blob: 5eaa0be367cdb847d48dbed6f8326a75a5922347 [file] [log] [blame] [edit]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2016, The Linux Foundation. All rights reserved.
*/
#include <linux/bitops.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
#include <linux/dma/qcom_adm.h>
#include <linux/dma/qcom_bam_dma.h>
#include <linux/module.h>
#include <linux/mtd/partitions.h>
#include <linux/mtd/rawnand.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/mtd/nand-qpic-common.h>
/*
* NAND special boot partitions
*
* @page_offset: offset of the partition where spare data is not protected
* by ECC (value in pages)
* @page_offset: size of the partition where spare data is not protected
* by ECC (value in pages)
*/
struct qcom_nand_boot_partition {
u32 page_offset;
u32 page_size;
};
/*
* Qcom op for each exec_op transfer
*
* @data_instr: data instruction pointer
* @data_instr_idx: data instruction index
* @rdy_timeout_ms: wait ready timeout in ms
* @rdy_delay_ns: Additional delay in ns
* @addr1_reg: Address1 register value
* @addr2_reg: Address2 register value
* @cmd_reg: CMD register value
* @flag: flag for misc instruction
*/
struct qcom_op {
const struct nand_op_instr *data_instr;
unsigned int data_instr_idx;
unsigned int rdy_timeout_ms;
unsigned int rdy_delay_ns;
__le32 addr1_reg;
__le32 addr2_reg;
__le32 cmd_reg;
u8 flag;
};
/*
* NAND chip structure
*
* @boot_partitions: array of boot partitions where offset and size of the
* boot partitions are stored
*
* @chip: base NAND chip structure
* @node: list node to add itself to host_list in
* qcom_nand_controller
*
* @nr_boot_partitions: count of the boot partitions where spare data is not
* protected by ECC
*
* @cs: chip select value for this chip
* @cw_size: the number of bytes in a single step/codeword
* of a page, consisting of all data, ecc, spare
* and reserved bytes
* @cw_data: the number of bytes within a codeword protected
* by ECC
* @ecc_bytes_hw: ECC bytes used by controller hardware for this
* chip
*
* @last_command: keeps track of last command on this chip. used
* for reading correct status
*
* @cfg0, cfg1, cfg0_raw..: NANDc register configurations needed for
* ecc/non-ecc mode for the current nand flash
* device
*
* @status: value to be returned if NAND_CMD_STATUS command
* is executed
* @codeword_fixup: keep track of the current layout used by
* the driver for read/write operation.
* @use_ecc: request the controller to use ECC for the
* upcoming read/write
* @bch_enabled: flag to tell whether BCH ECC mode is used
*/
struct qcom_nand_host {
struct qcom_nand_boot_partition *boot_partitions;
struct nand_chip chip;
struct list_head node;
int nr_boot_partitions;
int cs;
int cw_size;
int cw_data;
int ecc_bytes_hw;
int spare_bytes;
int bbm_size;
int last_command;
u32 cfg0, cfg1;
u32 cfg0_raw, cfg1_raw;
u32 ecc_buf_cfg;
u32 ecc_bch_cfg;
u32 clrflashstatus;
u32 clrreadstatus;
u8 status;
bool codeword_fixup;
bool use_ecc;
bool bch_enabled;
};
static struct qcom_nand_host *to_qcom_nand_host(struct nand_chip *chip)
{
return container_of(chip, struct qcom_nand_host, chip);
}
static struct qcom_nand_controller *
get_qcom_nand_controller(struct nand_chip *chip)
{
return (struct qcom_nand_controller *)
((u8 *)chip->controller - sizeof(struct qcom_nand_controller));
}
static u32 nandc_read(struct qcom_nand_controller *nandc, int offset)
{
return ioread32(nandc->base + offset);
}
static void nandc_write(struct qcom_nand_controller *nandc, int offset,
u32 val)
{
iowrite32(val, nandc->base + offset);
}
/* Helper to check whether this is the last CW or not */
static bool qcom_nandc_is_last_cw(struct nand_ecc_ctrl *ecc, int cw)
{
return cw == (ecc->steps - 1);
}
/**
* nandc_set_read_loc_first() - to set read location first register
* @chip: NAND Private Flash Chip Data
* @reg_base: location register base
* @cw_offset: code word offset
* @read_size: code word read length
* @is_last_read_loc: is this the last read location
*
* This function will set location register value
*/
static void nandc_set_read_loc_first(struct nand_chip *chip,
int reg_base, u32 cw_offset,
u32 read_size, u32 is_last_read_loc)
{
struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
__le32 locreg_val;
u32 val = FIELD_PREP(READ_LOCATION_OFFSET_MASK, cw_offset) |
FIELD_PREP(READ_LOCATION_SIZE_MASK, read_size) |
FIELD_PREP(READ_LOCATION_LAST_MASK, is_last_read_loc);
locreg_val = cpu_to_le32(val);
if (reg_base == NAND_READ_LOCATION_0)
nandc->regs->read_location0 = locreg_val;
else if (reg_base == NAND_READ_LOCATION_1)
nandc->regs->read_location1 = locreg_val;
else if (reg_base == NAND_READ_LOCATION_2)
nandc->regs->read_location2 = locreg_val;
else if (reg_base == NAND_READ_LOCATION_3)
nandc->regs->read_location3 = locreg_val;
}
/**
* nandc_set_read_loc_last - to set read location last register
* @chip: NAND Private Flash Chip Data
* @reg_base: location register base
* @cw_offset: code word offset
* @read_size: code word read length
* @is_last_read_loc: is this the last read location
*
* This function will set location last register value
*/
static void nandc_set_read_loc_last(struct nand_chip *chip,
int reg_base, u32 cw_offset,
u32 read_size, u32 is_last_read_loc)
{
struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
__le32 locreg_val;
u32 val = FIELD_PREP(READ_LOCATION_OFFSET_MASK, cw_offset) |
FIELD_PREP(READ_LOCATION_SIZE_MASK, read_size) |
FIELD_PREP(READ_LOCATION_LAST_MASK, is_last_read_loc);
locreg_val = cpu_to_le32(val);
if (reg_base == NAND_READ_LOCATION_LAST_CW_0)
nandc->regs->read_location_last0 = locreg_val;
else if (reg_base == NAND_READ_LOCATION_LAST_CW_1)
nandc->regs->read_location_last1 = locreg_val;
else if (reg_base == NAND_READ_LOCATION_LAST_CW_2)
nandc->regs->read_location_last2 = locreg_val;
else if (reg_base == NAND_READ_LOCATION_LAST_CW_3)
nandc->regs->read_location_last3 = locreg_val;
}
/* helper to configure location register values */
static void nandc_set_read_loc(struct nand_chip *chip, int cw, int reg,
u32 cw_offset, u32 read_size, u32 is_last_read_loc)
{
struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
struct nand_ecc_ctrl *ecc = &chip->ecc;
int reg_base = NAND_READ_LOCATION_0;
if (nandc->props->qpic_version2 && qcom_nandc_is_last_cw(ecc, cw))
reg_base = NAND_READ_LOCATION_LAST_CW_0;
reg_base += reg * 4;
if (nandc->props->qpic_version2 && qcom_nandc_is_last_cw(ecc, cw))
return nandc_set_read_loc_last(chip, reg_base, cw_offset,
read_size, is_last_read_loc);
else
return nandc_set_read_loc_first(chip, reg_base, cw_offset,
read_size, is_last_read_loc);
}
/* helper to configure address register values */
static void set_address(struct qcom_nand_host *host, u16 column, int page)
{
struct nand_chip *chip = &host->chip;
struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
if (chip->options & NAND_BUSWIDTH_16)
column >>= 1;
nandc->regs->addr0 = cpu_to_le32(page << 16 | column);
nandc->regs->addr1 = cpu_to_le32(page >> 16 & 0xff);
}
/*
* update_rw_regs: set up read/write register values, these will be
* written to the NAND controller registers via DMA
*
* @num_cw: number of steps for the read/write operation
* @read: read or write operation
* @cw : which code word
*/
static void update_rw_regs(struct qcom_nand_host *host, int num_cw, bool read, int cw)
{
struct nand_chip *chip = &host->chip;
__le32 cmd, cfg0, cfg1, ecc_bch_cfg;
struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
if (read) {
if (host->use_ecc)
cmd = cpu_to_le32(OP_PAGE_READ_WITH_ECC | PAGE_ACC | LAST_PAGE);
else
cmd = cpu_to_le32(OP_PAGE_READ | PAGE_ACC | LAST_PAGE);
} else {
cmd = cpu_to_le32(OP_PROGRAM_PAGE | PAGE_ACC | LAST_PAGE);
}
if (host->use_ecc) {
cfg0 = cpu_to_le32((host->cfg0 & ~CW_PER_PAGE_MASK) |
FIELD_PREP(CW_PER_PAGE_MASK, (num_cw - 1)));
cfg1 = cpu_to_le32(host->cfg1);
ecc_bch_cfg = cpu_to_le32(host->ecc_bch_cfg);
} else {
cfg0 = cpu_to_le32((host->cfg0_raw & ~CW_PER_PAGE_MASK) |
FIELD_PREP(CW_PER_PAGE_MASK, (num_cw - 1)));
cfg1 = cpu_to_le32(host->cfg1_raw);
ecc_bch_cfg = cpu_to_le32(ECC_CFG_ECC_DISABLE);
}
nandc->regs->cmd = cmd;
nandc->regs->cfg0 = cfg0;
nandc->regs->cfg1 = cfg1;
nandc->regs->ecc_bch_cfg = ecc_bch_cfg;
if (!nandc->props->qpic_version2)
nandc->regs->ecc_buf_cfg = cpu_to_le32(host->ecc_buf_cfg);
nandc->regs->clrflashstatus = cpu_to_le32(host->clrflashstatus);
nandc->regs->clrreadstatus = cpu_to_le32(host->clrreadstatus);
nandc->regs->exec = cpu_to_le32(1);
if (read)
nandc_set_read_loc(chip, cw, 0, 0, host->use_ecc ?
host->cw_data : host->cw_size, 1);
}
/*
* Helper to prepare DMA descriptors for configuring registers
* before reading a NAND page.
