pageout(folio, mapping, &plug, folio_list)) { | 
 | 			case PAGE_KEEP: | 
 | 				goto keep_locked; | 
 | 			case PAGE_ACTIVATE: | 
 | 				/* | 
 | 				 * If shmem folio is split when writeback to swap, | 
 | 				 * the tail pages will make their own pass through | 
 | 				 * this function and be accounted then. | 
 | 				 */ | 
 | 				if (nr_pages > 1 && !folio_test_large(folio)) { | 
 | 					sc->nr_scanned -= (nr_pages - 1); | 
 | 					nr_pages = 1; | 
 | 				} | 
 | 				goto activate_locked; | 
 | 			case PAGE_SUCCESS: | 
 | 				if (nr_pages > 1 && !folio_test_large(folio)) { | 
 | 					sc->nr_scanned -= (nr_pages - 1); | 
 | 					nr_pages = 1; | 
 | 				} | 
 | 				stat->nr_pageout += nr_pages; | 
 |  | 
 | 				if (folio_test_writeback(folio)) | 
 | 					goto keep; | 
 | 				if (folio_test_dirty(folio)) | 
 | 					goto keep; | 
 |  | 
 | 				/* | 
 | 				 * A synchronous write - probably a ramdisk.  Go | 
 | 				 * ahead and try to reclaim the folio. | 
 | 				 */ | 
 | 				if (!folio_trylock(folio)) | 
 | 					goto keep; | 
 | 				if (folio_test_dirty(folio) || | 
 | 				    folio_test_writeback(folio)) | 
 | 					goto keep_locked; | 
 | 				mapping = folio_mapping(folio); | 
 | 				fallthrough; | 
 | 			case PAGE_CLEAN: | 
 | 				; /* try to free the folio below */ | 
 | 			} | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * If the folio has buffers, try to free the buffer | 
 | 		 * mappings associated with this folio. If we succeed | 
 | 		 * we try to free the folio as well. | 
 | 		 * | 
 | 		 * We do this even if the folio is dirty. | 
 | 		 * filemap_release_folio() does not perform I/O, but it | 
 | 		 * is possible for a folio to have the dirty flag set, | 
 | 		 * but it is actually clean (all its buffers are clean). | 
 | 		 * This happens if the buffers were written out directly, | 
 | 		 * with submit_bh(). ext3 will do this, as well as | 
 | 		 * the blockdev mapping.  filemap_release_folio() will | 
 | 		 * discover that cleanness and will drop the buffers | 
 | 		 * and mark the folio clean - it can be freed. | 
 | 		 * | 
 | 		 * Rarely, folios can have buffers and no ->mapping. | 
 | 		 * These are the folios which were not successfully | 
 | 		 * invalidated in truncate_cleanup_folio().  We try to | 
 | 		 * drop those buffers here and if that worked, and the | 
 | 		 * folio is no longer mapped into process address space | 
 | 		 * (refcount == 1) it can be freed.  Otherwise, leave | 
 | 		 * the folio on the LRU so it is swappable. | 
 | 		 */ | 
 | 		if (folio_needs_release(folio)) { | 
 | 			if (!filemap_release_folio(folio, sc->gfp_mask)) | 
 | 				goto activate_locked; | 
 | 			if (!mapping && folio_ref_count(folio) == 1) { | 
 | 				folio_unlock(folio); | 
 | 				if (folio_put_testzero(folio)) | 
 | 					goto free_it; | 
 | 				else { | 
 | 					/* | 
 | 					 * rare race with speculative reference. | 
 | 					 * the speculative reference will free | 
 | 					 * this folio shortly, so we may | 
 | 					 * increment nr_reclaimed here (and | 
 | 					 * leave it off the LRU). | 
 | 					 */ | 
 | 					nr_reclaimed += nr_pages; | 
 | 					continue; | 
 | 				} | 
 | 			} | 
 | 		} | 
 |  | 
 | 		if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) { | 
 | 			/* follow __remove_mapping for reference */ | 
 | 			if (!folio_ref_freeze(folio, 1)) | 
 | 				goto keep_locked; | 
 | 			/* | 
 | 			 * The folio has only one reference left, which is | 
 | 			 * from the isolation. After the caller puts the | 
 | 			 * folio back on the lru and drops the reference, the | 
 | 			 * folio will be freed anyway. It doesn't matter | 
 | 			 * which lru it goes on. So we don't bother checking | 
 | 			 * the dirty flag here. | 
 | 			 */ | 
 | 			count_vm_events(PGLAZYFREED, nr_pages); | 
 | 			count_memcg_folio_events(folio, PGLAZYFREED, nr_pages); | 
 | 		} else if (!mapping || !__remove_mapping(mapping, folio, true, | 
 | 							 sc->target_mem_cgroup)) | 
 | 			goto keep_locked; | 
 |  | 
 | 		folio_unlock(folio); | 
 | free_it: | 
 | 		/* | 
 | 		 * Folio may get swapped out as a whole, need to account | 
 | 		 * all pages in it. | 
 | 		 */ | 
 | 		nr_reclaimed += nr_pages; | 
 |  | 
 | 		folio_unqueue_deferred_split(folio); | 
 | 		if (folio_batch_add(&free_folios, folio) == 0) { | 
 | 			mem_cgroup_uncharge_folios(&free_folios); | 
 | 			try_to_unmap_flush(); | 
 | 			free_unref_folios(&free_folios); | 
 | 		} | 
 | 		continue; | 
 |  | 
 | activate_locked_split: | 
 | 		/* | 
 | 		 * The tail pages that are failed to add into swap cache | 
 | 		 * reach here.  Fixup nr_scanned and nr_pages. | 
 | 		 */ | 
 | 		if (nr_pages > 1) { | 
 | 			sc->nr_scanned -= (nr_pages - 1); | 
 | 			nr_pages = 1; | 
 | 		} | 
 | activate_locked: | 
 | 		/* Not a candidate for swapping, so reclaim swap space. */ | 
 | 		if (folio_test_swapcache(folio) && | 
 | 		    (mem_cgroup_swap_full(folio) || folio_test_mlocked(folio))) | 
 | 			folio_free_swap(folio); | 
 | 		VM_BUG_ON_FOLIO(folio_test_active(folio), folio); | 
 | 		if (!folio_test_mlocked(folio)) { | 
 | 			int type = folio_is_file_lru(folio); | 
 | 			folio_set_active(folio); | 
 | 			stat->nr_activate[type] += nr_pages; | 
 | 			count_memcg_folio_events(folio, PGACTIVATE, nr_pages); | 
 | 		} | 
 | keep_locked: | 
 | 		folio_unlock(folio); | 
 | keep: | 
 | 		list_add(&folio->lru, &ret_folios); | 
 | 		VM_BUG_ON_FOLIO(folio_test_lru(folio) || | 
 | 				folio_test_unevictable(folio), folio); | 
 | 	} | 
 | 	/* 'folio_list' is always empty here */ | 
 |  | 
 | 	/* Migrate folios selected for demotion */ | 
 | 	nr_demoted = demote_folio_list(&demote_folios, pgdat); | 
 | 	nr_reclaimed += nr_demoted; | 
 | 	stat->nr_demoted += nr_demoted; | 
 | 	/* Folios that could not be demoted are still in @demote_folios */ | 
 | 	if (!list_empty(&demote_folios)) { | 
 | 		/* Folios which weren't demoted go back on @folio_list */ | 
 | 		list_splice_init(&demote_folios, folio_list); | 
 |  | 
 | 		/* | 
 | 		 * goto retry to reclaim the undemoted folios in folio_list if | 
 | 		 * desired. | 
 | 		 * | 
 | 		 * Reclaiming directly from top tier nodes is not often desired | 
 | 		 * due to it breaking the LRU ordering: in general memory | 
 | 		 * should be reclaimed from lower tier nodes and demoted from | 
 | 		 * top tier nodes. | 
 | 		 * | 
 | 		 * However, disabling reclaim from top tier nodes entirely | 
 | 		 * would cause ooms in edge scenarios where lower tier memory | 
 | 		 * is unreclaimable for whatever reason, eg memory being | 
 | 		 * mlocked or too hot to reclaim. We can disable reclaim | 
 | 		 * from top tier nodes in proactive reclaim though as that is | 
 | 		 * not real memory pressure. | 
 | 		 */ | 
 | 		if (!sc->proactive) { | 
 | 			do_demote_pass = false; | 
 | 			goto retry; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	pgactivate = stat->nr_activate[0] + stat->nr_activate[1]; | 
 |  | 
 | 	mem_cgroup_uncharge_folios(&free_folios); | 
 | 	try_to_unmap_flush(); | 
 | 	free_unref_folios(&free_folios); | 
 |  | 
 | 	list_splice(&ret_folios, folio_list); | 
 | 	count_vm_events(PGACTIVATE, pgactivate); | 
 |  | 
 | 	if (plug) | 
 | 		swap_write_unplug(plug); | 
 | 	return nr_reclaimed; | 
 | } | 
 |  | 
 | unsigned int reclaim_clean_pages_from_list(struct zone *zone, | 
 | 					   struct list_head *folio_list) | 
 | { | 
 | 	struct scan_control sc = { | 
 | 		.gfp_mask = GFP_KERNEL, | 
 | 		.may_unmap = 1, | 
 | 	}; | 
 | 	struct reclaim_stat stat; | 
 | 	unsigned int nr_reclaimed; | 
 | 	struct folio *folio, *next; | 
 | 	LIST_HEAD(clean_folios); | 
 | 	unsigned int noreclaim_flag; | 
 |  | 
 | 	list_for_each_entry_safe(folio, next, folio_list, lru) { | 
 | 		if (!folio_test_hugetlb(folio) && folio_is_file_lru(folio) && | 
 | 		    !folio_test_dirty(folio) && !__folio_test_movable(folio) && | 
 | 		    !folio_test_unevictable(folio)) { | 
 | 			folio_clear_active(folio); | 
 | 			list_move(&folio->lru, &clean_folios); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We should be safe here since we are only dealing with file pages and | 
 | 	 * we are not kswapd and therefore cannot write dirty file pages. But | 
 | 	 * call memalloc_noreclaim_save() anyway, just in case these conditions | 
 | 	 * change in the future. | 
 | 	 */ | 
 | 	noreclaim_flag = memalloc_noreclaim_save(); | 
 | 	nr_reclaimed = shrink_folio_list(&clean_folios, zone->zone_pgdat, &sc, | 
 | 					&stat, true, NULL); | 
 | 	memalloc_noreclaim_restore(noreclaim_flag); | 
 |  | 
 | 	list_splice(&clean_folios, folio_list); | 
 | 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, | 
 | 			    -(long)nr_reclaimed); | 
 | 	/* | 
 | 	 * Since lazyfree pages are isolated from file LRU from the beginning, | 
 | 	 * they will rotate back to anonymous LRU in the end if it failed to | 
 | 	 * discard so isolated count will be mismatched. | 
 | 	 * Compensate the isolated count for both LRU lists. | 
 | 	 */ | 
 | 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON, | 
 | 			    stat.nr_lazyfree_fail); | 
 | 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, | 
 | 			    -(long)stat.nr_lazyfree_fail); | 
 | 	return nr_reclaimed; | 
 | } | 
 |  | 
 | /* | 
 |  * Update LRU sizes after isolating pages. The LRU size updates must | 
 |  * be complete before mem_cgroup_update_lru_size due to a sanity check. | 
 |  */ | 
 | static __always_inline void update_lru_sizes(struct lruvec *lruvec, | 
 | 			enum lru_list lru, unsigned long *nr_zone_taken) | 
 | { | 
 | 	int zid; | 
 |  | 
 | 	for (zid = 0; zid < MAX_NR_ZONES; zid++) { | 
 | 		if (!nr_zone_taken[zid]) | 
 | 			continue; | 
 |  | 
 | 		update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); | 
 | 	} | 
 |  | 
 | } | 
 |  | 
 | /* | 
 |  * Isolating page from the lruvec to fill in @dst list by nr_to_scan times. | 
 |  * | 
 |  * lruvec->lru_lock is heavily contended.  Some of the functions that | 
 |  * shrink the lists perform better by taking out a batch of pages | 
 |  * and working on them outside the LRU lock. | 
 |  * | 
 |  * For pagecache intensive workloads, this function is the hottest | 
 |  * spot in the kernel (apart from copy_*_user functions). | 
 |  * | 
 |  * Lru_lock must be held before calling this function. | 
 |  * | 
 |  * @nr_to_scan:	The number of eligible pages to look through on the list. | 
 |  * @lruvec:	The LRU vector to pull pages from. | 
 |  * @dst:	The temp list to put pages on to. | 
 |  * @nr_scanned:	The number of pages that were scanned. | 
 |  * @sc:		The scan_control struct for this reclaim session | 
 |  * @lru:	LRU list id for isolating | 
 |  * | 
 |  * returns how many pages were moved onto *@dst. | 
 |  */ | 
 | static unsigned long isolate_lru_folios(unsigned long nr_to_scan, | 
 | 		struct lruvec *lruvec, struct list_head *dst, | 
 | 		unsigned long *nr_scanned, struct scan_control *sc, | 
 | 		enum lru_list lru) | 
 | { | 
 | 	struct list_head *src = &lruvec->lists[lru]; | 
 | 	unsigned long nr_taken = 0; | 
 | 	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 }; | 
 | 	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, }; | 
 | 	unsigned long skipped = 0, total_scan = 0, scan = 0; | 
 | 	unsigned long nr_pages; | 
 | 	unsigned long max_nr_skipped = 0; | 
 | 	LIST_HEAD(folios_skipped); | 
 |  | 
 | 	while (scan < nr_to_scan && !list_empty(src)) { | 
 | 		struct list_head *move_to = src; | 
 | 		struct folio *folio; | 
 |  | 
 | 		folio = lru_to_folio(src); | 
 | 		prefetchw_prev_lru_folio(folio, src, flags); | 
 |  | 
 | 		nr_pages = folio_nr_pages(folio); | 
 | 		total_scan += nr_pages; | 
 |  | 
 | 		/* Using max_nr_skipped to prevent hard LOCKUP*/ | 
 | 		if (max_nr_skipped < SWAP_CLUSTER_MAX_SKIPPED && | 
 | 		    (folio_zonenum(folio) > sc->reclaim_idx)) { | 
 | 			nr_skipped[folio_zonenum(folio)] += nr_pages; | 
 | 			move_to = &folios_skipped; | 
 | 			max_nr_skipped++; | 
 | 			goto move; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Do not count skipped folios because that makes the function | 
 | 		 * return with no isolated folios if the LRU mostly contains | 
 | 		 * ineligible folios.  This causes the VM to not reclaim any | 
 | 		 * folios, triggering a premature OOM. | 
 | 		 * Account all pages in a folio. | 
 | 		 */ | 
 | 		scan += nr_pages; | 
 |  | 
 | 		if (!folio_test_lru(folio)) | 
 | 			goto move; | 
 | 		if (!sc->may_unmap && folio_mapped(folio)) | 
 | 			goto move; | 
 |  | 
 | 		/* | 
 | 		 * Be careful not to clear the lru flag until after we're | 
 | 		 * sure the folio is not being freed elsewhere -- the | 
 | 		 * folio release code relies on it. | 
 | 		 */ | 
 | 		if (unlikely(!folio_try_get(folio))) | 
 | 			goto move; | 
 |  | 
 | 		if (!folio_test_clear_lru(folio)) { | 
 | 			/* Another thread is already isolating this folio */ | 
 | 			folio_put(folio); | 
 | 			goto move; | 
 | 		} | 
 |  | 
 | 		nr_taken += nr_pages; | 
 | 		nr_zone_taken[folio_zonenum(folio)] += nr_pages; | 
 | 		move_to = dst; | 
 | move: | 
 | 		list_move(&folio->lru, move_to); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Splice any skipped folios to the start of the LRU list. Note that | 
 | 	 * this disrupts the LRU order when reclaiming for lower zones but | 
 | 	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX | 
 | 	 * scanning would soon rescan the same folios to skip and waste lots | 
 | 	 * of cpu cycles. | 
 | 	 */ | 
 | 	if (!list_empty(&folios_skipped)) { | 
 | 		int zid; | 
 |  | 
 | 		list_splice(&folios_skipped, src); | 
 | 		for (zid = 0; zid < MAX_NR_ZONES; zid++) { | 
 | 			if (!nr_skipped[zid]) | 
 | 				continue; | 
 |  | 
 | 			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]); | 
 | 			skipped += nr_skipped[zid]; | 
 | 		} | 
 | 	} | 
 | 	*nr_scanned = total_scan; | 
 | 	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan, | 
 | 				    total_scan, skipped, nr_taken, lru); | 
 | 	update_lru_sizes(lruvec, lru, nr_zone_taken); | 
 | 	return nr_taken; | 
 | } | 
 |  | 
 | /** | 
 |  * folio_isolate_lru() - Try to isolate a folio from its LRU list. | 
 |  * @folio: Folio to isolate from its LRU list. | 
 |  * | 
 |  * Isolate a @folio from an LRU list and adjust the vmstat statistic | 
 |  * corresponding to whatever LRU list the folio was on. | 
 |  * | 
 |  * The folio will have its LRU flag cleared.  If it was found on the | 
 |  * active list, it will have the Active flag set.  If it was found on the | 
 |  * unevictable list, it will have the Unevictable flag set.  These flags | 
 |  * may need to be cleared by the caller before letting the page go. | 
 |  * | 
 |  * Context: | 
 |  * | 
 |  * (1) Must be called with an elevated refcount on the folio. This is a | 
 |  *     fundamental difference from isolate_lru_folios() (which is called | 
 |  *     without a stable reference). | 
 |  * (2) The lru_lock must not be held. | 
 |  * (3) Interrupts must be enabled. | 
 |  * | 
 |  * Return: true if the folio was removed from an LRU list. | 
 |  * false if the folio was not on an LRU list. | 
 |  */ | 
 | bool folio_isolate_lru(struct folio *folio) | 
 | { | 
 | 	bool ret = false; | 
 |  | 
 | 	VM_BUG_ON_FOLIO(!folio_ref_count(folio), folio); | 
 |  | 
 | 	if (folio_test_clear_lru(folio)) { | 
 | 		struct lruvec *lruvec; | 
 |  | 
 | 		folio_get(folio); | 
 | 		lruvec = folio_lruvec_lock_irq(folio); | 
 | 		lruvec_del_folio(lruvec, folio); | 
 | 		unlock_page_lruvec_irq(lruvec); | 
 | 		ret = true; | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and | 
 |  * then get rescheduled. When there are massive number of tasks doing page | 
 |  * allocation, such sleeping direct reclaimers may keep piling up on each CPU, | 
 |  * the LRU list will go small and be scanned faster than necessary, leading to | 
 |  * unnecessary swapping, thrashing and OOM. | 
 |  */ | 
 | static bool too_many_isolated(struct pglist_data *pgdat, int file, | 
 | 		struct scan_control *sc) | 
 | { | 
 | 	unsigned long inactive, isolated; | 
 | 	bool too_many; | 
 |  | 
 | 	if (current_is_kswapd()) | 
 | 		return false; | 
 |  | 
 | 	if (!writeback_throttling_sane(sc)) | 
 | 		return false; | 
 |  | 
 | 	if (file) { | 
 | 		inactive = node_page_state(pgdat, NR_INACTIVE_FILE); | 
 | 		isolated = node_page_state(pgdat, NR_ISOLATED_FILE); | 
 | 	} else { | 
 | 		inactive = node_page_state(pgdat, NR_INACTIVE_ANON); | 
 | 		isolated = node_page_state(pgdat, NR_ISOLATED_ANON); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they | 
 | 	 * won't get blocked by normal direct-reclaimers, forming a circular | 
 | 	 * deadlock. | 
 | 	 */ | 
 | 	if (gfp_has_io_fs(sc->gfp_mask)) | 
 | 		inactive >>= 3; | 
 |  | 
 | 	too_many = isolated > inactive; | 
 |  | 
 | 	/* Wake up tasks throttled due to too_many_isolated. */ | 
 | 	if (!too_many) | 
 | 		wake_throttle_isolated(pgdat); | 
 |  | 
 | 	return too_many; | 
 | } | 
 |  | 
 | /* | 
 |  * move_folios_to_lru() moves folios from private @list to appropriate LRU list. | 
 |  * | 
 |  * Returns the number of pages moved to the given lruvec. | 
 |  */ | 
 | static unsigned int move_folios_to_lru(struct lruvec *lruvec, | 
 | 		struct list_head *list) | 
 | { | 
 | 	int nr_pages, nr_moved = 0; | 
 | 	struct folio_batch free_folios; | 
 |  | 
 | 	folio_batch_init(&free_folios); | 
 | 	while (!list_empty(list)) { | 
 | 		struct folio *folio = lru_to_folio(list); | 
 |  | 
 | 		VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); | 
 | 		list_del(&folio->lru); | 
 | 		if (unlikely(!folio_evictable(folio))) { | 
 | 			spin_unlock_irq(&lruvec->lru_lock); | 
 | 			folio_putback_lru(folio); | 
 | 			spin_lock_irq(&lruvec->lru_lock); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * The folio_set_lru needs to be kept here for list integrity. | 
 | 		 * Otherwise: | 
 | 		 *   #0 move_folios_to_lru             #1 release_pages | 
 | 		 *   if (!folio_put_testzero()) | 
 | 		 *				      if (folio_put_testzero()) | 
 | 		 *				        !lru //skip lru_lock | 
 | 		 *     folio_set_lru() | 
 | 		 *     list_add(&folio->lru,) | 
 | 		 *                                        list_add(&folio->lru,) | 
 | 		 */ | 
 | 		folio_set_lru(folio); | 
 |  | 
 | 		if (unlikely(folio_put_testzero(folio))) { | 
 | 			__folio_clear_lru_flags(folio); | 
 |  | 
 | 			folio_unqueue_deferred_split(folio); | 
 | 			if (folio_batch_add(&free_folios, folio) == 0) { | 
 | 				spin_unlock_irq(&lruvec->lru_lock); | 
 | 				mem_cgroup_uncharge_folios(&free_folios); | 
 | 				free_unref_folios(&free_folios); | 
 | 				spin_lock_irq(&lruvec->lru_lock); | 
 | 			} | 
 |  | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * All pages were isolated from the same lruvec (and isolation | 
 | 		 * inhibits memcg migration). | 
 | 		 */ | 
 | 		VM_BUG_ON_FOLIO(!folio_matches_lruvec(folio, lruvec), folio); | 
 | 		lruvec_add_folio(lruvec, folio); | 
 | 		nr_pages = folio_nr_pages(folio); | 
 | 		nr_moved += nr_pages; | 
 | 		if (folio_test_active(folio)) | 
 | 			workingset_age_nonresident(lruvec, nr_pages); | 
 | 	} | 
 |  | 
 | 	if (free_folios.nr) { | 
 | 		spin_unlock_irq(&lruvec->lru_lock); | 
 | 		mem_cgroup_uncharge_folios(&free_folios); | 
 | 		free_unref_folios(&free_folios); | 
 | 		spin_lock_irq(&lruvec->lru_lock); | 
 | 	} | 
 |  | 
 | 	return nr_moved; | 
 | } | 
 |  | 
 | /* | 
 |  * If a kernel thread (such as nfsd for loop-back mounts) services a backing | 
 |  * device by writing to the page cache it sets PF_LOCAL_THROTTLE. In this case | 
 |  * we should not throttle.  Otherwise it is safe to do so. | 
 |  */ | 
 | static int current_may_throttle(void) | 
 | { | 
 | 	return !(current->flags & PF_LOCAL_THROTTLE); | 
 | } | 
 |  | 
 | /* | 
 |  * shrink_inactive_list() is a helper for shrink_node().  It returns the number | 
 |  * of reclaimed pages | 
 |  */ | 
 | static unsigned long shrink_inactive_list(unsigned long nr_to_scan, | 
 | 		struct lruvec *lruvec, struct scan_control *sc, | 
 | 		enum lru_list lru) | 
 | { | 
 | 	LIST_HEAD(folio_list); | 
 | 	unsigned long nr_scanned; | 
 | 	unsigned int nr_reclaimed = 0; | 
 | 	unsigned long nr_taken; | 
 | 	struct reclaim_stat stat; | 
 | 	bool file = is_file_lru(lru); | 
 | 	enum vm_event_item item; | 
 | 	struct pglist_data *pgdat = lruvec_pgdat(lruvec); | 
 | 	bool stalled = false; | 
 |  | 
 | 	while (unlikely(too_many_isolated(pgdat, file, sc))) { | 
 | 		if (stalled) | 
 | 			return 0; | 
 |  | 
 | 		/* wait a bit for the reclaimer. */ | 
 | 		stalled = true; | 
 | 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED); | 
 |  | 
 | 		/* We are about to die and free our memory. Return now. */ | 
 | 		if (fatal_signal_pending(current)) | 
 | 			return SWAP_CLUSTER_MAX; | 
 | 	} | 
 |  | 
 | 	lru_add_drain(); | 
 |  | 
 | 	spin_lock_irq(&lruvec->lru_lock); | 
 |  | 
 | 	nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &folio_list, | 
 | 				     &nr_scanned, sc, lru); | 
 |  | 
 | 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); | 
 | 	item = PGSCAN_KSWAPD + reclaimer_offset(sc); | 
 | 	if (!cgroup_reclaim(sc)) | 
 | 		__count_vm_events(item, nr_scanned); | 
 | 	count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned); | 
 | 	__count_vm_events(PGSCAN_ANON + file, nr_scanned); | 
 |  | 
 | 	spin_unlock_irq(&lruvec->lru_lock); | 
 |  | 
 | 	if (nr_taken == 0) | 
 | 		return 0; | 
 |  | 
 | 	nr_reclaimed = shrink_folio_list(&folio_list, pgdat, sc, &stat, false, | 
 | 					 lruvec_memcg(lruvec)); | 
 |  | 
 | 	spin_lock_irq(&lruvec->lru_lock); | 
 | 	move_folios_to_lru(lruvec, &folio_list); | 
 |  | 
 | 	__mod_lruvec_state(lruvec, PGDEMOTE_KSWAPD + reclaimer_offset(sc), | 
 | 					stat.nr_demoted); | 
 | 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); | 
 | 	item = PGSTEAL_KSWAPD + reclaimer_offset(sc); | 
 | 	if (!cgroup_reclaim(sc)) | 
 | 		__count_vm_events(item, nr_reclaimed); | 
 | 	count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed); | 
 | 	__count_vm_events(PGSTEAL_ANON + file, nr_reclaimed); | 
 | 	spin_unlock_irq(&lruvec->lru_lock); | 
 |  | 
 | 	lru_note_cost(lruvec, file, stat.nr_pageout, nr_scanned - nr_reclaimed); | 
 |  | 
 | 	/* | 
 | 	 * If dirty folios are scanned that are not queued for IO, it | 
 | 	 * implies that flushers are not doing their job. This can | 
 | 	 * happen when memory pressure pushes dirty folios to the end of | 
 | 	 * the LRU before the dirty limits are breached and the dirty | 
 | 	 * data has expired. It can also happen when the proportion of | 
 | 	 * dirty folios grows not through writes but through memory | 
 | 	 * pressure reclaiming all the clean cache. And in some cases, | 
 | 	 * the flushers simply cannot keep up with the allocation | 
 | 	 * rate. Nudge the flusher threads in case they are asleep. | 
 | 	 */ | 
 | 	if (stat.nr_unqueued_dirty == nr_taken) { | 
 | 		wakeup_flusher_threads(WB_REASON_VMSCAN); | 
 | 		/* | 
 | 		 * For cgroupv1 dirty throttling is achieved by waking up | 
 | 		 * the kernel flusher here and later waiting on folios | 
 | 		 * which are in writeback to finish (see shrink_folio_list()). | 
 | 		 * | 
 | 		 * Flusher may not be able to issue writeback quickly | 
 | 		 * enough for cgroupv1 writeback throttling to work | 
 | 		 * on a large system. | 
 | 		 */ | 
 | 		if (!writeback_throttling_sane(sc)) | 
 | 			reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK); | 
 | 	} | 
 |  | 
 | 	sc->nr.dirty += stat.nr_dirty; | 
 | 	sc->nr.congested += stat.nr_congested; | 
 | 	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty; | 
 | 	sc->nr.writeback += stat.nr_writeback; | 
 | 	sc->nr.immediate += stat.nr_immediate; | 
 | 	sc->nr.taken += nr_taken; | 
 | 	if (file) | 
 | 		sc->nr.file_taken += nr_taken; | 
 |  | 
 | 	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id, | 
 | 			nr_scanned, nr_reclaimed, &stat, sc->priority, file); | 
 | 	return nr_reclaimed; | 
 | } | 
 |  | 
 | /* | 
 |  * shrink_active_list() moves folios from the active LRU to the inactive LRU. | 
 |  * | 
 |  * We move them the other way if the folio is referenced by one or more | 
 |  * processes. | 
 |  * | 
 |  * If the folios are mostly unmapped, the processing is fast and it is | 
 |  * appropriate to hold lru_lock across the whole operation.  But if | 
 |  * the folios are mapped, the processing is slow (folio_referenced()), so | 
 |  * we should drop lru_lock around each folio.  It's impossible to balance | 
 |  * this, so instead we remove the folios from the LRU while processing them. | 
 |  * It is safe to rely on the active flag against the non-LRU folios in here | 
 |  * because nobody will play with that bit on a non-LRU folio. | 
 |  * | 
 |  * The downside is that we have to touch folio->_refcount against each folio. | 
 |  * But we had to alter folio->flags anyway. | 
 |  */ | 
 | static void shrink_active_list(unsigned long nr_to_scan, | 
 | 			       struct lruvec *lruvec, | 
 | 			       struct scan_control *sc, | 
 | 			       enum lru_list lru) | 
 | { | 
 | 	unsigned long nr_taken; | 
 | 	unsigned long nr_scanned; | 
 | 	unsigned long vm_flags; | 
 | 	LIST_HEAD(l_hold);	/* The folios which were snipped off */ | 
 | 	LIST_HEAD(l_active); | 
 | 	LIST_HEAD(l_inactive); | 
 | 	unsigned nr_deactivate, nr_activate; | 
 | 	unsigned nr_rotated = 0; | 
 | 	bool file = is_file_lru(lru); | 
 | 	struct pglist_data *pgdat = lruvec_pgdat(lruvec); | 
 |  | 
 | 	lru_add_drain(); | 
 |  | 
 | 	spin_lock_irq(&lruvec->lru_lock); | 
 |  | 
 | 	nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &l_hold, | 
 | 				     &nr_scanned, sc, lru); | 
 |  | 
 | 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); | 
 |  | 
 | 	if (!cgroup_reclaim(sc)) | 
 | 		__count_vm_events(PGREFILL, nr_scanned); | 
 | 	count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned); | 
 |  | 
 | 	spin_unlock_irq(&lruvec->lru_lock); | 
 |  | 
 | 	while (!list_empty(&l_hold)) { | 
 | 		struct folio *folio; | 
 |  | 
 | 		cond_resched(); | 
 | 		folio = lru_to_folio(&l_hold); | 
 | 		list_del(&folio->lru); | 
 |  | 
 | 		if (unlikely(!folio_evictable(folio))) { | 
 | 			folio_putback_lru(folio); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		if (unlikely(buffer_heads_over_limit)) { | 
 | 			if (folio_needs_release(folio) && | 
 | 			    folio_trylock(folio)) { | 
 | 				filemap_release_folio(folio, 0); | 
 | 				folio_unlock(folio); | 
 | 			} | 
 | 		} | 
 |  | 
 | 		/* Referenced or rmap lock contention: rotate */ | 
 | 		if (folio_referenced(folio, 0, sc->target_mem_cgroup, | 
 | 				     &vm_flags) != 0) { | 
 | 			/* | 
 | 			 * Identify referenced, file-backed active folios and | 
 | 			 * give them one more trip around the active list. So | 
 | 			 * that executable code get better chances to stay in | 
 | 			 * memory under moderate memory pressure.  Anon folios | 
