| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Copyright (c) 2016, The Linux Foundation. All rights reserved. |
| */ |
| #include <linux/bitops.h> |
| #include <linux/clk.h> |
| #include <linux/delay.h> |
| #include <linux/dmaengine.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/dma/qcom_adm.h> |
| #include <linux/dma/qcom_bam_dma.h> |
| #include <linux/module.h> |
| #include <linux/mtd/partitions.h> |
| #include <linux/mtd/rawnand.h> |
| #include <linux/of.h> |
| #include <linux/platform_device.h> |
| #include <linux/slab.h> |
| #include <linux/mtd/nand-qpic-common.h> |
| |
| /* |
| * NAND special boot partitions |
| * |
| * @page_offset: offset of the partition where spare data is not protected |
| * by ECC (value in pages) |
| * @page_offset: size of the partition where spare data is not protected |
| * by ECC (value in pages) |
| */ |
| struct qcom_nand_boot_partition { |
| u32 page_offset; |
| u32 page_size; |
| }; |
| |
| /* |
| * Qcom op for each exec_op transfer |
| * |
| * @data_instr: data instruction pointer |
| * @data_instr_idx: data instruction index |
| * @rdy_timeout_ms: wait ready timeout in ms |
| * @rdy_delay_ns: Additional delay in ns |
| * @addr1_reg: Address1 register value |
| * @addr2_reg: Address2 register value |
| * @cmd_reg: CMD register value |
| * @flag: flag for misc instruction |
| */ |
| struct qcom_op { |
| const struct nand_op_instr *data_instr; |
| unsigned int data_instr_idx; |
| unsigned int rdy_timeout_ms; |
| unsigned int rdy_delay_ns; |
| __le32 addr1_reg; |
| __le32 addr2_reg; |
| __le32 cmd_reg; |
| u8 flag; |
| }; |
| |
| /* |
| * NAND chip structure |
| * |
| * @boot_partitions: array of boot partitions where offset and size of the |
| * boot partitions are stored |
| * |
| * @chip: base NAND chip structure |
| * @node: list node to add itself to host_list in |
| * qcom_nand_controller |
| * |
| * @nr_boot_partitions: count of the boot partitions where spare data is not |
| * protected by ECC |
| * |
| * @cs: chip select value for this chip |
| * @cw_size: the number of bytes in a single step/codeword |
| * of a page, consisting of all data, ecc, spare |
| * and reserved bytes |
| * @cw_data: the number of bytes within a codeword protected |
| * by ECC |
| * @ecc_bytes_hw: ECC bytes used by controller hardware for this |
| * chip |
| * |
| * @last_command: keeps track of last command on this chip. used |
| * for reading correct status |
| * |
| * @cfg0, cfg1, cfg0_raw..: NANDc register configurations needed for |
| * ecc/non-ecc mode for the current nand flash |
| * device |
| * |
| * @status: value to be returned if NAND_CMD_STATUS command |
| * is executed |
| * @codeword_fixup: keep track of the current layout used by |
| * the driver for read/write operation. |
| * @use_ecc: request the controller to use ECC for the |
| * upcoming read/write |
| * @bch_enabled: flag to tell whether BCH ECC mode is used |
| */ |
| struct qcom_nand_host { |
| struct qcom_nand_boot_partition *boot_partitions; |
| |
| struct nand_chip chip; |
| struct list_head node; |
| |
| int nr_boot_partitions; |
| |
| int cs; |
| int cw_size; |
| int cw_data; |
| int ecc_bytes_hw; |
| int spare_bytes; |
| int bbm_size; |
| |
| int last_command; |
| |
| u32 cfg0, cfg1; |
| u32 cfg0_raw, cfg1_raw; |
| u32 ecc_buf_cfg; |
| u32 ecc_bch_cfg; |
| u32 clrflashstatus; |
| u32 clrreadstatus; |
| |
| u8 status; |
| bool codeword_fixup; |
| bool use_ecc; |
| bool bch_enabled; |
| }; |