*/
static void config_nand_page_read(struct nand_chip *chip)
{
struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
qcom_write_reg_dma(nandc, &nandc->regs->addr0, NAND_ADDR0, 2, 0);
qcom_write_reg_dma(nandc, &nandc->regs->cfg0, NAND_DEV0_CFG0, 3, 0);
if (!nandc->props->qpic_version2)
qcom_write_reg_dma(nandc, &nandc->regs->ecc_buf_cfg, NAND_EBI2_ECC_BUF_CFG, 1, 0);
qcom_write_reg_dma(nandc, &nandc->regs->erased_cw_detect_cfg_clr,
NAND_ERASED_CW_DETECT_CFG, 1, 0);
qcom_write_reg_dma(nandc, &nandc->regs->erased_cw_detect_cfg_set,
NAND_ERASED_CW_DETECT_CFG, 1, NAND_ERASED_CW_SET | NAND_BAM_NEXT_SGL);
}
/*
* Helper to prepare DMA descriptors for configuring registers
* before reading each codeword in NAND page.
*/
static void
config_nand_cw_read(struct nand_chip *chip, bool use_ecc, int cw)
{
struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
struct nand_ecc_ctrl *ecc = &chip->ecc;
__le32 *reg = &nandc->regs->read_location0;
if (nandc->props->qpic_version2 && qcom_nandc_is_last_cw(ecc, cw))
reg = &nandc->regs->read_location_last0;
if (nandc->props->supports_bam)
qcom_write_reg_dma(nandc, reg, NAND_READ_LOCATION_0, 4, NAND_BAM_NEXT_SGL);
qcom_write_reg_dma(nandc, &nandc->regs->cmd, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL);
qcom_write_reg_dma(nandc, &nandc->regs->exec, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
if (use_ecc) {
qcom_read_reg_dma(nandc, NAND_FLASH_STATUS, 2, 0);
qcom_read_reg_dma(nandc, NAND_ERASED_CW_DETECT_STATUS, 1,
NAND_BAM_NEXT_SGL);
} else {
qcom_read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL);
}
}
/*
* Helper to prepare dma descriptors to configure registers needed for reading a
* single codeword in page
*/
static void
config_nand_single_cw_page_read(struct nand_chip *chip,
bool use_ecc, int cw)
{
config_nand_page_read(chip);
config_nand_cw_read(chip, use_ecc, cw);
}
/*
* Helper to prepare DMA descriptors used to configure registers needed for
* before writing a NAND page.
*/
static void config_nand_page_write(struct nand_chip *chip)
{
struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
qcom_write_reg_dma(nandc, &nandc->regs->addr0, NAND_ADDR0, 2, 0);
qcom_write_reg_dma(nandc, &nandc->regs->cfg0, NAND_DEV0_CFG0, 3, 0);
if (!nandc->props->qpic_version2)
qcom_write_reg_dma(nandc, &nandc->regs->ecc_buf_cfg, NAND_EBI2_ECC_BUF_CFG, 1,
NAND_BAM_NEXT_SGL);
}
/*
* Helper to prepare DMA descriptors for configuring registers
* before writing each codeword in NAND page.
*/
static void config_nand_cw_write(struct nand_chip *chip)
{
struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
qcom_write_reg_dma(nandc, &nandc->regs->cmd, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL);
qcom_write_reg_dma(nandc, &nandc->regs->exec, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
qcom_read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL);
qcom_write_reg_dma(nandc, &nandc->regs->clrflashstatus, NAND_FLASH_STATUS, 1, 0);
qcom_write_reg_dma(nandc, &nandc->regs->clrreadstatus, NAND_READ_STATUS, 1,
NAND_BAM_NEXT_SGL);
}
/*
* when using BCH ECC, the HW flags an error in NAND_FLASH_STATUS if it read
* an erased CW, and reports an erased CW in NAND_ERASED_CW_DETECT_STATUS.
*
* when using RS ECC, the HW reports the same erros when reading an erased CW,
* but it notifies that it is an erased CW by placing special characters at
* certain offsets in the buffer.
*
* verify if the page is erased or not, and fix up the page for RS ECC by
* replacing the special characters with 0xff.
*/
static bool erased_chunk_check_and_fixup(u8 *data_buf, int data_len)
{
u8 empty1, empty2;
/*
* an erased page flags an error in NAND_FLASH_STATUS, check if the page
* is erased by looking for 0x54s at offsets 3 and 175 from the
* beginning of each codeword
*/
empty1 = data_buf[3];
empty2 = data_buf[175];
/*
* if the erased codework markers, if they exist override them with
* 0xffs
*/
if ((empty1 == 0x54 && empty2 == 0xff) ||
(empty1 == 0xff && empty2 == 0x54)) {
data_buf[3] = 0xff;
data_buf[175] = 0xff;
}
/*
* check if the entire chunk contains 0xffs or not. if it doesn't, then
* restore the original values at the special offsets
*/
if (memchr_inv(data_buf, 0xff, data_len)) {
data_buf[3] = empty1;
data_buf[175] = empty2;
return false;
}
return true;
}
struct read_stats {
__le32 flash;
__le32 buffer;
__le32 erased_cw;
};
/* reads back FLASH_STATUS register set by the controller */
static int check_flash_errors(struct qcom_nand_host *host, int cw_cnt)
{
struct nand_chip *chip = &host->chip;
struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
int i;
qcom_nandc_dev_to_mem(nandc, true);
for (i = 0; i < cw_cnt; i++) {
u32 flash = le32_to_cpu(nandc->reg_read_buf[i]);
if (flash & (FS_OP_ERR | FS_MPU_ERR))
return -EIO;
}
return 0;
}
/* performs raw read for one codeword */
static int
qcom_nandc_read_cw_raw(struct mtd_info *mtd, struct nand_chip *chip,
u8 *data_buf, u8 *oob_buf, int page, int cw)
{
struct qcom_nand_host *host = to_qcom_nand_host(chip);
struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
struct nand_ecc_ctrl *ecc = &chip->ecc;
int data_size1, data_size2, oob_size1, oob_size2;
int ret, reg_off = FLASH_BUF_ACC, read_loc = 0;
int raw_cw = cw;
nand_read_page_op(chip, page, 0, NULL, 0);
nandc->buf_count = 0;
nandc->buf_start = 0;
qcom_clear_read_regs(nandc);
host->use_ecc = false;
if (nandc->props->qpic_version2)
raw_cw = ecc->steps - 1;
qcom_clear_bam_transaction(nandc);
set_address(host, host->cw_size * cw, page);
update_rw_regs(host, 1, true, raw_cw);
config_nand_page_read(chip);
data_size1 = mtd->writesize - host->cw_size * (ecc->steps - 1);
oob_size1 = host->bbm_size;
if (qcom_nandc_is_last_cw(ecc, cw) && !host->codeword_fixup) {
data_size2 = ecc->size - data_size1 -
((ecc->steps - 1) * 4);
oob_size2 = (ecc->steps * 4) + host->ecc_bytes_hw +
host->spare_bytes;
} else {
data_size2 = host->cw_data - data_size1;
oob_size2 = host->ecc_bytes_hw + host->spare_bytes;
}
if (nandc->props->supports_bam) {
nandc_set_read_loc(chip, cw, 0, read_loc, data_size1, 0);
read_loc += data_size1;
nandc_set_read_loc(chip, cw, 1, read_loc, oob_size1, 0);
read_loc += oob_size1;
nandc_set_read_loc(chip, cw, 2, read_loc, data_size2, 0);
read_loc += data_size2;
nandc_set_read_loc(chip, cw, 3, read_loc, oob_size2, 1);
}
config_nand_cw_read(chip, false, raw_cw);
qcom_read_data_dma(nandc, reg_off, data_buf, data_size1, 0);
reg_off += data_size1;
qcom_read_data_dma(nandc, reg_off, oob_buf, oob_size1, 0);
reg_off += oob_size1;
qcom_read_data_dma(nandc, reg_off, data_buf + data_size1, data_size2, 0);
reg_off += data_size2;
qcom_read_data_dma(nandc, reg_off, oob_buf + oob_size1, oob_size2, 0);
ret = qcom_submit_descs(nandc);
if (ret) {
dev_err(nandc->dev, "failure to read raw cw %d\n", cw);
return ret;
}
return check_flash_errors(host, 1);
}
/*
* Bitflips can happen in erased codewords also so this function counts the
* number of 0 in each CW for which ECC engine returns the uncorrectable
* error. The page will be assumed as erased if this count is less than or
* equal to the ecc->strength for each CW.
*
* 1. Both DATA and OOB need to be checked for number of 0. The
* top-level API can be called with only data buf or OOB buf so use
* chip->data_buf if data buf is null and chip->oob_poi if oob buf
* is null for copying the raw bytes.
* 2. Perform raw read for all the CW which has uncorrectable errors.
* 3. For each CW, check the number of 0 in cw_data and usable OOB bytes.
* The BBM and spare bytes bit flip won’t affect the ECC so don’t check
* the number of bitflips in this area.
*/
static int
check_for_erased_page(struct qcom_nand_host *host, u8 *data_buf,
u8 *oob_buf, unsigned long uncorrectable_cws,
int page, unsigned int max_bitflips)
{
struct nand_chip *chip = &host->chip;
struct mtd_info *mtd = nand_to_mtd(chip);
struct nand_ecc_ctrl *ecc = &chip->ecc;
u8 *cw_data_buf, *cw_oob_buf;
int cw, data_size, oob_size, ret;
if (!data_buf)
data_buf = nand_get_data_buf(chip);
if (!oob_buf) {
nand_get_data_buf(chip);
oob_buf = chip->oob_poi;
}
for_each_set_bit(cw, &uncorrectable_cws, ecc->steps) {
if (qcom_nandc_is_last_cw(ecc, cw) && !host->codeword_fixup) {
data_size = ecc->size - ((ecc->steps - 1) * 4);
oob_size = (ecc->steps * 4) + host->ecc_bytes_hw;
} else {
data_size = host->cw_data;
oob_size = host->ecc_bytes_hw;
}
/* determine starting buffer address for current CW */
cw_data_buf = data_buf + (cw * host->cw_data);
cw_oob_buf = oob_buf + (cw * ecc->bytes);
ret = qcom_nandc_read_cw_raw(mtd, chip, cw_data_buf,
cw_oob_buf, page, cw);
if (ret)
return ret;
/*
* make sure it isn't an erased page reported
* as not-erased by HW because of a few bitflips
*/
ret = nand_check_erased_ecc_chunk(cw_data_buf, data_size,
cw_oob_buf + host->bbm_size,
oob_size, NULL,
0, ecc->strength);
if (ret < 0) {
mtd->ecc_stats.failed++;
} else {
mtd->ecc_stats.corrected += ret;
max_bitflips = max_t(unsigned int, max_bitflips, ret);
}
}
return max_bitflips;
}
/*
* reads back status registers set by the controller to notify page read
* errors. this is equivalent to what 'ecc->correct()' would do.