 | 			 * are not likely to be evicted by use-once streaming | 
 | 			 * IO, plus JVM can create lots of anon VM_EXEC folios, | 
 | 			 * so we ignore them here. | 
 | 			 */ | 
 | 			if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) { | 
 | 				nr_rotated += folio_nr_pages(folio); | 
 | 				list_add(&folio->lru, &l_active); | 
 | 				continue; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		folio_clear_active(folio);	/* we are de-activating */ | 
 | 		folio_set_workingset(folio); | 
 | 		list_add(&folio->lru, &l_inactive); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Move folios back to the lru list. | 
 | 	 */ | 
 | 	spin_lock_irq(&lruvec->lru_lock); | 
 |  | 
 | 	nr_activate = move_folios_to_lru(lruvec, &l_active); | 
 | 	nr_deactivate = move_folios_to_lru(lruvec, &l_inactive); | 
 |  | 
 | 	__count_vm_events(PGDEACTIVATE, nr_deactivate); | 
 | 	count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate); | 
 |  | 
 | 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); | 
 | 	spin_unlock_irq(&lruvec->lru_lock); | 
 |  | 
 | 	if (nr_rotated) | 
 | 		lru_note_cost(lruvec, file, 0, nr_rotated); | 
 | 	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate, | 
 | 			nr_deactivate, nr_rotated, sc->priority, file); | 
 | } | 
 |  | 
 | static unsigned int reclaim_folio_list(struct list_head *folio_list, | 
 | 				      struct pglist_data *pgdat) | 
 | { | 
 | 	struct reclaim_stat stat; | 
 | 	unsigned int nr_reclaimed; | 
 | 	struct folio *folio; | 
 | 	struct scan_control sc = { | 
 | 		.gfp_mask = GFP_KERNEL, | 
 | 		.may_writepage = 1, | 
 | 		.may_unmap = 1, | 
 | 		.may_swap = 1, | 
 | 		.no_demotion = 1, | 
 | 	}; | 
 |  | 
 | 	nr_reclaimed = shrink_folio_list(folio_list, pgdat, &sc, &stat, true, NULL); | 
 | 	while (!list_empty(folio_list)) { | 
 | 		folio = lru_to_folio(folio_list); | 
 | 		list_del(&folio->lru); | 
 | 		folio_putback_lru(folio); | 
 | 	} | 
 | 	trace_mm_vmscan_reclaim_pages(pgdat->node_id, sc.nr_scanned, nr_reclaimed, &stat); | 
 |  | 
 | 	return nr_reclaimed; | 
 | } | 
 |  | 
 | unsigned long reclaim_pages(struct list_head *folio_list) | 
 | { | 
 | 	int nid; | 
 | 	unsigned int nr_reclaimed = 0; | 
 | 	LIST_HEAD(node_folio_list); | 
 | 	unsigned int noreclaim_flag; | 
 |  | 
 | 	if (list_empty(folio_list)) | 
 | 		return nr_reclaimed; | 
 |  | 
 | 	noreclaim_flag = memalloc_noreclaim_save(); | 
 |  | 
 | 	nid = folio_nid(lru_to_folio(folio_list)); | 
 | 	do { | 
 | 		struct folio *folio = lru_to_folio(folio_list); | 
 |  | 
 | 		if (nid == folio_nid(folio)) { | 
 | 			folio_clear_active(folio); | 
 | 			list_move(&folio->lru, &node_folio_list); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid)); | 
 | 		nid = folio_nid(lru_to_folio(folio_list)); | 
 | 	} while (!list_empty(folio_list)); | 
 |  | 
 | 	nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid)); | 
 |  | 
 | 	memalloc_noreclaim_restore(noreclaim_flag); | 
 |  | 
 | 	return nr_reclaimed; | 
 | } | 
 |  | 
 | static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, | 
 | 				 struct lruvec *lruvec, struct scan_control *sc) | 
 | { | 
 | 	if (is_active_lru(lru)) { | 
 | 		if (sc->may_deactivate & (1 << is_file_lru(lru))) | 
 | 			shrink_active_list(nr_to_scan, lruvec, sc, lru); | 
 | 		else | 
 | 			sc->skipped_deactivate = 1; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); | 
 | } | 
 |  | 
 | /* | 
 |  * The inactive anon list should be small enough that the VM never has | 
 |  * to do too much work. | 
 |  * | 
 |  * The inactive file list should be small enough to leave most memory | 
 |  * to the established workingset on the scan-resistant active list, | 
 |  * but large enough to avoid thrashing the aggregate readahead window. | 
 |  * | 
 |  * Both inactive lists should also be large enough that each inactive | 
 |  * folio has a chance to be referenced again before it is reclaimed. | 
 |  * | 
 |  * If that fails and refaulting is observed, the inactive list grows. | 
 |  * | 
 |  * The inactive_ratio is the target ratio of ACTIVE to INACTIVE folios | 
 |  * on this LRU, maintained by the pageout code. An inactive_ratio | 
 |  * of 3 means 3:1 or 25% of the folios are kept on the inactive list. | 
 |  * | 
 |  * total     target    max | 
 |  * memory    ratio     inactive | 
 |  * ------------------------------------- | 
 |  *   10MB       1         5MB | 
 |  *  100MB       1        50MB | 
 |  *    1GB       3       250MB | 
 |  *   10GB      10       0.9GB | 
 |  *  100GB      31         3GB | 
 |  *    1TB     101        10GB | 
 |  *   10TB     320        32GB | 
 |  */ | 
 | static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru) | 
 | { | 
 | 	enum lru_list active_lru = inactive_lru + LRU_ACTIVE; | 
 | 	unsigned long inactive, active; | 
 | 	unsigned long inactive_ratio; | 
 | 	unsigned long gb; | 
 |  | 
 | 	inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru); | 
 | 	active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru); | 
 |  | 
 | 	gb = (inactive + active) >> (30 - PAGE_SHIFT); | 
 | 	if (gb) | 
 | 		inactive_ratio = int_sqrt(10 * gb); | 
 | 	else | 
 | 		inactive_ratio = 1; | 
 |  | 
 | 	return inactive * inactive_ratio < active; | 
 | } | 
 |  | 
 | enum scan_balance { | 
 | 	SCAN_EQUAL, | 
 | 	SCAN_FRACT, | 
 | 	SCAN_ANON, | 
 | 	SCAN_FILE, | 
 | }; | 
 |  | 
 | static void prepare_scan_control(pg_data_t *pgdat, struct scan_control *sc) | 
 | { | 
 | 	unsigned long file; | 
 | 	struct lruvec *target_lruvec; | 
 |  | 
 | 	if (lru_gen_enabled()) | 
 | 		return; | 
 |  | 
 | 	target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat); | 
 |  | 
 | 	/* | 
 | 	 * Flush the memory cgroup stats in rate-limited way as we don't need | 
 | 	 * most accurate stats here. We may switch to regular stats flushing | 
 | 	 * in the future once it is cheap enough. | 
 | 	 */ | 
 | 	mem_cgroup_flush_stats_ratelimited(sc->target_mem_cgroup); | 
 |  | 
 | 	/* | 
 | 	 * Determine the scan balance between anon and file LRUs. | 
 | 	 */ | 
 | 	spin_lock_irq(&target_lruvec->lru_lock); | 
 | 	sc->anon_cost = target_lruvec->anon_cost; | 
 | 	sc->file_cost = target_lruvec->file_cost; | 
 | 	spin_unlock_irq(&target_lruvec->lru_lock); | 
 |  | 
 | 	/* | 
 | 	 * Target desirable inactive:active list ratios for the anon | 
 | 	 * and file LRU lists. | 
 | 	 */ | 
 | 	if (!sc->force_deactivate) { | 
 | 		unsigned long refaults; | 
 |  | 
 | 		/* | 
 | 		 * When refaults are being observed, it means a new | 
 | 		 * workingset is being established. Deactivate to get | 
 | 		 * rid of any stale active pages quickly. | 
 | 		 */ | 
 | 		refaults = lruvec_page_state(target_lruvec, | 
 | 				WORKINGSET_ACTIVATE_ANON); | 
 | 		if (refaults != target_lruvec->refaults[WORKINGSET_ANON] || | 
 | 			inactive_is_low(target_lruvec, LRU_INACTIVE_ANON)) | 
 | 			sc->may_deactivate |= DEACTIVATE_ANON; | 
 | 		else | 
 | 			sc->may_deactivate &= ~DEACTIVATE_ANON; | 
 |  | 
 | 		refaults = lruvec_page_state(target_lruvec, | 
 | 				WORKINGSET_ACTIVATE_FILE); | 
 | 		if (refaults != target_lruvec->refaults[WORKINGSET_FILE] || | 
 | 		    inactive_is_low(target_lruvec, LRU_INACTIVE_FILE)) | 
 | 			sc->may_deactivate |= DEACTIVATE_FILE; | 
 | 		else | 
 | 			sc->may_deactivate &= ~DEACTIVATE_FILE; | 
 | 	} else | 
 | 		sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE; | 
 |  | 
 | 	/* | 
 | 	 * If we have plenty of inactive file pages that aren't | 
 | 	 * thrashing, try to reclaim those first before touching | 
 | 	 * anonymous pages. | 
 | 	 */ | 
 | 	file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE); | 
 | 	if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE) && | 
 | 	    !sc->no_cache_trim_mode) | 
 | 		sc->cache_trim_mode = 1; | 
 | 	else | 
 | 		sc->cache_trim_mode = 0; | 
 |  | 
 | 	/* | 
 | 	 * Prevent the reclaimer from falling into the cache trap: as | 
 | 	 * cache pages start out inactive, every cache fault will tip | 
 | 	 * the scan balance towards the file LRU.  And as the file LRU | 
 | 	 * shrinks, so does the window for rotation from references. | 
 | 	 * This means we have a runaway feedback loop where a tiny | 
 | 	 * thrashing file LRU becomes infinitely more attractive than | 
 | 	 * anon pages.  Try to detect this based on file LRU size. | 
 | 	 */ | 
 | 	if (!cgroup_reclaim(sc)) { | 
 | 		unsigned long total_high_wmark = 0; | 
 | 		unsigned long free, anon; | 
 | 		int z; | 
 | 		struct zone *zone; | 
 |  | 
 | 		free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES); | 
 | 		file = node_page_state(pgdat, NR_ACTIVE_FILE) + | 
 | 			   node_page_state(pgdat, NR_INACTIVE_FILE); | 
 |  | 
 | 		for_each_managed_zone_pgdat(zone, pgdat, z, MAX_NR_ZONES - 1) { | 
 | 			total_high_wmark += high_wmark_pages(zone); | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Consider anon: if that's low too, this isn't a | 
 | 		 * runaway file reclaim problem, but rather just | 
 | 		 * extreme pressure. Reclaim as per usual then. | 
 | 		 */ | 
 | 		anon = node_page_state(pgdat, NR_INACTIVE_ANON); | 
 |  | 
 | 		sc->file_is_tiny = | 
 | 			file + free <= total_high_wmark && | 
 | 			!(sc->may_deactivate & DEACTIVATE_ANON) && | 
 | 			anon >> sc->priority; | 
 | 	} | 
 | } | 
 |  | 
 | static inline void calculate_pressure_balance(struct scan_control *sc, | 
 | 			int swappiness, u64 *fraction, u64 *denominator) | 
 | { | 
 | 	unsigned long anon_cost, file_cost, total_cost; | 
 | 	unsigned long ap, fp; | 
 |  | 
 | 	/* | 
 | 	 * Calculate the pressure balance between anon and file pages. | 
 | 	 * | 
 | 	 * The amount of pressure we put on each LRU is inversely | 
 | 	 * proportional to the cost of reclaiming each list, as | 
 | 	 * determined by the share of pages that are refaulting, times | 
 | 	 * the relative IO cost of bringing back a swapped out | 
 | 	 * anonymous page vs reloading a filesystem page (swappiness). | 
 | 	 * | 
 | 	 * Although we limit that influence to ensure no list gets | 
 | 	 * left behind completely: at least a third of the pressure is | 
 | 	 * applied, before swappiness. | 
 | 	 * | 
 | 	 * With swappiness at 100, anon and file have equal IO cost. | 
 | 	 */ | 
 | 	total_cost = sc->anon_cost + sc->file_cost; | 
 | 	anon_cost = total_cost + sc->anon_cost; | 
 | 	file_cost = total_cost + sc->file_cost; | 
 | 	total_cost = anon_cost + file_cost; | 
 |  | 
 | 	ap = swappiness * (total_cost + 1); | 
 | 	ap /= anon_cost + 1; | 
 |  | 
 | 	fp = (MAX_SWAPPINESS - swappiness) * (total_cost + 1); | 
 | 	fp /= file_cost + 1; | 
 |  | 
 | 	fraction[WORKINGSET_ANON] = ap; | 
 | 	fraction[WORKINGSET_FILE] = fp; | 
 | 	*denominator = ap + fp; | 
 | } | 
 |  | 
 | /* | 
 |  * Determine how aggressively the anon and file LRU lists should be | 
 |  * scanned. | 
 |  * | 
 |  * nr[0] = anon inactive folios to scan; nr[1] = anon active folios to scan | 
 |  * nr[2] = file inactive folios to scan; nr[3] = file active folios to scan | 
 |  */ | 
 | static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc, | 
 | 			   unsigned long *nr) | 
 | { | 
 | 	struct pglist_data *pgdat = lruvec_pgdat(lruvec); | 
 | 	struct mem_cgroup *memcg = lruvec_memcg(lruvec); | 
 | 	int swappiness = sc_swappiness(sc, memcg); | 
 | 	u64 fraction[ANON_AND_FILE]; | 
 | 	u64 denominator = 0;	/* gcc */ | 
 | 	enum scan_balance scan_balance; | 
 | 	enum lru_list lru; | 
 | 	bool balance_anon_file_reclaim = false; | 
 |  | 
 | 	/* If we have no swap space, do not bother scanning anon folios. */ | 
 | 	if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) { | 
 | 		scan_balance = SCAN_FILE; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Global reclaim will swap to prevent OOM even with no | 
 | 	 * swappiness, but memcg users want to use this knob to | 
 | 	 * disable swapping for individual groups completely when | 
 | 	 * using the memory controller's swap limit feature would be | 
 | 	 * too expensive. | 
 | 	 */ | 
 | 	if (cgroup_reclaim(sc) && !swappiness) { | 
 | 		scan_balance = SCAN_FILE; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* Proactive reclaim initiated by userspace for anonymous memory only */ | 
 | 	if (swappiness == SWAPPINESS_ANON_ONLY) { | 
 | 		WARN_ON_ONCE(!sc->proactive); | 
 | 		scan_balance = SCAN_ANON; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Do not apply any pressure balancing cleverness when the | 
 | 	 * system is close to OOM, scan both anon and file equally | 
 | 	 * (unless the swappiness setting disagrees with swapping). | 
 | 	 */ | 
 | 	if (!sc->priority && swappiness) { | 
 | 		scan_balance = SCAN_EQUAL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If the system is almost out of file pages, force-scan anon. | 
 | 	 */ | 
 | 	if (sc->file_is_tiny) { | 
 | 		scan_balance = SCAN_ANON; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	trace_android_rvh_set_balance_anon_file_reclaim(&balance_anon_file_reclaim); | 
 |  | 
 | 	/* | 
 | 	 * If there is enough inactive page cache, we do not reclaim | 
 | 	 * anything from the anonymous working right now to make sure | 
 |          * a streaming file access pattern doesn't cause swapping. | 
 | 	 */ | 
 | 	if (!balance_anon_file_reclaim && sc->cache_trim_mode) { | 
 | 		scan_balance = SCAN_FILE; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	scan_balance = SCAN_FRACT; | 
 | 	calculate_pressure_balance(sc, swappiness, fraction, &denominator); | 
 |  | 
 | out: | 
 | 	for_each_evictable_lru(lru) { | 
 | 		bool file = is_file_lru(lru); | 
 | 		unsigned long lruvec_size; | 
 | 		unsigned long low, min; | 
 | 		unsigned long scan; | 
 |  | 
 | 		lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx); | 
 | 		mem_cgroup_protection(sc->target_mem_cgroup, memcg, | 
 | 				      &min, &low); | 
 |  | 
 | 		if (min || low) { | 
 | 			/* | 
 | 			 * Scale a cgroup's reclaim pressure by proportioning | 
 | 			 * its current usage to its memory.low or memory.min | 
 | 			 * setting. | 
 | 			 * | 
 | 			 * This is important, as otherwise scanning aggression | 
 | 			 * becomes extremely binary -- from nothing as we | 
 | 			 * approach the memory protection threshold, to totally | 
 | 			 * nominal as we exceed it.  This results in requiring | 
 | 			 * setting extremely liberal protection thresholds. It | 
 | 			 * also means we simply get no protection at all if we | 
 | 			 * set it too low, which is not ideal. | 
 | 			 * | 
 | 			 * If there is any protection in place, we reduce scan | 
 | 			 * pressure by how much of the total memory used is | 
 | 			 * within protection thresholds. | 
 | 			 * | 
 | 			 * There is one special case: in the first reclaim pass, | 
 | 			 * we skip over all groups that are within their low | 
 | 			 * protection. If that fails to reclaim enough pages to | 
 | 			 * satisfy the reclaim goal, we come back and override | 
 | 			 * the best-effort low protection. However, we still | 
 | 			 * ideally want to honor how well-behaved groups are in | 
 | 			 * that case instead of simply punishing them all | 
 | 			 * equally. As such, we reclaim them based on how much | 
 | 			 * memory they are using, reducing the scan pressure | 
 | 			 * again by how much of the total memory used is under | 
 | 			 * hard protection. | 
 | 			 */ | 
 | 			unsigned long cgroup_size = mem_cgroup_size(memcg); | 
 | 			unsigned long protection; | 
 |  | 
 | 			/* memory.low scaling, make sure we retry before OOM */ | 
 | 			if (!sc->memcg_low_reclaim && low > min) { | 
 | 				protection = low; | 
 | 				sc->memcg_low_skipped = 1; | 
 | 			} else { | 
 | 				protection = min; | 
 | 			} | 
 |  | 
 | 			/* Avoid TOCTOU with earlier protection check */ | 
 | 			cgroup_size = max(cgroup_size, protection); | 
 |  | 
 | 			scan = lruvec_size - lruvec_size * protection / | 
 | 				(cgroup_size + 1); | 
 |  | 
 | 			/* | 
 | 			 * Minimally target SWAP_CLUSTER_MAX pages to keep | 
 | 			 * reclaim moving forwards, avoiding decrementing | 
 | 			 * sc->priority further than desirable. | 
 | 			 */ | 
 | 			scan = max(scan, SWAP_CLUSTER_MAX); | 
 | 		} else { | 
 | 			scan = lruvec_size; | 
 | 		} | 
 |  | 
 | 		scan >>= sc->priority; | 
 |  | 
 | 		/* | 
 | 		 * If the cgroup's already been deleted, make sure to | 
 | 		 * scrape out the remaining cache. | 
 | 		 */ | 
 | 		if (!scan && !mem_cgroup_online(memcg)) | 
 | 			scan = min(lruvec_size, SWAP_CLUSTER_MAX); | 
 |  | 
 | 		switch (scan_balance) { | 
 | 		case SCAN_EQUAL: | 
 | 			/* Scan lists relative to size */ | 
 | 			break; | 
 | 		case SCAN_FRACT: | 
 | 			/* | 
 | 			 * Scan types proportional to swappiness and | 
 | 			 * their relative recent reclaim efficiency. | 
 | 			 * Make sure we don't miss the last page on | 
 | 			 * the offlined memory cgroups because of a | 
 | 			 * round-off error. | 
 | 			 */ | 
 | 			scan = mem_cgroup_online(memcg) ? | 
 | 			       div64_u64(scan * fraction[file], denominator) : | 
 | 			       DIV64_U64_ROUND_UP(scan * fraction[file], | 
 | 						  denominator); | 
 | 			break; | 
 | 		case SCAN_FILE: | 
 | 		case SCAN_ANON: | 
 | 			/* Scan one type exclusively */ | 
 | 			if ((scan_balance == SCAN_FILE) != file) | 
 | 				scan = 0; | 
 | 			break; | 
 | 		default: | 
 | 			/* Look ma, no brain */ | 
 | 			BUG(); | 
 | 		} | 
 |  | 
 | 		nr[lru] = scan; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Anonymous LRU management is a waste if there is | 
 |  * ultimately no way to reclaim the memory. | 
 |  */ | 
 | static bool can_age_anon_pages(struct lruvec *lruvec, | 
 | 			       struct scan_control *sc) | 
 | { | 
 | 	/* Aging the anon LRU is valuable if swap is present: */ | 
 | 	if (total_swap_pages > 0) | 
 | 		return true; | 
 |  | 
 | 	/* Also valuable if anon pages can be demoted: */ | 
 | 	return can_demote(lruvec_pgdat(lruvec)->node_id, sc, | 
 | 			  lruvec_memcg(lruvec)); | 
 | } | 
 |  | 
 | #ifdef CONFIG_LRU_GEN | 
 |  | 
 | #ifdef CONFIG_LRU_GEN_ENABLED | 
 | DEFINE_STATIC_KEY_ARRAY_TRUE(lru_gen_caps, NR_LRU_GEN_CAPS); | 
 | #define get_cap(cap)	static_branch_likely(&lru_gen_caps[cap]) | 
 | #else | 
 | DEFINE_STATIC_KEY_ARRAY_FALSE(lru_gen_caps, NR_LRU_GEN_CAPS); | 
 | #define get_cap(cap)	static_branch_unlikely(&lru_gen_caps[cap]) | 
 | #endif | 
 |  | 
 | static bool should_walk_mmu(void) | 
 | { | 
 | 	return arch_has_hw_pte_young() && get_cap(LRU_GEN_MM_WALK); | 
 | } | 
 |  | 
 | static bool should_clear_pmd_young(void) | 
 | { | 
 | 	return arch_has_hw_nonleaf_pmd_young() && get_cap(LRU_GEN_NONLEAF_YOUNG); | 
 | } | 
 |  | 
 | /****************************************************************************** | 
 |  *                          shorthand helpers | 
 |  ******************************************************************************/ | 
 |  | 
 | #define DEFINE_MAX_SEQ(lruvec)						\ | 
 | 	unsigned long max_seq = READ_ONCE((lruvec)->lrugen.max_seq) | 
 |  | 
 | #define DEFINE_MIN_SEQ(lruvec)						\ | 
 | 	unsigned long min_seq[ANON_AND_FILE] = {			\ | 
 | 		READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_ANON]),	\ | 
 | 		READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_FILE]),	\ | 
 | 	} | 
 |  | 
 | /* Get the min/max evictable type based on swappiness */ | 
 | #define min_type(swappiness) (!(swappiness)) | 
 | #define max_type(swappiness) ((swappiness) < SWAPPINESS_ANON_ONLY) | 
 |  | 
 | #define evictable_min_seq(min_seq, swappiness)				\ | 
 | 	min((min_seq)[min_type(swappiness)], (min_seq)[max_type(swappiness)]) | 
 |  | 
 | #define for_each_gen_type_zone(gen, type, zone)				\ | 
 | 	for ((gen) = 0; (gen) < MAX_NR_GENS; (gen)++)			\ | 
 | 		for ((type) = 0; (type) < ANON_AND_FILE; (type)++)	\ | 
 | 			for ((zone) = 0; (zone) < MAX_NR_ZONES; (zone)++) | 
 |  | 
 | #define for_each_evictable_type(type, swappiness)			\ | 
 | 	for ((type) = min_type(swappiness); (type) <= max_type(swappiness); (type)++) | 
 |  | 
 | #define get_memcg_gen(seq)	((seq) % MEMCG_NR_GENS) | 
 | #define get_memcg_bin(bin)	((bin) % MEMCG_NR_BINS) | 
 |  | 
 | static struct lruvec *get_lruvec(struct mem_cgroup *memcg, int nid) | 
 | { | 
 | 	struct pglist_data *pgdat = NODE_DATA(nid); | 
 |  | 
 | #ifdef CONFIG_MEMCG | 
 | 	if (memcg) { | 
 | 		struct lruvec *lruvec = &memcg->nodeinfo[nid]->lruvec; | 
 |  | 
 | 		/* see the comment in mem_cgroup_lruvec() */ | 
 | 		if (!lruvec->pgdat) | 
 | 			lruvec->pgdat = pgdat; | 
 |  | 
 | 		return lruvec; | 
 | 	} | 
 | #endif | 
 | 	VM_WARN_ON_ONCE(!mem_cgroup_disabled()); | 
 |  | 
 | 	return &pgdat->__lruvec; | 
 | } | 
 |  | 
 | static int get_swappiness(struct lruvec *lruvec, struct scan_control *sc) | 
 | { | 
 | 	struct mem_cgroup *memcg = lruvec_memcg(lruvec); | 
 | 	struct pglist_data *pgdat = lruvec_pgdat(lruvec); | 
 |  | 
 | 	if (!sc->may_swap) | 
 | 		return 0; | 
 |  | 
 | 	if (!can_demote(pgdat->node_id, sc, memcg) && | 
 | 	    mem_cgroup_get_nr_swap_pages(memcg) < MIN_LRU_BATCH) | 
 | 		return 0; | 
 |  | 
 | 	return sc_swappiness(sc, memcg); | 
 | } | 
 |  | 
 | static int get_nr_gens(struct lruvec *lruvec, int type) | 
 | { | 
 | 	return lruvec->lrugen.max_seq - lruvec->lrugen.min_seq[type] + 1; | 
 | } | 
 |  | 
 | static bool __maybe_unused seq_is_valid(struct lruvec *lruvec) | 
 | { | 
 | 	int type; | 
 |  | 
 | 	for (type = 0; type < ANON_AND_FILE; type++) { | 
 | 		int n = get_nr_gens(lruvec, type); | 
 |  | 
 | 		if (n < MIN_NR_GENS || n > MAX_NR_GENS) | 
 | 			return false; | 
 | 	} | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | /****************************************************************************** | 
 |  *                          Bloom filters | 
 |  ******************************************************************************/ | 
 |  | 
 | /* | 
 |  * Bloom filters with m=1<<15, k=2 and the false positive rates of ~1/5 when | 
 |  * n=10,000 and ~1/2 when n=20,000, where, conventionally, m is the number of | 
 |  * bits in a bitmap, k is the number of hash functions and n is the number of | 
 |  * inserted items. | 
 |  * | 
 |  * Page table walkers use one of the two filters to reduce their search space. | 
 |  * To get rid of non-leaf entries that no longer have enough leaf entries, the | 
 |  * aging uses the double-buffering technique to flip to the other filter each | 
 |  * time it produces a new generation. For non-leaf entries that have enough | 
 |  * leaf entries, the aging carries them over to the next generation in | 
 |  * walk_pmd_range(); the eviction also report them when walking the rmap | 
 |  * in lru_gen_look_around(). | 
 |  * | 
 |  * For future optimizations: | 
 |  * 1. It's not necessary to keep both filters all the time. The spare one can be | 
 |  *    freed after the RCU grace period and reallocated if needed again. | 
 |  * 2. And when reallocating, it's worth scaling its size according to the number | 
 |  *    of inserted entries in the other filter, to reduce the memory overhead on | 
 |  *    small systems and false positives on large systems. | 
 |  * 3. Jenkins' hash function is an alternative to Knuth's. | 
 |  */ | 
 | #define BLOOM_FILTER_SHIFT	15 | 
 |  | 
 | static inline int filter_gen_from_seq(unsigned long seq) | 
 | { | 
 | 	return seq % NR_BLOOM_FILTERS; | 
 | } | 
 |  | 
 | static void get_item_key(void *item, int *key) | 
 | { | 
 | 	u32 hash = hash_ptr(item, BLOOM_FILTER_SHIFT * 2); | 
 |  | 
 | 	BUILD_BUG_ON(BLOOM_FILTER_SHIFT * 2 > BITS_PER_TYPE(u32)); | 
 |  | 
 | 	key[0] = hash & (BIT(BLOOM_FILTER_SHIFT) - 1); | 
 | 	key[1] = hash >> BLOOM_FILTER_SHIFT; | 
 | } | 
 |  | 
 | static bool test_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq, | 
 | 			      void *item) | 
 | { | 
 | 	int key[2]; | 
 | 	unsigned long *filter; | 
 | 	int gen = filter_gen_from_seq(seq); | 
 |  | 
 | 	filter = READ_ONCE(mm_state->filters[gen]); | 
 | 	if (!filter) | 
 | 		return true; | 
 |  | 
 | 	get_item_key(item, key); | 
 |  | 
 | 	return test_bit(key[0], filter) && test_bit(key[1], filter); | 
 | } | 
 |  | 
 | static void update_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq, | 
 | 				void *item) | 
 | { | 
 | 	int key[2]; | 
 | 	unsigned long *filter; | 
 | 	int gen = filter_gen_from_seq(seq); | 
 |  | 
 | 	filter = READ_ONCE(mm_state->filters[gen]); | 
 | 	if (!filter) | 
 | 		return; | 
 |  | 
 | 	get_item_key(item, key); | 
 |  | 
 | 	if (!test_bit(key[0], filter)) | 
 | 		set_bit(key[0], filter); | 
 | 	if (!test_bit(key[1], filter)) | 
 | 		set_bit(key[1], filter); | 
 | } | 
 |  | 
 | static void reset_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq) | 
 | { | 
 | 	unsigned long *filter; | 
 | 	int gen = filter_gen_from_seq(seq); | 
 |  | 
 | 	filter = mm_state->filters[gen]; | 
 | 	if (filter) { | 
 | 		bitmap_clear(filter, 0, BIT(BLOOM_FILTER_SHIFT)); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	filter = bitmap_zalloc(BIT(BLOOM_FILTER_SHIFT), | 
 | 			       __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN); | 
 | 	WRITE_ONCE(mm_state->filters[gen], filter); | 
 | } | 
 |  | 
 | /****************************************************************************** | 
 |  *                          mm_struct list | 
 |  ******************************************************************************/ | 
 |  | 
 | #ifdef CONFIG_LRU_GEN_WALKS_MMU | 
 |  | 
 | static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg) | 
 | { | 
 | 	static struct lru_gen_mm_list mm_list = { | 
 | 		.fifo = LIST_HEAD_INIT(mm_list.fifo), | 
 | 		.lock = __SPIN_LOCK_UNLOCKED(mm_list.lock), | 
 | 	}; | 
 |  | 
 | #ifdef CONFIG_MEMCG | 
 | 	if (memcg) | 
 | 		return &memcg->mm_list; | 
 | #endif | 
 | 	VM_WARN_ON_ONCE(!mem_cgroup_disabled()); | 
 |  | 
 | 	return &mm_list; | 
 | } | 
 |  | 
 | static struct lru_gen_mm_state *get_mm_state(struct lruvec *lruvec) | 
 | { | 
 | 	return &lruvec->mm_state; | 
 | } | 
 |  | 
 | static struct mm_struct *get_next_mm(struct lru_gen_mm_walk *walk) | 
 | { | 
 | 	int key; | 
 | 	struct mm_struct *mm; | 
 | 	struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec); | 
 | 	struct lru_gen_mm_state *mm_state = get_mm_state(walk->lruvec); | 
 |  | 
 | 	mm = list_entry(mm_state->head, struct mm_struct, lru_gen.list); | 
 | 	key = pgdat->node_id % BITS_PER_TYPE(mm->lru_gen.bitmap); | 
 |  | 
 | 	if (!walk->force_scan && !test_bit(key, &mm->lru_gen.bitmap)) | 
 | 		return NULL; | 
 |  | 
 | 	clear_bit(key, &mm->lru_gen.bitmap); | 
 |  | 
 | 	return mmget_not_zero(mm) ? mm : NULL; | 
 | } | 
 |  | 
 | void lru_gen_add_mm(struct mm_struct *mm) | 
 | { | 
 | 	int nid; | 
 | 	struct mem_cgroup *memcg = get_mem_cgroup_from_mm(mm); | 
 | 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg); | 
 |  | 
 | 	VM_WARN_ON_ONCE(!list_empty(&mm->lru_gen.list)); | 
 | #ifdef CONFIG_MEMCG | 
 | 	VM_WARN_ON_ONCE(mm->lru_gen.memcg); | 
 | 	mm->lru_gen.memcg = memcg; | 
 | #endif | 
 | 	spin_lock(&mm_list->lock); | 
 |  | 