*/
static int parse_read_errors(struct qcom_nand_host *host, u8 *data_buf,
u8 *oob_buf, int page)
{
struct nand_chip *chip = &host->chip;
struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
struct mtd_info *mtd = nand_to_mtd(chip);
struct nand_ecc_ctrl *ecc = &chip->ecc;
unsigned int max_bitflips = 0, uncorrectable_cws = 0;
struct read_stats *buf;
bool flash_op_err = false, erased;
int i;
u8 *data_buf_start = data_buf, *oob_buf_start = oob_buf;
buf = (struct read_stats *)nandc->reg_read_buf;
qcom_nandc_dev_to_mem(nandc, true);
for (i = 0; i < ecc->steps; i++, buf++) {
u32 flash, buffer, erased_cw;
int data_len, oob_len;
if (qcom_nandc_is_last_cw(ecc, i)) {
data_len = ecc->size - ((ecc->steps - 1) << 2);
oob_len = ecc->steps << 2;
} else {
data_len = host->cw_data;
oob_len = 0;
}
flash = le32_to_cpu(buf->flash);
buffer = le32_to_cpu(buf->buffer);
erased_cw = le32_to_cpu(buf->erased_cw);
/*
* Check ECC failure for each codeword. ECC failure can
* happen in either of the following conditions
* 1. If number of bitflips are greater than ECC engine
* capability.
* 2. If this codeword contains all 0xff for which erased
* codeword detection check will be done.
*/
if ((flash & FS_OP_ERR) && (buffer & BS_UNCORRECTABLE_BIT)) {
/*
* For BCH ECC, ignore erased codeword errors, if
* ERASED_CW bits are set.
*/
if (host->bch_enabled) {
erased = (erased_cw & ERASED_CW) == ERASED_CW;
/*
* For RS ECC, HW reports the erased CW by placing
* special characters at certain offsets in the buffer.
* These special characters will be valid only if
* complete page is read i.e. data_buf is not NULL.
*/
} else if (data_buf) {
erased = erased_chunk_check_and_fixup(data_buf,
data_len);
} else {
erased = false;
}
if (!erased)
uncorrectable_cws |= BIT(i);
/*
* Check if MPU or any other operational error (timeout,
* device failure, etc.) happened for this codeword and
* make flash_op_err true. If flash_op_err is set, then
* EIO will be returned for page read.
*/
} else if (flash & (FS_OP_ERR | FS_MPU_ERR)) {
flash_op_err = true;
/*
* No ECC or operational errors happened. Check the number of
* bits corrected and update the ecc_stats.corrected.
*/
} else {
unsigned int stat;
stat = buffer & BS_CORRECTABLE_ERR_MSK;
mtd->ecc_stats.corrected += stat;
max_bitflips = max(max_bitflips, stat);
}
if (data_buf)
data_buf += data_len;
if (oob_buf)
oob_buf += oob_len + ecc->bytes;
}
if (flash_op_err)
return -EIO;
if (!uncorrectable_cws)
return max_bitflips;
return check_for_erased_page(host, data_buf_start, oob_buf_start,
uncorrectable_cws, page,
max_bitflips);
}
/*
* helper to perform the actual page read operation, used by ecc->read_page(),
* ecc->read_oob()
*/
static int read_page_ecc(struct qcom_nand_host *host, u8 *data_buf,
u8 *oob_buf, int page)
{
struct nand_chip *chip = &host->chip;
struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
struct nand_ecc_ctrl *ecc = &chip->ecc;
u8 *data_buf_start = data_buf, *oob_buf_start = oob_buf;
int i, ret;
config_nand_page_read(chip);
/* queue cmd descs for each codeword */
for (i = 0; i < ecc->steps; i++) {
int data_size, oob_size;
if (qcom_nandc_is_last_cw(ecc, i) && !host->codeword_fixup) {
data_size = ecc->size - ((ecc->steps - 1) << 2);
oob_size = (ecc->steps << 2) + host->ecc_bytes_hw +
host->spare_bytes;
} else {
data_size = host->cw_data;
oob_size = host->ecc_bytes_hw + host->spare_bytes;
}
if (nandc->props->supports_bam) {
if (data_buf && oob_buf) {
nandc_set_read_loc(chip, i, 0, 0, data_size, 0);
nandc_set_read_loc(chip, i, 1, data_size,
oob_size, 1);
} else if (data_buf) {
nandc_set_read_loc(chip, i, 0, 0, data_size, 1);
} else {
nandc_set_read_loc(chip, i, 0, data_size,
oob_size, 1);
}
}
config_nand_cw_read(chip, true, i);
if (data_buf)
qcom_read_data_dma(nandc, FLASH_BUF_ACC, data_buf,
data_size, 0);
/*
* when ecc is enabled, the controller doesn't read the real
* or dummy bad block markers in each chunk. To maintain a
* consistent layout across RAW and ECC reads, we just
* leave the real/dummy BBM offsets empty (i.e, filled with
* 0xffs)
*/
if (oob_buf) {
int j;
for (j = 0; j < host->bbm_size; j++)
*oob_buf++ = 0xff;
qcom_read_data_dma(nandc, FLASH_BUF_ACC + data_size,
oob_buf, oob_size, 0);
}
if (data_buf)
data_buf += data_size;
if (oob_buf)
oob_buf += oob_size;
}
ret = qcom_submit_descs(nandc);
if (ret) {
dev_err(nandc->dev, "failure to read page/oob\n");
return ret;
}
return parse_read_errors(host, data_buf_start, oob_buf_start, page);
}
/*
* a helper that copies the last step/codeword of a page (containing free oob)
* into our local buffer
*/
static int copy_last_cw(struct qcom_nand_host *host, int page)
{
struct nand_chip *chip = &host->chip;
struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
struct nand_ecc_ctrl *ecc = &chip->ecc;
int size;
int ret;
qcom_clear_read_regs(nandc);
size = host->use_ecc ? host->cw_data : host->cw_size;
/* prepare a clean read buffer */
memset(nandc->data_buffer, 0xff, size);
set_address(host, host->cw_size * (ecc->steps - 1), page);
update_rw_regs(host, 1, true, ecc->steps - 1);
config_nand_single_cw_page_read(chip, host->use_ecc, ecc->steps - 1);
qcom_read_data_dma(nandc, FLASH_BUF_ACC, nandc->data_buffer, size, 0);
ret = qcom_submit_descs(nandc);
if (ret)
dev_err(nandc->dev, "failed to copy last codeword\n");
return ret;
}
static bool qcom_nandc_is_boot_partition(struct qcom_nand_host *host, int page)
{
struct qcom_nand_boot_partition *boot_partition;
u32 start, end;
int i;
/*
* Since the frequent access will be to the non-boot partitions like rootfs,
* optimize the page check by:
*
* 1. Checking if the page lies after the last boot partition.
* 2. Checking from the boot partition end.
*/
/* First check the last boot partition */
boot_partition = &host->boot_partitions[host->nr_boot_partitions - 1];
start = boot_partition->page_offset;
end = start + boot_partition->page_size;
/* Page is after the last boot partition end. This is NOT a boot partition */
if (page > end)
return false;
/* Actually check if it's a boot partition */
if (page < end && page >= start)
return true;
/* Check the other boot partitions starting from the second-last partition */
for (i = host->nr_boot_partitions - 2; i >= 0; i--) {
boot_partition = &host->boot_partitions[i];
start = boot_partition->page_offset;
end = start + boot_partition->page_size;
if (page < end && page >= start)
return true;
}
return false;
}
static void qcom_nandc_codeword_fixup(struct qcom_nand_host *host, int page)
{
bool codeword_fixup = qcom_nandc_is_boot_partition(host, page);
/* Skip conf write if we are already in the correct mode */
if (codeword_fixup == host->codeword_fixup)
return;
host->codeword_fixup = codeword_fixup;
host->cw_data = codeword_fixup ? 512 : 516;
host->spare_bytes = host->cw_size - host->ecc_bytes_hw -
host->bbm_size - host->cw_data;
host->cfg0 &= ~(SPARE_SIZE_BYTES_MASK | UD_SIZE_BYTES_MASK);
host->cfg0 |= FIELD_PREP(SPARE_SIZE_BYTES_MASK, host->spare_bytes) |
FIELD_PREP(UD_SIZE_BYTES_MASK, host->cw_data);
host->ecc_bch_cfg &= ~ECC_NUM_DATA_BYTES_MASK;
host->ecc_bch_cfg |= FIELD_PREP(ECC_NUM_DATA_BYTES_MASK, host->cw_data);
host->ecc_buf_cfg = FIELD_PREP(NUM_STEPS_MASK, host->cw_data - 1);
}
/* implements ecc->read_page() */
static int qcom_nandc_read_page(struct nand_chip *chip, u8 *buf,
int oob_required, int page)
{
struct qcom_nand_host *host = to_qcom_nand_host(chip);
struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
struct nand_ecc_ctrl *ecc = &chip->ecc;
u8 *data_buf, *oob_buf = NULL;
if (host->nr_boot_partitions)
qcom_nandc_codeword_fixup(host, page);
nand_read_page_op(chip, page, 0, NULL, 0);
nandc->buf_count = 0;
nandc->buf_start = 0;
host->use_ecc = true;
qcom_clear_read_regs(nandc);
set_address(host, 0, page);
update_rw_regs(host, ecc->steps, true, 0);
data_buf = buf;
oob_buf = oob_required ? chip->oob_poi : NULL;
qcom_clear_bam_transaction(nandc);
return read_page_ecc(host, data_buf, oob_buf, page);
}
/* implements ecc->read_page_raw() */
static int qcom_nandc_read_page_raw(struct nand_chip *chip, u8 *buf,
int oob_required, int page)
{
struct mtd_info *mtd = nand_to_mtd(chip);
struct qcom_nand_host *host = to_qcom_nand_host(chip);
struct nand_ecc_ctrl *ecc = &chip->ecc;
int cw, ret;
u8 *data_buf = buf, *oob_buf = chip->oob_poi;
if (host->nr_boot_partitions)
qcom_nandc_codeword_fixup(host, page);
for (cw = 0; cw < ecc->steps; cw++) {
ret = qcom_nandc_read_cw_raw(mtd, chip, data_buf, oob_buf,
page, cw);
if (ret)
return ret;
data_buf += host->cw_data;
oob_buf += ecc->bytes;
}
return 0;
}
/* implements ecc->read_oob() */
static int qcom_nandc_read_oob(struct nand_chip *chip, int page)
{
struct qcom_nand_host *host = to_qcom_nand_host(chip);
struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
struct nand_ecc_ctrl *ecc = &chip->ecc;
if (host->nr_boot_partitions)
qcom_nandc_codeword_fixup(host, page);
qcom_clear_read_regs(nandc);
qcom_clear_bam_transaction(nandc);
host->use_ecc = true;
set_address(host, 0, page);
update_rw_regs(host, ecc->steps, true, 0);
return read_page_ecc(host, NULL, chip->oob_poi, page);
}
/* implements ecc->write_page() */
static int qcom_nandc_write_page(struct nand_chip *chip, const u8 *buf,
int oob_required, int page)
{
struct qcom_nand_host *host = to_qcom_nand_host(chip);
struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
struct nand_ecc_ctrl *ecc = &chip->ecc;
u8 *data_buf, *oob_buf;
int i, ret;
if (host->nr_boot_partitions)
qcom_nandc_codeword_fixup(host, page);
nand_prog_page_begin_op(chip, page, 0, NULL, 0);
set_address(host, 0, page);
nandc->buf_count = 0;
nandc->buf_start = 0;
qcom_clear_read_regs(nandc);
qcom_clear_bam_transaction(nandc);
data_buf = (u8 *)buf;
oob_buf = chip->oob_poi;
host->use_ecc = true;
update_rw_regs(host, ecc->steps, false, 0);
config_nand_page_write(chip);
for (i = 0; i < ecc->steps; i++) {
int data_size, oob_size;
if (qcom_nandc_is_last_cw(ecc, i) && !host->codeword_fixup) {
data_size = ecc->size - ((ecc->steps - 1) << 2);
oob_size = (ecc->steps << 2) + host->ecc_bytes_hw +
host->spare_bytes;
} else {
data_size = host->cw_data;
oob_size = ecc->bytes;
}
qcom_write_data_dma(nandc, FLASH_BUF_ACC, data_buf, data_size,
i == (ecc->steps - 1) ? NAND_BAM_NO_EOT : 0);
/*
* when ECC is enabled, we don't really need to write anything
* to oob for the first n - 1 codewords since these oob regions
* just contain ECC bytes that's written by the controller
* itself. For the last codeword, we skip the bbm positions and
* write to the free oob area.
*/
if (qcom_nandc_is_last_cw(ecc, i)) {
oob_buf += host->bbm_size;
qcom_write_data_dma(nandc, FLASH_BUF_ACC + data_size,
oob_buf, oob_size, 0);
}
config_nand_cw_write(chip);
data_buf += data_size;
oob_buf += oob_size;
}
ret = qcom_submit_descs(nandc);
if (ret) {
dev_err(nandc->dev, "failure to write page\n");
return ret;
}
return nand_prog_page_end_op(chip);
}
/* implements ecc->write_page_raw() */
static int qcom_nandc_write_page_raw(struct nand_chip *chip,
const u8 *buf, int oob_required,
int page)
{
struct mtd_info *mtd = nand_to_mtd(chip);
struct qcom_nand_host *host = to_qcom_nand_host(chip);
struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
struct nand_ecc_ctrl *ecc = &chip->ecc;
u8 *data_buf, *oob_buf;
int i, ret;
if (host->nr_boot_partitions)
qcom_nandc_codeword_fixup(host, page);
nand_prog_page_begin_op(chip, page, 0, NULL, 0);
qcom_clear_read_regs(nandc);
qcom_clear_bam_transaction(nandc);
data_buf = (u8 *)buf;
oob_buf = chip->oob_poi;
host->use_ecc = false;
update_rw_regs(host, ecc->steps, false, 0);
config_nand_page_write(chip);
for (i = 0; i < ecc->steps; i++) {
int data_size1, data_size2, oob_size1, oob_size2;
int reg_off = FLASH_BUF_ACC;
data_size1 = mtd->writesize - host->cw_size * (ecc->steps - 1);
oob_size1 = host->bbm_size;
if (qcom_nandc_is_last_cw(ecc, i) && !host->codeword_fixup) {
data_size2 = ecc->size - data_size1 -
((ecc->steps - 1) << 2);
oob_size2 = (ecc->steps << 2) + host->ecc_bytes_hw +
host->spare_bytes;
} else {
data_size2 = host->cw_data - data_size1;
oob_size2 = host->ecc_bytes_hw + host->spare_bytes;
}
qcom_write_data_dma(nandc, reg_off, data_buf, data_size1,
NAND_BAM_NO_EOT);
reg_off += data_size1;
data_buf += data_size1;
qcom_write_data_dma(nandc, reg_off, oob_buf, oob_size1,
NAND_BAM_NO_EOT);
reg_off += oob_size1;
oob_buf += oob_size1;
qcom_write_data_dma(nandc, reg_off, data_buf, data_size2,
NAND_BAM_NO_EOT);
reg_off += data_size2;
data_buf += data_size2;
qcom_write_data_dma(nandc, reg_off, oob_buf, oob_size2, 0);
oob_buf += oob_size2;
config_nand_cw_write(chip);
}
ret = qcom_submit_descs(nandc);
if (ret) {
dev_err(nandc->dev, "failure to write raw page\n");
return ret;
}
return nand_prog_page_end_op(chip);
}
/*
* implements ecc->write_oob()
*
* the NAND controller cannot write only data or only OOB within a codeword
* since ECC is calculated for the combined codeword. So update the OOB from
* chip->oob_poi, and pad the data area with OxFF before writing.
*/
static int qcom_nandc_write_oob(struct nand_chip *chip, int page)
{
struct mtd_info *mtd = nand_to_mtd(chip);
struct qcom_nand_host *host = to_qcom_nand_host(chip);
struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
struct nand_ecc_ctrl *ecc = &chip->ecc;
u8 *oob = chip->oob_poi;
int data_size, oob_size;
int ret;
if (host->nr_boot_partitions)
qcom_nandc_codeword_fixup(host, page);
host->use_ecc = true;
qcom_clear_bam_transaction(nandc);
/* calculate the data and oob size for the last codeword/step */
data_size = ecc->size - ((ecc->steps - 1) << 2);
oob_size = mtd->oobavail;
memset(nandc->data_buffer, 0xff, host->cw_data);
/* override new oob content to last codeword */
mtd_ooblayout_get_databytes(mtd, nandc->data_buffer + data_size, oob,
0, mtd->oobavail);
set_address(host, host->cw_size * (ecc->steps - 1), page);
update_rw_regs(host, 1, false, 0);
config_nand_page_write(chip);
qcom_write_data_dma(nandc, FLASH_BUF_ACC,
nandc->data_buffer, data_size + oob_size, 0);
config_nand_cw_write(chip);
ret = qcom_submit_descs(nandc);
if (ret) {
dev_err(nandc->dev, "failure to write oob\n");
return ret;
}
return nand_prog_page_end_op(chip);
}
static int qcom_nandc_block_bad(struct nand_chip *chip, loff_t ofs)
{
struct mtd_info *mtd = nand_to_mtd(chip);
struct qcom_nand_host *host = to_qcom_nand_host(chip);
struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
struct nand_ecc_ctrl *ecc = &chip->ecc;
int page, ret, bbpos, bad = 0;
page = (int)(ofs >> chip->page_shift) & chip->pagemask;
/*
* configure registers for a raw sub page read, the address is set to
* the beginning of the last codeword, we don't care about reading ecc
* portion of oob. we just want the first few bytes from this codeword
* that contains the BBM
*/
host->use_ecc = false;
qcom_clear_bam_transaction(nandc);
ret = copy_last_cw(host, page);
if (ret)
goto err;
if (check_flash_errors(host, 1)) {
dev_warn(nandc->dev, "error when trying to read BBM\n");
goto err;
}
bbpos = mtd->writesize - host->cw_size * (ecc->steps - 1);
bad = nandc->data_buffer[bbpos] != 0xff;
if (chip->options & NAND_BUSWIDTH_16)
bad = bad || (nandc->data_buffer[bbpos + 1] != 0xff);
err:
return bad;
}
static int qcom_nandc_block_markbad(struct nand_chip *chip, loff_t ofs)
{
struct qcom_nand_host *host = to_qcom_nand_host(chip);
struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
struct nand_ecc_ctrl *ecc = &chip->ecc;
int page, ret;
qcom_clear_read_regs(nandc);
qcom_clear_bam_transaction(nandc);
/*
* to mark the BBM as bad, we flash the entire last codeword with 0s.
* we don't care about the rest of the content in the codeword since
* we aren't going to use this block again
*/
memset(nandc->data_buffer, 0x00, host->cw_size);
page = (int)(ofs >> chip->page_shift) & chip->pagemask;
/* prepare write */
host->use_ecc = false;
set_address(host, host->cw_size * (ecc->steps - 1), page);
update_rw_regs(host, 1, false, ecc->steps - 1);
config_nand_page_write(chip);
qcom_write_data_dma(nandc, FLASH_BUF_ACC,
nandc->data_buffer, host->cw_size, 0);
config_nand_cw_write(chip);
ret = qcom_submit_descs(nandc);
if (ret) {
dev_err(nandc->dev, "failure to update BBM\n");
return ret;
}
return nand_prog_page_end_op(chip);
}
/*
* NAND controller page layout info
*
* Layout with ECC enabled:
*
* |----------------------| |---------------------------------|
* | xx.......yy| | *********xx.......yy|
* | DATA xx..ECC..yy| | DATA **SPARE**xx..ECC..yy|
* | (516) xx.......yy| | (516-n*4) **(n*4)**xx.......yy|
* | xx.......yy| | *********xx.......yy|
* |----------------------| |---------------------------------|
* codeword 1,2..n-1 codeword n
* <---(528/532 Bytes)--> <-------(528/532 Bytes)--------->
*
* n = Number of codewords in the page
* . = ECC bytes
* * = Spare/free bytes
* x = Unused byte(s)
* y = Reserved byte(s)
*
* 2K page: n = 4, spare = 16 bytes
* 4K page: n = 8, spare = 32 bytes
* 8K page: n = 16, spare = 64 bytes
*
* the qcom nand controller operates at a sub page/codeword level. each
* codeword is 528 and 532 bytes for 4 bit and 8 bit ECC modes respectively.