 | 	for_each_node_state(nid, N_MEMORY) { | 
 | 		struct lruvec *lruvec = get_lruvec(memcg, nid); | 
 | 		struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); | 
 |  | 
 | 		/* the first addition since the last iteration */ | 
 | 		if (mm_state->tail == &mm_list->fifo) | 
 | 			mm_state->tail = &mm->lru_gen.list; | 
 | 	} | 
 |  | 
 | 	list_add_tail(&mm->lru_gen.list, &mm_list->fifo); | 
 |  | 
 | 	spin_unlock(&mm_list->lock); | 
 | } | 
 |  | 
 | void lru_gen_del_mm(struct mm_struct *mm) | 
 | { | 
 | 	int nid; | 
 | 	struct lru_gen_mm_list *mm_list; | 
 | 	struct mem_cgroup *memcg = NULL; | 
 |  | 
 | 	if (list_empty(&mm->lru_gen.list)) | 
 | 		return; | 
 |  | 
 | #ifdef CONFIG_MEMCG | 
 | 	memcg = mm->lru_gen.memcg; | 
 | #endif | 
 | 	mm_list = get_mm_list(memcg); | 
 |  | 
 | 	spin_lock(&mm_list->lock); | 
 |  | 
 | 	for_each_node(nid) { | 
 | 		struct lruvec *lruvec = get_lruvec(memcg, nid); | 
 | 		struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); | 
 |  | 
 | 		/* where the current iteration continues after */ | 
 | 		if (mm_state->head == &mm->lru_gen.list) | 
 | 			mm_state->head = mm_state->head->prev; | 
 |  | 
 | 		/* where the last iteration ended before */ | 
 | 		if (mm_state->tail == &mm->lru_gen.list) | 
 | 			mm_state->tail = mm_state->tail->next; | 
 | 	} | 
 |  | 
 | 	list_del_init(&mm->lru_gen.list); | 
 |  | 
 | 	spin_unlock(&mm_list->lock); | 
 |  | 
 | #ifdef CONFIG_MEMCG | 
 | 	mem_cgroup_put(mm->lru_gen.memcg); | 
 | 	mm->lru_gen.memcg = NULL; | 
 | #endif | 
 | } | 
 |  | 
 | #ifdef CONFIG_MEMCG | 
 | void lru_gen_migrate_mm(struct mm_struct *mm) | 
 | { | 
 | 	struct mem_cgroup *memcg; | 
 | 	struct task_struct *task = rcu_dereference_protected(mm->owner, true); | 
 |  | 
 | 	VM_WARN_ON_ONCE(task->mm != mm); | 
 | 	lockdep_assert_held(&task->alloc_lock); | 
 |  | 
 | 	/* for mm_update_next_owner() */ | 
 | 	if (mem_cgroup_disabled()) | 
 | 		return; | 
 |  | 
 | 	/* migration can happen before addition */ | 
 | 	if (!mm->lru_gen.memcg) | 
 | 		return; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	memcg = mem_cgroup_from_task(task); | 
 | 	rcu_read_unlock(); | 
 | 	if (memcg == mm->lru_gen.memcg) | 
 | 		return; | 
 |  | 
 | 	VM_WARN_ON_ONCE(list_empty(&mm->lru_gen.list)); | 
 |  | 
 | 	lru_gen_del_mm(mm); | 
 | 	lru_gen_add_mm(mm); | 
 | } | 
 | #endif | 
 |  | 
 | #else /* !CONFIG_LRU_GEN_WALKS_MMU */ | 
 |  | 
 | static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg) | 
 | { | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static struct lru_gen_mm_state *get_mm_state(struct lruvec *lruvec) | 
 | { | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static struct mm_struct *get_next_mm(struct lru_gen_mm_walk *walk) | 
 | { | 
 | 	return NULL; | 
 | } | 
 |  | 
 | #endif | 
 |  | 
 | static void reset_mm_stats(struct lru_gen_mm_walk *walk, bool last) | 
 | { | 
 | 	int i; | 
 | 	int hist; | 
 | 	struct lruvec *lruvec = walk->lruvec; | 
 | 	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); | 
 |  | 
 | 	lockdep_assert_held(&get_mm_list(lruvec_memcg(lruvec))->lock); | 
 |  | 
 | 	hist = lru_hist_from_seq(walk->seq); | 
 |  | 
 | 	for (i = 0; i < NR_MM_STATS; i++) { | 
 | 		WRITE_ONCE(mm_state->stats[hist][i], | 
 | 			   mm_state->stats[hist][i] + walk->mm_stats[i]); | 
 | 		walk->mm_stats[i] = 0; | 
 | 	} | 
 |  | 
 | 	if (NR_HIST_GENS > 1 && last) { | 
 | 		hist = lru_hist_from_seq(walk->seq + 1); | 
 |  | 
 | 		for (i = 0; i < NR_MM_STATS; i++) | 
 | 			WRITE_ONCE(mm_state->stats[hist][i], 0); | 
 | 	} | 
 | } | 
 |  | 
 | static bool iterate_mm_list(struct lru_gen_mm_walk *walk, struct mm_struct **iter) | 
 | { | 
 | 	bool first = false; | 
 | 	bool last = false; | 
 | 	struct mm_struct *mm = NULL; | 
 | 	struct lruvec *lruvec = walk->lruvec; | 
 | 	struct mem_cgroup *memcg = lruvec_memcg(lruvec); | 
 | 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg); | 
 | 	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); | 
 |  | 
 | 	/* | 
 | 	 * mm_state->seq is incremented after each iteration of mm_list. There | 
 | 	 * are three interesting cases for this page table walker: | 
 | 	 * 1. It tries to start a new iteration with a stale max_seq: there is | 
 | 	 *    nothing left to do. | 
 | 	 * 2. It started the next iteration: it needs to reset the Bloom filter | 
 | 	 *    so that a fresh set of PTE tables can be recorded. | 
 | 	 * 3. It ended the current iteration: it needs to reset the mm stats | 
 | 	 *    counters and tell its caller to increment max_seq. | 
 | 	 */ | 
 | 	spin_lock(&mm_list->lock); | 
 |  | 
 | 	VM_WARN_ON_ONCE(mm_state->seq + 1 < walk->seq); | 
 |  | 
 | 	if (walk->seq <= mm_state->seq) | 
 | 		goto done; | 
 |  | 
 | 	if (!mm_state->head) | 
 | 		mm_state->head = &mm_list->fifo; | 
 |  | 
 | 	if (mm_state->head == &mm_list->fifo) | 
 | 		first = true; | 
 |  | 
 | 	do { | 
 | 		mm_state->head = mm_state->head->next; | 
 | 		if (mm_state->head == &mm_list->fifo) { | 
 | 			WRITE_ONCE(mm_state->seq, mm_state->seq + 1); | 
 | 			last = true; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		/* force scan for those added after the last iteration */ | 
 | 		if (!mm_state->tail || mm_state->tail == mm_state->head) { | 
 | 			mm_state->tail = mm_state->head->next; | 
 | 			walk->force_scan = true; | 
 | 		} | 
 | 	} while (!(mm = get_next_mm(walk))); | 
 | done: | 
 | 	if (*iter || last) | 
 | 		reset_mm_stats(walk, last); | 
 |  | 
 | 	spin_unlock(&mm_list->lock); | 
 |  | 
 | 	if (mm && first) | 
 | 		reset_bloom_filter(mm_state, walk->seq + 1); | 
 |  | 
 | 	if (*iter) | 
 | 		mmput_async(*iter); | 
 |  | 
 | 	*iter = mm; | 
 |  | 
 | 	return last; | 
 | } | 
 |  | 
 | static bool iterate_mm_list_nowalk(struct lruvec *lruvec, unsigned long seq) | 
 | { | 
 | 	bool success = false; | 
 | 	struct mem_cgroup *memcg = lruvec_memcg(lruvec); | 
 | 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg); | 
 | 	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); | 
 |  | 
 | 	spin_lock(&mm_list->lock); | 
 |  | 
 | 	VM_WARN_ON_ONCE(mm_state->seq + 1 < seq); | 
 |  | 
 | 	if (seq > mm_state->seq) { | 
 | 		mm_state->head = NULL; | 
 | 		mm_state->tail = NULL; | 
 | 		WRITE_ONCE(mm_state->seq, mm_state->seq + 1); | 
 | 		success = true; | 
 | 	} | 
 |  | 
 | 	spin_unlock(&mm_list->lock); | 
 |  | 
 | 	return success; | 
 | } | 
 |  | 
 | /****************************************************************************** | 
 |  *                          PID controller | 
 |  ******************************************************************************/ | 
 |  | 
 | /* | 
 |  * A feedback loop based on Proportional-Integral-Derivative (PID) controller. | 
 |  * | 
 |  * The P term is refaulted/(evicted+protected) from a tier in the generation | 
 |  * currently being evicted; the I term is the exponential moving average of the | 
 |  * P term over the generations previously evicted, using the smoothing factor | 
 |  * 1/2; the D term isn't supported. | 
 |  * | 
 |  * The setpoint (SP) is always the first tier of one type; the process variable | 
 |  * (PV) is either any tier of the other type or any other tier of the same | 
 |  * type. | 
 |  * | 
 |  * The error is the difference between the SP and the PV; the correction is to | 
 |  * turn off protection when SP>PV or turn on protection when SP<PV. | 
 |  * | 
 |  * For future optimizations: | 
 |  * 1. The D term may discount the other two terms over time so that long-lived | 
 |  *    generations can resist stale information. | 
 |  */ | 
 | struct ctrl_pos { | 
 | 	unsigned long refaulted; | 
 | 	unsigned long total; | 
 | 	int gain; | 
 | }; | 
 |  | 
 | static void read_ctrl_pos(struct lruvec *lruvec, int type, int tier, int gain, | 
 | 			  struct ctrl_pos *pos) | 
 | { | 
 | 	int i; | 
 | 	struct lru_gen_folio *lrugen = &lruvec->lrugen; | 
 | 	int hist = lru_hist_from_seq(lrugen->min_seq[type]); | 
 |  | 
 | 	pos->gain = gain; | 
 | 	pos->refaulted = pos->total = 0; | 
 |  | 
 | 	for (i = tier % MAX_NR_TIERS; i <= min(tier, MAX_NR_TIERS - 1); i++) { | 
 | 		pos->refaulted += lrugen->avg_refaulted[type][i] + | 
 | 				  atomic_long_read(&lrugen->refaulted[hist][type][i]); | 
 | 		pos->total += lrugen->avg_total[type][i] + | 
 | 			      lrugen->protected[hist][type][i] + | 
 | 			      atomic_long_read(&lrugen->evicted[hist][type][i]); | 
 | 	} | 
 | } | 
 |  | 
 | static void reset_ctrl_pos(struct lruvec *lruvec, int type, bool carryover) | 
 | { | 
 | 	int hist, tier; | 
 | 	struct lru_gen_folio *lrugen = &lruvec->lrugen; | 
 | 	bool clear = carryover ? NR_HIST_GENS == 1 : NR_HIST_GENS > 1; | 
 | 	unsigned long seq = carryover ? lrugen->min_seq[type] : lrugen->max_seq + 1; | 
 |  | 
 | 	lockdep_assert_held(&lruvec->lru_lock); | 
 |  | 
 | 	if (!carryover && !clear) | 
 | 		return; | 
 |  | 
 | 	hist = lru_hist_from_seq(seq); | 
 |  | 
 | 	for (tier = 0; tier < MAX_NR_TIERS; tier++) { | 
 | 		if (carryover) { | 
 | 			unsigned long sum; | 
 |  | 
 | 			sum = lrugen->avg_refaulted[type][tier] + | 
 | 			      atomic_long_read(&lrugen->refaulted[hist][type][tier]); | 
 | 			WRITE_ONCE(lrugen->avg_refaulted[type][tier], sum / 2); | 
 |  | 
 | 			sum = lrugen->avg_total[type][tier] + | 
 | 			      lrugen->protected[hist][type][tier] + | 
 | 			      atomic_long_read(&lrugen->evicted[hist][type][tier]); | 
 | 			WRITE_ONCE(lrugen->avg_total[type][tier], sum / 2); | 
 | 		} | 
 |  | 
 | 		if (clear) { | 
 | 			atomic_long_set(&lrugen->refaulted[hist][type][tier], 0); | 
 | 			atomic_long_set(&lrugen->evicted[hist][type][tier], 0); | 
 | 			WRITE_ONCE(lrugen->protected[hist][type][tier], 0); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static bool positive_ctrl_err(struct ctrl_pos *sp, struct ctrl_pos *pv) | 
 | { | 
 | 	/* | 
 | 	 * Return true if the PV has a limited number of refaults or a lower | 
 | 	 * refaulted/total than the SP. | 
 | 	 */ | 
 | 	return pv->refaulted < MIN_LRU_BATCH || | 
 | 	       pv->refaulted * (sp->total + MIN_LRU_BATCH) * sp->gain <= | 
 | 	       (sp->refaulted + 1) * pv->total * pv->gain; | 
 | } | 
 |  | 
 | /****************************************************************************** | 
 |  *                          the aging | 
 |  ******************************************************************************/ | 
 |  | 
 | /* promote pages accessed through page tables */ | 
 | static int folio_update_gen(struct folio *folio, int gen) | 
 | { | 
 | 	unsigned long new_flags, old_flags = READ_ONCE(folio->flags); | 
 |  | 
 | 	VM_WARN_ON_ONCE(gen >= MAX_NR_GENS); | 
 |  | 
 | 	/* see the comment on LRU_REFS_FLAGS */ | 
 | 	if (!folio_test_referenced(folio) && !folio_test_workingset(folio)) { | 
 | 		set_mask_bits(&folio->flags, LRU_REFS_MASK, BIT(PG_referenced)); | 
 | 		return -1; | 
 | 	} | 
 |  | 
 | 	do { | 
 | 		/* lru_gen_del_folio() has isolated this page? */ | 
 | 		if (!(old_flags & LRU_GEN_MASK)) | 
 | 			return -1; | 
 |  | 
 | 		new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_FLAGS); | 
 | 		new_flags |= ((gen + 1UL) << LRU_GEN_PGOFF) | BIT(PG_workingset); | 
 | 	} while (!try_cmpxchg(&folio->flags, &old_flags, new_flags)); | 
 |  | 
 | 	return ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1; | 
 | } | 
 |  | 
 | /* protect pages accessed multiple times through file descriptors */ | 
 | static int folio_inc_gen(struct lruvec *lruvec, struct folio *folio, bool reclaiming) | 
 | { | 
 | 	int type = folio_is_file_lru(folio); | 
 | 	struct lru_gen_folio *lrugen = &lruvec->lrugen; | 
 | 	int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]); | 
 | 	unsigned long new_flags, old_flags = READ_ONCE(folio->flags); | 
 |  | 
 | 	VM_WARN_ON_ONCE_FOLIO(!(old_flags & LRU_GEN_MASK), folio); | 
 |  | 
 | 	do { | 
 | 		new_gen = ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1; | 
 | 		/* folio_update_gen() has promoted this page? */ | 
 | 		if (new_gen >= 0 && new_gen != old_gen) | 
 | 			return new_gen; | 
 |  | 
 | 		new_gen = (old_gen + 1) % MAX_NR_GENS; | 
 |  | 
 | 		new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_FLAGS); | 
 | 		new_flags |= (new_gen + 1UL) << LRU_GEN_PGOFF; | 
 | 		/* for folio_end_writeback() */ | 
 | 		if (reclaiming) | 
 | 			new_flags |= BIT(PG_reclaim); | 
 | 	} while (!try_cmpxchg(&folio->flags, &old_flags, new_flags)); | 
 |  | 
 | 	lru_gen_update_size(lruvec, folio, old_gen, new_gen); | 
 |  | 
 | 	return new_gen; | 
 | } | 
 |  | 
 | static void update_batch_size(struct lru_gen_mm_walk *walk, struct folio *folio, | 
 | 			      int old_gen, int new_gen) | 
 | { | 
 | 	int type = folio_is_file_lru(folio); | 
 | 	int zone = folio_zonenum(folio); | 
 | 	int delta = folio_nr_pages(folio); | 
 |  | 
 | 	VM_WARN_ON_ONCE(old_gen >= MAX_NR_GENS); | 
 | 	VM_WARN_ON_ONCE(new_gen >= MAX_NR_GENS); | 
 |  | 
 | 	walk->batched++; | 
 |  | 
 | 	walk->nr_pages[old_gen][type][zone] -= delta; | 
 | 	walk->nr_pages[new_gen][type][zone] += delta; | 
 | } | 
 |  | 
 | static void reset_batch_size(struct lru_gen_mm_walk *walk) | 
 | { | 
 | 	int gen, type, zone; | 
 | 	struct lruvec *lruvec = walk->lruvec; | 
 | 	struct lru_gen_folio *lrugen = &lruvec->lrugen; | 
 |  | 
 | 	walk->batched = 0; | 
 |  | 
 | 	for_each_gen_type_zone(gen, type, zone) { | 
 | 		enum lru_list lru = type * LRU_INACTIVE_FILE; | 
 | 		int delta = walk->nr_pages[gen][type][zone]; | 
 |  | 
 | 		if (!delta) | 
 | 			continue; | 
 |  | 
 | 		walk->nr_pages[gen][type][zone] = 0; | 
 | 		WRITE_ONCE(lrugen->nr_pages[gen][type][zone], | 
 | 			   lrugen->nr_pages[gen][type][zone] + delta); | 
 |  | 
 | 		if (lru_gen_is_active(lruvec, gen)) | 
 | 			lru += LRU_ACTIVE; | 
 | 		__update_lru_size(lruvec, lru, zone, delta); | 
 | 	} | 
 | } | 
 |  | 
 | static int should_skip_vma(unsigned long start, unsigned long end, struct mm_walk *args) | 
 | { | 
 | 	struct address_space *mapping; | 
 | 	struct vm_area_struct *vma = args->vma; | 
 | 	struct lru_gen_mm_walk *walk = args->private; | 
 |  | 
 | 	if (!vma_is_accessible(vma)) | 
 | 		return true; | 
 |  | 
 | 	if (is_vm_hugetlb_page(vma)) | 
 | 		return true; | 
 |  | 
 | 	if (!vma_has_recency(vma)) | 
 | 		return true; | 
 |  | 
 | 	if (vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) | 
 | 		return true; | 
 |  | 
 | 	if (vma == get_gate_vma(vma->vm_mm)) | 
 | 		return true; | 
 |  | 
 | 	if (vma_is_anonymous(vma)) | 
 | 		return !walk->swappiness; | 
 |  | 
 | 	if (WARN_ON_ONCE(!vma->vm_file || !vma->vm_file->f_mapping)) | 
 | 		return true; | 
 |  | 
 | 	mapping = vma->vm_file->f_mapping; | 
 | 	if (mapping_unevictable(mapping)) | 
 | 		return true; | 
 |  | 
 | 	if (shmem_mapping(mapping)) | 
 | 		return !walk->swappiness; | 
 |  | 
 | 	if (walk->swappiness > MAX_SWAPPINESS) | 
 | 		return true; | 
 |  | 
 | 	/* to exclude special mappings like dax, etc. */ | 
 | 	return !mapping->a_ops->read_folio; | 
 | } | 
 |  | 
 | /* | 
 |  * Some userspace memory allocators map many single-page VMAs. Instead of | 
 |  * returning back to the PGD table for each of such VMAs, finish an entire PMD | 
 |  * table to reduce zigzags and improve cache performance. | 
 |  */ | 
 | static bool get_next_vma(unsigned long mask, unsigned long size, struct mm_walk *args, | 
 | 			 unsigned long *vm_start, unsigned long *vm_end) | 
 | { | 
 | 	unsigned long start = round_up(*vm_end, size); | 
 | 	unsigned long end = (start | ~mask) + 1; | 
 | 	VMA_ITERATOR(vmi, args->mm, start); | 
 |  | 
 | 	VM_WARN_ON_ONCE(mask & size); | 
 | 	VM_WARN_ON_ONCE((start & mask) != (*vm_start & mask)); | 
 |  | 
 | 	for_each_vma(vmi, args->vma) { | 
 | 		if (end && end <= args->vma->vm_start) | 
 | 			return false; | 
 |  | 
 | 		if (should_skip_vma(args->vma->vm_start, args->vma->vm_end, args)) | 
 | 			continue; | 
 |  | 
 | 		*vm_start = max(start, args->vma->vm_start); | 
 | 		*vm_end = min(end - 1, args->vma->vm_end - 1) + 1; | 
 |  | 
 | 		return true; | 
 | 	} | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | static unsigned long get_pte_pfn(pte_t pte, struct vm_area_struct *vma, unsigned long addr, | 
 | 				 struct pglist_data *pgdat) | 
 | { | 
 | 	unsigned long pfn = pte_pfn(pte); | 
 |  | 
 | 	VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end); | 
 |  | 
 | 	if (!pte_present(pte) || is_zero_pfn(pfn)) | 
 | 		return -1; | 
 |  | 
 | 	if (WARN_ON_ONCE(pte_devmap(pte) || pte_special(pte))) | 
 | 		return -1; | 
 |  | 
 | 	if (!pte_young(pte) && !mm_has_notifiers(vma->vm_mm)) | 
 | 		return -1; | 
 |  | 
 | 	if (WARN_ON_ONCE(!pfn_valid(pfn))) | 
 | 		return -1; | 
 |  | 
 | 	if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat)) | 
 | 		return -1; | 
 |  | 
 | 	return pfn; | 
 | } | 
 |  | 
 | static unsigned long get_pmd_pfn(pmd_t pmd, struct vm_area_struct *vma, unsigned long addr, | 
 | 				 struct pglist_data *pgdat) | 
 | { | 
 | 	unsigned long pfn = pmd_pfn(pmd); | 
 |  | 
 | 	VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end); | 
 |  | 
 | 	if (!pmd_present(pmd) || is_huge_zero_pmd(pmd)) | 
 | 		return -1; | 
 |  | 
 | 	if (WARN_ON_ONCE(pmd_devmap(pmd))) | 
 | 		return -1; | 
 |  | 
 | 	if (!pmd_young(pmd) && !mm_has_notifiers(vma->vm_mm)) | 
 | 		return -1; | 
 |  | 
 | 	if (WARN_ON_ONCE(!pfn_valid(pfn))) | 
 | 		return -1; | 
 |  | 
 | 	if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat)) | 
 | 		return -1; | 
 |  | 
 | 	return pfn; | 
 | } | 
 |  | 
 | static struct folio *get_pfn_folio(unsigned long pfn, struct mem_cgroup *memcg, | 
 | 				   struct pglist_data *pgdat) | 
 | { | 
 | 	struct folio *folio = pfn_folio(pfn); | 
 |  | 
 | 	if (folio_lru_gen(folio) < 0) | 
 | 		return NULL; | 
 |  | 
 | 	if (folio_nid(folio) != pgdat->node_id) | 
 | 		return NULL; | 
 |  | 
 | 	if (folio_memcg(folio) != memcg) | 
 | 		return NULL; | 
 |  | 
 | 	return folio; | 
 | } | 
 |  | 
 | static bool suitable_to_scan(int total, int young) | 
 | { | 
 | 	int n = clamp_t(int, cache_line_size() / sizeof(pte_t), 2, 8); | 
 |  | 
 | 	/* suitable if the average number of young PTEs per cacheline is >=1 */ | 
 | 	return young * n >= total; | 
 | } | 
 |  | 
 | static void walk_update_folio(struct lru_gen_mm_walk *walk, struct folio *folio, | 
 | 			      int new_gen, bool dirty) | 
 | { | 
 | 	int old_gen; | 
 |  | 
 | 	if (!folio) | 
 | 		return; | 
 |  | 
 | 	if (dirty && !folio_test_dirty(folio) && | 
 | 	    !(folio_test_anon(folio) && folio_test_swapbacked(folio) && | 
 | 	      !folio_test_swapcache(folio))) | 
 | 		folio_mark_dirty(folio); | 
 |  | 
 | 	if (walk) { | 
 | 		old_gen = folio_update_gen(folio, new_gen); | 
 | 		if (old_gen >= 0 && old_gen != new_gen) | 
 | 			update_batch_size(walk, folio, old_gen, new_gen); | 
 | 	} else if (lru_gen_set_refs(folio)) { | 
 | 		old_gen = folio_lru_gen(folio); | 
 | 		if (old_gen >= 0 && old_gen != new_gen) | 
 | 			folio_activate(folio); | 
 | 	} | 
 | } | 
 |  | 
 | static bool walk_pte_range(pmd_t *pmd, unsigned long start, unsigned long end, | 
 | 			   struct mm_walk *args) | 
 | { | 
 | 	int i; | 
 | 	bool dirty; | 
 | 	pte_t *pte; | 
 | 	spinlock_t *ptl; | 
 | 	unsigned long addr; | 
 | 	int total = 0; | 
 | 	int young = 0; | 
 | 	struct folio *last = NULL; | 
 | 	struct lru_gen_mm_walk *walk = args->private; | 
 | 	struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec); | 
 | 	struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec); | 
 | 	DEFINE_MAX_SEQ(walk->lruvec); | 
 | 	int gen = lru_gen_from_seq(max_seq); | 
 | 	pmd_t pmdval; | 
 |  | 
 | 	pte = pte_offset_map_rw_nolock(args->mm, pmd, start & PMD_MASK, &pmdval, &ptl); | 
 | 	if (!pte) | 
 | 		return false; | 
 |  | 
 | 	if (!spin_trylock(ptl)) { | 
 | 		pte_unmap(pte); | 
 | 		return true; | 
 | 	} | 
 |  | 
 | 	if (unlikely(!pmd_same(pmdval, pmdp_get_lockless(pmd)))) { | 
 | 		pte_unmap_unlock(pte, ptl); | 
 | 		return false; | 
 | 	} | 
 |  | 
 | 	arch_enter_lazy_mmu_mode(); | 
 | restart: | 
 | 	for (i = pte_index(start), addr = start; addr != end; i++, addr += PAGE_SIZE) { | 
 | 		unsigned long pfn; | 
 | 		struct folio *folio; | 
 | 		pte_t ptent = ptep_get(pte + i); | 
 |  | 
 | 		total++; | 
 | 		walk->mm_stats[MM_LEAF_TOTAL]++; | 
 |  | 
 | 		pfn = get_pte_pfn(ptent, args->vma, addr, pgdat); | 
 | 		if (pfn == -1) | 
 | 			continue; | 
 |  | 
 | 		folio = get_pfn_folio(pfn, memcg, pgdat); | 
 | 		if (!folio) | 
 | 			continue; | 
 |  | 
 | 		if (!ptep_clear_young_notify(args->vma, addr, pte + i)) | 
 | 			continue; | 
 |  | 
 | 		if (last != folio) { | 
 | 			walk_update_folio(walk, last, gen, dirty); | 
 |  | 
 | 			last = folio; | 
 | 			dirty = false; | 
 | 		} | 
 |  | 
 | 		if (pte_dirty(ptent)) | 
 | 			dirty = true; | 
 |  | 
 | 		young++; | 
 | 		walk->mm_stats[MM_LEAF_YOUNG]++; | 
 | 	} | 
 |  | 
 | 	walk_update_folio(walk, last, gen, dirty); | 
 | 	last = NULL; | 
 |  | 
 | 	if (i < PTRS_PER_PTE && get_next_vma(PMD_MASK, PAGE_SIZE, args, &start, &end)) | 
 | 		goto restart; | 
 |  | 
 | 	arch_leave_lazy_mmu_mode(); | 
 | 	pte_unmap_unlock(pte, ptl); | 
 |  | 
 | 	return suitable_to_scan(total, young); | 
 | } | 
 |  | 
 | static void walk_pmd_range_locked(pud_t *pud, unsigned long addr, struct vm_area_struct *vma, | 
 | 				  struct mm_walk *args, unsigned long *bitmap, unsigned long *first) | 
 | { | 
 | 	int i; | 
 | 	bool dirty; | 
 | 	pmd_t *pmd; | 
 | 	spinlock_t *ptl; | 
 | 	struct folio *last = NULL; | 
 | 	struct lru_gen_mm_walk *walk = args->private; | 
 | 	struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec); | 
 | 	struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec); | 
 | 	DEFINE_MAX_SEQ(walk->lruvec); | 
 | 	int gen = lru_gen_from_seq(max_seq); | 
 |  | 
 | 	VM_WARN_ON_ONCE(pud_leaf(*pud)); | 
 |  | 
 | 	/* try to batch at most 1+MIN_LRU_BATCH+1 entries */ | 
 | 	if (*first == -1) { | 
 | 		*first = addr; | 
 | 		bitmap_zero(bitmap, MIN_LRU_BATCH); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	i = addr == -1 ? 0 : pmd_index(addr) - pmd_index(*first); | 
 | 	if (i && i <= MIN_LRU_BATCH) { | 
 | 		__set_bit(i - 1, bitmap); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	pmd = pmd_offset(pud, *first); | 
 |  | 
 | 	ptl = pmd_lockptr(args->mm, pmd); | 
 | 	if (!spin_trylock(ptl)) | 
 | 		goto done; | 
 |  | 
 | 	arch_enter_lazy_mmu_mode(); | 
 |  | 
 | 	do { | 
 | 		unsigned long pfn; | 
 | 		struct folio *folio; | 
 |  | 
 | 		/* don't round down the first address */ | 
 | 		addr = i ? (*first & PMD_MASK) + i * PMD_SIZE : *first; | 
 |  | 
 | 		if (!pmd_present(pmd[i])) | 
 | 			goto next; | 
 |  | 
 | 		if (!pmd_trans_huge(pmd[i])) { | 
 | 			if (!walk->force_scan && should_clear_pmd_young() && | 
 | 			    !mm_has_notifiers(args->mm)) | 
 | 				pmdp_test_and_clear_young(vma, addr, pmd + i); | 
 | 			goto next; | 
 | 		} | 
 |  | 
 | 		pfn = get_pmd_pfn(pmd[i], vma, addr, pgdat); | 
 | 		if (pfn == -1) | 
 | 			goto next; | 
 |  | 
 | 		folio = get_pfn_folio(pfn, memcg, pgdat); | 
 | 		if (!folio) | 
 | 			goto next; | 
 |  | 
 | 		if (!pmdp_clear_young_notify(vma, addr, pmd + i)) | 
 | 			goto next; | 
 |  | 
 | 		if (last != folio) { | 
 | 			walk_update_folio(walk, last, gen, dirty); | 
 |  | 
 | 			last = folio; | 
 | 			dirty = false; | 
 | 		} | 
 |  | 
 | 		if (pmd_dirty(pmd[i])) | 
 | 			dirty = true; | 
 |  | 
 | 		walk->mm_stats[MM_LEAF_YOUNG]++; | 
 | next: | 
 | 		i = i > MIN_LRU_BATCH ? 0 : find_next_bit(bitmap, MIN_LRU_BATCH, i) + 1; | 
 | 	} while (i <= MIN_LRU_BATCH); | 
 |  | 
 | 	walk_update_folio(walk, last, gen, dirty); | 
 |  | 
 | 	arch_leave_lazy_mmu_mode(); | 
 | 	spin_unlock(ptl); | 
 | done: | 
 | 	*first = -1; | 
 | } | 
 |  | 
 | static void walk_pmd_range(pud_t *pud, unsigned long start, unsigned long end, | 
 | 			   struct mm_walk *args) | 
 | { | 
 | 	int i; | 
 | 	pmd_t *pmd; | 
 | 	unsigned long next; | 
 | 	unsigned long addr; | 
 | 	struct vm_area_struct *vma; | 
 | 	DECLARE_BITMAP(bitmap, MIN_LRU_BATCH); | 
 | 	unsigned long first = -1; | 
 | 	struct lru_gen_mm_walk *walk = args->private; | 
 | 	struct lru_gen_mm_state *mm_state = get_mm_state(walk->lruvec); | 
 |  | 
 | 	VM_WARN_ON_ONCE(pud_leaf(*pud)); | 
 |  | 
 | 	/* | 
 | 	 * Finish an entire PMD in two passes: the first only reaches to PTE | 
 | 	 * tables to avoid taking the PMD lock; the second, if necessary, takes | 
 | 	 * the PMD lock to clear the accessed bit in PMD entries. | 
 | 	 */ | 
 | 	pmd = pmd_offset(pud, start & PUD_MASK); | 
 | restart: | 
 | 	/* walk_pte_range() may call get_next_vma() */ | 
 | 	vma = args->vma; | 
 | 	for (i = pmd_index(start), addr = start; addr != end; i++, addr = next) { | 
 | 		pmd_t val = pmdp_get_lockless(pmd + i); | 
 |  | 
 | 		next = pmd_addr_end(addr, end); | 
 |  | 
 | 		if (!pmd_present(val) || is_huge_zero_pmd(val)) { | 
 | 			walk->mm_stats[MM_LEAF_TOTAL]++; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		if (pmd_trans_huge(val)) { | 
 | 			struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec); | 
 | 			unsigned long pfn = get_pmd_pfn(val, vma, addr, pgdat); | 
 |  | 
 | 			walk->mm_stats[MM_LEAF_TOTAL]++; | 
 |  | 
 | 			if (pfn != -1) | 
 | 				walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		if (!walk->force_scan && should_clear_pmd_young() && | 
 | 		    !mm_has_notifiers(args->mm)) { | 
 | 			if (!pmd_young(val)) | 
 | 				continue; | 
 |  | 
 | 			walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first); | 
 | 		} | 
 |  | 
 | 		if (!walk->force_scan && !test_bloom_filter(mm_state, walk->seq, pmd + i)) | 
 | 			continue; | 
 |  | 
 | 		walk->mm_stats[MM_NONLEAF_FOUND]++; | 
 |  | 
 | 		if (!walk_pte_range(&val, addr, next, args)) | 
 | 			continue; | 
 |  | 
 | 		walk->mm_stats[MM_NONLEAF_ADDED]++; | 
 |  | 
 | 		/* carry over to the next generation */ | 
 | 		update_bloom_filter(mm_state, walk->seq + 1, pmd + i); | 
 | 	} | 
 |  | 
 | 	walk_pmd_range_locked(pud, -1, vma, args, bitmap, &first); | 
 |  | 
 | 	if (i < PTRS_PER_PMD && get_next_vma(PUD_MASK, PMD_SIZE, args, &start, &end)) | 
 | 		goto restart; | 
 | } | 
 |  | 
 | static int walk_pud_range(p4d_t *p4d, unsigned long start, unsigned long end, | 
 | 			  struct mm_walk *args) | 
 | { | 
 | 	int i; | 
 | 	pud_t *pud; | 
 | 	unsigned long addr; | 
 | 	unsigned long next; | 
 | 	struct lru_gen_mm_walk *walk = args->private; | 
 |  | 
 | 	VM_WARN_ON_ONCE(p4d_leaf(*p4d)); | 
 |  | 
 | 	pud = pud_offset(p4d, start & P4D_MASK); | 
 | restart: | 
 | 	for (i = pud_index(start), addr = start; addr != end; i++, addr = next) { | 
 | 		pud_t val = READ_ONCE(pud[i]); | 
 |  | 
 | 		next = pud_addr_end(addr, end); | 
 |  | 
 | 		if (!pud_present(val) || WARN_ON_ONCE(pud_leaf(val))) | 
 | 			continue; | 
 |  | 
 | 		walk_pmd_range(&val, addr, next, args); | 
 |  | 
 | 		if (need_resched() || walk->batched >= MAX_LRU_BATCH) { | 
 | 			end = (addr | ~PUD_MASK) + 1; | 
 | 			goto done; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (i < PTRS_PER_PUD && get_next_vma(P4D_MASK, PUD_SIZE, args, &start, &end)) | 
 | 		goto restart; | 
 |  | 
 | 	end = round_up(end, P4D_SIZE); | 
 | done: | 
 | 	if (!end || !args->vma) | 
 | 		return 1; | 
 |  | 
 | 	walk->next_addr = max(end, args->vma->vm_start); | 
 |  | 
 | 	return -EAGAIN; | 
 | } | 
 |  | 
 | static void walk_mm(struct mm_struct *mm, struct lru_gen_mm_walk *walk) | 
 | { | 
 | 	static const struct mm_walk_ops mm_walk_ops = { | 
 | 		.test_walk = should_skip_vma, | 
 | 		.p4d_entry = walk_pud_range, | 
 | 		.walk_lock = PGWALK_RDLOCK, | 
 | 	}; | 
 | 	int err; | 
 | 	struct lruvec *lruvec = walk->lruvec; | 
 |  | 
 | 	walk->next_addr = FIRST_USER_ADDRESS; | 
 |  | 
 | 	do { | 
 | 		DEFINE_MAX_SEQ(lruvec); | 
 |  | 
 | 		err = -EBUSY; | 
 |  | 
 | 		/* another thread might have called inc_max_seq() */ | 
 | 		if (walk->seq != max_seq) | 
 | 			break; | 
 |  | 
 | 		/* the caller might be holding the lock for write */ | 
 | 		if (mmap_read_trylock(mm)) { | 
 | 			err = walk_page_range(mm, walk->next_addr, ULONG_MAX, &mm_walk_ops, walk); | 
 |  | 
 | 			mmap_read_unlock(mm); | 
 | 		} | 
 |  | 
 | 		if (walk->batched) { | 
 | 			spin_lock_irq(&lruvec->lru_lock); | 
 | 			reset_batch_size(walk); | 
 | 			spin_unlock_irq(&lruvec->lru_lock); | 
 | 		} | 
 |  | 
 | 		cond_resched(); | 
 | 	} while (err == -EAGAIN); | 
 | } | 
 |  | 
 | static struct lru_gen_mm_walk *set_mm_walk(struct pglist_data *pgdat, bool force_alloc) | 
 | { | 
 | 	struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk; | 
 |  | 
 | 	if (pgdat && current_is_kswapd()) { | 
 | 		VM_WARN_ON_ONCE(walk); | 
 |  | 
 | 		walk = &pgdat->mm_walk; | 
 | 	} else if (!walk && force_alloc) { | 
 | 		VM_WARN_ON_ONCE(current_is_kswapd()); | 
 |  | 
 | 		walk = kzalloc(sizeof(*walk), __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN); | 
 | 	} | 
 |  | 
 | 	current->reclaim_state->mm_walk = walk; | 
 |  | 
 | 	return walk; | 
 | } | 
 |  | 
 | static void clear_mm_walk(void) | 
 | { | 
 | 	struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk; | 
 |  | 
 | 	VM_WARN_ON_ONCE(walk && memchr_inv(walk->nr_pages, 0, sizeof(walk->nr_pages))); | 
 | 	VM_WARN_ON_ONCE(walk && memchr_inv(walk->mm_stats, 0, sizeof(walk->mm_stats))); | 
 |  | 
 | 	current->reclaim_state->mm_walk = NULL; | 
 |  | 
 | 	if (!current_is_kswapd()) | 
 | 		kfree(walk); | 
 | } | 
 |  | 
 | static bool inc_min_seq(struct lruvec *lruvec, int type, int swappiness) | 
 | { | 
 | 	int zone; | 
 | 	int remaining = MAX_LRU_BATCH; | 
 | 	struct lru_gen_folio *lrugen = &lruvec->lrugen; | 
 | 	int hist = lru_hist_from_seq(lrugen->min_seq[type]); | 
 | 	int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]); | 
 |  | 
 | 	/* For file type, skip the check if swappiness is anon only */ | 
 | 	if (type && (swappiness == SWAPPINESS_ANON_ONLY)) | 
 | 		goto done; | 
 |  | 
 | 	/* For anon type, skip the check if swappiness is zero (file only) */ | 
 | 	if (!type && !swappiness) | 
 | 		goto done; | 
 |  | 
 | 	/* prevent cold/hot inversion if the type is evictable */ | 
 | 	for (zone = 0; zone < MAX_NR_ZONES; zone++) { | 
 | 		struct list_head *head = &lrugen->folios[old_gen][type][zone]; | 
 |  | 
 | 		while (!list_empty(head)) { | 
 | 			struct folio *folio = lru_to_folio(head); | 
 | 			int refs = folio_lru_refs(folio); | 
 | 			bool workingset = folio_test_workingset(folio); | 
 |  | 
 | 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); | 
 | 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio); | 
 | 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); | 
 | 			VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio); | 
 |  | 
 | 			new_gen = folio_inc_gen(lruvec, folio, false); | 
 | 			list_move_tail(&folio->lru, &lrugen->folios[new_gen][type][zone]); | 
 |  | 
 | 			/* don't count the workingset being lazily promoted */ | 
 | 			if (refs + workingset != BIT(LRU_REFS_WIDTH) + 1) { | 
 | 				int tier = lru_tier_from_refs(refs, workingset); | 
 | 				int delta = folio_nr_pages(folio); | 
 |  | 
 | 				WRITE_ONCE(lrugen->protected[hist][type][tier], | 
 | 					   lrugen->protected[hist][type][tier] + delta); | 
 | 			} | 
 |  | 
 | 			if (!--remaining) | 
 | 				return false; | 
 | 		} | 
 | 	} | 
 | done: | 
 | 	reset_ctrl_pos(lruvec, type, true); | 
 | 	WRITE_ONCE(lrugen->min_seq[type], lrugen->min_seq[type] + 1); | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | static bool try_to_inc_min_seq(struct lruvec *lruvec, int swappiness) | 
 | { | 
 | 	int gen, type, zone; | 
 | 	bool success = false; | 
 | 	struct lru_gen_folio *lrugen = &lruvec->lrugen; | 
 | 	DEFINE_MIN_SEQ(lruvec); | 
 |  | 
 | 	VM_WARN_ON_ONCE(!seq_is_valid(lruvec)); | 
 |  | 
 | 	/* find the oldest populated generation */ | 
 | 	for_each_evictable_type(type, swappiness) { | 
 | 		while (min_seq[type] + MIN_NR_GENS <= lrugen->max_seq) { | 
 | 			gen = lru_gen_from_seq(min_seq[type]); | 
 |  | 
 | 			for (zone = 0; zone < MAX_NR_ZONES; zone++) { | 
 | 				if (!list_empty(&lrugen->folios[gen][type][zone])) | 
 | 					goto next; | 
 | 			} | 
 |  | 
 | 			min_seq[type]++; | 
 | 		} | 
 | next: | 
 | 		; | 
 | 	} | 
 |  | 
 | 	/* see the comment on lru_gen_folio */ | 
 | 	if (swappiness && swappiness <= MAX_SWAPPINESS) { | 
 | 		unsigned long seq = lrugen->max_seq - MIN_NR_GENS; | 
 |  | 
 | 		if (min_seq[LRU_GEN_ANON] > seq && min_seq[LRU_GEN_FILE] < seq) | 
 | 			min_seq[LRU_GEN_ANON] = seq; | 
 | 		else if (min_seq[LRU_GEN_FILE] > seq && min_seq[LRU_GEN_ANON] < seq) | 
 | 			min_seq[LRU_GEN_FILE] = seq; | 
 | 	} | 
 |  | 
 | 	for_each_evictable_type(type, swappiness) { | 
 | 		if (min_seq[type] <= lrugen->min_seq[type]) | 
 | 			continue; | 
 |  | 
 | 		reset_ctrl_pos(lruvec, type, true); | 
 | 		WRITE_ONCE(lrugen->min_seq[type], min_seq[type]); | 
 | 		success = true; | 
 | 	} | 
 |  | 
 | 	return success; | 
 | } | 
 |  | 
 | static bool inc_max_seq(struct lruvec *lruvec, unsigned long seq, int swappiness) | 
 | { | 
 | 	bool success; | 
 | 	int prev, next; | 
 | 	int type, zone; | 
 | 	struct lru_gen_folio *lrugen = &lruvec->lrugen; | 
 | restart: | 
 | 	if (seq < READ_ONCE(lrugen->max_seq)) | 
 | 		return false; | 
 |  | 
 | 	spin_lock_irq(&lruvec->lru_lock); | 
 |  | 
 | 	VM_WARN_ON_ONCE(!seq_is_valid(lruvec)); | 
 |  | 
 | 	success = seq == lrugen->max_seq; | 
 | 	if (!success) | 
 | 		goto unlock; | 
 |  | 
 | 	for (type = 0; type < ANON_AND_FILE; type++) { | 
 | 		if (get_nr_gens(lruvec, type) != MAX_NR_GENS) | 
 | 			continue; | 
 |  | 
 | 		if (inc_min_seq(lruvec, type, swappiness)) | 
 | 			continue; | 
 |  | 
 | 		spin_unlock_irq(&lruvec->lru_lock); | 
 | 		cond_resched(); | 
 | 		goto restart; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Update the active/inactive LRU sizes for compatibility. Both sides of | 
 | 	 * the current max_seq need to be covered, since max_seq+1 can overlap | 
 | 	 * with min_seq[LRU_GEN_ANON] if swapping is constrained. And if they do | 
 | 	 * overlap, cold/hot inversion happens. | 
 | 	 */ | 
 | 	prev = lru_gen_from_seq(lrugen->max_seq - 1); | 
 | 	next = lru_gen_from_seq(lrugen->max_seq + 1); | 
 |  | 
 | 	for (type = 0; type < ANON_AND_FILE; type++) { | 
 | 		for (zone = 0; zone < MAX_NR_ZONES; zone++) { | 
 | 			enum lru_list lru = type * LRU_INACTIVE_FILE; | 
 | 			long delta = lrugen->nr_pages[prev][type][zone] - | 
 | 				     lrugen->nr_pages[next][type][zone]; | 
 |  | 
 | 			if (!delta) | 
 | 				continue; | 
 |  | 
 | 			__update_lru_size(lruvec, lru, zone, delta); | 
 | 			__update_lru_size(lruvec, lru + LRU_ACTIVE, zone, -delta); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	for (type = 0; type < ANON_AND_FILE; type++) | 
 | 		reset_ctrl_pos(lruvec, type, false); | 
 |  | 
 | 	WRITE_ONCE(lrugen->timestamps[next], jiffies); | 
 | 	/* make sure preceding modifications appear */ | 
 | 	smp_store_release(&lrugen->max_seq, lrugen->max_seq + 1); | 
 | unlock: | 
 | 	spin_unlock_irq(&lruvec->lru_lock); | 
 |  | 
 | 	return success; | 
 | } | 
 |  | 
 | static bool try_to_inc_max_seq(struct lruvec *lruvec, unsigned long seq, | 
 | 			       int swappiness, bool force_scan) | 
 | { | 
 | 	bool success; | 
 | 	struct lru_gen_mm_walk *walk; | 
 | 	struct mm_struct *mm = NULL; | 
 | 	struct lru_gen_folio *lrugen = &lruvec->lrugen; | 
 | 	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); | 
 |  | 
 | 	VM_WARN_ON_ONCE(seq > READ_ONCE(lrugen->max_seq)); | 
 |  | 
 | 	if (!mm_state) | 
 | 		return inc_max_seq(lruvec, seq, swappiness); | 
 |  | 
 | 	/* see the comment in iterate_mm_list() */ | 
 | 	if (seq <= READ_ONCE(mm_state->seq)) | 
 | 		return false; | 
 |  | 
 | 	/* | 
 | 	 * If the hardware doesn't automatically set the accessed bit, fallback | 
 | 	 * to lru_gen_look_around(), which only clears the accessed bit in a | 
 | 	 * handful of PTEs. Spreading the work out over a period of time usually | 
 | 	 * is less efficient, but it avoids bursty page faults. | 
 | 	 */ | 
 | 	if (!should_walk_mmu()) { | 
 | 		success = iterate_mm_list_nowalk(lruvec, seq); | 
 | 		goto done; | 
 | 	} | 
 |  | 
 | 	walk = set_mm_walk(NULL, true); | 
 | 	if (!walk) { | 
 | 		success = iterate_mm_list_nowalk(lruvec, seq); | 
 | 		goto done; | 
 | 	} | 
 |  | 
 | 	walk->lruvec = lruvec; | 
 | 	walk->seq = seq; | 
 | 	walk->swappiness = swappiness; | 
 | 	walk->force_scan = force_scan; | 
 |  | 
 | 	do { | 
 | 		success = iterate_mm_list(walk, &mm); | 
 | 		if (mm) | 
 | 			walk_mm(mm, walk); | 
 | 	} while (mm); | 
 | done: | 
 | 	if (success) { | 
 | 		success = inc_max_seq(lruvec, seq, swappiness); | 
 | 		WARN_ON_ONCE(!success); | 
 | 	} | 
 |  | 
 | 	return success; | 
 | } | 
 |  | 
 | /****************************************************************************** | 
 |  *                          working set protection | 
 |  ******************************************************************************/ | 
 |  | 
 | static void set_initial_priority(struct pglist_data *pgdat, struct scan_control *sc) | 
 | { | 
 | 	int priority; | 
 | 	unsigned long reclaimable; | 
 |  | 
 | 	if (sc->priority != DEF_PRIORITY || sc->nr_to_reclaim < MIN_LRU_BATCH) | 
 | 		return; | 
 | 	/* | 
 | 	 * Determine the initial priority based on | 
 | 	 * (total >> priority) * reclaimed_to_scanned_ratio = nr_to_reclaim, | 
 | 	 * where reclaimed_to_scanned_ratio = inactive / total. | 
 | 	 */ | 
 | 	reclaimable = node_page_state(pgdat, NR_INACTIVE_FILE); | 
 | 	if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc)) | 
 | 		reclaimable += node_page_state(pgdat, NR_INACTIVE_ANON); | 
 |  | 
 | 	/* round down reclaimable and round up sc->nr_to_reclaim */ | 
 | 	priority = fls_long(reclaimable) - 1 - fls_long(sc->nr_to_reclaim - 1); | 
 |  | 
 | 	/* | 
 | 	 * The estimation is based on LRU pages only, so cap it to prevent | 
 | 	 * overshoots of shrinker objects by large margins. | 
 | 	 */ | 
 | 	sc->priority = clamp(priority, DEF_PRIORITY / 2, DEF_PRIORITY); | 
 | } | 
 |  | 
 | static bool lruvec_is_sizable(struct lruvec *lruvec, struct scan_control *sc) | 
 | { | 
 | 	int gen, type, zone; | 
 | 	unsigned long total = 0; | 
 | 	int swappiness = get_swappiness(lruvec, sc); | 
 | 	struct lru_gen_folio *lrugen = &lruvec->lrugen; | 
 | 	struct mem_cgroup *memcg = lruvec_memcg(lruvec); | 
 | 	DEFINE_MAX_SEQ(lruvec); | 
 | 	DEFINE_MIN_SEQ(lruvec); | 
 |  | 
 | 	for_each_evictable_type(type, swappiness) { | 
 | 		unsigned long seq; | 
 |  | 
 | 		for (seq = min_seq[type]; seq <= max_seq; seq++) { | 
 | 			gen = lru_gen_from_seq(seq); | 
 |  | 
 | 			for (zone = 0; zone < MAX_NR_ZONES; zone++) | 
 | 				total += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* whether the size is big enough to be helpful */ | 
 | 	return mem_cgroup_online(memcg) ? (total >> sc->priority) : total; | 
 | } | 
 |  | 
 | static bool lruvec_is_reclaimable(struct lruvec *lruvec, struct scan_control *sc, | 
 | 				  unsigned long min_ttl) | 
 | { | 
 | 	int gen; | 
 | 	unsigned long birth; | 
 | 	int swappiness = get_swappiness(lruvec, sc); | 
 | 	struct mem_cgroup *memcg = lruvec_memcg(lruvec); | 
 | 	DEFINE_MIN_SEQ(lruvec); | 
 |  | 
 | 	if (mem_cgroup_below_min(NULL, memcg)) | 
 | 		return false; | 
 |  | 
 | 	if (!lruvec_is_sizable(lruvec, sc)) | 
 | 		return false; | 
 |  | 
 | 	gen = lru_gen_from_seq(evictable_min_seq(min_seq, swappiness)); | 
 | 	birth = READ_ONCE(lruvec->lrugen.timestamps[gen]); | 
 |  | 
 | 	return time_is_before_jiffies(birth + min_ttl); | 
 | } | 
 |  | 
 | /* to protect the working set of the last N jiffies */ | 
 | static unsigned long lru_gen_min_ttl __read_mostly; | 
 |  | 
 | static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc) | 
 | { | 
 | 	struct mem_cgroup *memcg; | 
 | 	unsigned long min_ttl = READ_ONCE(lru_gen_min_ttl); | 
 | 	bool reclaimable = !min_ttl; | 
 |  | 
 | 	VM_WARN_ON_ONCE(!current_is_kswapd()); | 
 |  | 
 | 	set_initial_priority(pgdat, sc); | 
 |  | 
 | 	memcg = mem_cgroup_iter(NULL, NULL, NULL); | 
 | 	do { | 
 | 		struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); | 
 |  | 
 | 		mem_cgroup_calculate_protection(NULL, memcg); | 
 |  | 
 | 		if (!reclaimable) | 
 | 			reclaimable = lruvec_is_reclaimable(lruvec, sc, min_ttl); | 
 | 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL))); | 
 |  | 
 | 	/* | 
 | 	 * The main goal is to OOM kill if every generation from all memcgs is | 
 | 	 * younger than min_ttl. However, another possibility is all memcgs are | 
 | 	 * either too small or below min. | 
 | 	 */ | 
 | 	if (!reclaimable && mutex_trylock(&oom_lock)) { | 
 | 		struct oom_control oc = { | 
 | 			.gfp_mask = sc->gfp_mask, | 
 | 		}; | 
 |  | 
 | 		out_of_memory(&oc); | 
 |  | 
 | 		mutex_unlock(&oom_lock); | 
 | 	} | 
 | } | 
 |  | 
 | /****************************************************************************** | 
 |  *                          rmap/PT walk feedback | 
 |  ******************************************************************************/ | 
 |  | 
 | /* | 
 |  * This function exploits spatial locality when shrink_folio_list() walks the | 
 |  * rmap. It scans the adjacent PTEs of a young PTE and promotes hot pages. If | 
 |  * the scan was done cacheline efficiently, it adds the PMD entry pointing to | 
 |  * the PTE table to the Bloom filter. This forms a feedback loop between the | 
 |  * eviction and the aging. | 
 |  */ | 
 | bool lru_gen_look_around(struct page_vma_mapped_walk *pvmw) | 
 | { | 
 | 	int i; | 
 | 	bool dirty; | 
 | 	unsigned long start; | 
 | 	unsigned long end; | 
 | 	struct lru_gen_mm_walk *walk; | 
 | 	struct folio *last = NULL; | 
 | 	int young = 1; | 
 | 	pte_t *pte = pvmw->pte; | 
 | 	unsigned long addr = pvmw->address; | 
 | 	struct vm_area_struct *vma = pvmw->vma; | 
 | 	struct folio *folio = pfn_folio(pvmw->pfn); | 
 | 	struct mem_cgroup *memcg = folio_memcg(folio); | 
 | 	struct pglist_data *pgdat = folio_pgdat(folio); | 
 | 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); | 
 | 	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); | 
 | 	DEFINE_MAX_SEQ(lruvec); | 
 | 	int gen = lru_gen_from_seq(max_seq); | 
 |  | 
 | 	lockdep_assert_held(pvmw->ptl); | 
 | 	VM_WARN_ON_ONCE_FOLIO(folio_test_lru(folio), folio); | 
 |  | 
 | 	if (!ptep_clear_young_notify(vma, addr, pte)) | 
 | 		return false; | 
 |  | 
 | 	if (spin_is_contended(pvmw->ptl)) | 
 | 		return true; | 
 |  | 
 | 	/* exclude special VMAs containing anon pages from COW */ | 
 | 	if (vma->vm_flags & VM_SPECIAL) | 
 | 		return true; | 
 |  | 
 | 	/* avoid taking the LRU lock under the PTL when possible */ | 
 | 	walk = current->reclaim_state ? current->reclaim_state->mm_walk : NULL; | 
 |  | 
 | 	start = max(addr & PMD_MASK, vma->vm_start); | 
 | 	end = min(addr | ~PMD_MASK, vma->vm_end - 1) + 1; | 
 |  | 
 | 	if (end - start == PAGE_SIZE) | 
 | 		return true; | 
 |  | 
 | 	if (end - start > MIN_LRU_BATCH * PAGE_SIZE) { | 
 | 		if (addr - start < MIN_LRU_BATCH * PAGE_SIZE / 2) | 
 | 			end = start + MIN_LRU_BATCH * PAGE_SIZE; | 
 | 		else if (end - addr < MIN_LRU_BATCH * PAGE_SIZE / 2) | 
 | 			start = end - MIN_LRU_BATCH * PAGE_SIZE; | 
 | 		else { | 
 | 			start = addr - MIN_LRU_BATCH * PAGE_SIZE / 2; | 
 | 			end = addr + MIN_LRU_BATCH * PAGE_SIZE / 2; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	arch_enter_lazy_mmu_mode(); | 
 |  | 
 | 	pte -= (addr - start) / PAGE_SIZE; | 
 |  | 
 | 	for (i = 0, addr = start; addr != end; i++, addr += PAGE_SIZE) { | 
 | 		unsigned long pfn; | 
 | 		pte_t ptent = ptep_get(pte + i); | 
 |  | 
 | 		pfn = get_pte_pfn(ptent, vma, addr, pgdat); | 
 | 		if (pfn == -1) | 
 | 			continue; | 
 |  | 
 | 		folio = get_pfn_folio(pfn, memcg, pgdat); | 
 | 		if (!folio) | 
 | 			continue; | 
 |  | 
 | 		if (!ptep_clear_young_notify(vma, addr, pte + i)) | 
 | 			continue; | 
 |  | 
 | 		if (last != folio) { | 
 | 			walk_update_folio(walk, last, gen, dirty); | 
 |  | 
 | 			last = folio; | 
 | 			dirty = false; | 
 | 		} | 
 |  | 
 | 		if (pte_dirty(ptent)) | 
 | 			dirty = true; | 
 |  | 
 | 		young++; | 
 | 	} | 
 |  | 
 | 	walk_update_folio(walk, last, gen, dirty); | 
 |  | 
 | 	arch_leave_lazy_mmu_mode(); | 
 |  | 
 | 	/* feedback from rmap walkers to page table walkers */ | 
 | 	if (mm_state && suitable_to_scan(i, young)) | 
 | 		update_bloom_filter(mm_state, max_seq, pvmw->pmd); | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | /****************************************************************************** | 
 |  *                          memcg LRU | 
 |  ******************************************************************************/ | 
 |  | 
 | /* see the comment on MEMCG_NR_GENS */ | 
 | enum { | 
 | 	MEMCG_LRU_NOP, | 
 | 	MEMCG_LRU_HEAD, | 
 | 	MEMCG_LRU_TAIL, | 
 | 	MEMCG_LRU_OLD, | 
 | 	MEMCG_LRU_YOUNG, | 
 | }; | 
 |  | 
 | static void lru_gen_rotate_memcg(struct lruvec *lruvec, int op) | 
 | { | 
 | 	int seg; | 
 | 	int old, new; | 
 | 	unsigned long flags; | 
 | 	int bin = get_random_u32_below(MEMCG_NR_BINS); | 
 | 	struct pglist_data *pgdat = lruvec_pgdat(lruvec); | 
 |  | 
 | 	spin_lock_irqsave(&pgdat->memcg_lru.lock, flags); | 
 |  | 
 | 	VM_WARN_ON_ONCE(hlist_nulls_unhashed(&lruvec->lrugen.list)); | 
 |  | 
 | 	seg = 0; | 
 | 	new = old = lruvec->lrugen.gen; | 
 |  | 
 | 	/* see the comment on MEMCG_NR_GENS */ | 
 | 	if (op == MEMCG_LRU_HEAD) | 
 | 		seg = MEMCG_LRU_HEAD; | 
 | 	else if (op == MEMCG_LRU_TAIL) | 
 | 		seg = MEMCG_LRU_TAIL; | 
 | 	else if (op == MEMCG_LRU_OLD) | 
 | 		new = get_memcg_gen(pgdat->memcg_lru.seq); | 
 | 	else if (op == MEMCG_LRU_YOUNG) | 
 | 		new = get_memcg_gen(pgdat->memcg_lru.seq + 1); | 
 | 	else | 
 | 		VM_WARN_ON_ONCE(true); | 
 |  | 
 | 	WRITE_ONCE(lruvec->lrugen.seg, seg); | 
 | 	WRITE_ONCE(lruvec->lrugen.gen, new); | 
 |  | 
 | 	hlist_nulls_del_rcu(&lruvec->lrugen.list); | 
 |  | 
 | 	if (op == MEMCG_LRU_HEAD || op == MEMCG_LRU_OLD) | 
 | 		hlist_nulls_add_head_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]); | 
 | 	else | 
 | 		hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]); | 
 |  | 
 | 	pgdat->memcg_lru.nr_memcgs[old]--; | 
 | 	pgdat->memcg_lru.nr_memcgs[new]++; | 
 |  | 
 | 	if (!pgdat->memcg_lru.nr_memcgs[old] && old == get_memcg_gen(pgdat->memcg_lru.seq)) | 
 | 		WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1); | 
 |  | 
 | 	spin_unlock_irqrestore(&pgdat->memcg_lru.lock, flags); | 
 | } | 
 |  | 
 | #ifdef CONFIG_MEMCG | 
 |  | 
 | void lru_gen_online_memcg(struct mem_cgroup *memcg) | 
 | { | 
 | 	int gen; | 
 | 	int nid; | 
 | 	int bin = get_random_u32_below(MEMCG_NR_BINS); | 
 |  | 
 | 	for_each_node(nid) { | 
 | 		struct pglist_data *pgdat = NODE_DATA(nid); | 
 | 		struct lruvec *lruvec = get_lruvec(memcg, nid); | 
 |  | 
 | 		spin_lock_irq(&pgdat->memcg_lru.lock); | 
 |  | 
 | 		VM_WARN_ON_ONCE(!hlist_nulls_unhashed(&lruvec->lrugen.list)); | 
 |  | 
 | 		gen = get_memcg_gen(pgdat->memcg_lru.seq); | 
 |  | 
 | 		lruvec->lrugen.gen = gen; | 
 |  | 
 | 		hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[gen][bin]); | 
 | 		pgdat->memcg_lru.nr_memcgs[gen]++; | 
 |  | 
 | 		spin_unlock_irq(&pgdat->memcg_lru.lock); | 
 | 	} | 
 | } | 
 |  | 
 | void lru_gen_offline_memcg(struct mem_cgroup *memcg) | 
 | { | 
 | 	int nid; | 
 |  | 
 | 	for_each_node(nid) { | 
 | 		struct lruvec *lruvec = get_lruvec(memcg, nid); | 
 |  | 
 | 		lru_gen_rotate_memcg(lruvec, MEMCG_LRU_OLD); | 
 | 	} | 
 | } | 
 |  | 
 | void lru_gen_release_memcg(struct mem_cgroup *memcg) | 
 | { | 
 | 	int gen; | 
 | 	int nid; | 
 |  | 
 | 	for_each_node(nid) { | 
 | 		struct pglist_data *pgdat = NODE_DATA(nid); | 
 | 		struct lruvec *lruvec = get_lruvec(memcg, nid); | 
 |  | 
 | 		spin_lock_irq(&pgdat->memcg_lru.lock); | 
 |  | 
 | 		if (hlist_nulls_unhashed(&lruvec->lrugen.list)) | 
 | 			goto unlock; | 
 |  | 
 | 		gen = lruvec->lrugen.gen; | 
 |  | 
 | 		hlist_nulls_del_init_rcu(&lruvec->lrugen.list); | 
 | 		pgdat->memcg_lru.nr_memcgs[gen]--; | 
 |  | 
 | 		if (!pgdat->memcg_lru.nr_memcgs[gen] && gen == get_memcg_gen(pgdat->memcg_lru.seq)) | 
 | 			WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1); | 
 | unlock: | 
 | 		spin_unlock_irq(&pgdat->memcg_lru.lock); | 
 | 	} | 
 | } | 
 |  | 
 | void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid) | 
 | { | 
 | 	struct lruvec *lruvec = get_lruvec(memcg, nid); | 
 |  | 
 | 	/* see the comment on MEMCG_NR_GENS */ | 
 | 	if (READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_HEAD) | 
 | 		lru_gen_rotate_memcg(lruvec, MEMCG_LRU_HEAD); | 
 | } | 
 |  | 
 | #endif /* CONFIG_MEMCG */ | 
 |  | 
 | /****************************************************************************** | 
 |  *                          the eviction | 
 |  ******************************************************************************/ | 
 |  | 
 | static bool sort_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc, | 
 | 		       int tier_idx) | 
 | { | 
 | 	bool success; | 
 | 	bool dirty, writeback; | 
 | 	int gen = folio_lru_gen(folio); | 
 | 	int type = folio_is_file_lru(folio); | 
 | 	int zone = folio_zonenum(folio); | 
 | 	int delta = folio_nr_pages(folio); | 
 | 	int refs = folio_lru_refs(folio); | 
 | 	bool workingset = folio_test_workingset(folio); | 
 | 	int tier = lru_tier_from_refs(refs, workingset); | 
 | 	struct lru_gen_folio *lrugen = &lruvec->lrugen; | 
 |  | 
 | 	VM_WARN_ON_ONCE_FOLIO(gen >= MAX_NR_GENS, folio); | 
 |  | 
 | 	/* unevictable */ | 
 | 	if (!folio_evictable(folio)) { | 
 | 		success = lru_gen_del_folio(lruvec, folio, true); | 
 | 		VM_WARN_ON_ONCE_FOLIO(!success, folio); | 
 | 		folio_set_unevictable(folio); | 
 | 		lruvec_add_folio(lruvec, folio); | 
 | 		__count_vm_events(UNEVICTABLE_PGCULLED, delta); | 
 | 		return true; | 
 | 	} | 
 |  | 
 | 	/* promoted */ | 
 | 	if (gen != lru_gen_from_seq(lrugen->min_seq[type])) { | 
 | 		list_move(&folio->lru, &lrugen->folios[gen][type][zone]); | 
 | 		return true; | 
 | 	} | 
 |  | 
 | 	/* protected */ | 
 | 	if (tier > tier_idx || refs + workingset == BIT(LRU_REFS_WIDTH) + 1) { | 
 | 		gen = folio_inc_gen(lruvec, folio, false); | 
 | 		list_move(&folio->lru, &lrugen->folios[gen][type][zone]); | 
 |  | 
 | 		/* don't count the workingset being lazily promoted */ | 
 | 		if (refs + workingset != BIT(LRU_REFS_WIDTH) + 1) { | 
 | 			int hist = lru_hist_from_seq(lrugen->min_seq[type]); | 
 |  | 
 | 			WRITE_ONCE(lrugen->protected[hist][type][tier], | 
 | 				   lrugen->protected[hist][type][tier] + delta); | 
 | 		} | 
 | 		return true; | 
 | 	} | 
 |  | 
 | 	/* ineligible */ | 
 | 	if (!folio_test_lru(folio) || zone > sc->reclaim_idx) { | 
 | 		gen = folio_inc_gen(lruvec, folio, false); | 
 | 		list_move_tail(&folio->lru, &lrugen->folios[gen][type][zone]); | 
 | 		return true; | 
 | 	} | 
 |  | 
 | 	dirty = folio_test_dirty(folio); | 
 | 	writeback = folio_test_writeback(folio); | 
 | 	if (type == LRU_GEN_FILE && dirty) { | 
 | 		sc->nr.file_taken += delta; | 
 | 		if (!writeback) | 
 | 			sc->nr.unqueued_dirty += delta; | 
 | 	} | 
 |  | 
 | 	/* waiting for writeback */ | 
 | 	if (writeback || (type == LRU_GEN_FILE && dirty)) { | 
 | 		gen = folio_inc_gen(lruvec, folio, true); | 
 | 		list_move(&folio->lru, &lrugen->folios[gen][type][zone]); | 
 | 		return true; | 
 | 	} | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | static bool isolate_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc) | 
 | { | 
 | 	bool success; | 
 |  | 
 | 	/* swap constrained */ | 
 | 	if (!(sc->gfp_mask & __GFP_IO) && | 
 | 	    (folio_test_dirty(folio) || | 
 | 	     (folio_test_anon(folio) && !folio_test_swapcache(folio)))) | 
 | 		return false; | 
 |  | 
 | 	/* raced with release_pages() */ | 
 | 	if (!folio_try_get(folio)) | 
 | 		return false; | 
 |  | 
 | 	/* raced with another isolation */ | 
 | 	if (!folio_test_clear_lru(folio)) { | 
 | 		folio_put(folio); | 
 | 		return false; | 
 | 	} | 
 |  | 
 | 	/* see the comment on LRU_REFS_FLAGS */ | 
 | 	if (!folio_test_referenced(folio)) | 
 | 		set_mask_bits(&folio->flags, LRU_REFS_MASK, 0); | 
 |  | 
 | 	/* for shrink_folio_list() */ | 
 | 	folio_clear_reclaim(folio); | 
 |  | 
 | 	success = lru_gen_del_folio(lruvec, folio, true); | 
 | 	VM_WARN_ON_ONCE_FOLIO(!success, folio); | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | static int scan_folios(struct lruvec *lruvec, struct scan_control *sc, | 
 | 		       int type, int tier, struct list_head *list) | 
 | { | 
 | 	int i; | 
 | 	int gen; | 
 | 	enum vm_event_item item; | 
 | 	int sorted = 0; | 
 | 	int scanned = 0; | 
 | 	int isolated = 0; | 
 | 	int skipped = 0; | 
 | 	int remaining = MAX_LRU_BATCH; | 
 | 	struct lru_gen_folio *lrugen = &lruvec->lrugen; | 
 | 	struct mem_cgroup *memcg = lruvec_memcg(lruvec); | 
 |  | 
 | 	VM_WARN_ON_ONCE(!list_empty(list)); | 
 |  | 
 | 	if (get_nr_gens(lruvec, type) == MIN_NR_GENS) | 
 | 		return 0; | 
 |  | 
 | 	gen = lru_gen_from_seq(lrugen->min_seq[type]); | 
 |  | 
 | 	for (i = MAX_NR_ZONES; i > 0; i--) { | 
 | 		LIST_HEAD(moved); | 
 | 		int skipped_zone = 0; | 
 | 		int zone = (sc->reclaim_idx + i) % MAX_NR_ZONES; | 
 | 		struct list_head *head = &lrugen->folios[gen][type][zone]; | 
 |  | 
 | 		while (!list_empty(head)) { | 
 | 			struct folio *folio = lru_to_folio(head); | 
 | 			int delta = folio_nr_pages(folio); | 
 |  | 
 | 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); | 
 | 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio); | 
 | 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); | 
 | 			VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio); | 
 |  | 
 | 			scanned += delta; | 
 |  | 
 | 			if (sort_folio(lruvec, folio, sc, tier)) | 
 | 				sorted += delta; | 
 | 			else if (isolate_folio(lruvec, folio, sc)) { | 
 | 				list_add(&folio->lru, list); | 
 | 				isolated += delta; | 
 | 			} else { | 