* the number of ECC bytes vary based on the ECC strength and the bus width.
*
* the first n - 1 codewords contains 516 bytes of user data, the remaining
* 12/16 bytes consist of ECC and reserved data. The nth codeword contains
* both user data and spare(oobavail) bytes that sum up to 516 bytes.
*
* When we access a page with ECC enabled, the reserved bytes(s) are not
* accessible at all. When reading, we fill up these unreadable positions
* with 0xffs. When writing, the controller skips writing the inaccessible
* bytes.
*
* Layout with ECC disabled:
*
* |------------------------------| |---------------------------------------|
* | yy xx.......| | bb *********xx.......|
* | DATA1 yy DATA2 xx..ECC..| | DATA1 bb DATA2 **SPARE**xx..ECC..|
* | (size1) yy (size2) xx.......| | (size1) bb (size2) **(n*4)**xx.......|
* | yy xx.......| | bb *********xx.......|
* |------------------------------| |---------------------------------------|
* codeword 1,2..n-1 codeword n
* <-------(528/532 Bytes)------> <-----------(528/532 Bytes)----------->
*
* n = Number of codewords in the page
* . = ECC bytes
* * = Spare/free bytes
* x = Unused byte(s)
* y = Dummy Bad Bock byte(s)
* b = Real Bad Block byte(s)
* size1/size2 = function of codeword size and 'n'
*
* when the ECC block is disabled, one reserved byte (or two for 16 bit bus
* width) is now accessible. For the first n - 1 codewords, these are dummy Bad
* Block Markers. In the last codeword, this position contains the real BBM
*
* In order to have a consistent layout between RAW and ECC modes, we assume
* the following OOB layout arrangement:
*
* |-----------| |--------------------|
* |yyxx.......| |bb*********xx.......|
* |yyxx..ECC..| |bb*FREEOOB*xx..ECC..|
* |yyxx.......| |bb*********xx.......|
* |yyxx.......| |bb*********xx.......|
* |-----------| |--------------------|
* first n - 1 nth OOB region
* OOB regions
*
* n = Number of codewords in the page
* . = ECC bytes
* * = FREE OOB bytes
* y = Dummy bad block byte(s) (inaccessible when ECC enabled)
* x = Unused byte(s)
* b = Real bad block byte(s) (inaccessible when ECC enabled)
*
* This layout is read as is when ECC is disabled. When ECC is enabled, the
* inaccessible Bad Block byte(s) are ignored when we write to a page/oob,
* and assumed as 0xffs when we read a page/oob. The ECC, unused and
* dummy/real bad block bytes are grouped as ecc bytes (i.e, ecc->bytes is
* the sum of the three).
*/
static int qcom_nand_ooblayout_ecc(struct mtd_info *mtd, int section,
struct mtd_oob_region *oobregion)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct qcom_nand_host *host = to_qcom_nand_host(chip);
struct nand_ecc_ctrl *ecc = &chip->ecc;
if (section > 1)
return -ERANGE;
if (!section) {
oobregion->length = (ecc->bytes * (ecc->steps - 1)) +
host->bbm_size;
oobregion->offset = 0;
} else {
oobregion->length = host->ecc_bytes_hw + host->spare_bytes;
oobregion->offset = mtd->oobsize - oobregion->length;
}
return 0;
}
static int qcom_nand_ooblayout_free(struct mtd_info *mtd, int section,
struct mtd_oob_region *oobregion)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct qcom_nand_host *host = to_qcom_nand_host(chip);
struct nand_ecc_ctrl *ecc = &chip->ecc;
if (section)
return -ERANGE;
oobregion->length = ecc->steps * 4;
oobregion->offset = ((ecc->steps - 1) * ecc->bytes) + host->bbm_size;
return 0;
}
static const struct mtd_ooblayout_ops qcom_nand_ooblayout_ops = {
.ecc = qcom_nand_ooblayout_ecc,
.free = qcom_nand_ooblayout_free,
};
static int
qcom_nandc_calc_ecc_bytes(int step_size, int strength)
{
return strength == 4 ? 12 : 16;
}
NAND_ECC_CAPS_SINGLE(qcom_nandc_ecc_caps, qcom_nandc_calc_ecc_bytes,
NANDC_STEP_SIZE, 4, 8);
static int qcom_nand_attach_chip(struct nand_chip *chip)
{
struct mtd_info *mtd = nand_to_mtd(chip);
struct qcom_nand_host *host = to_qcom_nand_host(chip);
struct nand_ecc_ctrl *ecc = &chip->ecc;
struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
int cwperpage, bad_block_byte, ret;
bool wide_bus;
int ecc_mode = 1;
/* controller only supports 512 bytes data steps */
ecc->size = NANDC_STEP_SIZE;
wide_bus = chip->options & NAND_BUSWIDTH_16 ? true : false;
cwperpage = mtd->writesize / NANDC_STEP_SIZE;
/*
* Each CW has 4 available OOB bytes which will be protected with ECC
* so remaining bytes can be used for ECC.
*/
ret = nand_ecc_choose_conf(chip, &qcom_nandc_ecc_caps,
mtd->oobsize - (cwperpage * 4));
if (ret) {
dev_err(nandc->dev, "No valid ECC settings possible\n");
return ret;
}
if (ecc->strength >= 8) {
/* 8 bit ECC defaults to BCH ECC on all platforms */
host->bch_enabled = true;
ecc_mode = 1;
if (wide_bus) {
host->ecc_bytes_hw = 14;
host->spare_bytes = 0;
host->bbm_size = 2;
} else {
host->ecc_bytes_hw = 13;
host->spare_bytes = 2;
host->bbm_size = 1;
}
} else {
/*
* if the controller supports BCH for 4 bit ECC, the controller
* uses lesser bytes for ECC. If RS is used, the ECC bytes is
* always 10 bytes
*/
if (nandc->props->ecc_modes & ECC_BCH_4BIT) {
/* BCH */
host->bch_enabled = true;
ecc_mode = 0;
if (wide_bus) {
host->ecc_bytes_hw = 8;
host->spare_bytes = 2;
host->bbm_size = 2;
} else {
host->ecc_bytes_hw = 7;
host->spare_bytes = 4;
host->bbm_size = 1;
}
} else {
/* RS */
host->ecc_bytes_hw = 10;
if (wide_bus) {
host->spare_bytes = 0;
host->bbm_size = 2;
} else {
host->spare_bytes = 1;
host->bbm_size = 1;
}
}
}
/*
* we consider ecc->bytes as the sum of all the non-data content in a
* step. It gives us a clean representation of the oob area (even if
* all the bytes aren't used for ECC).It is always 16 bytes for 8 bit
* ECC and 12 bytes for 4 bit ECC
*/
ecc->bytes = host->ecc_bytes_hw + host->spare_bytes + host->bbm_size;
ecc->read_page = qcom_nandc_read_page;
ecc->read_page_raw = qcom_nandc_read_page_raw;
ecc->read_oob = qcom_nandc_read_oob;
ecc->write_page = qcom_nandc_write_page;
ecc->write_page_raw = qcom_nandc_write_page_raw;
ecc->write_oob = qcom_nandc_write_oob;
ecc->engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
mtd_set_ooblayout(mtd, &qcom_nand_ooblayout_ops);
/* Free the initially allocated BAM transaction for reading the ONFI params */
if (nandc->props->supports_bam)
qcom_free_bam_transaction(nandc);
nandc->max_cwperpage = max_t(unsigned int, nandc->max_cwperpage,
cwperpage);
/* Now allocate the BAM transaction based on updated max_cwperpage */
if (nandc->props->supports_bam) {
nandc->bam_txn = qcom_alloc_bam_transaction(nandc);
if (!nandc->bam_txn) {
dev_err(nandc->dev,
"failed to allocate bam transaction\n");
return -ENOMEM;
}
}
/*
* DATA_UD_BYTES varies based on whether the read/write command protects
* spare data with ECC too. We protect spare data by default, so we set
* it to main + spare data, which are 512 and 4 bytes respectively.