 | 				list_move(&folio->lru, &moved); | 
 | 				skipped_zone += delta; | 
 | 			} | 
 |  | 
 | 			if (!--remaining || max(isolated, skipped_zone) >= MIN_LRU_BATCH) | 
 | 				break; | 
 | 		} | 
 |  | 
 | 		if (skipped_zone) { | 
 | 			list_splice(&moved, head); | 
 | 			__count_zid_vm_events(PGSCAN_SKIP, zone, skipped_zone); | 
 | 			skipped += skipped_zone; | 
 | 		} | 
 |  | 
 | 		if (!remaining || isolated >= MIN_LRU_BATCH) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	item = PGSCAN_KSWAPD + reclaimer_offset(sc); | 
 | 	if (!cgroup_reclaim(sc)) { | 
 | 		__count_vm_events(item, isolated); | 
 | 		__count_vm_events(PGREFILL, sorted); | 
 | 	} | 
 | 	count_memcg_events(memcg, item, isolated); | 
 | 	count_memcg_events(memcg, PGREFILL, sorted); | 
 | 	__count_vm_events(PGSCAN_ANON + type, isolated); | 
 | 	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, MAX_LRU_BATCH, | 
 | 				scanned, skipped, isolated, | 
 | 				type ? LRU_INACTIVE_FILE : LRU_INACTIVE_ANON); | 
 | 	if (type == LRU_GEN_FILE) | 
 | 		sc->nr.file_taken += isolated; | 
 | 	/* | 
 | 	 * There might not be eligible folios due to reclaim_idx. Check the | 
 | 	 * remaining to prevent livelock if it's not making progress. | 
 | 	 */ | 
 | 	return isolated || !remaining ? scanned : 0; | 
 | } | 
 |  | 
 | static int get_tier_idx(struct lruvec *lruvec, int type) | 
 | { | 
 | 	int tier; | 
 | 	struct ctrl_pos sp, pv; | 
 |  | 
 | 	/* | 
 | 	 * To leave a margin for fluctuations, use a larger gain factor (2:3). | 
 | 	 * This value is chosen because any other tier would have at least twice | 
 | 	 * as many refaults as the first tier. | 
 | 	 */ | 
 | 	read_ctrl_pos(lruvec, type, 0, 2, &sp); | 
 | 	for (tier = 1; tier < MAX_NR_TIERS; tier++) { | 
 | 		read_ctrl_pos(lruvec, type, tier, 3, &pv); | 
 | 		if (!positive_ctrl_err(&sp, &pv)) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	return tier - 1; | 
 | } | 
 |  | 
 | static int get_type_to_scan(struct lruvec *lruvec, int swappiness) | 
 | { | 
 | 	struct ctrl_pos sp, pv; | 
 |  | 
 | 	if (swappiness <= MIN_SWAPPINESS + 1) | 
 | 		return LRU_GEN_FILE; | 
 |  | 
 | 	if (swappiness >= MAX_SWAPPINESS) | 
 | 		return LRU_GEN_ANON; | 
 | 	/* | 
 | 	 * Compare the sum of all tiers of anon with that of file to determine | 
 | 	 * which type to scan. | 
 | 	 */ | 
 | 	read_ctrl_pos(lruvec, LRU_GEN_ANON, MAX_NR_TIERS, swappiness, &sp); | 
 | 	read_ctrl_pos(lruvec, LRU_GEN_FILE, MAX_NR_TIERS, MAX_SWAPPINESS - swappiness, &pv); | 
 |  | 
 | 	return positive_ctrl_err(&sp, &pv); | 
 | } | 
 |  | 
 | static int isolate_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness, | 
 | 			  int *type_scanned, struct list_head *list) | 
 | { | 
 | 	int i; | 
 | 	int type = get_type_to_scan(lruvec, swappiness); | 
 |  | 
 | 	for_each_evictable_type(i, swappiness) { | 
 | 		int scanned; | 
 | 		int tier = get_tier_idx(lruvec, type); | 
 |  | 
 | 		*type_scanned = type; | 
 |  | 
 | 		scanned = scan_folios(lruvec, sc, type, tier, list); | 
 | 		if (scanned) | 
 | 			return scanned; | 
 |  | 
 | 		type = !type; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int evict_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness) | 
 | { | 
 | 	int type; | 
 | 	int scanned; | 
 | 	int reclaimed; | 
 | 	LIST_HEAD(list); | 
 | 	LIST_HEAD(clean); | 
 | 	struct folio *folio; | 
 | 	struct folio *next; | 
 | 	enum vm_event_item item; | 
 | 	struct reclaim_stat stat; | 
 | 	struct lru_gen_mm_walk *walk; | 
 | 	bool skip_retry = false; | 
 | 	struct lru_gen_folio *lrugen = &lruvec->lrugen; | 
 | 	struct mem_cgroup *memcg = lruvec_memcg(lruvec); | 
 | 	struct pglist_data *pgdat = lruvec_pgdat(lruvec); | 
 |  | 
 | 	spin_lock_irq(&lruvec->lru_lock); | 
 |  | 
 | 	scanned = isolate_folios(lruvec, sc, swappiness, &type, &list); | 
 |  | 
 | 	scanned += try_to_inc_min_seq(lruvec, swappiness); | 
 |  | 
 | 	if (evictable_min_seq(lrugen->min_seq, swappiness) + MIN_NR_GENS > lrugen->max_seq) | 
 | 		scanned = 0; | 
 |  | 
 | 	spin_unlock_irq(&lruvec->lru_lock); | 
 |  | 
 | 	if (list_empty(&list)) | 
 | 		return scanned; | 
 | retry: | 
 | 	reclaimed = shrink_folio_list(&list, pgdat, sc, &stat, false, memcg); | 
 | 	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty; | 
 | 	sc->nr_reclaimed += reclaimed; | 
 | 	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id, | 
 | 			scanned, reclaimed, &stat, sc->priority, | 
 | 			type ? LRU_INACTIVE_FILE : LRU_INACTIVE_ANON); | 
 |  | 
 | 	list_for_each_entry_safe_reverse(folio, next, &list, lru) { | 
 | 		DEFINE_MIN_SEQ(lruvec); | 
 |  | 
 | 		if (!folio_evictable(folio)) { | 
 | 			list_del(&folio->lru); | 
 | 			folio_putback_lru(folio); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		/* retry folios that may have missed folio_rotate_reclaimable() */ | 
 | 		if (!skip_retry && !folio_test_active(folio) && !folio_mapped(folio) && | 
 | 		    !folio_test_dirty(folio) && !folio_test_writeback(folio)) { | 
 | 			list_move(&folio->lru, &clean); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		/* don't add rejected folios to the oldest generation */ | 
 | 		if (lru_gen_folio_seq(lruvec, folio, false) == min_seq[type]) | 
 | 			set_mask_bits(&folio->flags, LRU_REFS_FLAGS, BIT(PG_active)); | 
 | 	} | 
 |  | 
 | 	spin_lock_irq(&lruvec->lru_lock); | 
 |  | 
 | 	move_folios_to_lru(lruvec, &list); | 
 |  | 
 | 	walk = current->reclaim_state->mm_walk; | 
 | 	if (walk && walk->batched) { | 
 | 		walk->lruvec = lruvec; | 
 | 		reset_batch_size(walk); | 
 | 	} | 
 |  | 
 | 	__mod_lruvec_state(lruvec, PGDEMOTE_KSWAPD + reclaimer_offset(sc), | 
 | 					stat.nr_demoted); | 
 |  | 
 | 	item = PGSTEAL_KSWAPD + reclaimer_offset(sc); | 
 | 	if (!cgroup_reclaim(sc)) | 
 | 		__count_vm_events(item, reclaimed); | 
 | 	count_memcg_events(memcg, item, reclaimed); | 
 | 	__count_vm_events(PGSTEAL_ANON + type, reclaimed); | 
 |  | 
 | 	spin_unlock_irq(&lruvec->lru_lock); | 
 |  | 
 | 	list_splice_init(&clean, &list); | 
 |  | 
 | 	if (!list_empty(&list)) { | 
 | 		skip_retry = true; | 
 | 		goto retry; | 
 | 	} | 
 |  | 
 | 	return scanned; | 
 | } | 
 |  | 
 | static bool should_run_aging(struct lruvec *lruvec, unsigned long max_seq, | 
 | 			     int swappiness, unsigned long *nr_to_scan) | 
 | { | 
 | 	int gen, type, zone; | 
 | 	unsigned long size = 0; | 
 | 	struct lru_gen_folio *lrugen = &lruvec->lrugen; | 
 | 	DEFINE_MIN_SEQ(lruvec); | 
 |  | 
 | 	*nr_to_scan = 0; | 
 | 	/* have to run aging, since eviction is not possible anymore */ | 
 | 	if (evictable_min_seq(min_seq, swappiness) + MIN_NR_GENS > max_seq) | 
 | 		return true; | 
 |  | 
 | 	for_each_evictable_type(type, swappiness) { | 
 | 		unsigned long seq; | 
 |  | 
 | 		for (seq = min_seq[type]; seq <= max_seq; seq++) { | 
 | 			gen = lru_gen_from_seq(seq); | 
 |  | 
 | 			for (zone = 0; zone < MAX_NR_ZONES; zone++) | 
 | 				size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	*nr_to_scan = size; | 
 | 	/* better to run aging even though eviction is still possible */ | 
 | 	return evictable_min_seq(min_seq, swappiness) + MIN_NR_GENS == max_seq; | 
 | } | 
 |  | 
 | /* | 
 |  * For future optimizations: | 
 |  * 1. Defer try_to_inc_max_seq() to workqueues to reduce latency for memcg | 
 |  *    reclaim. | 
 |  */ | 
 | static long get_nr_to_scan(struct lruvec *lruvec, struct scan_control *sc, int swappiness) | 
 | { | 
 | 	bool success; | 
 | 	unsigned long nr_to_scan; | 
 | 	struct mem_cgroup *memcg = lruvec_memcg(lruvec); | 
 | 	DEFINE_MAX_SEQ(lruvec); | 
 |  | 
 | 	if (mem_cgroup_below_min(sc->target_mem_cgroup, memcg)) | 
 | 		return -1; | 
 |  | 
 | 	success = should_run_aging(lruvec, max_seq, swappiness, &nr_to_scan); | 
 |  | 
 | 	/* try to scrape all its memory if this memcg was deleted */ | 
 | 	if (nr_to_scan && !mem_cgroup_online(memcg)) | 
 | 		return nr_to_scan; | 
 |  | 
 | 	/* try to get away with not aging at the default priority */ | 
 | 	if (!success || sc->priority == DEF_PRIORITY) | 
 | 		return nr_to_scan >> sc->priority; | 
 |  | 
 | 	/* stop scanning this lruvec as it's low on cold folios */ | 
 | 	return try_to_inc_max_seq(lruvec, max_seq, swappiness, false) ? -1 : 0; | 
 | } | 
 |  | 
 | static bool should_abort_scan(struct lruvec *lruvec, struct scan_control *sc) | 
 | { | 
 | 	int i; | 
 | 	enum zone_watermarks mark; | 
 |  | 
 | 	/* don't abort memcg reclaim to ensure fairness */ | 
 | 	if (!root_reclaim(sc)) | 
 | 		return false; | 
 |  | 
 | 	if (sc->nr_reclaimed >= max(sc->nr_to_reclaim, compact_gap(sc->order))) | 
 | 		return true; | 
 |  | 
 | 	/* check the order to exclude compaction-induced reclaim */ | 
 | 	if (!current_is_kswapd() || sc->order) | 
 | 		return false; | 
 |  | 
 | 	mark = sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING ? | 
 | 	       WMARK_PROMO : WMARK_HIGH; | 
 |  | 
 | 	for (i = 0; i <= sc->reclaim_idx; i++) { | 
 | 		struct zone *zone = lruvec_pgdat(lruvec)->node_zones + i; | 
 | 		unsigned long size = wmark_pages(zone, mark) + MIN_LRU_BATCH; | 
 |  | 
 | 		if (managed_zone(zone) && !zone_watermark_ok(zone, 0, size, sc->reclaim_idx, 0)) | 
 | 			return false; | 
 | 	} | 
 |  | 
 | 	/* kswapd should abort if all eligible zones are safe */ | 
 | 	return true; | 
 | } | 
 |  | 
 | static bool try_to_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) | 
 | { | 
 | 	long nr_to_scan; | 
 | 	unsigned long scanned = 0; | 
 | 	int swappiness = get_swappiness(lruvec, sc); | 
 |  | 
 | 	while (true) { | 
 | 		int delta; | 
 |  | 
 | 		nr_to_scan = get_nr_to_scan(lruvec, sc, swappiness); | 
 | 		if (nr_to_scan <= 0) | 
 | 			break; | 
 |  | 
 | 		delta = evict_folios(lruvec, sc, swappiness); | 
 | 		if (!delta) | 
 | 			break; | 
 |  | 
 | 		scanned += delta; | 
 | 		if (scanned >= nr_to_scan) | 
 | 			break; | 
 |  | 
 | 		if (should_abort_scan(lruvec, sc)) | 
 | 			break; | 
 |  | 
 | 		cond_resched(); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If too many file cache in the coldest generation can't be evicted | 
 | 	 * due to being dirty, wake up the flusher. | 
 | 	 */ | 
 | 	if (sc->nr.unqueued_dirty && sc->nr.unqueued_dirty == sc->nr.file_taken) | 
 | 		wakeup_flusher_threads(WB_REASON_VMSCAN); | 
 |  | 
 | 	/* whether this lruvec should be rotated */ | 
 | 	return nr_to_scan < 0; | 
 | } | 
 |  | 
 | static int shrink_one(struct lruvec *lruvec, struct scan_control *sc) | 
 | { | 
 | 	bool success; | 
 | 	unsigned long scanned = sc->nr_scanned; | 
 | 	unsigned long reclaimed = sc->nr_reclaimed; | 
 | 	struct mem_cgroup *memcg = lruvec_memcg(lruvec); | 
 | 	struct pglist_data *pgdat = lruvec_pgdat(lruvec); | 
 |  | 
 | 	/* lru_gen_age_node() called mem_cgroup_calculate_protection() */ | 
 | 	if (mem_cgroup_below_min(NULL, memcg)) | 
 | 		return MEMCG_LRU_YOUNG; | 
 |  | 
 | 	if (mem_cgroup_below_low(NULL, memcg)) { | 
 | 		/* see the comment on MEMCG_NR_GENS */ | 
 | 		if (READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_TAIL) | 
 | 			return MEMCG_LRU_TAIL; | 
 |  | 
 | 		memcg_memory_event(memcg, MEMCG_LOW); | 
 | 	} | 
 |  | 
 | 	success = try_to_shrink_lruvec(lruvec, sc); | 
 |  | 
 | 	shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, sc->priority); | 
 |  | 
 | 	if (!sc->proactive) | 
 | 		vmpressure(sc->gfp_mask, memcg, false, sc->nr_scanned - scanned, | 
 | 			   sc->nr_reclaimed - reclaimed); | 
 |  | 
 | 	flush_reclaim_state(sc); | 
 |  | 
 | 	if (success && mem_cgroup_online(memcg)) | 
 | 		return MEMCG_LRU_YOUNG; | 
 |  | 
 | 	if (!success && lruvec_is_sizable(lruvec, sc)) | 
 | 		return 0; | 
 |  | 
 | 	/* one retry if offlined or too small */ | 
 | 	return READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_TAIL ? | 
 | 	       MEMCG_LRU_TAIL : MEMCG_LRU_YOUNG; | 
 | } | 
 |  | 
 | static void shrink_many(struct pglist_data *pgdat, struct scan_control *sc) | 
 | { | 
 | 	int op; | 
 | 	int gen; | 
 | 	int bin; | 
 | 	int first_bin; | 
 | 	struct lruvec *lruvec; | 
 | 	struct lru_gen_folio *lrugen; | 
 | 	struct mem_cgroup *memcg; | 
 | 	struct hlist_nulls_node *pos; | 
 |  | 
 | 	gen = get_memcg_gen(READ_ONCE(pgdat->memcg_lru.seq)); | 
 | 	bin = first_bin = get_random_u32_below(MEMCG_NR_BINS); | 
 | restart: | 
 | 	op = 0; | 
 | 	memcg = NULL; | 
 |  | 
 | 	rcu_read_lock(); | 
 |  | 
 | 	hlist_nulls_for_each_entry_rcu(lrugen, pos, &pgdat->memcg_lru.fifo[gen][bin], list) { | 
 | 		if (op) { | 
 | 			lru_gen_rotate_memcg(lruvec, op); | 
 | 			op = 0; | 
 | 		} | 
 |  | 
 | 		mem_cgroup_put(memcg); | 
 | 		memcg = NULL; | 
 |  | 
 | 		if (gen != READ_ONCE(lrugen->gen)) | 
 | 			continue; | 
 |  | 
 | 		lruvec = container_of(lrugen, struct lruvec, lrugen); | 
 | 		memcg = lruvec_memcg(lruvec); | 
 |  | 
 | 		if (!mem_cgroup_tryget(memcg)) { | 
 | 			lru_gen_release_memcg(memcg); | 
 | 			memcg = NULL; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		rcu_read_unlock(); | 
 |  | 
 | 		op = shrink_one(lruvec, sc); | 
 |  | 
 | 		rcu_read_lock(); | 
 |  | 
 | 		if (should_abort_scan(lruvec, sc)) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	if (op) | 
 | 		lru_gen_rotate_memcg(lruvec, op); | 
 |  | 
 | 	mem_cgroup_put(memcg); | 
 |  | 
 | 	if (!is_a_nulls(pos)) | 
 | 		return; | 
 |  | 
 | 	/* restart if raced with lru_gen_rotate_memcg() */ | 
 | 	if (gen != get_nulls_value(pos)) | 
 | 		goto restart; | 
 |  | 
 | 	/* try the rest of the bins of the current generation */ | 
 | 	bin = get_memcg_bin(bin + 1); | 
 | 	if (bin != first_bin) | 
 | 		goto restart; | 
 | } | 
 |  | 
 | static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) | 
 | { | 
 | 	struct blk_plug plug; | 
 |  | 
 | 	VM_WARN_ON_ONCE(root_reclaim(sc)); | 
 | 	VM_WARN_ON_ONCE(!sc->may_writepage || !sc->may_unmap); | 
 |  | 
 | 	lru_add_drain(); | 
 |  | 
 | 	blk_start_plug(&plug); | 
 |  | 
 | 	set_mm_walk(NULL, sc->proactive); | 
 |  | 
 | 	if (try_to_shrink_lruvec(lruvec, sc)) | 
 | 		lru_gen_rotate_memcg(lruvec, MEMCG_LRU_YOUNG); | 
 |  | 
 | 	clear_mm_walk(); | 
 |  | 
 | 	blk_finish_plug(&plug); | 
 | } | 
 |  | 
 | static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc) | 
 | { | 
 | 	struct blk_plug plug; | 
 | 	unsigned long reclaimed = sc->nr_reclaimed; | 
 |  | 
 | 	VM_WARN_ON_ONCE(!root_reclaim(sc)); | 
 |  | 
 | 	/* | 
 | 	 * Unmapped clean folios are already prioritized. Scanning for more of | 
 | 	 * them is likely futile and can cause high reclaim latency when there | 
 | 	 * is a large number of memcgs. | 
 | 	 */ | 
 | 	if (!sc->may_writepage || !sc->may_unmap) | 
 | 		goto done; | 
 |  | 
 | 	lru_add_drain(); | 
 |  | 
 | 	blk_start_plug(&plug); | 
 |  | 
 | 	set_mm_walk(pgdat, sc->proactive); | 
 |  | 
 | 	set_initial_priority(pgdat, sc); | 
 |  | 
 | 	if (current_is_kswapd()) | 
 | 		sc->nr_reclaimed = 0; | 
 |  | 
 | 	if (mem_cgroup_disabled()) | 
 | 		shrink_one(&pgdat->__lruvec, sc); | 
 | 	else | 
 | 		shrink_many(pgdat, sc); | 
 |  | 
 | 	if (current_is_kswapd()) | 
 | 		sc->nr_reclaimed += reclaimed; | 
 |  | 
 | 	clear_mm_walk(); | 
 |  | 
 | 	blk_finish_plug(&plug); | 
 | done: | 
 | 	if (sc->nr_reclaimed > reclaimed) | 
 | 		pgdat->kswapd_failures = 0; | 
 | } | 
 |  | 
 | /****************************************************************************** | 
 |  *                          state change | 
 |  ******************************************************************************/ | 
 |  | 
 | static bool __maybe_unused state_is_valid(struct lruvec *lruvec) | 
 | { | 
 | 	struct lru_gen_folio *lrugen = &lruvec->lrugen; | 
 |  | 
 | 	if (lrugen->enabled) { | 
 | 		enum lru_list lru; | 
 |  | 
 | 		for_each_evictable_lru(lru) { | 
 | 			if (!list_empty(&lruvec->lists[lru])) | 
 | 				return false; | 
 | 		} | 
 | 	} else { | 
 | 		int gen, type, zone; | 
 |  | 
 | 		for_each_gen_type_zone(gen, type, zone) { | 
 | 			if (!list_empty(&lrugen->folios[gen][type][zone])) | 
 | 				return false; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | static bool fill_evictable(struct lruvec *lruvec) | 
 | { | 
 | 	enum lru_list lru; | 
 | 	int remaining = MAX_LRU_BATCH; | 
 |  | 
 | 	for_each_evictable_lru(lru) { | 
 | 		int type = is_file_lru(lru); | 
 | 		bool active = is_active_lru(lru); | 
 | 		struct list_head *head = &lruvec->lists[lru]; | 
 |  | 
 | 		while (!list_empty(head)) { | 
 | 			bool success; | 
 | 			struct folio *folio = lru_to_folio(head); | 
 |  | 
 | 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); | 
 | 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio) != active, folio); | 
 | 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); | 
 | 			VM_WARN_ON_ONCE_FOLIO(folio_lru_gen(folio) != -1, folio); | 
 |  | 
 | 			lruvec_del_folio(lruvec, folio); | 
 | 			success = lru_gen_add_folio(lruvec, folio, false); | 
 | 			VM_WARN_ON_ONCE(!success); | 
 |  | 
 | 			if (!--remaining) | 
 | 				return false; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | static bool drain_evictable(struct lruvec *lruvec) | 
 | { | 
 | 	int gen, type, zone; | 
 | 	int remaining = MAX_LRU_BATCH; | 
 |  | 
 | 	for_each_gen_type_zone(gen, type, zone) { | 
 | 		struct list_head *head = &lruvec->lrugen.folios[gen][type][zone]; | 
 |  | 
 | 		while (!list_empty(head)) { | 
 | 			bool success; | 
 | 			struct folio *folio = lru_to_folio(head); | 
 |  | 
 | 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); | 
 | 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio); | 
 | 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); | 
 | 			VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio); | 
 |  | 
 | 			success = lru_gen_del_folio(lruvec, folio, false); | 
 | 			VM_WARN_ON_ONCE(!success); | 
 | 			lruvec_add_folio(lruvec, folio); | 
 |  | 
 | 			if (!--remaining) | 
 | 				return false; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | static void lru_gen_change_state(bool enabled) | 
 | { | 
 | 	static DEFINE_MUTEX(state_mutex); | 
 |  | 
 | 	struct mem_cgroup *memcg; | 
 |  | 
 | 	cgroup_lock(); | 
 | 	cpus_read_lock(); | 
 | 	get_online_mems(); | 
 | 	mutex_lock(&state_mutex); | 
 |  | 
 | 	if (enabled == lru_gen_enabled()) | 
 | 		goto unlock; | 
 |  | 
 | 	if (enabled) | 
 | 		static_branch_enable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]); | 
 | 	else | 
 | 		static_branch_disable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]); | 
 |  | 
 | 	memcg = mem_cgroup_iter(NULL, NULL, NULL); | 
 | 	do { | 
 | 		int nid; | 
 |  | 
 | 		for_each_node(nid) { | 
 | 			struct lruvec *lruvec = get_lruvec(memcg, nid); | 
 |  | 
 | 			spin_lock_irq(&lruvec->lru_lock); | 
 |  | 
 | 			VM_WARN_ON_ONCE(!seq_is_valid(lruvec)); | 
 | 			VM_WARN_ON_ONCE(!state_is_valid(lruvec)); | 
 |  | 
 | 			lruvec->lrugen.enabled = enabled; | 
 |  | 
 | 			while (!(enabled ? fill_evictable(lruvec) : drain_evictable(lruvec))) { | 
 | 				spin_unlock_irq(&lruvec->lru_lock); | 
 | 				cond_resched(); | 
 | 				spin_lock_irq(&lruvec->lru_lock); | 
 | 			} | 
 |  | 
 | 			spin_unlock_irq(&lruvec->lru_lock); | 
 | 		} | 
 |  | 
 | 		cond_resched(); | 
 | 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL))); | 
 | unlock: | 
 | 	mutex_unlock(&state_mutex); | 
 | 	put_online_mems(); | 
 | 	cpus_read_unlock(); | 
 | 	cgroup_unlock(); | 
 | } | 
 |  | 
 | /****************************************************************************** | 
 |  *                          sysfs interface | 
 |  ******************************************************************************/ | 
 |  | 
 | static ssize_t min_ttl_ms_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) | 
 | { | 
 | 	return sysfs_emit(buf, "%u\n", jiffies_to_msecs(READ_ONCE(lru_gen_min_ttl))); | 
 | } | 
 |  | 
 | /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ | 
 | static ssize_t min_ttl_ms_store(struct kobject *kobj, struct kobj_attribute *attr, | 
 | 				const char *buf, size_t len) | 
 | { | 
 | 	unsigned int msecs; | 
 |  | 
 | 	if (kstrtouint(buf, 0, &msecs)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	WRITE_ONCE(lru_gen_min_ttl, msecs_to_jiffies(msecs)); | 
 |  | 
 | 	return len; | 
 | } | 
 |  | 
 | static struct kobj_attribute lru_gen_min_ttl_attr = __ATTR_RW(min_ttl_ms); | 
 |  | 
 | static ssize_t enabled_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) | 
 | { | 
 | 	unsigned int caps = 0; | 
 |  | 
 | 	if (get_cap(LRU_GEN_CORE)) | 
 | 		caps |= BIT(LRU_GEN_CORE); | 
 |  | 
 | 	if (should_walk_mmu()) | 
 | 		caps |= BIT(LRU_GEN_MM_WALK); | 
 |  | 
 | 	if (should_clear_pmd_young()) | 
 | 		caps |= BIT(LRU_GEN_NONLEAF_YOUNG); | 
 |  | 
 | 	return sysfs_emit(buf, "0x%04x\n", caps); | 
 | } | 
 |  | 
 | /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ | 
 | static ssize_t enabled_store(struct kobject *kobj, struct kobj_attribute *attr, | 
 | 			     const char *buf, size_t len) | 
 | { | 
 | 	int i; | 
 | 	unsigned int caps; | 
 |  | 
 | 	if (tolower(*buf) == 'n') | 
 | 		caps = 0; | 
 | 	else if (tolower(*buf) == 'y') | 
 | 		caps = -1; | 
 | 	else if (kstrtouint(buf, 0, &caps)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	for (i = 0; i < NR_LRU_GEN_CAPS; i++) { | 
 | 		bool enabled = caps & BIT(i); | 
 |  | 
 | 		if (i == LRU_GEN_CORE) | 
 | 			lru_gen_change_state(enabled); | 
 | 		else if (enabled) | 
 | 			static_branch_enable(&lru_gen_caps[i]); | 
 | 		else | 
 | 			static_branch_disable(&lru_gen_caps[i]); | 
 | 	} | 
 |  | 
 | 	return len; | 
 | } | 
 |  | 
 | static struct kobj_attribute lru_gen_enabled_attr = __ATTR_RW(enabled); | 
 |  | 
 | static struct attribute *lru_gen_attrs[] = { | 
 | 	&lru_gen_min_ttl_attr.attr, | 
 | 	&lru_gen_enabled_attr.attr, | 
 | 	NULL | 
 | }; | 
 |  | 
 | static const struct attribute_group lru_gen_attr_group = { | 
 | 	.name = "lru_gen", | 
 | 	.attrs = lru_gen_attrs, | 
 | }; | 
 |  | 
 | /****************************************************************************** | 
 |  *                          debugfs interface | 
 |  ******************************************************************************/ | 
 |  | 
 | static void *lru_gen_seq_start(struct seq_file *m, loff_t *pos) | 
 | { | 
 | 	struct mem_cgroup *memcg; | 
 | 	loff_t nr_to_skip = *pos; | 
 |  | 
 | 	m->private = kvmalloc(PATH_MAX, GFP_KERNEL); | 
 | 	if (!m->private) | 
 | 		return ERR_PTR(-ENOMEM); | 
 |  | 
 | 	memcg = mem_cgroup_iter(NULL, NULL, NULL); | 
 | 	do { | 
 | 		int nid; | 
 |  | 
 | 		for_each_node_state(nid, N_MEMORY) { | 
 | 			if (!nr_to_skip--) | 
 | 				return get_lruvec(memcg, nid); | 
 | 		} | 
 | 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL))); | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static void lru_gen_seq_stop(struct seq_file *m, void *v) | 
 | { | 
 | 	if (!IS_ERR_OR_NULL(v)) | 
 | 		mem_cgroup_iter_break(NULL, lruvec_memcg(v)); | 
 |  | 
 | 	kvfree(m->private); | 
 | 	m->private = NULL; | 
 | } | 
 |  | 
 | static void *lru_gen_seq_next(struct seq_file *m, void *v, loff_t *pos) | 
 | { | 
 | 	int nid = lruvec_pgdat(v)->node_id; | 
 | 	struct mem_cgroup *memcg = lruvec_memcg(v); | 
 |  | 
 | 	++*pos; | 
 |  | 
 | 	nid = next_memory_node(nid); | 
 | 	if (nid == MAX_NUMNODES) { | 
 | 		memcg = mem_cgroup_iter(NULL, memcg, NULL); | 
 | 		if (!memcg) | 
 | 			return NULL; | 
 |  | 
 | 		nid = first_memory_node; | 
 | 	} | 
 |  | 
 | 	return get_lruvec(memcg, nid); | 
 | } | 
 |  | 
 | static void lru_gen_seq_show_full(struct seq_file *m, struct lruvec *lruvec, | 
 | 				  unsigned long max_seq, unsigned long *min_seq, | 
 | 				  unsigned long seq) | 
 | { | 
 | 	int i; | 
 | 	int type, tier; | 
 | 	int hist = lru_hist_from_seq(seq); | 
 | 	struct lru_gen_folio *lrugen = &lruvec->lrugen; | 
 | 	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); | 
 |  | 
 | 	for (tier = 0; tier < MAX_NR_TIERS; tier++) { | 
 | 		seq_printf(m, "            %10d", tier); | 
 | 		for (type = 0; type < ANON_AND_FILE; type++) { | 
 | 			const char *s = "xxx"; | 
 | 			unsigned long n[3] = {}; | 
 |  | 
 | 			if (seq == max_seq) { | 
 | 				s = "RTx"; | 
 | 				n[0] = READ_ONCE(lrugen->avg_refaulted[type][tier]); | 
 | 				n[1] = READ_ONCE(lrugen->avg_total[type][tier]); | 
 | 			} else if (seq == min_seq[type] || NR_HIST_GENS > 1) { | 
 | 				s = "rep"; | 
 | 				n[0] = atomic_long_read(&lrugen->refaulted[hist][type][tier]); | 
 | 				n[1] = atomic_long_read(&lrugen->evicted[hist][type][tier]); | 
 | 				n[2] = READ_ONCE(lrugen->protected[hist][type][tier]); | 
 | 			} | 
 |  | 
 | 			for (i = 0; i < 3; i++) | 
 | 				seq_printf(m, " %10lu%c", n[i], s[i]); | 
 | 		} | 
 | 		seq_putc(m, '\n'); | 
 | 	} | 
 |  | 
 | 	if (!mm_state) | 
 | 		return; | 
 |  | 
 | 	seq_puts(m, "                      "); | 
 | 	for (i = 0; i < NR_MM_STATS; i++) { | 
 | 		const char *s = "xxxx"; | 
 | 		unsigned long n = 0; | 
 |  | 
 | 		if (seq == max_seq && NR_HIST_GENS == 1) { | 
 | 			s = "TYFA"; | 
 | 			n = READ_ONCE(mm_state->stats[hist][i]); | 
 | 		} else if (seq != max_seq && NR_HIST_GENS > 1) { | 
 | 			s = "tyfa"; | 
 | 			n = READ_ONCE(mm_state->stats[hist][i]); | 
 | 		} | 
 |  | 
 | 		seq_printf(m, " %10lu%c", n, s[i]); | 
 | 	} | 
 | 	seq_putc(m, '\n'); | 
 | } | 
 |  | 
 | /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ | 
 | static int lru_gen_seq_show(struct seq_file *m, void *v) | 
 | { | 
 | 	unsigned long seq; | 
 | 	bool full = !debugfs_real_fops(m->file)->write; | 
 | 	struct lruvec *lruvec = v; | 
 | 	struct lru_gen_folio *lrugen = &lruvec->lrugen; | 
 | 	int nid = lruvec_pgdat(lruvec)->node_id; | 
 | 	struct mem_cgroup *memcg = lruvec_memcg(lruvec); | 
 | 	DEFINE_MAX_SEQ(lruvec); | 
 | 	DEFINE_MIN_SEQ(lruvec); | 
 |  | 
 | 	if (nid == first_memory_node) { | 
 | 		const char *path = memcg ? m->private : ""; | 
 |  | 
 | #ifdef CONFIG_MEMCG | 
 | 		if (memcg) | 
 | 			cgroup_path(memcg->css.cgroup, m->private, PATH_MAX); | 
 | #endif | 
 | 		seq_printf(m, "memcg %5hu %s\n", mem_cgroup_id(memcg), path); | 
 | 	} | 
 |  | 
 | 	seq_printf(m, " node %5d\n", nid); | 
 |  | 
 | 	if (!full) | 
 | 		seq = evictable_min_seq(min_seq, MAX_SWAPPINESS / 2); | 
 | 	else if (max_seq >= MAX_NR_GENS) | 
 | 		seq = max_seq - MAX_NR_GENS + 1; | 
 | 	else | 
 | 		seq = 0; | 
 |  | 
 | 	for (; seq <= max_seq; seq++) { | 
 | 		int type, zone; | 
 | 		int gen = lru_gen_from_seq(seq); | 
 | 		unsigned long birth = READ_ONCE(lruvec->lrugen.timestamps[gen]); | 
 |  | 
 | 		seq_printf(m, " %10lu %10u", seq, jiffies_to_msecs(jiffies - birth)); | 
 |  | 
 | 		for (type = 0; type < ANON_AND_FILE; type++) { | 
 | 			unsigned long size = 0; | 
 | 			char mark = full && seq < min_seq[type] ? 'x' : ' '; | 
 |  | 
 | 			for (zone = 0; zone < MAX_NR_ZONES; zone++) | 
 | 				size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L); | 
 |  | 
 | 			seq_printf(m, " %10lu%c", size, mark); | 
 | 		} | 
 |  | 
 | 		seq_putc(m, '\n'); | 
 |  | 
 | 		if (full) | 
 | 			lru_gen_seq_show_full(m, lruvec, max_seq, min_seq, seq); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static const struct seq_operations lru_gen_seq_ops = { | 
 | 	.start = lru_gen_seq_start, | 
 | 	.stop = lru_gen_seq_stop, | 
 | 	.next = lru_gen_seq_next, | 
 | 	.show = lru_gen_seq_show, | 
 | }; | 
 |  | 
 | static int run_aging(struct lruvec *lruvec, unsigned long seq, | 
 | 		     int swappiness, bool force_scan) | 
 | { | 
 | 	DEFINE_MAX_SEQ(lruvec); | 
 |  | 
 | 	if (seq > max_seq) | 
 | 		return -EINVAL; | 
 |  | 
 | 	return try_to_inc_max_seq(lruvec, max_seq, swappiness, force_scan) ? 0 : -EEXIST; | 
 | } | 
 |  | 
 | static int run_eviction(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc, | 
 | 			int swappiness, unsigned long nr_to_reclaim) | 
 | { | 
 | 	DEFINE_MAX_SEQ(lruvec); | 
 |  | 
 | 	if (seq + MIN_NR_GENS > max_seq) | 
 | 		return -EINVAL; | 
 |  | 
 | 	sc->nr_reclaimed = 0; | 
 |  | 
 | 	while (!signal_pending(current)) { | 
 | 		DEFINE_MIN_SEQ(lruvec); | 
 |  | 
 | 		if (seq < evictable_min_seq(min_seq, swappiness)) | 
 | 			return 0; | 
 |  | 
 | 		if (sc->nr_reclaimed >= nr_to_reclaim) | 
 | 			return 0; | 
 |  | 
 | 		if (!evict_folios(lruvec, sc, swappiness)) | 
 | 			return 0; | 
 |  | 
 | 		cond_resched(); | 
 | 	} | 
 |  | 
 | 	return -EINTR; | 
 | } | 
 |  | 
 | static int run_cmd(char cmd, int memcg_id, int nid, unsigned long seq, | 
 | 		   struct scan_control *sc, int swappiness, unsigned long opt) | 
 | { | 
 | 	struct lruvec *lruvec; | 
 | 	int err = -EINVAL; | 
 | 	struct mem_cgroup *memcg = NULL; | 
 |  | 
 | 	if (nid < 0 || nid >= MAX_NUMNODES || !node_state(nid, N_MEMORY)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (!mem_cgroup_disabled()) { | 
 | 		rcu_read_lock(); | 
 |  | 
 | 		memcg = mem_cgroup_from_id(memcg_id); | 
 | 		if (!mem_cgroup_tryget(memcg)) | 
 | 			memcg = NULL; | 
 |  | 
 | 		rcu_read_unlock(); | 
 |  | 
 | 		if (!memcg) | 
 | 			return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (memcg_id != mem_cgroup_id(memcg)) | 
 | 		goto done; | 
 |  | 
 | 	lruvec = get_lruvec(memcg, nid); | 
 |  | 
 | 	if (swappiness < MIN_SWAPPINESS) | 
 | 		swappiness = get_swappiness(lruvec, sc); | 
 | 	else if (swappiness > SWAPPINESS_ANON_ONLY) | 
 | 		goto done; | 
 |  | 
 | 	switch (cmd) { | 
 | 	case '+': | 
 | 		err = run_aging(lruvec, seq, swappiness, opt); | 
 | 		break; | 
 | 	case '-': | 
 | 		err = run_eviction(lruvec, seq, sc, swappiness, opt); | 
 | 		break; | 
 | 	} | 
 | done: | 
 | 	mem_cgroup_put(memcg); | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ | 
 | static ssize_t lru_gen_seq_write(struct file *file, const char __user *src, | 
 | 				 size_t len, loff_t *pos) | 
 | { | 
 | 	void *buf; | 
 | 	char *cur, *next; | 
 | 	unsigned int flags; | 
 | 	struct blk_plug plug; | 
 | 	int err = -EINVAL; | 
 | 	struct scan_control sc = { | 
 | 		.may_writepage = true, | 
 | 		.may_unmap = true, | 
 | 		.may_swap = true, | 
 | 		.reclaim_idx = MAX_NR_ZONES - 1, | 
 | 		.gfp_mask = GFP_KERNEL, | 
 | 	}; | 
 |  | 
 | 	buf = kvmalloc(len + 1, GFP_KERNEL); | 
 | 	if (!buf) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	if (copy_from_user(buf, src, len)) { | 
 | 		kvfree(buf); | 
 | 		return -EFAULT; | 
 | 	} | 
 |  | 
 | 	set_task_reclaim_state(current, &sc.reclaim_state); | 
 | 	flags = memalloc_noreclaim_save(); | 
 | 	blk_start_plug(&plug); | 
 | 	if (!set_mm_walk(NULL, true)) { | 
 | 		err = -ENOMEM; | 
 | 		goto done; | 
 | 	} | 
 |  | 
 | 	next = buf; | 
 | 	next[len] = '\0'; | 
 |  | 
 | 	while ((cur = strsep(&next, ",;\n"))) { | 
 | 		int n; | 
 | 		int end; | 
 | 		char cmd, swap_string[5]; | 
 | 		unsigned int memcg_id; | 
 | 		unsigned int nid; | 
 | 		unsigned long seq; | 
 | 		unsigned int swappiness; | 
 | 		unsigned long opt = -1; | 
 |  | 
 | 		cur = skip_spaces(cur); | 
 | 		if (!*cur) | 
 | 			continue; | 
 |  | 
 | 		n = sscanf(cur, "%c %u %u %lu %n %4s %n %lu %n", &cmd, &memcg_id, &nid, | 
 | 			   &seq, &end, swap_string, &end, &opt, &end); | 
 | 		if (n < 4 || cur[end]) { | 
 | 			err = -EINVAL; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		if (n == 4) { | 
 | 			swappiness = -1; | 
 | 		} else if (!strcmp("max", swap_string)) { | 
 | 			/* set by userspace for anonymous memory only */ | 
 | 			swappiness = SWAPPINESS_ANON_ONLY; | 
 | 		} else { | 
 | 			err = kstrtouint(swap_string, 0, &swappiness); | 
 | 			if (err) | 
 | 				break; | 
 | 		} | 
 |  | 
 | 		err = run_cmd(cmd, memcg_id, nid, seq, &sc, swappiness, opt); | 
 | 		if (err) | 
 | 			break; | 
 | 	} | 
 | done: | 
 | 	clear_mm_walk(); | 
 | 	blk_finish_plug(&plug); | 
 | 	memalloc_noreclaim_restore(flags); | 
 | 	set_task_reclaim_state(current, NULL); | 
 |  | 
 | 	kvfree(buf); | 
 |  | 
 | 	return err ? : len; | 
 | } | 
 |  | 
 | static int lru_gen_seq_open(struct inode *inode, struct file *file) | 
 | { | 
 | 	return seq_open(file, &lru_gen_seq_ops); | 
 | } | 
 |  | 
 | static const struct file_operations lru_gen_rw_fops = { | 
 | 	.open = lru_gen_seq_open, | 
 | 	.read = seq_read, | 
 | 	.write = lru_gen_seq_write, | 
 | 	.llseek = seq_lseek, | 
 | 	.release = seq_release, | 
 | }; | 
 |  | 
 | static const struct file_operations lru_gen_ro_fops = { | 
 | 	.open = lru_gen_seq_open, | 
 | 	.read = seq_read, | 
 | 	.llseek = seq_lseek, | 
 | 	.release = seq_release, | 
 | }; | 
 |  | 
 | /****************************************************************************** | 
 |  *                          initialization | 
 |  ******************************************************************************/ | 
 |  | 
 | void lru_gen_init_pgdat(struct pglist_data *pgdat) | 
 | { | 
 | 	int i, j; | 
 |  | 
 | 	spin_lock_init(&pgdat->memcg_lru.lock); | 
 |  | 
 | 	for (i = 0; i < MEMCG_NR_GENS; i++) { | 
 | 		for (j = 0; j < MEMCG_NR_BINS; j++) | 
 | 			INIT_HLIST_NULLS_HEAD(&pgdat->memcg_lru.fifo[i][j], i); | 
 | 	} | 
 | } | 
 |  | 
 | void lru_gen_init_lruvec(struct lruvec *lruvec) | 
 | { | 
 | 	int i; | 
 | 	int gen, type, zone; | 
 | 	struct lru_gen_folio *lrugen = &lruvec->lrugen; | 
 | 	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); | 
 |  | 
 | 	lrugen->max_seq = MIN_NR_GENS + 1; | 
 | 	lrugen->enabled = lru_gen_enabled(); | 
 |  | 
 | 	for (i = 0; i <= MIN_NR_GENS + 1; i++) | 
 | 		lrugen->timestamps[i] = jiffies; | 
 |  | 
 | 	for_each_gen_type_zone(gen, type, zone) | 
 | 		INIT_LIST_HEAD(&lrugen->folios[gen][type][zone]); | 
 |  | 
 | 	if (mm_state) | 
 | 		mm_state->seq = MIN_NR_GENS; | 
 | } | 
 |  | 
 | #ifdef CONFIG_MEMCG | 
 |  | 
 | void lru_gen_init_memcg(struct mem_cgroup *memcg) | 
 | { | 
 | 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg); | 
 |  | 
 | 	if (!mm_list) | 
 | 		return; | 
 |  | 
 | 	INIT_LIST_HEAD(&mm_list->fifo); | 
 | 	spin_lock_init(&mm_list->lock); | 
 | } | 
 |  | 
 | void lru_gen_exit_memcg(struct mem_cgroup *memcg) | 
 | { | 
 | 	int i; | 
 | 	int nid; | 
 | 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg); | 
 |  | 
 | 	VM_WARN_ON_ONCE(mm_list && !list_empty(&mm_list->fifo)); | 
 |  | 
 | 	for_each_node(nid) { | 
 | 		struct lruvec *lruvec = get_lruvec(memcg, nid); | 
 | 		struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); | 
 |  | 
 | 		VM_WARN_ON_ONCE(memchr_inv(lruvec->lrugen.nr_pages, 0, | 
 | 					   sizeof(lruvec->lrugen.nr_pages))); | 
 |  | 
 | 		lruvec->lrugen.list.next = LIST_POISON1; | 
 |  | 
 | 		if (!mm_state) | 
 | 			continue; | 
 |  | 
 | 		for (i = 0; i < NR_BLOOM_FILTERS; i++) { | 
 | 			bitmap_free(mm_state->filters[i]); | 
 | 			mm_state->filters[i] = NULL; | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | #endif /* CONFIG_MEMCG */ | 
 |  | 
 | static int __init init_lru_gen(void) | 
 | { | 
 | 	BUILD_BUG_ON(MIN_NR_GENS + 1 >= MAX_NR_GENS); | 
 | 	BUILD_BUG_ON(BIT(LRU_GEN_WIDTH) <= MAX_NR_GENS); | 
 |  | 
 | 	if (sysfs_create_group(mm_kobj, &lru_gen_attr_group)) | 
 | 		pr_err("lru_gen: failed to create sysfs group\n"); | 
 |  | 
 | 	debugfs_create_file("lru_gen", 0644, NULL, NULL, &lru_gen_rw_fops); | 
 | 	debugfs_create_file("lru_gen_full", 0444, NULL, NULL, &lru_gen_ro_fops); | 
 |  | 
 | 	return 0; | 
 | }; | 
 | late_initcall(init_lru_gen); | 
 |  | 
 | #else /* !CONFIG_LRU_GEN */ | 
 |  | 
 | static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc) | 
 | { | 
 | 	BUILD_BUG(); | 
 | } | 
 |  | 
 | static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) | 
 | { | 
 | 	BUILD_BUG(); | 
 | } | 
 |  | 
 | static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc) | 
 | { | 
 | 	BUILD_BUG(); | 
 | } | 
 |  | 
 | #endif /* CONFIG_LRU_GEN */ | 
 |  | 
 | static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) | 
 | { | 
 | 	unsigned long nr[NR_LRU_LISTS]; | 
 | 	unsigned long targets[NR_LRU_LISTS]; | 
 | 	unsigned long nr_to_scan; | 
 | 	enum lru_list lru; | 
 | 	unsigned long nr_reclaimed = 0; | 
 | 	unsigned long nr_to_reclaim = sc->nr_to_reclaim; | 
 | 	bool proportional_reclaim; | 
 | 	struct blk_plug plug; | 
 |  | 
 | 	if (lru_gen_enabled() && !root_reclaim(sc)) { | 
 | 		lru_gen_shrink_lruvec(lruvec, sc); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	get_scan_count(lruvec, sc, nr); | 
 |  | 
 | 	/* Record the original scan target for proportional adjustments later */ | 
 | 	memcpy(targets, nr, sizeof(nr)); | 
 |  | 
 | 	/* | 
 | 	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal | 
 | 	 * event that can occur when there is little memory pressure e.g. | 
 | 	 * multiple streaming readers/writers. Hence, we do not abort scanning | 
 | 	 * when the requested number of pages are reclaimed when scanning at | 
 | 	 * DEF_PRIORITY on the assumption that the fact we are direct | 
 | 	 * reclaiming implies that kswapd is not keeping up and it is best to | 
 | 	 * do a batch of work at once. For memcg reclaim one check is made to | 
 | 	 * abort proportional reclaim if either the file or anon lru has already | 
 | 	 * dropped to zero at the first pass. | 
 | 	 */ | 
 | 	proportional_reclaim = (!cgroup_reclaim(sc) && !current_is_kswapd() && | 
 | 				sc->priority == DEF_PRIORITY); | 
 |  | 
 | 	blk_start_plug(&plug); | 
 | 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || | 
 | 					nr[LRU_INACTIVE_FILE]) { | 
 | 		unsigned long nr_anon, nr_file, percentage; | 
 | 		unsigned long nr_scanned; | 
 |  | 
 | 		for_each_evictable_lru(lru) { | 
 | 			if (nr[lru]) { | 
 | 				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX); | 
 | 				nr[lru] -= nr_to_scan; | 
 |  | 
 | 				nr_reclaimed += shrink_list(lru, nr_to_scan, | 
 | 							    lruvec, sc); | 
 | 			} | 
 | 		} | 
 |  | 
 | 		cond_resched(); | 
 |  | 
 | 		if (nr_reclaimed < nr_to_reclaim || proportional_reclaim) | 
 | 			continue; | 
 |  | 
 | 		/* | 
 | 		 * For kswapd and memcg, reclaim at least the number of pages | 
 | 		 * requested. Ensure that the anon and file LRUs are scanned | 
 | 		 * proportionally what was requested by get_scan_count(). We | 
 | 		 * stop reclaiming one LRU and reduce the amount scanning | 
 | 		 * proportional to the original scan target. | 
 | 		 */ | 
 | 		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE]; | 
 | 		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON]; | 
 |  | 
 | 		/* | 
 | 		 * It's just vindictive to attack the larger once the smaller | 
 | 		 * has gone to zero.  And given the way we stop scanning the | 
 | 		 * smaller below, this makes sure that we only make one nudge | 
 | 		 * towards proportionality once we've got nr_to_reclaim. | 
 | 		 */ | 
 | 		if (!nr_file || !nr_anon) | 
 | 			break; | 
 |  | 
 | 		if (nr_file > nr_anon) { | 
 | 			unsigned long scan_target = targets[LRU_INACTIVE_ANON] + | 
 | 						targets[LRU_ACTIVE_ANON] + 1; | 
 | 			lru = LRU_BASE; | 
 | 			percentage = nr_anon * 100 / scan_target; | 
 | 		} else { | 
 | 			unsigned long scan_target = targets[LRU_INACTIVE_FILE] + | 
 | 						targets[LRU_ACTIVE_FILE] + 1; | 
 | 			lru = LRU_FILE; | 
 | 			percentage = nr_file * 100 / scan_target; | 
 | 		} | 
 |  | 
 | 		/* Stop scanning the smaller of the LRU */ | 
 | 		nr[lru] = 0; | 
 | 		nr[lru + LRU_ACTIVE] = 0; | 
 |  | 
 | 		/* | 
 | 		 * Recalculate the other LRU scan count based on its original | 
 | 		 * scan target and the percentage scanning already complete | 
 | 		 */ | 
 | 		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE; | 
 | 		nr_scanned = targets[lru] - nr[lru]; | 
 | 		nr[lru] = targets[lru] * (100 - percentage) / 100; | 
 | 		nr[lru] -= min(nr[lru], nr_scanned); | 
 |  | 
 | 		lru += LRU_ACTIVE; | 
 | 		nr_scanned = targets[lru] - nr[lru]; | 
 | 		nr[lru] = targets[lru] * (100 - percentage) / 100; | 
 | 		nr[lru] -= min(nr[lru], nr_scanned); | 
 | 	} | 
 | 	blk_finish_plug(&plug); | 
 | 	sc->nr_reclaimed += nr_reclaimed; | 
 |  | 
 | 	/* | 
 | 	 * Even if we did not try to evict anon pages at all, we want to | 
 | 	 * rebalance the anon lru active/inactive ratio. | 
 | 	 */ | 
 | 	if (can_age_anon_pages(lruvec, sc) && | 
 | 	    inactive_is_low(lruvec, LRU_INACTIVE_ANON)) | 
 | 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec, | 
 | 				   sc, LRU_ACTIVE_ANON); | 
 | } | 
 |  | 
 | /* Use reclaim/compaction for costly allocs or under memory pressure */ | 
 | static bool in_reclaim_compaction(struct scan_control *sc) | 
 | { | 
 | 	if (gfp_compaction_allowed(sc->gfp_mask) && sc->order && | 
 | 			(sc->order > PAGE_ALLOC_COSTLY_ORDER || | 
 | 			 sc->priority < DEF_PRIORITY - 2)) | 
 | 		return true; | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | /* | 
 |  * Reclaim/compaction is used for high-order allocation requests. It reclaims | 
 |  * order-0 pages before compacting the zone. should_continue_reclaim() returns | 
 |  * true if more pages should be reclaimed such that when the page allocator | 
 |  * calls try_to_compact_pages() that it will have enough free pages to succeed. | 
 |  * It will give up earlier than that if there is difficulty reclaiming pages. | 
 |  */ | 
 | static inline bool should_continue_reclaim(struct pglist_data *pgdat, | 
 | 					unsigned long nr_reclaimed, | 
 | 					struct scan_control *sc) | 
 | { | 
 | 	unsigned long pages_for_compaction; | 
 | 	unsigned long inactive_lru_pages; | 
 | 	int z; | 
 | 	struct zone *zone; | 
 |  | 
 | 	/* If not in reclaim/compaction mode, stop */ | 
 | 	if (!in_reclaim_compaction(sc)) | 
 | 		return false; | 
 |  | 
 | 	/* | 
 | 	 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX | 
 | 	 * number of pages that were scanned. This will return to the caller | 
 | 	 * with the risk reclaim/compaction and the resulting allocation attempt | 
 | 	 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL | 
 | 	 * allocations through requiring that the full LRU list has been scanned | 
 | 	 * first, by assuming that zero delta of sc->nr_scanned means full LRU | 
 | 	 * scan, but that approximation was wrong, and there were corner cases | 
 | 	 * where always a non-zero amount of pages were scanned. | 
 | 	 */ | 
 | 	if (!nr_reclaimed) | 
 | 		return false; | 
 |  | 
 | 	/* If compaction would go ahead or the allocation would succeed, stop */ | 
 | 	for_each_managed_zone_pgdat(zone, pgdat, z, sc->reclaim_idx) { | 
 | 		unsigned long watermark = min_wmark_pages(zone); | 
 |  | 
 | 		/* Allocation can already succeed, nothing to do */ | 
 | 		if (zone_watermark_ok(zone, sc->order, watermark, | 
 | 				      sc->reclaim_idx, 0)) | 
 | 			return false; | 
 |  | 
 | 		if (compaction_suitable(zone, sc->order, watermark, | 
 | 					sc->reclaim_idx)) | 
 | 			return false; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If we have not reclaimed enough pages for compaction and the | 
 | 	 * inactive lists are large enough, continue reclaiming | 
 | 	 */ | 
 | 	pages_for_compaction = compact_gap(sc->order); | 
 | 	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE); | 
 | 	if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc)) | 
 | 		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON); | 
 |  | 
 | 	return inactive_lru_pages > pages_for_compaction; | 
 | } | 
 |  | 
 | static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc) | 
 | { | 
 | 	struct mem_cgroup *target_memcg = sc->target_mem_cgroup; | 
 | 	struct mem_cgroup_reclaim_cookie reclaim = { | 
 | 		.pgdat = pgdat, | 
 | 	}; | 
 | 	struct mem_cgroup_reclaim_cookie *partial = &reclaim; | 
 | 	struct mem_cgroup *memcg; | 
 |  | 
 | 	/* | 
 | 	 * In most cases, direct reclaimers can do partial walks | 
 | 	 * through the cgroup tree, using an iterator state that | 
 | 	 * persists across invocations. This strikes a balance between | 
 | 	 * fairness and allocation latency. | 
 | 	 * | 
 | 	 * For kswapd, reliable forward progress is more important | 
 | 	 * than a quick return to idle. Always do full walks. | 
 | 	 */ | 
 | 	if (current_is_kswapd() || sc->memcg_full_walk) | 
 | 		partial = NULL; | 
 |  | 
 | 	memcg = mem_cgroup_iter(target_memcg, NULL, partial); | 
 | 	do { | 
 | 		struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); | 
 | 		unsigned long reclaimed; | 
 | 		unsigned long scanned; | 
 |  | 
 | 		/* | 
 | 		 * This loop can become CPU-bound when target memcgs | 
 | 		 * aren't eligible for reclaim - either because they | 
 | 		 * don't have any reclaimable pages, or because their | 
 | 		 * memory is explicitly protected. Avoid soft lockups. | 
 | 		 */ | 
 | 		cond_resched(); | 
 |  | 
 | 		mem_cgroup_calculate_protection(target_memcg, memcg); | 
 |  | 
 | 		if (mem_cgroup_below_min(target_memcg, memcg)) { | 
 | 			/* | 
 | 			 * Hard protection. | 
 | 			 * If there is no reclaimable memory, OOM. | 
 | 			 */ | 
 | 			continue; | 
 | 		} else if (mem_cgroup_below_low(target_memcg, memcg)) { | 
 | 			/* | 
 | 			 * Soft protection. | 
 | 			 * Respect the protection only as long as | 
 | 			 * there is an unprotected supply | 
 | 			 * of reclaimable memory from other cgroups. | 
 | 			 */ | 
 | 			if (!sc->memcg_low_reclaim) { | 
 | 				sc->memcg_low_skipped = 1; | 
 | 				continue; | 
 | 			} | 
 | 			memcg_memory_event(memcg, MEMCG_LOW); | 
 | 		} | 
 |  | 
 | 		reclaimed = sc->nr_reclaimed; | 
 | 		scanned = sc->nr_scanned; | 
 |  | 
 | 		shrink_lruvec(lruvec, sc); | 
 |  | 
 | 		shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, | 
 | 			    sc->priority); | 
 |  | 
 | 		/* Record the group's reclaim efficiency */ | 
 | 		if (!sc->proactive) | 
 | 			vmpressure(sc->gfp_mask, memcg, false, | 
 | 				   sc->nr_scanned - scanned, | 
 | 				   sc->nr_reclaimed - reclaimed); | 
 |  | 
 | 		/* If partial walks are allowed, bail once goal is reached */ | 
 | 		if (partial && sc->nr_reclaimed >= sc->nr_to_reclaim) { | 
 | 			mem_cgroup_iter_break(target_memcg, memcg); | 
 | 			break; | 
 | 		} | 
 | 	} while ((memcg = mem_cgroup_iter(target_memcg, memcg, partial))); | 
 | } | 
 |  | 
 | static void shrink_node(pg_data_t *pgdat, struct scan_control *sc) | 
 | { | 
 | 	unsigned long nr_reclaimed, nr_scanned, nr_node_reclaimed; | 
 | 	struct lruvec *target_lruvec; | 
 | 	bool reclaimable = false; | 
 |  | 
 | 	if (lru_gen_enabled() && root_reclaim(sc)) { | 
 | 		memset(&sc->nr, 0, sizeof(sc->nr)); | 
 | 		lru_gen_shrink_node(pgdat, sc); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat); | 
 |  | 
 | again: | 
 | 	memset(&sc->nr, 0, sizeof(sc->nr)); | 
 |  | 
 | 	nr_reclaimed = sc->nr_reclaimed; | 
 | 	nr_scanned = sc->nr_scanned; | 
 |  | 
 | 	prepare_scan_control(pgdat, sc); | 
 |  | 
 | 	shrink_node_memcgs(pgdat, sc); | 
 |  | 
 | 	flush_reclaim_state(sc); | 
 |  | 
 | 	nr_node_reclaimed = sc->nr_reclaimed - nr_reclaimed; | 
 |  | 
 | 	/* Record the subtree's reclaim efficiency */ | 
 | 	if (!sc->proactive) | 
 | 		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true, | 
 | 			   sc->nr_scanned - nr_scanned, nr_node_reclaimed); | 
 |  | 
 | 	if (nr_node_reclaimed) | 
 | 		reclaimable = true; | 
 |  | 
 | 	if (current_is_kswapd()) { | 
 | 		/* | 
 | 		 * If reclaim is isolating dirty pages under writeback, | 
 | 		 * it implies that the long-lived page allocation rate | 
 | 		 * is exceeding the page laundering rate. Either the | 
 | 		 * global limits are not being effective at throttling | 
 | 		 * processes due to the page distribution throughout | 
 | 		 * zones or there is heavy usage of a slow backing | 
 | 		 * device. The only option is to throttle from reclaim | 
 | 		 * context which is not ideal as there is no guarantee | 
 | 		 * the dirtying process is throttled in the same way | 
 | 		 * balance_dirty_pages() manages. | 
 | 		 * | 
 | 		 * Once a node is flagged PGDAT_WRITEBACK, kswapd will | 
 | 		 * count the number of pages under pages flagged for | 
 | 		 * immediate reclaim and stall if any are encountered | 
 | 		 * in the nr_immediate check below. | 
 | 		 */ | 
 | 		if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken) | 
 | 			set_bit(PGDAT_WRITEBACK, &pgdat->flags); | 
 |  | 
 | 		/* Allow kswapd to start writing pages during reclaim.*/ | 
 | 		if (sc->nr.unqueued_dirty && | 
 | 			sc->nr.unqueued_dirty == sc->nr.file_taken) | 
 | 			set_bit(PGDAT_DIRTY, &pgdat->flags); | 
 |  | 
 | 		/* | 
 | 		 * If kswapd scans pages marked for immediate | 
 | 		 * reclaim and under writeback (nr_immediate), it | 
 | 		 * implies that pages are cycling through the LRU | 
 | 		 * faster than they are written so forcibly stall | 
 | 		 * until some pages complete writeback. | 
 | 		 */ | 
 | 		if (sc->nr.immediate) | 
 | 			reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Tag a node/memcg as congested if all the dirty pages were marked | 
 | 	 * for writeback and immediate reclaim (counted in nr.congested). | 
 | 	 * | 
 | 	 * Legacy memcg will stall in page writeback so avoid forcibly | 
 | 	 * stalling in reclaim_throttle(). | 
 | 	 */ | 
 | 	if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested) { | 
 | 		if (cgroup_reclaim(sc) && writeback_throttling_sane(sc)) | 
 | 			set_bit(LRUVEC_CGROUP_CONGESTED, &target_lruvec->flags); | 
 |  | 
 | 		if (current_is_kswapd()) | 
 | 			set_bit(LRUVEC_NODE_CONGESTED, &target_lruvec->flags); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Stall direct reclaim for IO completions if the lruvec is | 
 | 	 * node is congested. Allow kswapd to continue until it | 
 | 	 * starts encountering unqueued dirty pages or cycling through | 
 | 	 * the LRU too quickly. | 
 | 	 */ | 
 | 	if (!current_is_kswapd() && current_may_throttle() && | 
 | 	    !sc->hibernation_mode && | 
 | 	    (test_bit(LRUVEC_CGROUP_CONGESTED, &target_lruvec->flags) || | 
 | 	     test_bit(LRUVEC_NODE_CONGESTED, &target_lruvec->flags))) | 
 | 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED); | 
 |  | 
 | 	if (should_continue_reclaim(pgdat, nr_node_reclaimed, sc)) | 
 | 		goto again; | 
 |  | 
 | 	/* | 
 | 	 * Kswapd gives up on balancing particular nodes after too | 
 | 	 * many failures to reclaim anything from them and goes to | 
 | 	 * sleep. On reclaim progress, reset the failure counter. A | 
 | 	 * successful direct reclaim run will revive a dormant kswapd. | 
 | 	 */ | 
 | 	if (reclaimable) | 
 | 		pgdat->kswapd_failures = 0; | 
 | 	else if (sc->cache_trim_mode) | 
 | 		sc->cache_trim_mode_failed = 1; | 
 | } | 
 |  | 
 | /* | 
 |  * Returns true if compaction should go ahead for a costly-order request, or | 
 |  * the allocation would already succeed without compaction. Return false if we | 
 |  * should reclaim first. | 
 |  */ | 
 | static inline bool compaction_ready(struct zone *zone, struct scan_control *sc) | 
 | { | 
 | 	unsigned long watermark; | 
 |  | 
 | 	if (!gfp_compaction_allowed(sc->gfp_mask)) | 
 | 		return false; | 
 |  | 
 | 	/* Allocation can already succeed, nothing to do */ | 
 | 	if (zone_watermark_ok(zone, sc->order, min_wmark_pages(zone), | 
 | 			      sc->reclaim_idx, 0)) | 
 | 		return true; | 
 |  | 
 | 	/* | 
 | 	 * Direct reclaim usually targets the min watermark, but compaction | 
 | 	 * takes time to run and there are potentially other callers using the | 
 | 	 * pages just freed. So target a higher buffer to give compaction a | 
 | 	 * reasonable chance of completing and allocating the pages. | 
 | 	 * | 
 | 	 * Note that we won't actually reclaim the whole buffer in one attempt | 
 | 	 * as the target watermark in should_continue_reclaim() is lower. But if | 
 | 	 * we are already above the high+gap watermark, don't reclaim at all. | 
 | 	 */ | 
 | 	watermark = high_wmark_pages(zone); | 
 | 	if (compaction_suitable(zone, sc->order, watermark, sc->reclaim_idx)) | 
 | 		return true; | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc) | 
 | { | 
 | 	/* | 
 | 	 * If reclaim is making progress greater than 12% efficiency then | 
 | 	 * wake all the NOPROGRESS throttled tasks. | 
 | 	 */ | 
 | 	if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) { | 
 | 		wait_queue_head_t *wqh; | 
 |  | 
 | 		wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS]; | 
 | 		if (waitqueue_active(wqh)) | 
 | 			wake_up(wqh); | 
 |  | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will | 
 | 	 * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages | 
 | 	 * under writeback and marked for immediate reclaim at the tail of the | 
 | 	 * LRU. | 
 | 	 */ | 
 | 	if (current_is_kswapd() || cgroup_reclaim(sc)) | 
 | 		return; | 
 |  | 
 | 	/* Throttle if making no progress at high prioities. */ | 
 | 	if (sc->priority == 1 && !sc->nr_reclaimed) | 
 | 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS); | 
 | } | 
 |  | 
 | /* | 
 |  * This is the direct reclaim path, for page-allocating processes.  We only | 
 |  * try to reclaim pages from zones which will satisfy the caller's allocation | 
 |  * request. | 
 |  * | 
 |  * If a zone is deemed to be full of pinned pages then just give it a light | 
 |  * scan then give up on it. | 
 |  */ | 
 | static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc) | 
 | { | 
 | 	struct zoneref *z; | 
 | 	struct zone *zone; | 
 | 	unsigned long nr_soft_reclaimed; | 
 | 	unsigned long nr_soft_scanned; | 
 | 	gfp_t orig_mask; | 
 | 	pg_data_t *last_pgdat = NULL; | 
 | 	pg_data_t *first_pgdat = NULL; | 
 |  | 
 | 	/* | 
 | 	 * If the number of buffer_heads in the machine exceeds the maximum | 
 | 	 * allowed level, force direct reclaim to scan the highmem zone as | 
 | 	 * highmem pages could be pinning lowmem pages storing buffer_heads | 
 | 	 */ | 
 | 	orig_mask = sc->gfp_mask; | 
 | 	if (buffer_heads_over_limit) { | 
 | 		sc->gfp_mask |= __GFP_HIGHMEM; | 
 | 		sc->reclaim_idx = gfp_zone(sc->gfp_mask); | 
 | 	} | 
 |  | 
 | 	for_each_zone_zonelist_nodemask(zone, z, zonelist, | 
 | 					sc->reclaim_idx, sc->nodemask) { | 
 | 		/* | 
 | 		 * Take care memory controller reclaiming has small influence | 
 | 		 * to global LRU. | 
 | 		 */ | 
 | 		if (!cgroup_reclaim(sc)) { | 
 | 			if (!cpuset_zone_allowed(zone, | 
 | 						 GFP_KERNEL | __GFP_HARDWALL)) | 
 | 				continue; | 