*/
host->cw_data = 516;
/*
* total bytes in a step, either 528 bytes for 4 bit ECC, or 532 bytes
* for 8 bit ECC
*/
host->cw_size = host->cw_data + ecc->bytes;
bad_block_byte = mtd->writesize - host->cw_size * (cwperpage - 1) + 1;
host->cfg0 = FIELD_PREP(CW_PER_PAGE_MASK, (cwperpage - 1)) |
FIELD_PREP(UD_SIZE_BYTES_MASK, host->cw_data) |
FIELD_PREP(DISABLE_STATUS_AFTER_WRITE, 0) |
FIELD_PREP(NUM_ADDR_CYCLES_MASK, 5) |
FIELD_PREP(ECC_PARITY_SIZE_BYTES_RS, host->ecc_bytes_hw) |
FIELD_PREP(STATUS_BFR_READ, 0) |
FIELD_PREP(SET_RD_MODE_AFTER_STATUS, 1) |
FIELD_PREP(SPARE_SIZE_BYTES_MASK, host->spare_bytes);
host->cfg1 = FIELD_PREP(NAND_RECOVERY_CYCLES_MASK, 7) |
FIELD_PREP(BAD_BLOCK_BYTE_NUM_MASK, bad_block_byte) |
FIELD_PREP(BAD_BLOCK_IN_SPARE_AREA, 0) |
FIELD_PREP(WR_RD_BSY_GAP_MASK, 2) |
FIELD_PREP(WIDE_FLASH, wide_bus) |
FIELD_PREP(ENABLE_BCH_ECC, host->bch_enabled);
host->cfg0_raw = FIELD_PREP(CW_PER_PAGE_MASK, (cwperpage - 1)) |
FIELD_PREP(UD_SIZE_BYTES_MASK, host->cw_size) |
FIELD_PREP(NUM_ADDR_CYCLES_MASK, 5) |
FIELD_PREP(SPARE_SIZE_BYTES_MASK, 0);
host->cfg1_raw = FIELD_PREP(NAND_RECOVERY_CYCLES_MASK, 7) |
FIELD_PREP(CS_ACTIVE_BSY, 0) |
FIELD_PREP(BAD_BLOCK_BYTE_NUM_MASK, 17) |
FIELD_PREP(BAD_BLOCK_IN_SPARE_AREA, 1) |
FIELD_PREP(WR_RD_BSY_GAP_MASK, 2) |
FIELD_PREP(WIDE_FLASH, wide_bus) |
FIELD_PREP(DEV0_CFG1_ECC_DISABLE, 1);
host->ecc_bch_cfg = FIELD_PREP(ECC_CFG_ECC_DISABLE, !host->bch_enabled) |
FIELD_PREP(ECC_SW_RESET, 0) |
FIELD_PREP(ECC_NUM_DATA_BYTES_MASK, host->cw_data) |
FIELD_PREP(ECC_FORCE_CLK_OPEN, 1) |
FIELD_PREP(ECC_MODE_MASK, ecc_mode) |
FIELD_PREP(ECC_PARITY_SIZE_BYTES_BCH_MASK, host->ecc_bytes_hw);
if (!nandc->props->qpic_version2)
host->ecc_buf_cfg = FIELD_PREP(NUM_STEPS_MASK, 0x203);
host->clrflashstatus = FS_READY_BSY_N;
host->clrreadstatus = 0xc0;
nandc->regs->erased_cw_detect_cfg_clr =
cpu_to_le32(CLR_ERASED_PAGE_DET);
nandc->regs->erased_cw_detect_cfg_set =
cpu_to_le32(SET_ERASED_PAGE_DET);
dev_dbg(nandc->dev,
"cfg0 %x cfg1 %x ecc_buf_cfg %x ecc_bch cfg %x cw_size %d cw_data %d strength %d parity_bytes %d steps %d\n",
host->cfg0, host->cfg1, host->ecc_buf_cfg, host->ecc_bch_cfg,
host->cw_size, host->cw_data, ecc->strength, ecc->bytes,
cwperpage);
return 0;
}
static int qcom_op_cmd_mapping(struct nand_chip *chip, u8 opcode,
struct qcom_op *q_op)
{
struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
struct qcom_nand_host *host = to_qcom_nand_host(chip);
int cmd;
switch (opcode) {
case NAND_CMD_RESET:
cmd = OP_RESET_DEVICE;
break;
case NAND_CMD_READID:
cmd = OP_FETCH_ID;
break;
case NAND_CMD_PARAM:
if (nandc->props->qpic_version2)
cmd = OP_PAGE_READ_ONFI_READ;
else
cmd = OP_PAGE_READ;
break;
case NAND_CMD_ERASE1:
case NAND_CMD_ERASE2:
cmd = OP_BLOCK_ERASE;
break;
case NAND_CMD_STATUS:
cmd = OP_CHECK_STATUS;
break;
case NAND_CMD_PAGEPROG:
cmd = OP_PROGRAM_PAGE;
q_op->flag = OP_PROGRAM_PAGE;
nandc->exec_opwrite = true;
break;
case NAND_CMD_READ0:
case NAND_CMD_READSTART:
if (host->use_ecc)
cmd = OP_PAGE_READ_WITH_ECC;
else
cmd = OP_PAGE_READ;
break;
default:
dev_err(nandc->dev, "Opcode not supported: %u\n", opcode);
return -EOPNOTSUPP;
}
return cmd;
}
/* NAND framework ->exec_op() hooks and related helpers */
static int qcom_parse_instructions(struct nand_chip *chip,
const struct nand_subop *subop,
struct qcom_op *q_op)
{
const struct nand_op_instr *instr = NULL;
unsigned int op_id;
int i, ret;
for (op_id = 0; op_id < subop->ninstrs; op_id++) {
unsigned int offset, naddrs;
const u8 *addrs;
instr = &subop->instrs[op_id];
switch (instr->type) {
case NAND_OP_CMD_INSTR:
ret = qcom_op_cmd_mapping(chip, instr->ctx.cmd.opcode, q_op);
if (ret < 0)
return ret;
q_op->cmd_reg = cpu_to_le32(ret);
q_op->rdy_delay_ns = instr->delay_ns;
break;
case NAND_OP_ADDR_INSTR:
offset = nand_subop_get_addr_start_off(subop, op_id);
naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
addrs = &instr->ctx.addr.addrs[offset];
for (i = 0; i < min_t(unsigned int, 4, naddrs); i++)
q_op->addr1_reg |= cpu_to_le32(addrs[i] << (i * 8));
if (naddrs > 4)
q_op->addr2_reg |= cpu_to_le32(addrs[4]);
q_op->rdy_delay_ns = instr->delay_ns;
break;
case NAND_OP_DATA_IN_INSTR:
q_op->data_instr = instr;
q_op->data_instr_idx = op_id;
q_op->rdy_delay_ns = instr->delay_ns;
fallthrough;
case NAND_OP_DATA_OUT_INSTR:
q_op->rdy_delay_ns = instr->delay_ns;
break;
case NAND_OP_WAITRDY_INSTR:
q_op->rdy_timeout_ms = instr->ctx.waitrdy.timeout_ms;
q_op->rdy_delay_ns = instr->delay_ns;
break;
}
}
return 0;
}
static void qcom_delay_ns(unsigned int ns)
{
if (!ns)
return;
if (ns < 10000)
ndelay(ns);
else
udelay(DIV_ROUND_UP(ns, 1000));
}
static int qcom_wait_rdy_poll(struct nand_chip *chip, unsigned int time_ms)
{
struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
unsigned long start = jiffies + msecs_to_jiffies(time_ms);
u32 flash;
qcom_nandc_dev_to_mem(nandc, true);
do {
flash = le32_to_cpu(nandc->reg_read_buf[0]);
if (flash & FS_READY_BSY_N)
return 0;
cpu_relax();
} while (time_after(start, jiffies));
dev_err(nandc->dev, "Timeout waiting for device to be ready:0x%08x\n", flash);
return -ETIMEDOUT;
}
static int qcom_read_status_exec(struct nand_chip *chip,
const struct nand_subop *subop)
{
struct qcom_nand_host *host = to_qcom_nand_host(chip);
struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
struct nand_ecc_ctrl *ecc = &chip->ecc;
struct qcom_op q_op = {};
const struct nand_op_instr *instr = NULL;
unsigned int op_id = 0;
unsigned int len = 0;
int ret, num_cw, i;
u32 flash_status;
host->status = NAND_STATUS_READY | NAND_STATUS_WP;
ret = qcom_parse_instructions(chip, subop, &q_op);
if (ret)
return ret;
num_cw = nandc->exec_opwrite ? ecc->steps : 1;
nandc->exec_opwrite = false;
nandc->buf_count = 0;
nandc->buf_start = 0;
host->use_ecc = false;
qcom_clear_read_regs(nandc);
qcom_clear_bam_transaction(nandc);
nandc->regs->cmd = q_op.cmd_reg;
nandc->regs->exec = cpu_to_le32(1);
qcom_write_reg_dma(nandc, &nandc->regs->cmd, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL);
qcom_write_reg_dma(nandc, &nandc->regs->exec, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
qcom_read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL);
ret = qcom_submit_descs(nandc);
if (ret) {
dev_err(nandc->dev, "failure in submitting status descriptor\n");
goto err_out;
}
qcom_nandc_dev_to_mem(nandc, true);
for (i = 0; i < num_cw; i++) {
flash_status = le32_to_cpu(nandc->reg_read_buf[i]);
if (flash_status & FS_MPU_ERR)
host->status &= ~NAND_STATUS_WP;
if (flash_status & FS_OP_ERR ||
(i == (num_cw - 1) && (flash_status & FS_DEVICE_STS_ERR)))
host->status |= NAND_STATUS_FAIL;
}
flash_status = host->status;
instr = q_op.data_instr;
op_id = q_op.data_instr_idx;
len = nand_subop_get_data_len(subop, op_id);
memcpy(instr->ctx.data.buf.in, &flash_status, len);
err_out:
return ret;
}
static int qcom_read_id_type_exec(struct nand_chip *chip, const struct nand_subop *subop)
{
struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
struct qcom_nand_host *host = to_qcom_nand_host(chip);
struct qcom_op q_op = {};
const struct nand_op_instr *instr = NULL;
unsigned int op_id = 0;
unsigned int len = 0;
int ret;
ret = qcom_parse_instructions(chip, subop, &q_op);
if (ret)
return ret;
nandc->buf_count = 0;
nandc->buf_start = 0;
host->use_ecc = false;
qcom_clear_read_regs(nandc);
qcom_clear_bam_transaction(nandc);
nandc->regs->cmd = q_op.cmd_reg;
nandc->regs->addr0 = q_op.addr1_reg;
nandc->regs->addr1 = q_op.addr2_reg;
nandc->regs->chip_sel = cpu_to_le32(nandc->props->supports_bam ? 0 : DM_EN);
nandc->regs->exec = cpu_to_le32(1);
qcom_write_reg_dma(nandc, &nandc->regs->cmd, NAND_FLASH_CMD, 4, NAND_BAM_NEXT_SGL);
qcom_write_reg_dma(nandc, &nandc->regs->exec, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
qcom_read_reg_dma(nandc, NAND_READ_ID, 1, NAND_BAM_NEXT_SGL);
ret = qcom_submit_descs(nandc);
if (ret) {
dev_err(nandc->dev, "failure in submitting read id descriptor\n");
goto err_out;
}
instr = q_op.data_instr;
op_id = q_op.data_instr_idx;
len = nand_subop_get_data_len(subop, op_id);
qcom_nandc_dev_to_mem(nandc, true);
memcpy(instr->ctx.data.buf.in, nandc->reg_read_buf, len);
err_out:
return ret;
}
static int qcom_misc_cmd_type_exec(struct nand_chip *chip, const struct nand_subop *subop)
{
struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
struct qcom_nand_host *host = to_qcom_nand_host(chip);
struct qcom_op q_op = {};
int ret;
int instrs = 1;
ret = qcom_parse_instructions(chip, subop, &q_op);
if (ret)
return ret;
if (q_op.flag == OP_PROGRAM_PAGE) {
goto wait_rdy;
} else if (q_op.cmd_reg == cpu_to_le32(OP_BLOCK_ERASE)) {
q_op.cmd_reg |= cpu_to_le32(PAGE_ACC | LAST_PAGE);
nandc->regs->addr0 = q_op.addr1_reg;
nandc->regs->addr1 = q_op.addr2_reg;
nandc->regs->cfg0 = cpu_to_le32(host->cfg0_raw & ~CW_PER_PAGE_MASK);
nandc->regs->cfg1 = cpu_to_le32(host->cfg1_raw);
instrs = 3;
} else if (q_op.cmd_reg != cpu_to_le32(OP_RESET_DEVICE)) {
return 0;
}
nandc->buf_count = 0;
nandc->buf_start = 0;
host->use_ecc = false;
qcom_clear_read_regs(nandc);
qcom_clear_bam_transaction(nandc);
nandc->regs->cmd = q_op.cmd_reg;
nandc->regs->exec = cpu_to_le32(1);
qcom_write_reg_dma(nandc, &nandc->regs->cmd, NAND_FLASH_CMD, instrs, NAND_BAM_NEXT_SGL);
if (q_op.cmd_reg == cpu_to_le32(OP_BLOCK_ERASE))
qcom_write_reg_dma(nandc, &nandc->regs->cfg0, NAND_DEV0_CFG0, 2, NAND_BAM_NEXT_SGL);
qcom_write_reg_dma(nandc, &nandc->regs->exec, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
qcom_read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL);
ret = qcom_submit_descs(nandc);
if (ret) {
dev_err(nandc->dev, "failure in submitting misc descriptor\n");
goto err_out;
}
wait_rdy:
qcom_delay_ns(q_op.rdy_delay_ns);
ret = qcom_wait_rdy_poll(chip, q_op.rdy_timeout_ms);
err_out:
return ret;
}
static int qcom_param_page_type_exec(struct nand_chip *chip, const struct nand_subop *subop)
{
struct qcom_nand_host *host = to_qcom_nand_host(chip);
struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
struct qcom_op q_op = {};
const struct nand_op_instr *instr = NULL;
unsigned int op_id = 0;
unsigned int len = 0;
int ret;
ret = qcom_parse_instructions(chip, subop, &q_op);
if (ret)
return ret;
q_op.cmd_reg |= cpu_to_le32(PAGE_ACC | LAST_PAGE);
nandc->buf_count = 0;
nandc->buf_start = 0;
host->use_ecc = false;
qcom_clear_read_regs(nandc);
qcom_clear_bam_transaction(nandc);
nandc->regs->cmd = q_op.cmd_reg;
nandc->regs->addr0 = 0;
nandc->regs->addr1 = 0;
nandc->regs->cfg0 = cpu_to_le32(FIELD_PREP(CW_PER_PAGE_MASK, 0) |
FIELD_PREP(UD_SIZE_BYTES_MASK, 512) |
FIELD_PREP(NUM_ADDR_CYCLES_MASK, 5) |
FIELD_PREP(SPARE_SIZE_BYTES_MASK, 0));
nandc->regs->cfg1 = cpu_to_le32(FIELD_PREP(NAND_RECOVERY_CYCLES_MASK, 7) |
FIELD_PREP(BAD_BLOCK_BYTE_NUM_MASK, 17) |
FIELD_PREP(CS_ACTIVE_BSY, 0) |
FIELD_PREP(BAD_BLOCK_IN_SPARE_AREA, 1) |
FIELD_PREP(WR_RD_BSY_GAP_MASK, 2) |
FIELD_PREP(WIDE_FLASH, 0) |
FIELD_PREP(DEV0_CFG1_ECC_DISABLE, 1));
if (!nandc->props->qpic_version2)
nandc->regs->ecc_buf_cfg = cpu_to_le32(ECC_CFG_ECC_DISABLE);
/* configure CMD1 and VLD for ONFI param probing in QPIC v1 */
if (!nandc->props->qpic_version2) {
nandc->regs->vld = cpu_to_le32((nandc->vld & ~READ_START_VLD));
nandc->regs->cmd1 = cpu_to_le32((nandc->cmd1 & ~READ_ADDR_MASK) |
FIELD_PREP(READ_ADDR_MASK, NAND_CMD_PARAM));
}
nandc->regs->exec = cpu_to_le32(1);
if (!nandc->props->qpic_version2) {
nandc->regs->orig_cmd1 = cpu_to_le32(nandc->cmd1);
nandc->regs->orig_vld = cpu_to_le32(nandc->vld);
}
instr = q_op.data_instr;
op_id = q_op.data_instr_idx;
len = nand_subop_get_data_len(subop, op_id);
nandc_set_read_loc(chip, 0, 0, 0, len, 1);
if (!nandc->props->qpic_version2) {
qcom_write_reg_dma(nandc, &nandc->regs->vld, NAND_DEV_CMD_VLD, 1, 0);
qcom_write_reg_dma(nandc, &nandc->regs->cmd1, NAND_DEV_CMD1, 1, NAND_BAM_NEXT_SGL);
}
nandc->buf_count = len;
memset(nandc->data_buffer, 0xff, nandc->buf_count);
config_nand_single_cw_page_read(chip, false, 0);
qcom_read_data_dma(nandc, FLASH_BUF_ACC, nandc->data_buffer,
nandc->buf_count, 0);
/* restore CMD1 and VLD regs */
if (!nandc->props->qpic_version2) {
qcom_write_reg_dma(nandc, &nandc->regs->orig_cmd1, NAND_DEV_CMD1_RESTORE, 1, 0);
qcom_write_reg_dma(nandc, &nandc->regs->orig_vld, NAND_DEV_CMD_VLD_RESTORE, 1,
NAND_BAM_NEXT_SGL);
}
ret = qcom_submit_descs(nandc);
if (ret) {
dev_err(nandc->dev, "failure in submitting param page descriptor\n");
goto err_out;
}
ret = qcom_wait_rdy_poll(chip, q_op.rdy_timeout_ms);
if (ret)
goto err_out;
memcpy(instr->ctx.data.buf.in, nandc->data_buffer, len);
err_out:
return ret;
}
static const struct nand_op_parser qcom_op_parser = NAND_OP_PARSER(
NAND_OP_PARSER_PATTERN(
qcom_read_id_type_exec,
NAND_OP_PARSER_PAT_CMD_ELEM(false),
NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYCLE),
NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 8)),
NAND_OP_PARSER_PATTERN(
qcom_read_status_exec,
NAND_OP_PARSER_PAT_CMD_ELEM(false),
NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 1)),
NAND_OP_PARSER_PATTERN(
qcom_param_page_type_exec,
NAND_OP_PARSER_PAT_CMD_ELEM(false),
NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYCLE),
NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 512)),
NAND_OP_PARSER_PATTERN(
qcom_misc_cmd_type_exec,
NAND_OP_PARSER_PAT_CMD_ELEM(false),
NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYCLE),
NAND_OP_PARSER_PAT_CMD_ELEM(true),
NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
);
static int qcom_check_op(struct nand_chip *chip,
const struct nand_operation *op)
{
const struct nand_op_instr *instr;
int op_id;
for (op_id = 0; op_id < op->ninstrs; op_id++) {
instr = &op->instrs[op_id];
switch (instr->type) {
case NAND_OP_CMD_INSTR:
if (instr->ctx.cmd.opcode != NAND_CMD_RESET &&
instr->ctx.cmd.opcode != NAND_CMD_READID &&
instr->ctx.cmd.opcode != NAND_CMD_PARAM &&
instr->ctx.cmd.opcode != NAND_CMD_ERASE1 &&
instr->ctx.cmd.opcode != NAND_CMD_ERASE2 &&
instr->ctx.cmd.opcode != NAND_CMD_STATUS &&
instr->ctx.cmd.opcode != NAND_CMD_PAGEPROG &&
instr->ctx.cmd.opcode != NAND_CMD_READ0 &&
instr->ctx.cmd.opcode != NAND_CMD_READSTART)
return -EOPNOTSUPP;
break;
default:
break;
}
}
return 0;
}
static int qcom_nand_exec_op(struct nand_chip *chip,
const struct nand_operation *op, bool check_only)
{
if (check_only)
return qcom_check_op(chip, op);
return nand_op_parser_exec_op(chip, &qcom_op_parser, op, check_only);
}
static const struct nand_controller_ops qcom_nandc_ops = {
.attach_chip = qcom_nand_attach_chip,
.exec_op = qcom_nand_exec_op,
};
/* one time setup of a few nand controller registers */
static int qcom_nandc_setup(struct qcom_nand_controller *nandc)
{
u32 nand_ctrl;
nand_controller_init(nandc->controller);
nandc->controller->ops = &qcom_nandc_ops;
/* kill onenand */
if (!nandc->props->nandc_part_of_qpic)
nandc_write(nandc, SFLASHC_BURST_CFG, 0);
if (!nandc->props->qpic_version2)
nandc_write(nandc, dev_cmd_reg_addr(nandc, NAND_DEV_CMD_VLD),
NAND_DEV_CMD_VLD_VAL);
/* enable ADM or BAM DMA */
if (nandc->props->supports_bam) {
nand_ctrl = nandc_read(nandc, NAND_CTRL);
/*
*NAND_CTRL is an operational registers, and CPU
* access to operational registers are read only
* in BAM mode. So update the NAND_CTRL register
* only if it is not in BAM mode. In most cases BAM
* mode will be enabled in bootloader
*/
if (!(nand_ctrl & BAM_MODE_EN))
nandc_write(nandc, NAND_CTRL, nand_ctrl | BAM_MODE_EN);
} else {
nandc_write(nandc, NAND_FLASH_CHIP_SELECT, DM_EN);
}
/* save the original values of these registers */
if (!nandc->props->qpic_version2) {
nandc->cmd1 = nandc_read(nandc, dev_cmd_reg_addr(nandc, NAND_DEV_CMD1));
nandc->vld = NAND_DEV_CMD_VLD_VAL;
}
return 0;
}
static const char * const probes[] = { "cmdlinepart", "ofpart", "qcomsmem", NULL };
static int qcom_nand_host_parse_boot_partitions(struct qcom_nand_controller *nandc,
struct qcom_nand_host *host,
struct device_node *dn)
{
struct nand_chip *chip = &host->chip;
struct mtd_info *mtd = nand_to_mtd(chip);
struct qcom_nand_boot_partition *boot_partition;
struct device *dev = nandc->dev;
int partitions_count, i, j, ret;
if (!of_property_present(dn, "qcom,boot-partitions"))
return 0;
partitions_count = of_property_count_u32_elems(dn, "qcom,boot-partitions");
if (partitions_count <= 0) {
dev_err(dev, "Error parsing boot partition\n");
return partitions_count ? partitions_count : -EINVAL;
}
host->nr_boot_partitions = partitions_count / 2;
host->boot_partitions = devm_kcalloc(dev, host->nr_boot_partitions,
sizeof(*host->boot_partitions), GFP_KERNEL);
if (!host->boot_partitions) {
host->nr_boot_partitions = 0;
return -ENOMEM;
}
for (i = 0, j = 0; i < host->nr_boot_partitions; i++, j += 2) {
boot_partition = &host->boot_partitions[i];
ret = of_property_read_u32_index(dn, "qcom,boot-partitions", j,
&boot_partition->page_offset);
if (ret) {
dev_err(dev, "Error parsing boot partition offset at index %d\n", i);
host->nr_boot_partitions = 0;
return ret;
}
if (boot_partition->page_offset % mtd->writesize) {
dev_err(dev, "Boot partition offset not multiple of writesize at index %i\n",
i);
host->nr_boot_partitions = 0;
return -EINVAL;
}
/* Convert offset to nand pages */
boot_partition->page_offset /= mtd->writesize;
ret = of_property_read_u32_index(dn, "qcom,boot-partitions", j + 1,
&boot_partition->page_size);
if (ret) {
dev_err(dev, "Error parsing boot partition size at index %d\n", i);
host->nr_boot_partitions = 0;
return ret;
}
if (boot_partition->page_size % mtd->writesize) {
dev_err(dev, "Boot partition size not multiple of writesize at index %i\n",
i);
host->nr_boot_partitions = 0;
return -EINVAL;
}
/* Convert size to nand pages */
boot_partition->page_size /= mtd->writesize;
}
return 0;
}
static int qcom_nand_host_init_and_register(struct qcom_nand_controller *nandc,
struct qcom_nand_host *host,
struct device_node *dn)
{
struct nand_chip *chip = &host->chip;
struct mtd_info *mtd = nand_to_mtd(chip);
struct device *dev = nandc->dev;
int ret;
ret = of_property_read_u32(dn, "reg", &host->cs);
if (ret) {
dev_err(dev, "can't get chip-select\n");
return -ENXIO;
}
nand_set_flash_node(chip, dn);
mtd->name = devm_kasprintf(dev, GFP_KERNEL, "qcom_nand.%d", host->cs);
if (!mtd->name)
return -ENOMEM;
mtd->owner = THIS_MODULE;
mtd->dev.parent = dev;
/*
* the bad block marker is readable only when we read the last codeword
* of a page with ECC disabled. currently, the nand_base and nand_bbt
* helpers don't allow us to read BB from a nand chip with ECC
* disabled (MTD_OPS_PLACE_OOB is set by default). use the block_bad
* and block_markbad helpers until we permanently switch to using
* MTD_OPS_RAW for all drivers (with the help of badblockbits)
*/
chip->legacy.block_bad = qcom_nandc_block_bad;
chip->legacy.block_markbad = qcom_nandc_block_markbad;
chip->controller = nandc->controller;
chip->options |= NAND_NO_SUBPAGE_WRITE | NAND_USES_DMA |
NAND_SKIP_BBTSCAN;
/* set up initial status value */
host->status = NAND_STATUS_READY | NAND_STATUS_WP;
ret = nand_scan(chip, 1);
if (ret)
return ret;
ret = mtd_device_parse_register(mtd, probes, NULL, NULL, 0);
if (ret)
goto err;
if (nandc->props->use_codeword_fixup) {
ret = qcom_nand_host_parse_boot_partitions(nandc, host, dn);
if (ret)
goto err;
}
return 0;
err:
nand_cleanup(chip);
return ret;
}
static int qcom_probe_nand_devices(struct qcom_nand_controller *nandc)
{
struct device *dev = nandc->dev;
struct device_node *dn = dev->of_node, *child;
struct qcom_nand_host *host;
int ret = -ENODEV;
for_each_available_child_of_node(dn, child) {
host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL);
if (!host) {
of_node_put(child);
return -ENOMEM;
}
ret = qcom_nand_host_init_and_register(nandc, host, child);
if (ret) {
devm_kfree(dev, host);
continue;
}
list_add_tail(&host->node, &nandc->host_list);
}
return ret;
}
/* parse custom DT properties here */
static int qcom_nandc_parse_dt(struct platform_device *pdev)
{
struct qcom_nand_controller *nandc = platform_get_drvdata(pdev);
struct device_node *np = nandc->dev->of_node;
int ret;
if (!nandc->props->supports_bam) {
ret = of_property_read_u32(np, "qcom,cmd-crci",
&nandc->cmd_crci);
if (ret) {
dev_err(nandc->dev, "command CRCI unspecified\n");
return ret;
}
ret = of_property_read_u32(np, "qcom,data-crci",
&nandc->data_crci);
if (ret) {
dev_err(nandc->dev, "data CRCI unspecified\n");
return ret;
}
}
return 0;
}
static int qcom_nandc_probe(struct platform_device *pdev)
{
struct qcom_nand_controller *nandc;
struct nand_controller *controller;
const void *dev_data;
struct device *dev = &pdev->dev;
struct resource *res;
int ret;
nandc = devm_kzalloc(&pdev->dev, sizeof(*nandc) + sizeof(*controller),
GFP_KERNEL);
if (!nandc)
return -ENOMEM;
controller = (struct nand_controller *)&nandc[1];
platform_set_drvdata(pdev, nandc);
nandc->dev = dev;
nandc->controller = controller;
dev_data = of_device_get_match_data(dev);
if (!dev_data) {
dev_err(&pdev->dev, "failed to get device data\n");
return -ENODEV;
}
nandc->props = dev_data;
nandc->core_clk = devm_clk_get(dev, "core");
if (IS_ERR(nandc->core_clk))
return PTR_ERR(nandc->core_clk);
nandc->aon_clk = devm_clk_get(dev, "aon");
if (IS_ERR(nandc->aon_clk))
return PTR_ERR(nandc->aon_clk);
ret = qcom_nandc_parse_dt(pdev);
if (ret)
return ret;
nandc->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
if (IS_ERR(nandc->base))
return PTR_ERR(nandc->base);
nandc->base_phys = res->start;
nandc->base_dma = dma_map_resource(dev, res->start,
resource_size(res),
DMA_BIDIRECTIONAL, 0);
if (dma_mapping_error(dev, nandc->base_dma))
return -ENXIO;
ret = clk_prepare_enable(nandc->core_clk);
if (ret)
goto err_core_clk;
ret = clk_prepare_enable(nandc->aon_clk);
if (ret)
goto err_aon_clk;
ret = qcom_nandc_alloc(nandc);
if (ret)
goto err_nandc_alloc;
ret = qcom_nandc_setup(nandc);
if (ret)
goto err_setup;
ret = qcom_probe_nand_devices(nandc);
if (ret)
goto err_setup;
return 0;
err_setup:
qcom_nandc_unalloc(nandc);
err_nandc_alloc:
clk_disable_unprepare(nandc->aon_clk);
err_aon_clk:
clk_disable_unprepare(nandc->core_clk);
err_core_clk:
dma_unmap_resource(dev, nandc->base_dma, resource_size(res),
DMA_BIDIRECTIONAL, 0);
return ret;
}
static void qcom_nandc_remove(struct platform_device *pdev)
{
struct qcom_nand_controller *nandc = platform_get_drvdata(pdev);
struct resource *res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
struct qcom_nand_host *host;
struct nand_chip *chip;
int ret;
list_for_each_entry(host, &nandc->host_list, node) {
chip = &host->chip;
ret = mtd_device_unregister(nand_to_mtd(chip));
WARN_ON(ret);
nand_cleanup(chip);
}
qcom_nandc_unalloc(nandc);
clk_disable_unprepare(nandc->aon_clk);
clk_disable_unprepare(nandc->core_clk);
dma_unmap_resource(&pdev->dev, nandc->base_dma, resource_size(res),
DMA_BIDIRECTIONAL, 0);
}
static const struct qcom_nandc_props ipq806x_nandc_props = {
.ecc_modes = (ECC_RS_4BIT | ECC_BCH_8BIT),
.supports_bam = false,
.use_codeword_fixup = true,
.dev_cmd_reg_start = 0x0,
};
static const struct qcom_nandc_props ipq4019_nandc_props = {
.ecc_modes = (ECC_BCH_4BIT | ECC_BCH_8BIT),
.supports_bam = true,
.nandc_part_of_qpic = true,
.dev_cmd_reg_start = 0x0,
};
static const struct qcom_nandc_props ipq8074_nandc_props = {
.ecc_modes = (ECC_BCH_4BIT | ECC_BCH_8BIT),
.supports_bam = true,
.nandc_part_of_qpic = true,
.dev_cmd_reg_start = 0x7000,
};
static const struct qcom_nandc_props sdx55_nandc_props = {
.ecc_modes = (ECC_BCH_4BIT | ECC_BCH_8BIT),
.supports_bam = true,
.nandc_part_of_qpic = true,
.qpic_version2 = true,
.dev_cmd_reg_start = 0x7000,
};
/*
* data will hold a struct pointer containing more differences once we support
* more controller variants
*/
static const struct of_device_id qcom_nandc_of_match[] = {
{
.compatible = "qcom,ipq806x-nand",
.data = &ipq806x_nandc_props,
},
{
.compatible = "qcom,ipq4019-nand",
.data = &ipq4019_nandc_props,
},
{
.compatible = "qcom,ipq6018-nand",
.data = &ipq8074_nandc_props,
},
{
.compatible = "qcom,ipq8074-nand",
.data = &ipq8074_nandc_props,
},
{
.compatible = "qcom,sdx55-nand",
.data = &sdx55_nandc_props,
},
{}
};
MODULE_DEVICE_TABLE(of, qcom_nandc_of_match);
static struct platform_driver qcom_nandc_driver = {
.driver = {
.name = "qcom-nandc",
.of_match_table = qcom_nandc_of_match,
},
.probe = qcom_nandc_probe,
.remove = qcom_nandc_remove,
};
module_platform_driver(qcom_nandc_driver);
MODULE_AUTHOR("Archit Taneja <architt@codeaurora.org>");
MODULE_DESCRIPTION("Qualcomm NAND Controller driver");
MODULE_LICENSE("GPL v2");