 |  | 
 | 			/* | 
 | 			 * If we already have plenty of memory free for | 
 | 			 * compaction in this zone, don't free any more. | 
 | 			 * Even though compaction is invoked for any | 
 | 			 * non-zero order, only frequent costly order | 
 | 			 * reclamation is disruptive enough to become a | 
 | 			 * noticeable problem, like transparent huge | 
 | 			 * page allocations. | 
 | 			 */ | 
 | 			if (IS_ENABLED(CONFIG_COMPACTION) && | 
 | 			    sc->order > PAGE_ALLOC_COSTLY_ORDER && | 
 | 			    compaction_ready(zone, sc)) { | 
 | 				sc->compaction_ready = true; | 
 | 				continue; | 
 | 			} | 
 |  | 
 | 			/* | 
 | 			 * Shrink each node in the zonelist once. If the | 
 | 			 * zonelist is ordered by zone (not the default) then a | 
 | 			 * node may be shrunk multiple times but in that case | 
 | 			 * the user prefers lower zones being preserved. | 
 | 			 */ | 
 | 			if (zone->zone_pgdat == last_pgdat) | 
 | 				continue; | 
 |  | 
 | 			/* | 
 | 			 * This steals pages from memory cgroups over softlimit | 
 | 			 * and returns the number of reclaimed pages and | 
 | 			 * scanned pages. This works for global memory pressure | 
 | 			 * and balancing, not for a memcg's limit. | 
 | 			 */ | 
 | 			nr_soft_scanned = 0; | 
 | 			nr_soft_reclaimed = memcg1_soft_limit_reclaim(zone->zone_pgdat, | 
 | 								      sc->order, sc->gfp_mask, | 
 | 								      &nr_soft_scanned); | 
 | 			sc->nr_reclaimed += nr_soft_reclaimed; | 
 | 			sc->nr_scanned += nr_soft_scanned; | 
 | 			/* need some check for avoid more shrink_zone() */ | 
 | 		} | 
 |  | 
 | 		if (!first_pgdat) | 
 | 			first_pgdat = zone->zone_pgdat; | 
 |  | 
 | 		/* See comment about same check for global reclaim above */ | 
 | 		if (zone->zone_pgdat == last_pgdat) | 
 | 			continue; | 
 | 		last_pgdat = zone->zone_pgdat; | 
 | 		shrink_node(zone->zone_pgdat, sc); | 
 | 	} | 
 |  | 
 | 	if (first_pgdat) | 
 | 		consider_reclaim_throttle(first_pgdat, sc); | 
 |  | 
 | 	/* | 
 | 	 * Restore to original mask to avoid the impact on the caller if we | 
 | 	 * promoted it to __GFP_HIGHMEM. | 
 | 	 */ | 
 | 	sc->gfp_mask = orig_mask; | 
 | } | 
 |  | 
 | static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat) | 
 | { | 
 | 	struct lruvec *target_lruvec; | 
 | 	unsigned long refaults; | 
 |  | 
 | 	if (lru_gen_enabled()) | 
 | 		return; | 
 |  | 
 | 	target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat); | 
 | 	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON); | 
 | 	target_lruvec->refaults[WORKINGSET_ANON] = refaults; | 
 | 	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE); | 
 | 	target_lruvec->refaults[WORKINGSET_FILE] = refaults; | 
 | } | 
 |  | 
 | /* | 
 |  * This is the main entry point to direct page reclaim. | 
 |  * | 
 |  * If a full scan of the inactive list fails to free enough memory then we | 
 |  * are "out of memory" and something needs to be killed. | 
 |  * | 
 |  * If the caller is !__GFP_FS then the probability of a failure is reasonably | 
 |  * high - the zone may be full of dirty or under-writeback pages, which this | 
 |  * caller can't do much about.  We kick the writeback threads and take explicit | 
 |  * naps in the hope that some of these pages can be written.  But if the | 
 |  * allocating task holds filesystem locks which prevent writeout this might not | 
 |  * work, and the allocation attempt will fail. | 
 |  * | 
 |  * returns:	0, if no pages reclaimed | 
 |  * 		else, the number of pages reclaimed | 
 |  */ | 
 | static unsigned long do_try_to_free_pages(struct zonelist *zonelist, | 
 | 					  struct scan_control *sc) | 
 | { | 
 | 	int initial_priority = sc->priority; | 
 | 	pg_data_t *last_pgdat; | 
 | 	struct zoneref *z; | 
 | 	struct zone *zone; | 
 | retry: | 
 | 	delayacct_freepages_start(); | 
 |  | 
 | 	if (!cgroup_reclaim(sc)) | 
 | 		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1); | 
 |  | 
 | 	do { | 
 | 		if (!sc->proactive) | 
 | 			vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup, | 
 | 					sc->priority); | 
 | 		sc->nr_scanned = 0; | 
 | 		shrink_zones(zonelist, sc); | 
 |  | 
 | 		if (sc->nr_reclaimed >= sc->nr_to_reclaim) | 
 | 			break; | 
 |  | 
 | 		if (sc->compaction_ready) | 
 | 			break; | 
 |  | 
 | 		/* | 
 | 		 * If we're getting trouble reclaiming, start doing | 
 | 		 * writepage even in laptop mode. | 
 | 		 */ | 
 | 		if (sc->priority < DEF_PRIORITY - 2) | 
 | 			sc->may_writepage = 1; | 
 | 	} while (--sc->priority >= 0); | 
 |  | 
 | 	last_pgdat = NULL; | 
 | 	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx, | 
 | 					sc->nodemask) { | 
 | 		if (zone->zone_pgdat == last_pgdat) | 
 | 			continue; | 
 | 		last_pgdat = zone->zone_pgdat; | 
 |  | 
 | 		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat); | 
 |  | 
 | 		if (cgroup_reclaim(sc)) { | 
 | 			struct lruvec *lruvec; | 
 |  | 
 | 			lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, | 
 | 						   zone->zone_pgdat); | 
 | 			clear_bit(LRUVEC_CGROUP_CONGESTED, &lruvec->flags); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	delayacct_freepages_end(); | 
 |  | 
 | 	if (sc->nr_reclaimed) | 
 | 		return sc->nr_reclaimed; | 
 |  | 
 | 	/* Aborted reclaim to try compaction? don't OOM, then */ | 
 | 	if (sc->compaction_ready) | 
 | 		return 1; | 
 |  | 
 | 	/* | 
 | 	 * In most cases, direct reclaimers can do partial walks | 
 | 	 * through the cgroup tree to meet the reclaim goal while | 
 | 	 * keeping latency low. Since the iterator state is shared | 
 | 	 * among all direct reclaim invocations (to retain fairness | 
 | 	 * among cgroups), though, high concurrency can result in | 
 | 	 * individual threads not seeing enough cgroups to make | 
 | 	 * meaningful forward progress. Avoid false OOMs in this case. | 
 | 	 */ | 
 | 	if (!sc->memcg_full_walk) { | 
 | 		sc->priority = initial_priority; | 
 | 		sc->memcg_full_walk = 1; | 
 | 		goto retry; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We make inactive:active ratio decisions based on the node's | 
 | 	 * composition of memory, but a restrictive reclaim_idx or a | 
 | 	 * memory.low cgroup setting can exempt large amounts of | 
 | 	 * memory from reclaim. Neither of which are very common, so | 
 | 	 * instead of doing costly eligibility calculations of the | 
 | 	 * entire cgroup subtree up front, we assume the estimates are | 
 | 	 * good, and retry with forcible deactivation if that fails. | 
 | 	 */ | 
 | 	if (sc->skipped_deactivate) { | 
 | 		sc->priority = initial_priority; | 
 | 		sc->force_deactivate = 1; | 
 | 		sc->skipped_deactivate = 0; | 
 | 		goto retry; | 
 | 	} | 
 |  | 
 | 	/* Untapped cgroup reserves?  Don't OOM, retry. */ | 
 | 	if (sc->memcg_low_skipped) { | 
 | 		sc->priority = initial_priority; | 
 | 		sc->force_deactivate = 0; | 
 | 		sc->memcg_low_reclaim = 1; | 
 | 		sc->memcg_low_skipped = 0; | 
 | 		goto retry; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static bool allow_direct_reclaim(pg_data_t *pgdat) | 
 | { | 
 | 	struct zone *zone; | 
 | 	unsigned long pfmemalloc_reserve = 0; | 
 | 	unsigned long free_pages = 0; | 
 | 	int i; | 
 | 	bool wmark_ok; | 
 |  | 
 | 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) | 
 | 		return true; | 
 |  | 
 | 	for_each_managed_zone_pgdat(zone, pgdat, i, ZONE_NORMAL) { | 
 | 		if (!zone_reclaimable_pages(zone)) | 
 | 			continue; | 
 |  | 
 | 		pfmemalloc_reserve += min_wmark_pages(zone); | 
 | 		free_pages += zone_page_state_snapshot(zone, NR_FREE_PAGES); | 
 | 	} | 
 |  | 
 | 	/* If there are no reserves (unexpected config) then do not throttle */ | 
 | 	if (!pfmemalloc_reserve) | 
 | 		return true; | 
 |  | 
 | 	wmark_ok = free_pages > pfmemalloc_reserve / 2; | 
 |  | 
 | 	/* kswapd must be awake if processes are being throttled */ | 
 | 	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) { | 
 | 		if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL) | 
 | 			WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL); | 
 |  | 
 | 		wake_up_interruptible(&pgdat->kswapd_wait); | 
 | 	} | 
 |  | 
 | 	return wmark_ok; | 
 | } | 
 |  | 
 | /* | 
 |  * Throttle direct reclaimers if backing storage is backed by the network | 
 |  * and the PFMEMALLOC reserve for the preferred node is getting dangerously | 
 |  * depleted. kswapd will continue to make progress and wake the processes | 
 |  * when the low watermark is reached. | 
 |  * | 
 |  * Returns true if a fatal signal was delivered during throttling. If this | 
 |  * happens, the page allocator should not consider triggering the OOM killer. | 
 |  */ | 
 | static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, | 
 | 					nodemask_t *nodemask) | 
 | { | 
 | 	struct zoneref *z; | 
 | 	struct zone *zone; | 
 | 	pg_data_t *pgdat = NULL; | 
 |  | 
 | 	/* | 
 | 	 * Kernel threads should not be throttled as they may be indirectly | 
 | 	 * responsible for cleaning pages necessary for reclaim to make forward | 
 | 	 * progress. kjournald for example may enter direct reclaim while | 
 | 	 * committing a transaction where throttling it could forcing other | 
 | 	 * processes to block on log_wait_commit(). | 
 | 	 */ | 
 | 	if (current->flags & PF_KTHREAD) | 
 | 		goto out; | 
 |  | 
 | 	/* | 
 | 	 * If a fatal signal is pending, this process should not throttle. | 
 | 	 * It should return quickly so it can exit and free its memory | 
 | 	 */ | 
 | 	if (fatal_signal_pending(current)) | 
 | 		goto out; | 
 |  | 
 | 	/* | 
 | 	 * Check if the pfmemalloc reserves are ok by finding the first node | 
 | 	 * with a usable ZONE_NORMAL or lower zone. The expectation is that | 
 | 	 * GFP_KERNEL will be required for allocating network buffers when | 
 | 	 * swapping over the network so ZONE_HIGHMEM is unusable. | 
 | 	 * | 
 | 	 * Throttling is based on the first usable node and throttled processes | 
 | 	 * wait on a queue until kswapd makes progress and wakes them. There | 
 | 	 * is an affinity then between processes waking up and where reclaim | 
 | 	 * progress has been made assuming the process wakes on the same node. | 
 | 	 * More importantly, processes running on remote nodes will not compete | 
 | 	 * for remote pfmemalloc reserves and processes on different nodes | 
 | 	 * should make reasonable progress. | 
 | 	 */ | 
 | 	for_each_zone_zonelist_nodemask(zone, z, zonelist, | 
 | 					gfp_zone(gfp_mask), nodemask) { | 
 | 		if (zone_idx(zone) > ZONE_NORMAL) | 
 | 			continue; | 
 |  | 
 | 		/* Throttle based on the first usable node */ | 
 | 		pgdat = zone->zone_pgdat; | 
 | 		if (allow_direct_reclaim(pgdat)) | 
 | 			goto out; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	/* If no zone was usable by the allocation flags then do not throttle */ | 
 | 	if (!pgdat) | 
 | 		goto out; | 
 |  | 
 | 	/* Account for the throttling */ | 
 | 	count_vm_event(PGSCAN_DIRECT_THROTTLE); | 
 |  | 
 | 	/* | 
 | 	 * If the caller cannot enter the filesystem, it's possible that it | 
 | 	 * is due to the caller holding an FS lock or performing a journal | 
 | 	 * transaction in the case of a filesystem like ext[3|4]. In this case, | 
 | 	 * it is not safe to block on pfmemalloc_wait as kswapd could be | 
 | 	 * blocked waiting on the same lock. Instead, throttle for up to a | 
 | 	 * second before continuing. | 
 | 	 */ | 
 | 	if (!(gfp_mask & __GFP_FS)) | 
 | 		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait, | 
 | 			allow_direct_reclaim(pgdat), HZ); | 
 | 	else | 
 | 		/* Throttle until kswapd wakes the process */ | 
 | 		wait_event_killable(zone->zone_pgdat->pfmemalloc_wait, | 
 | 			allow_direct_reclaim(pgdat)); | 
 |  | 
 | 	if (fatal_signal_pending(current)) | 
 | 		return true; | 
 |  | 
 | out: | 
 | 	return false; | 
 | } | 
 |  | 
 | unsigned long try_to_free_pages(struct zonelist *zonelist, int order, | 
 | 				gfp_t gfp_mask, nodemask_t *nodemask) | 
 | { | 
 | 	unsigned long nr_reclaimed; | 
 | 	struct scan_control sc = { | 
 | 		.nr_to_reclaim = SWAP_CLUSTER_MAX, | 
 | 		.gfp_mask = current_gfp_context(gfp_mask), | 
 | 		.reclaim_idx = gfp_zone(gfp_mask), | 
 | 		.order = order, | 
 | 		.nodemask = nodemask, | 
 | 		.priority = DEF_PRIORITY, | 
 | 		.may_writepage = !laptop_mode, | 
 | 		.may_unmap = 1, | 
 | 		.may_swap = 1, | 
 | 	}; | 
 |  | 
 | 	/* | 
 | 	 * scan_control uses s8 fields for order, priority, and reclaim_idx. | 
 | 	 * Confirm they are large enough for max values. | 
 | 	 */ | 
 | 	BUILD_BUG_ON(MAX_PAGE_ORDER >= S8_MAX); | 
 | 	BUILD_BUG_ON(DEF_PRIORITY > S8_MAX); | 
 | 	BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX); | 
 |  | 
 | 	/* | 
 | 	 * Do not enter reclaim if fatal signal was delivered while throttled. | 
 | 	 * 1 is returned so that the page allocator does not OOM kill at this | 
 | 	 * point. | 
 | 	 */ | 
 | 	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask)) | 
 | 		return 1; | 
 |  | 
 | 	set_task_reclaim_state(current, &sc.reclaim_state); | 
 | 	trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask); | 
 |  | 
 | 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc); | 
 |  | 
 | 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); | 
 | 	set_task_reclaim_state(current, NULL); | 
 |  | 
 | 	return nr_reclaimed; | 
 | } | 
 |  | 
 | #ifdef CONFIG_MEMCG | 
 |  | 
 | /* Only used by soft limit reclaim. Do not reuse for anything else. */ | 
 | unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg, | 
 | 						gfp_t gfp_mask, bool noswap, | 
 | 						pg_data_t *pgdat, | 
 | 						unsigned long *nr_scanned) | 
 | { | 
 | 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); | 
 | 	struct scan_control sc = { | 
 | 		.nr_to_reclaim = SWAP_CLUSTER_MAX, | 
 | 		.target_mem_cgroup = memcg, | 
 | 		.may_writepage = !laptop_mode, | 
 | 		.may_unmap = 1, | 
 | 		.reclaim_idx = MAX_NR_ZONES - 1, | 
 | 		.may_swap = !noswap, | 
 | 	}; | 
 |  | 
 | 	WARN_ON_ONCE(!current->reclaim_state); | 
 |  | 
 | 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | | 
 | 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); | 
 |  | 
 | 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order, | 
 | 						      sc.gfp_mask); | 
 |  | 
 | 	/* | 
 | 	 * NOTE: Although we can get the priority field, using it | 
 | 	 * here is not a good idea, since it limits the pages we can scan. | 
 | 	 * if we don't reclaim here, the shrink_node from balance_pgdat | 
 | 	 * will pick up pages from other mem cgroup's as well. We hack | 
 | 	 * the priority and make it zero. | 
 | 	 */ | 
 | 	shrink_lruvec(lruvec, &sc); | 
 |  | 
 | 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); | 
 |  | 
 | 	*nr_scanned = sc.nr_scanned; | 
 |  | 
 | 	return sc.nr_reclaimed; | 
 | } | 
 |  | 
 | unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, | 
 | 					   unsigned long nr_pages, | 
 | 					   gfp_t gfp_mask, | 
 | 					   unsigned int reclaim_options, | 
 | 					   int *swappiness) | 
 | { | 
 | 	unsigned long nr_reclaimed; | 
 | 	unsigned int noreclaim_flag; | 
 | 	struct scan_control sc = { | 
 | 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), | 
 | 		.proactive_swappiness = swappiness, | 
 | 		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) | | 
 | 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), | 
 | 		.reclaim_idx = MAX_NR_ZONES - 1, | 
 | 		.target_mem_cgroup = memcg, | 
 | 		.priority = DEF_PRIORITY, | 
 | 		.may_writepage = !laptop_mode, | 
 | 		.may_unmap = 1, | 
 | 		.may_swap = !!(reclaim_options & MEMCG_RECLAIM_MAY_SWAP), | 
 | 		.proactive = !!(reclaim_options & MEMCG_RECLAIM_PROACTIVE), | 
 | 	}; | 
 | 	/* | 
 | 	 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put | 
 | 	 * equal pressure on all the nodes. This is based on the assumption that | 
 | 	 * the reclaim does not bail out early. | 
 | 	 */ | 
 | 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); | 
 |  | 
 | 	set_task_reclaim_state(current, &sc.reclaim_state); | 
 | 	trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask); | 
 | 	noreclaim_flag = memalloc_noreclaim_save(); | 
 |  | 
 | 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc); | 
 |  | 
 | 	memalloc_noreclaim_restore(noreclaim_flag); | 
 | 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); | 
 | 	set_task_reclaim_state(current, NULL); | 
 |  | 
 | 	return nr_reclaimed; | 
 | } | 
 | #endif | 
 |  | 
 | static void kswapd_age_node(struct pglist_data *pgdat, struct scan_control *sc) | 
 | { | 
 | 	struct mem_cgroup *memcg; | 
 | 	struct lruvec *lruvec; | 
 |  | 
 | 	if (lru_gen_enabled()) { | 
 | 		lru_gen_age_node(pgdat, sc); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	lruvec = mem_cgroup_lruvec(NULL, pgdat); | 
 | 	if (!can_age_anon_pages(lruvec, sc)) | 
 | 		return; | 
 |  | 
 | 	if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON)) | 
 | 		return; | 
 |  | 
 | 	memcg = mem_cgroup_iter(NULL, NULL, NULL); | 
 | 	do { | 
 | 		lruvec = mem_cgroup_lruvec(memcg, pgdat); | 
 | 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec, | 
 | 				   sc, LRU_ACTIVE_ANON); | 
 | 		memcg = mem_cgroup_iter(NULL, memcg, NULL); | 
 | 	} while (memcg); | 
 | } | 
 |  | 
 | static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx) | 
 | { | 
 | 	int i; | 
 | 	struct zone *zone; | 
 |  | 
 | 	/* | 
 | 	 * Check for watermark boosts top-down as the higher zones | 
 | 	 * are more likely to be boosted. Both watermarks and boosts | 
 | 	 * should not be checked at the same time as reclaim would | 
 | 	 * start prematurely when there is no boosting and a lower | 
 | 	 * zone is balanced. | 
 | 	 */ | 
 | 	for (i = highest_zoneidx; i >= 0; i--) { | 
 | 		zone = pgdat->node_zones + i; | 
 | 		if (!managed_zone(zone)) | 
 | 			continue; | 
 |  | 
 | 		if (zone->watermark_boost) | 
 | 			return true; | 
 | 	} | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | /* | 
 |  * Returns true if there is an eligible zone balanced for the request order | 
 |  * and highest_zoneidx | 
 |  */ | 
 | static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx) | 
 | { | 
 | 	int i; | 
 | 	unsigned long mark = -1; | 
 | 	struct zone *zone; | 
 |  | 
 | 	/* | 
 | 	 * Check watermarks bottom-up as lower zones are more likely to | 
 | 	 * meet watermarks. | 
 | 	 */ | 
 | 	for_each_managed_zone_pgdat(zone, pgdat, i, highest_zoneidx) { | 
 | 		enum zone_stat_item item; | 
 | 		unsigned long free_pages; | 
 |  | 
 | 		if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) | 
 | 			mark = promo_wmark_pages(zone); | 
 | 		else | 
 | 			mark = high_wmark_pages(zone); | 
 |  | 
 | 		/* | 
 | 		 * In defrag_mode, watermarks must be met in whole | 
 | 		 * blocks to avoid polluting allocator fallbacks. | 
 | 		 * | 
 | 		 * However, kswapd usually cannot accomplish this on | 
 | 		 * its own and needs kcompactd support. Once it's | 
 | 		 * reclaimed a compaction gap, and kswapd_shrink_node | 
 | 		 * has dropped order, simply ensure there are enough | 
 | 		 * base pages for compaction, wake kcompactd & sleep. | 
 | 		 */ | 
 | 		if (defrag_mode && order) | 
 | 			item = NR_FREE_PAGES_BLOCKS; | 
 | 		else | 
 | 			item = NR_FREE_PAGES; | 
 |  | 
 | 		/* | 
 | 		 * When there is a high number of CPUs in the system, | 
 | 		 * the cumulative error from the vmstat per-cpu cache | 
 | 		 * can blur the line between the watermarks. In that | 
 | 		 * case, be safe and get an accurate snapshot. | 
 | 		 * | 
 | 		 * TODO: NR_FREE_PAGES_BLOCKS moves in steps of | 
 | 		 * pageblock_nr_pages, while the vmstat pcp threshold | 
 | 		 * is limited to 125. On many configurations that | 
 | 		 * counter won't actually be per-cpu cached. But keep | 
 | 		 * things simple for now; revisit when somebody cares. | 
 | 		 */ | 
 | 		free_pages = zone_page_state(zone, item); | 
 | 		if (zone->percpu_drift_mark && free_pages < zone->percpu_drift_mark) | 
 | 			free_pages = zone_page_state_snapshot(zone, item); | 
 |  | 
 | 		if (__zone_watermark_ok(zone, order, mark, highest_zoneidx, | 
 | 					0, free_pages)) | 
 | 			return true; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If a node has no managed zone within highest_zoneidx, it does not | 
 | 	 * need balancing by definition. This can happen if a zone-restricted | 
 | 	 * allocation tries to wake a remote kswapd. | 
 | 	 */ | 
 | 	if (mark == -1) | 
 | 		return true; | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | /* Clear pgdat state for congested, dirty or under writeback. */ | 
 | static void clear_pgdat_congested(pg_data_t *pgdat) | 
 | { | 
 | 	struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat); | 
 |  | 
 | 	clear_bit(LRUVEC_NODE_CONGESTED, &lruvec->flags); | 
 | 	clear_bit(LRUVEC_CGROUP_CONGESTED, &lruvec->flags); | 
 | 	clear_bit(PGDAT_DIRTY, &pgdat->flags); | 
 | 	clear_bit(PGDAT_WRITEBACK, &pgdat->flags); | 
 | } | 
 |  | 
 | /* | 
 |  * Prepare kswapd for sleeping. This verifies that there are no processes | 
 |  * waiting in throttle_direct_reclaim() and that watermarks have been met. | 
 |  * | 
 |  * Returns true if kswapd is ready to sleep | 
 |  */ | 
 | static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, | 
 | 				int highest_zoneidx) | 
 | { | 
 | 	/* | 
 | 	 * The throttled processes are normally woken up in balance_pgdat() as | 
 | 	 * soon as allow_direct_reclaim() is true. But there is a potential | 
 | 	 * race between when kswapd checks the watermarks and a process gets | 
 | 	 * throttled. There is also a potential race if processes get | 
 | 	 * throttled, kswapd wakes, a large process exits thereby balancing the | 
 | 	 * zones, which causes kswapd to exit balance_pgdat() before reaching | 
 | 	 * the wake up checks. If kswapd is going to sleep, no process should | 
 | 	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If | 
 | 	 * the wake up is premature, processes will wake kswapd and get | 
 | 	 * throttled again. The difference from wake ups in balance_pgdat() is | 
 | 	 * that here we are under prepare_to_wait(). | 
 | 	 */ | 
 | 	if (waitqueue_active(&pgdat->pfmemalloc_wait)) | 
 | 		wake_up_all(&pgdat->pfmemalloc_wait); | 
 |  | 
 | 	/* Hopeless node, leave it to direct reclaim */ | 
 | 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) | 
 | 		return true; | 
 |  | 
 | 	if (pgdat_balanced(pgdat, order, highest_zoneidx)) { | 
 | 		clear_pgdat_congested(pgdat); | 
 | 		return true; | 
 | 	} | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | /* | 
 |  * kswapd shrinks a node of pages that are at or below the highest usable | 
 |  * zone that is currently unbalanced. | 
 |  * | 
 |  * Returns true if kswapd scanned at least the requested number of pages to | 
 |  * reclaim or if the lack of progress was due to pages under writeback. | 
 |  * This is used to determine if the scanning priority needs to be raised. | 
 |  */ | 
 | static bool kswapd_shrink_node(pg_data_t *pgdat, | 
 | 			       struct scan_control *sc) | 
 | { | 
 | 	struct zone *zone; | 
 | 	int z; | 
 | 	unsigned long nr_reclaimed = sc->nr_reclaimed; | 
 |  | 
 | 	/* Reclaim a number of pages proportional to the number of zones */ | 
 | 	sc->nr_to_reclaim = 0; | 
 | 	for_each_managed_zone_pgdat(zone, pgdat, z, sc->reclaim_idx) { | 
 | 		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Historically care was taken to put equal pressure on all zones but | 
 | 	 * now pressure is applied based on node LRU order. | 
 | 	 */ | 
 | 	shrink_node(pgdat, sc); | 
 |  | 
 | 	/* | 
 | 	 * Fragmentation may mean that the system cannot be rebalanced for | 
 | 	 * high-order allocations. If twice the allocation size has been | 
 | 	 * reclaimed then recheck watermarks only at order-0 to prevent | 
 | 	 * excessive reclaim. Assume that a process requested a high-order | 
 | 	 * can direct reclaim/compact. | 
 | 	 */ | 
 | 	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order)) | 
 | 		sc->order = 0; | 
 |  | 
 | 	/* account for progress from mm_account_reclaimed_pages() */ | 
 | 	return max(sc->nr_scanned, sc->nr_reclaimed - nr_reclaimed) >= sc->nr_to_reclaim; | 
 | } | 
 |  | 
 | /* Page allocator PCP high watermark is lowered if reclaim is active. */ | 
 | static inline void | 
 | update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active) | 
 | { | 
 | 	int i; | 
 | 	struct zone *zone; | 
 |  | 
 | 	for_each_managed_zone_pgdat(zone, pgdat, i, highest_zoneidx) { | 
 | 		if (active) | 
 | 			set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags); | 
 | 		else | 
 | 			clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags); | 
 | 	} | 
 | } | 
 |  | 
 | static inline void | 
 | set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx) | 
 | { | 
 | 	update_reclaim_active(pgdat, highest_zoneidx, true); | 
 | } | 
 |  | 
 | static inline void | 
 | clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx) | 
 | { | 
 | 	update_reclaim_active(pgdat, highest_zoneidx, false); | 
 | } | 
 |  | 
 | /* | 
 |  * For kswapd, balance_pgdat() will reclaim pages across a node from zones | 
 |  * that are eligible for use by the caller until at least one zone is | 
 |  * balanced. | 
 |  * | 
 |  * Returns the order kswapd finished reclaiming at. | 
 |  * | 
 |  * kswapd scans the zones in the highmem->normal->dma direction.  It skips | 
 |  * zones which have free_pages > high_wmark_pages(zone), but once a zone is | 
 |  * found to have free_pages <= high_wmark_pages(zone), any page in that zone | 
 |  * or lower is eligible for reclaim until at least one usable zone is | 
 |  * balanced. | 
 |  */ | 
 | static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx) | 
 | { | 
 | 	int i; | 
 | 	unsigned long nr_soft_reclaimed; | 
 | 	unsigned long nr_soft_scanned; | 
 | 	unsigned long pflags; | 
 | 	unsigned long nr_boost_reclaim; | 
 | 	unsigned long zone_boosts[MAX_NR_ZONES] = { 0, }; | 
 | 	bool boosted; | 
 | 	struct zone *zone; | 
 | 	struct scan_control sc = { | 
 | 		.gfp_mask = GFP_KERNEL, | 
 | 		.order = order, | 
 | 		.may_unmap = 1, | 
 | 	}; | 
 |  | 
 | 	set_task_reclaim_state(current, &sc.reclaim_state); | 
 | 	psi_memstall_enter(&pflags); | 
 | 	__fs_reclaim_acquire(_THIS_IP_); | 
 |  | 
 | 	count_vm_event(PAGEOUTRUN); | 
 |  | 
 | 	/* | 
 | 	 * Account for the reclaim boost. Note that the zone boost is left in | 
 | 	 * place so that parallel allocations that are near the watermark will | 
 | 	 * stall or direct reclaim until kswapd is finished. | 
 | 	 */ | 
 | 	nr_boost_reclaim = 0; | 
 | 	for_each_managed_zone_pgdat(zone, pgdat, i, highest_zoneidx) { | 
 | 		nr_boost_reclaim += zone->watermark_boost; | 
 | 		zone_boosts[i] = zone->watermark_boost; | 
 | 	} | 
 | 	boosted = nr_boost_reclaim; | 
 |  | 
 | restart: | 
 | 	set_reclaim_active(pgdat, highest_zoneidx); | 
 | 	sc.priority = DEF_PRIORITY; | 
 | 	do { | 
 | 		unsigned long nr_reclaimed = sc.nr_reclaimed; | 
 | 		bool raise_priority = true; | 
 | 		bool balanced; | 
 | 		bool ret; | 
 | 		bool was_frozen; | 
 |  | 
 | 		sc.reclaim_idx = highest_zoneidx; | 
 |  | 
 | 		/* | 
 | 		 * If the number of buffer_heads exceeds the maximum allowed | 
 | 		 * then consider reclaiming from all zones. This has a dual | 
 | 		 * purpose -- on 64-bit systems it is expected that | 
 | 		 * buffer_heads are stripped during active rotation. On 32-bit | 
 | 		 * systems, highmem pages can pin lowmem memory and shrinking | 
 | 		 * buffers can relieve lowmem pressure. Reclaim may still not | 
 | 		 * go ahead if all eligible zones for the original allocation | 
 | 		 * request are balanced to avoid excessive reclaim from kswapd. | 
 | 		 */ | 
 | 		if (buffer_heads_over_limit) { | 
 | 			for (i = MAX_NR_ZONES - 1; i >= 0; i--) { | 
 | 				zone = pgdat->node_zones + i; | 
 | 				if (!managed_zone(zone)) | 
 | 					continue; | 
 |  | 
 | 				sc.reclaim_idx = i; | 
 | 				break; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * If the pgdat is imbalanced then ignore boosting and preserve | 
 | 		 * the watermarks for a later time and restart. Note that the | 
 | 		 * zone watermarks will be still reset at the end of balancing | 
 | 		 * on the grounds that the normal reclaim should be enough to | 
 | 		 * re-evaluate if boosting is required when kswapd next wakes. | 
 | 		 */ | 
 | 		balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx); | 
 | 		if (!balanced && nr_boost_reclaim) { | 
 | 			nr_boost_reclaim = 0; | 
 | 			goto restart; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * If boosting is not active then only reclaim if there are no | 
 | 		 * eligible zones. Note that sc.reclaim_idx is not used as | 
 | 		 * buffer_heads_over_limit may have adjusted it. | 
 | 		 */ | 
 | 		if (!nr_boost_reclaim && balanced) | 
 | 			goto out; | 
 |  | 
 | 		/* Limit the priority of boosting to avoid reclaim writeback */ | 
 | 		if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2) | 
 | 			raise_priority = false; | 
 |  | 
 | 		/* | 
 | 		 * Do not writeback or swap pages for boosted reclaim. The | 
 | 		 * intent is to relieve pressure not issue sub-optimal IO | 
 | 		 * from reclaim context. If no pages are reclaimed, the | 
 | 		 * reclaim will be aborted. | 
 | 		 */ | 
 | 		sc.may_writepage = !laptop_mode && !nr_boost_reclaim; | 
 | 		sc.may_swap = !nr_boost_reclaim; | 
 |  | 
 | 		/* | 
 | 		 * Do some background aging, to give pages a chance to be | 
 | 		 * referenced before reclaiming. All pages are rotated | 
 | 		 * regardless of classzone as this is about consistent aging. | 
 | 		 */ | 
 | 		kswapd_age_node(pgdat, &sc); | 
 |  | 
 | 		/* | 
 | 		 * If we're getting trouble reclaiming, start doing writepage | 
 | 		 * even in laptop mode. | 
 | 		 */ | 
 | 		if (sc.priority < DEF_PRIORITY - 2) | 
 | 			sc.may_writepage = 1; | 
 |  | 
 | 		/* Call soft limit reclaim before calling shrink_node. */ | 
 | 		sc.nr_scanned = 0; | 
 | 		nr_soft_scanned = 0; | 
 | 		nr_soft_reclaimed = memcg1_soft_limit_reclaim(pgdat, sc.order, | 
 | 							      sc.gfp_mask, &nr_soft_scanned); | 
 | 		sc.nr_reclaimed += nr_soft_reclaimed; | 
 |  | 
 | 		/* | 
 | 		 * There should be no need to raise the scanning priority if | 
 | 		 * enough pages are already being scanned that that high | 
 | 		 * watermark would be met at 100% efficiency. | 
 | 		 */ | 
 | 		if (kswapd_shrink_node(pgdat, &sc)) | 
 | 			raise_priority = false; | 
 |  | 
 | 		/* | 
 | 		 * If the low watermark is met there is no need for processes | 
 | 		 * to be throttled on pfmemalloc_wait as they should not be | 
 | 		 * able to safely make forward progress. Wake them | 
 | 		 */ | 
 | 		if (waitqueue_active(&pgdat->pfmemalloc_wait) && | 
 | 				allow_direct_reclaim(pgdat)) | 
 | 			wake_up_all(&pgdat->pfmemalloc_wait); | 
 |  | 
 | 		/* Check if kswapd should be suspending */ | 
 | 		__fs_reclaim_release(_THIS_IP_); | 
 | 		ret = kthread_freezable_should_stop(&was_frozen); | 
 | 		__fs_reclaim_acquire(_THIS_IP_); | 
 | 		if (was_frozen || ret) | 
 | 			break; | 
 |  | 
 | 		/* | 
 | 		 * Raise priority if scanning rate is too low or there was no | 
 | 		 * progress in reclaiming pages | 
 | 		 */ | 
 | 		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed; | 
 | 		nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed); | 
 |  | 
 | 		/* | 
 | 		 * If reclaim made no progress for a boost, stop reclaim as | 
 | 		 * IO cannot be queued and it could be an infinite loop in | 
 | 		 * extreme circumstances. | 
 | 		 */ | 
 | 		if (nr_boost_reclaim && !nr_reclaimed) | 
 | 			break; | 
 |  | 
 | 		if (raise_priority || !nr_reclaimed) | 
 | 			sc.priority--; | 
 | 	} while (sc.priority >= 1); | 
 |  | 
 | 	/* | 
 | 	 * Restart only if it went through the priority loop all the way, | 
 | 	 * but cache_trim_mode didn't work. | 
 | 	 */ | 
 | 	if (!sc.nr_reclaimed && sc.priority < 1 && | 
 | 	    !sc.no_cache_trim_mode && sc.cache_trim_mode_failed) { | 
 | 		sc.no_cache_trim_mode = 1; | 
 | 		goto restart; | 
 | 	} | 
 |  | 
 | 	if (!sc.nr_reclaimed) | 
 | 		pgdat->kswapd_failures++; | 
 |  | 
 | out: | 
 | 	clear_reclaim_active(pgdat, highest_zoneidx); | 
 |  | 
 | 	/* If reclaim was boosted, account for the reclaim done in this pass */ | 
 | 	if (boosted) { | 
 | 		unsigned long flags; | 
 |  | 
 | 		for (i = 0; i <= highest_zoneidx; i++) { | 
 | 			if (!zone_boosts[i]) | 
 | 				continue; | 
 |  | 
 | 			/* Increments are under the zone lock */ | 
 | 			zone = pgdat->node_zones + i; | 
 | 			spin_lock_irqsave(&zone->lock, flags); | 
 | 			zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]); | 
 | 			spin_unlock_irqrestore(&zone->lock, flags); | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * As there is now likely space, wakeup kcompact to defragment | 
 | 		 * pageblocks. | 
 | 		 */ | 
 | 		wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx); | 
 | 	} | 
 |  | 
 | 	snapshot_refaults(NULL, pgdat); | 
 | 	__fs_reclaim_release(_THIS_IP_); | 
 | 	psi_memstall_leave(&pflags); | 
 | 	set_task_reclaim_state(current, NULL); | 
 |  | 
 | 	/* | 
 | 	 * Return the order kswapd stopped reclaiming at as | 
 | 	 * prepare_kswapd_sleep() takes it into account. If another caller | 
 | 	 * entered the allocator slow path while kswapd was awake, order will | 
 | 	 * remain at the higher level. | 
 | 	 */ | 
 | 	return sc.order; | 
 | } | 
 |  | 
 | /* | 
 |  * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to | 
 |  * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is | 
 |  * not a valid index then either kswapd runs for first time or kswapd couldn't | 
 |  * sleep after previous reclaim attempt (node is still unbalanced). In that | 
 |  * case return the zone index of the previous kswapd reclaim cycle. | 
 |  */ | 
 | static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat, | 
 | 					   enum zone_type prev_highest_zoneidx) | 
 | { | 
 | 	enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx); | 
 |  | 
 | 	return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx; | 
 | } | 
 |  | 
 | static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order, | 
 | 				unsigned int highest_zoneidx) | 
 | { | 
 | 	long remaining = 0; | 
 | 	DEFINE_WAIT(wait); | 
 |  | 
 | 	if (freezing(current) || kthread_should_stop()) | 
 | 		return; | 
 |  | 
 | 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); | 
 |  | 
 | 	/* | 
 | 	 * Try to sleep for a short interval. Note that kcompactd will only be | 
 | 	 * woken if it is possible to sleep for a short interval. This is | 
 | 	 * deliberate on the assumption that if reclaim cannot keep an | 
 | 	 * eligible zone balanced that it's also unlikely that compaction will | 
 | 	 * succeed. | 
 | 	 */ | 
 | 	if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) { | 
 | 		/* | 
 | 		 * Compaction records what page blocks it recently failed to | 
 | 		 * isolate pages from and skips them in the future scanning. | 
 | 		 * When kswapd is going to sleep, it is reasonable to assume | 
 | 		 * that pages and compaction may succeed so reset the cache. | 
 | 		 */ | 
 | 		reset_isolation_suitable(pgdat); | 
 |  | 
 | 		/* | 
 | 		 * We have freed the memory, now we should compact it to make | 
 | 		 * allocation of the requested order possible. | 
 | 		 */ | 
 | 		wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx); | 
 |  | 
 | 		remaining = schedule_timeout(HZ/10); | 
 |  | 
 | 		/* | 
 | 		 * If woken prematurely then reset kswapd_highest_zoneidx and | 
 | 		 * order. The values will either be from a wakeup request or | 
 | 		 * the previous request that slept prematurely. | 
 | 		 */ | 
 | 		if (remaining) { | 
 | 			WRITE_ONCE(pgdat->kswapd_highest_zoneidx, | 
 | 					kswapd_highest_zoneidx(pgdat, | 
 | 							highest_zoneidx)); | 
 |  | 
 | 			if (READ_ONCE(pgdat->kswapd_order) < reclaim_order) | 
 | 				WRITE_ONCE(pgdat->kswapd_order, reclaim_order); | 
 | 		} | 
 |  | 
 | 		finish_wait(&pgdat->kswapd_wait, &wait); | 
 | 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * After a short sleep, check if it was a premature sleep. If not, then | 
 | 	 * go fully to sleep until explicitly woken up. | 
 | 	 */ | 
 | 	if (!remaining && | 
 | 	    prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) { | 
 | 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id); | 
 |  | 
 | 		/* | 
 | 		 * vmstat counters are not perfectly accurate and the estimated | 
 | 		 * value for counters such as NR_FREE_PAGES can deviate from the | 
 | 		 * true value by nr_online_cpus * threshold. To avoid the zone | 
 | 		 * watermarks being breached while under pressure, we reduce the | 
 | 		 * per-cpu vmstat threshold while kswapd is awake and restore | 
 | 		 * them before going back to sleep. | 
 | 		 */ | 
 | 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); | 
 |  | 
 | 		if (!kthread_should_stop()) | 
 | 			schedule(); | 
 |  | 
 | 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); | 
 | 	} else { | 
 | 		if (remaining) | 
 | 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); | 
 | 		else | 
 | 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); | 
 | 	} | 
 | 	finish_wait(&pgdat->kswapd_wait, &wait); | 
 | } | 
 |  | 
 | /* | 
 |  * The background pageout daemon, started as a kernel thread | 
 |  * from the init process. | 
 |  * | 
 |  * This basically trickles out pages so that we have _some_ | 
 |  * free memory available even if there is no other activity | 
 |  * that frees anything up. This is needed for things like routing | 
 |  * etc, where we otherwise might have all activity going on in | 
 |  * asynchronous contexts that cannot page things out. | 
 |  * | 
 |  * If there are applications that are active memory-allocators | 
 |  * (most normal use), this basically shouldn't matter. | 
 |  */ | 
 | static int kswapd(void *p) | 
 | { | 
 | 	unsigned int alloc_order, reclaim_order; | 
 | 	unsigned int highest_zoneidx = MAX_NR_ZONES - 1; | 
 | 	pg_data_t *pgdat = (pg_data_t *)p; | 
 | 	struct task_struct *tsk = current; | 
 |  | 
 | 	/* | 
 | 	 * Tell the memory management that we're a "memory allocator", | 
 | 	 * and that if we need more memory we should get access to it | 
 | 	 * regardless (see "__alloc_pages()"). "kswapd" should | 
 | 	 * never get caught in the normal page freeing logic. | 
 | 	 * | 
 | 	 * (Kswapd normally doesn't need memory anyway, but sometimes | 
 | 	 * you need a small amount of memory in order to be able to | 
 | 	 * page out something else, and this flag essentially protects | 
 | 	 * us from recursively trying to free more memory as we're | 
 | 	 * trying to free the first piece of memory in the first place). | 
 | 	 */ | 
 | 	tsk->flags |= PF_MEMALLOC | PF_KSWAPD; | 
 | 	set_freezable(); | 
 |  | 
 | 	WRITE_ONCE(pgdat->kswapd_order, 0); | 
 | 	WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES); | 
 | 	atomic_set(&pgdat->nr_writeback_throttled, 0); | 
 | 	for ( ; ; ) { | 
 | 		bool was_frozen; | 
 |  | 
 | 		alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order); | 
 | 		highest_zoneidx = kswapd_highest_zoneidx(pgdat, | 
 | 							highest_zoneidx); | 
 |  | 
 | kswapd_try_sleep: | 
 | 		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order, | 
 | 					highest_zoneidx); | 
 |  | 
 | 		/* Read the new order and highest_zoneidx */ | 
 | 		alloc_order = READ_ONCE(pgdat->kswapd_order); | 
 | 		highest_zoneidx = kswapd_highest_zoneidx(pgdat, | 
 | 							highest_zoneidx); | 
 | 		WRITE_ONCE(pgdat->kswapd_order, 0); | 
 | 		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES); | 
 |  | 
 | 		if (kthread_freezable_should_stop(&was_frozen)) | 
 | 			break; | 
 |  | 
 | 		/* | 
 | 		 * We can speed up thawing tasks if we don't call balance_pgdat | 
 | 		 * after returning from the refrigerator | 
 | 		 */ | 
 | 		if (was_frozen) | 
 | 			continue; | 
 |  | 
 | 		/* | 
 | 		 * Reclaim begins at the requested order but if a high-order | 
 | 		 * reclaim fails then kswapd falls back to reclaiming for | 
 | 		 * order-0. If that happens, kswapd will consider sleeping | 
 | 		 * for the order it finished reclaiming at (reclaim_order) | 
 | 		 * but kcompactd is woken to compact for the original | 
 | 		 * request (alloc_order). | 
 | 		 */ | 
 | 		trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx, | 
 | 						alloc_order); | 
 | 		reclaim_order = balance_pgdat(pgdat, alloc_order, | 
 | 						highest_zoneidx); | 
 | 		if (reclaim_order < alloc_order) | 
 | 			goto kswapd_try_sleep; | 
 | 	} | 
 |  | 
 | 	tsk->flags &= ~(PF_MEMALLOC | PF_KSWAPD); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * A zone is low on free memory or too fragmented for high-order memory.  If | 
 |  * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's | 
 |  * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim | 
 |  * has failed or is not needed, still wake up kcompactd if only compaction is | 
 |  * needed. | 
 |  */ | 
 | void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order, | 
 | 		   enum zone_type highest_zoneidx) | 
 | { | 
 | 	pg_data_t *pgdat; | 
 | 	enum zone_type curr_idx; | 
 |  | 
 | 	if (!managed_zone(zone)) | 
 | 		return; | 
 |  | 
 | 	if (!cpuset_zone_allowed(zone, gfp_flags)) | 
 | 		return; | 
 |  | 
 | 	pgdat = zone->zone_pgdat; | 
 | 	curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx); | 
 |  | 
 | 	if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx) | 
 | 		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx); | 
 |  | 
 | 	if (READ_ONCE(pgdat->kswapd_order) < order) | 
 | 		WRITE_ONCE(pgdat->kswapd_order, order); | 
 |  | 
 | 	if (!waitqueue_active(&pgdat->kswapd_wait)) | 
 | 		return; | 
 |  | 
 | 	/* Hopeless node, leave it to direct reclaim if possible */ | 
 | 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES || | 
 | 	    (pgdat_balanced(pgdat, order, highest_zoneidx) && | 
 | 	     !pgdat_watermark_boosted(pgdat, highest_zoneidx))) { | 
 | 		/* | 
 | 		 * There may be plenty of free memory available, but it's too | 
 | 		 * fragmented for high-order allocations.  Wake up kcompactd | 
 | 		 * and rely on compaction_suitable() to determine if it's | 
 | 		 * needed.  If it fails, it will defer subsequent attempts to | 
 | 		 * ratelimit its work. | 
 | 		 */ | 
 | 		if (!(gfp_flags & __GFP_DIRECT_RECLAIM)) | 
 | 			wakeup_kcompactd(pgdat, order, highest_zoneidx); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order, | 
 | 				      gfp_flags); | 
 | 	wake_up_interruptible(&pgdat->kswapd_wait); | 
 | } | 
 |  | 
 | #ifdef CONFIG_HIBERNATION | 
 | /* | 
 |  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of | 
 |  * freed pages. | 
 |  * | 
 |  * Rather than trying to age LRUs the aim is to preserve the overall | 
 |  * LRU order by reclaiming preferentially | 
 |  * inactive > active > active referenced > active mapped | 
 |  */ | 
 | unsigned long shrink_all_memory(unsigned long nr_to_reclaim) | 
 | { | 
 | 	struct scan_control sc = { | 
 | 		.nr_to_reclaim = nr_to_reclaim, | 
 | 		.gfp_mask = GFP_HIGHUSER_MOVABLE, | 
 | 		.reclaim_idx = MAX_NR_ZONES - 1, | 
 | 		.priority = DEF_PRIORITY, | 
 | 		.may_writepage = 1, | 
 | 		.may_unmap = 1, | 
 | 		.may_swap = 1, | 
 | 		.hibernation_mode = 1, | 
 | 	}; | 
 | 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); | 
 | 	unsigned long nr_reclaimed; | 
 | 	unsigned int noreclaim_flag; | 
 |  | 
 | 	fs_reclaim_acquire(sc.gfp_mask); | 
 | 	noreclaim_flag = memalloc_noreclaim_save(); | 
 | 	set_task_reclaim_state(current, &sc.reclaim_state); | 
 |  | 
 | 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc); | 
 |  | 
 | 	set_task_reclaim_state(current, NULL); | 
 | 	memalloc_noreclaim_restore(noreclaim_flag); | 
 | 	fs_reclaim_release(sc.gfp_mask); | 
 |  | 
 | 	return nr_reclaimed; | 
 | } | 
 | #endif /* CONFIG_HIBERNATION */ | 
 |  | 
 | /* | 
 |  * This kswapd start function will be called by init and node-hot-add. | 
 |  */ | 
 | void __meminit kswapd_run(int nid) | 
 | { | 
 | 	pg_data_t *pgdat = NODE_DATA(nid); | 
 |  | 
 | 	pgdat_kswapd_lock(pgdat); | 
 | 	if (!pgdat->kswapd) { | 
 | 		pgdat->kswapd = kthread_create_on_node(kswapd, pgdat, nid, "kswapd%d", nid); | 
 | 		if (IS_ERR(pgdat->kswapd)) { | 
 | 			/* failure at boot is fatal */ | 
 | 			pr_err("Failed to start kswapd on node %d,ret=%ld\n", | 
 | 				   nid, PTR_ERR(pgdat->kswapd)); | 
 | 			BUG_ON(system_state < SYSTEM_RUNNING); | 
 | 			pgdat->kswapd = NULL; | 
 | 		} else { | 
 | 			wake_up_process(pgdat->kswapd); | 
 | 		} | 
 | 	} | 
 | 	pgdat_kswapd_unlock(pgdat); | 
 | } | 
 |  | 
 | /* | 
 |  * Called by memory hotplug when all memory in a node is offlined.  Caller must | 
 |  * be holding mem_hotplug_begin/done(). | 
 |  */ | 
 | void __meminit kswapd_stop(int nid) | 
 | { | 
 | 	pg_data_t *pgdat = NODE_DATA(nid); | 
 | 	struct task_struct *kswapd; | 
 |  | 
 | 	pgdat_kswapd_lock(pgdat); | 
 | 	kswapd = pgdat->kswapd; | 
 | 	if (kswapd) { | 
 | 		kthread_stop(kswapd); | 
 | 		pgdat->kswapd = NULL; | 
 | 	} | 
 | 	pgdat_kswapd_unlock(pgdat); | 
 | } | 
 |  | 
 | static const struct ctl_table vmscan_sysctl_table[] = { | 
 | 	{ | 
 | 		.procname	= "swappiness", | 
 | 		.data		= &vm_swappiness, | 
 | 		.maxlen		= sizeof(vm_swappiness), | 
 | 		.mode		= 0644, | 
 | 		.proc_handler	= proc_dointvec_minmax, | 
 | 		.extra1		= SYSCTL_ZERO, | 
 | 		.extra2		= SYSCTL_TWO_HUNDRED, | 
 | 	}, | 
 | #ifdef CONFIG_NUMA | 
 | 	{ | 
 | 		.procname	= "zone_reclaim_mode", | 
 | 		.data		= &node_reclaim_mode, | 
 | 		.maxlen		= sizeof(node_reclaim_mode), | 
 | 		.mode		= 0644, | 
 | 		.proc_handler	= proc_dointvec_minmax, | 
 | 		.extra1		= SYSCTL_ZERO, | 
 | 	} | 
 | #endif | 
 | }; | 
 |  | 
 | static int __init kswapd_init(void) | 
 | { | 
 | 	int nid; | 
 |  | 
 | 	swap_setup(); | 
 | 	for_each_node_state(nid, N_MEMORY) | 
 |  		kswapd_run(nid); | 
 | 	register_sysctl_init("vm", vmscan_sysctl_table); | 
 | 	return 0; | 
 | } | 
 |  | 
 | module_init(kswapd_init) | 
 |  | 
 | #ifdef CONFIG_NUMA | 
 | /* | 
 |  * Node reclaim mode | 
 |  * | 
 |  * If non-zero call node_reclaim when the number of free pages falls below | 
 |  * the watermarks. | 
 |  */ | 
 | int node_reclaim_mode __read_mostly; | 
 |  | 
 | /* | 
 |  * Priority for NODE_RECLAIM. This determines the fraction of pages | 
 |  * of a node considered for each zone_reclaim. 4 scans 1/16th of | 
 |  * a zone. | 
 |  */ | 
 | #define NODE_RECLAIM_PRIORITY 4 | 
 |  | 
 | /* | 
 |  * Percentage of pages in a zone that must be unmapped for node_reclaim to | 
 |  * occur. | 
 |  */ | 
 | int sysctl_min_unmapped_ratio = 1; | 
 |  | 
 | /* | 
 |  * If the number of slab pages in a zone grows beyond this percentage then | 
 |  * slab reclaim needs to occur. | 
 |  */ | 
 | int sysctl_min_slab_ratio = 5; | 
 |  | 
 | static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat) | 
 | { | 
 | 	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED); | 
 | 	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) + | 
 | 		node_page_state(pgdat, NR_ACTIVE_FILE); | 
 |  | 
 | 	/* | 
 | 	 * It's possible for there to be more file mapped pages than | 
 | 	 * accounted for by the pages on the file LRU lists because | 
 | 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED | 
 | 	 */ | 
 | 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; | 
 | } | 
 |  | 
 | /* Work out how many page cache pages we can reclaim in this reclaim_mode */ | 
 | static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat) | 
 | { | 
 | 	unsigned long nr_pagecache_reclaimable; | 
 | 	unsigned long delta = 0; | 
 |  | 
 | 	/* | 
 | 	 * If RECLAIM_UNMAP is set, then all file pages are considered | 
 | 	 * potentially reclaimable. Otherwise, we have to worry about | 
 | 	 * pages like swapcache and node_unmapped_file_pages() provides | 
 | 	 * a better estimate | 
 | 	 */ | 
 | 	if (node_reclaim_mode & RECLAIM_UNMAP) | 
 | 		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES); | 
 | 	else | 
 | 		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat); | 
 |  | 
 | 	/* If we can't clean pages, remove dirty pages from consideration */ | 
 | 	if (!(node_reclaim_mode & RECLAIM_WRITE)) | 
 | 		delta += node_page_state(pgdat, NR_FILE_DIRTY); | 
 |  | 
 | 	/* Watch for any possible underflows due to delta */ | 
 | 	if (unlikely(delta > nr_pagecache_reclaimable)) | 
 | 		delta = nr_pagecache_reclaimable; | 
 |  | 
 | 	return nr_pagecache_reclaimable - delta; | 
 | } | 
 |  | 
 | /* | 
 |  * Try to free up some pages from this node through reclaim. | 
 |  */ | 
 | static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) | 
 | { | 
 | 	/* Minimum pages needed in order to stay on node */ | 
 | 	const unsigned long nr_pages = 1 << order; | 
 | 	struct task_struct *p = current; | 
 | 	unsigned int noreclaim_flag; | 
 | 	struct scan_control sc = { | 
 | 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), | 
 | 		.gfp_mask = current_gfp_context(gfp_mask), | 
 | 		.order = order, | 
 | 		.priority = NODE_RECLAIM_PRIORITY, | 
 | 		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE), | 
 | 		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP), | 
 | 		.may_swap = 1, | 
 | 		.reclaim_idx = gfp_zone(gfp_mask), | 
 | 	}; | 
 | 	unsigned long pflags; | 
 |  | 
 | 	trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order, | 
 | 					   sc.gfp_mask); | 
 |  | 
 | 	cond_resched(); | 
 | 	psi_memstall_enter(&pflags); | 
 | 	delayacct_freepages_start(); | 
 | 	fs_reclaim_acquire(sc.gfp_mask); | 
 | 	/* | 
 | 	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP | 
 | 	 */ | 
 | 	noreclaim_flag = memalloc_noreclaim_save(); | 
 | 	set_task_reclaim_state(p, &sc.reclaim_state); | 
 |  | 
 | 	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages || | 
 | 	    node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) > pgdat->min_slab_pages) { | 
 | 		/* | 
 | 		 * Free memory by calling shrink node with increasing | 
 | 		 * priorities until we have enough memory freed. | 
 | 		 */ | 
 | 		do { | 
 | 			shrink_node(pgdat, &sc); | 
 | 		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0); | 
 | 	} | 
 |  | 
 | 	set_task_reclaim_state(p, NULL); | 
 | 	memalloc_noreclaim_restore(noreclaim_flag); | 
 | 	fs_reclaim_release(sc.gfp_mask); | 
 | 	psi_memstall_leave(&pflags); | 
 | 	delayacct_freepages_end(); | 
 |  | 
 | 	trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed); | 
 |  | 
 | 	return sc.nr_reclaimed >= nr_pages; | 
 | } | 
 |  | 
 | int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	/* | 
 | 	 * Node reclaim reclaims unmapped file backed pages and | 
 | 	 * slab pages if we are over the defined limits. | 
 | 	 * | 
 | 	 * A small portion of unmapped file backed pages is needed for | 
 | 	 * file I/O otherwise pages read by file I/O will be immediately | 
 | 	 * thrown out if the node is overallocated. So we do not reclaim | 
 | 	 * if less than a specified percentage of the node is used by | 
 | 	 * unmapped file backed pages. | 
 | 	 */ | 
 | 	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages && | 
 | 	    node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <= | 
 | 	    pgdat->min_slab_pages) | 
 | 		return NODE_RECLAIM_FULL; | 
 |  | 
 | 	/* | 
 | 	 * Do not scan if the allocation should not be delayed. | 
 | 	 */ | 
 | 	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC)) | 
 | 		return NODE_RECLAIM_NOSCAN; | 
 |  | 
 | 	/* | 
 | 	 * Only run node reclaim on the local node or on nodes that do not | 
 | 	 * have associated processors. This will favor the local processor | 
 | 	 * over remote processors and spread off node memory allocations | 
 | 	 * as wide as possible. | 
 | 	 */ | 
 | 	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id()) | 
 | 		return NODE_RECLAIM_NOSCAN; | 
 |  | 
 | 	if (test_and_set_bit_lock(PGDAT_RECLAIM_LOCKED, &pgdat->flags)) | 
 | 		return NODE_RECLAIM_NOSCAN; | 
 |  | 
 | 	ret = __node_reclaim(pgdat, gfp_mask, order); | 
 | 	clear_bit_unlock(PGDAT_RECLAIM_LOCKED, &pgdat->flags); | 
 |  | 
 | 	if (ret) | 
 | 		count_vm_event(PGSCAN_ZONE_RECLAIM_SUCCESS); | 
 | 	else | 
 | 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); | 
 |  | 
 | 	return ret; | 
 | } | 
 | #endif | 
 |  | 
 | /** | 
 |  * check_move_unevictable_folios - Move evictable folios to appropriate zone | 
 |  * lru list | 
 |  * @fbatch: Batch of lru folios to check. | 
 |  * | 
 |  * Checks folios for evictability, if an evictable folio is in the unevictable | 
 |  * lru list, moves it to the appropriate evictable lru list. This function | 
 |  * should be only used for lru folios. | 
 |  */ | 
 | void check_move_unevictable_folios(struct folio_batch *fbatch) | 
 | { | 
 | 	struct lruvec *lruvec = NULL; | 
 | 	int pgscanned = 0; | 
 | 	int pgrescued = 0; | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < fbatch->nr; i++) { | 
 | 		struct folio *folio = fbatch->folios[i]; | 
 | 		int nr_pages = folio_nr_pages(folio); | 
 |  | 
 | 		pgscanned += nr_pages; | 
 |  | 
 | 		/* block memcg migration while the folio moves between lrus */ | 
 | 		if (!folio_test_clear_lru(folio)) | 
 | 			continue; | 
 |  | 
 | 		lruvec = folio_lruvec_relock_irq(folio, lruvec); | 
 | 		if (folio_evictable(folio) && folio_test_unevictable(folio)) { | 
 | 			lruvec_del_folio(lruvec, folio); | 
 | 			folio_clear_unevictable(folio); | 
 | 			lruvec_add_folio(lruvec, folio); | 
 | 			pgrescued += nr_pages; | 
 | 		} | 
 | 		folio_set_lru(folio); | 
 | 	} | 
 |  | 
 | 	if (lruvec) { | 
 | 		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); | 
 | 		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); | 
 | 		unlock_page_lruvec_irq(lruvec); | 
 | 	} else if (pgscanned) { | 
 | 		count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); | 
 | 	} | 
 | } | 
 | EXPORT_SYMBOL_GPL(check_move_unevictable_folios); |