| |
| static struct qcom_nand_host *to_qcom_nand_host(struct nand_chip *chip) |
| { |
| return container_of(chip, struct qcom_nand_host, chip); |
| } |
| |
| static struct qcom_nand_controller * |
| get_qcom_nand_controller(struct nand_chip *chip) |
| { |
| return (struct qcom_nand_controller *) |
| ((u8 *)chip->controller - sizeof(struct qcom_nand_controller)); |
| } |
| |
| static u32 nandc_read(struct qcom_nand_controller *nandc, int offset) |
| { |
| return ioread32(nandc->base + offset); |
| } |
| |
| static void nandc_write(struct qcom_nand_controller *nandc, int offset, |
| u32 val) |
| { |
| iowrite32(val, nandc->base + offset); |
| } |
| |
| /* Helper to check whether this is the last CW or not */ |
| static bool qcom_nandc_is_last_cw(struct nand_ecc_ctrl *ecc, int cw) |
| { |
| return cw == (ecc->steps - 1); |
| } |
| |
| /** |
| * nandc_set_read_loc_first() - to set read location first register |
| * @chip: NAND Private Flash Chip Data |
| * @reg_base: location register base |
| * @cw_offset: code word offset |
| * @read_size: code word read length |
| * @is_last_read_loc: is this the last read location |
| * |
| * This function will set location register value |
| */ |
| static void nandc_set_read_loc_first(struct nand_chip *chip, |
| int reg_base, u32 cw_offset, |
| u32 read_size, u32 is_last_read_loc) |
| { |
| struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); |
| __le32 locreg_val; |
| u32 val = FIELD_PREP(READ_LOCATION_OFFSET_MASK, cw_offset) | |
| FIELD_PREP(READ_LOCATION_SIZE_MASK, read_size) | |
| FIELD_PREP(READ_LOCATION_LAST_MASK, is_last_read_loc); |
| |
| locreg_val = cpu_to_le32(val); |
| |
| if (reg_base == NAND_READ_LOCATION_0) |
| nandc->regs->read_location0 = locreg_val; |
| else if (reg_base == NAND_READ_LOCATION_1) |
| nandc->regs->read_location1 = locreg_val; |
| else if (reg_base == NAND_READ_LOCATION_2) |
| nandc->regs->read_location2 = locreg_val; |
| else if (reg_base == NAND_READ_LOCATION_3) |
| nandc->regs->read_location3 = locreg_val; |
| } |
| |
| /** |
| * nandc_set_read_loc_last - to set read location last register |
| * @chip: NAND Private Flash Chip Data |
| * @reg_base: location register base |
| * @cw_offset: code word offset |
| * @read_size: code word read length |
| * @is_last_read_loc: is this the last read location |
| * |
| * This function will set location last register value |
| */ |
| static void nandc_set_read_loc_last(struct nand_chip *chip, |
| int reg_base, u32 cw_offset, |
| u32 read_size, u32 is_last_read_loc) |
| { |
| struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); |
| __le32 locreg_val; |
| u32 val = FIELD_PREP(READ_LOCATION_OFFSET_MASK, cw_offset) | |
| FIELD_PREP(READ_LOCATION_SIZE_MASK, read_size) | |
| FIELD_PREP(READ_LOCATION_LAST_MASK, is_last_read_loc); |
| |
| locreg_val = cpu_to_le32(val); |
| |
| if (reg_base == NAND_READ_LOCATION_LAST_CW_0) |
| nandc->regs->read_location_last0 = locreg_val; |
| else if (reg_base == NAND_READ_LOCATION_LAST_CW_1) |
| nandc->regs->read_location_last1 = locreg_val; |
| else if (reg_base == NAND_READ_LOCATION_LAST_CW_2) |
| nandc->regs->read_location_last2 = locreg_val; |
| else if (reg_base == NAND_READ_LOCATION_LAST_CW_3) |
| nandc->regs->read_location_last3 = locreg_val; |
| } |
| |
| /* helper to configure location register values */ |
| static void nandc_set_read_loc(struct nand_chip *chip, int cw, int reg, |
| u32 cw_offset, u32 read_size, u32 is_last_read_loc) |
| { |
| struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); |
| struct nand_ecc_ctrl *ecc = &chip->ecc; |
| int reg_base = NAND_READ_LOCATION_0; |
| |
| if (nandc->props->qpic_version2 && qcom_nandc_is_last_cw(ecc, cw)) |
| reg_base = NAND_READ_LOCATION_LAST_CW_0; |
| |
| reg_base += reg * 4; |
| |
| if (nandc->props->qpic_version2 && qcom_nandc_is_last_cw(ecc, cw)) |
| return nandc_set_read_loc_last(chip, reg_base, cw_offset, |
| read_size, is_last_read_loc); |
| else |
| return nandc_set_read_loc_first(chip, reg_base, cw_offset, |
| read_size, is_last_read_loc); |
| } |
| |
| /* helper to configure address register values */ |
| static void set_address(struct qcom_nand_host *host, u16 column, int page) |
| { |
| struct nand_chip *chip = &host->chip; |
| struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); |
| |
| if (chip->options & NAND_BUSWIDTH_16) |
| column >>= 1; |
| |
| nandc->regs->addr0 = cpu_to_le32(page << 16 | column); |
| nandc->regs->addr1 = cpu_to_le32(page >> 16 & 0xff); |
| } |
| |
| /* |
| * update_rw_regs: set up read/write register values, these will be |
| * written to the NAND controller registers via DMA |
| * |
| * @num_cw: number of steps for the read/write operation |
| * @read: read or write operation |
| * @cw : which code word |
| */ |
| static void update_rw_regs(struct qcom_nand_host *host, int num_cw, bool read, int cw) |
| { |
| struct nand_chip *chip = &host->chip; |
| __le32 cmd, cfg0, cfg1, ecc_bch_cfg; |
| struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); |
| |
| if (read) { |
| if (host->use_ecc) |
| cmd = cpu_to_le32(OP_PAGE_READ_WITH_ECC | PAGE_ACC | LAST_PAGE); |
| else |
| cmd = cpu_to_le32(OP_PAGE_READ | PAGE_ACC | LAST_PAGE); |
| } else { |
| cmd = cpu_to_le32(OP_PROGRAM_PAGE | PAGE_ACC | LAST_PAGE); |
| } |
| |
| if (host->use_ecc) { |
| cfg0 = cpu_to_le32((host->cfg0 & ~CW_PER_PAGE_MASK) | |
| FIELD_PREP(CW_PER_PAGE_MASK, (num_cw - 1))); |
| |
| cfg1 = cpu_to_le32(host->cfg1); |
| ecc_bch_cfg = cpu_to_le32(host->ecc_bch_cfg); |
| } else { |
| cfg0 = cpu_to_le32((host->cfg0_raw & ~CW_PER_PAGE_MASK) | |
| FIELD_PREP(CW_PER_PAGE_MASK, (num_cw - 1))); |
| |
| cfg1 = cpu_to_le32(host->cfg1_raw); |
| ecc_bch_cfg = cpu_to_le32(ECC_CFG_ECC_DISABLE); |
| } |
| |
| nandc->regs->cmd = cmd; |
| nandc->regs->cfg0 = cfg0; |
| nandc->regs->cfg1 = cfg1; |
| nandc->regs->ecc_bch_cfg = ecc_bch_cfg; |
| |
| if (!nandc->props->qpic_version2) |
| nandc->regs->ecc_buf_cfg = cpu_to_le32(host->ecc_buf_cfg); |
| |
| nandc->regs->clrflashstatus = cpu_to_le32(host->clrflashstatus); |
| nandc->regs->clrreadstatus = cpu_to_le32(host->clrreadstatus); |
| nandc->regs->exec = cpu_to_le32(1); |
| |
| if (read) |
| nandc_set_read_loc(chip, cw, 0, 0, host->use_ecc ? |
| host->cw_data : host->cw_size, 1); |
| } |
| |
| /* |
| * Helper to prepare DMA descriptors for configuring registers |
| * before reading a NAND page. |
| */ |
| static void config_nand_page_read(struct nand_chip *chip) |
| { |
| struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); |
| |
| qcom_write_reg_dma(nandc, &nandc->regs->addr0, NAND_ADDR0, 2, 0); |
| qcom_write_reg_dma(nandc, &nandc->regs->cfg0, NAND_DEV0_CFG0, 3, 0); |
| if (!nandc->props->qpic_version2) |
| qcom_write_reg_dma(nandc, &nandc->regs->ecc_buf_cfg, NAND_EBI2_ECC_BUF_CFG, 1, 0); |
| qcom_write_reg_dma(nandc, &nandc->regs->erased_cw_detect_cfg_clr, |
| NAND_ERASED_CW_DETECT_CFG, 1, 0); |
| qcom_write_reg_dma(nandc, &nandc->regs->erased_cw_detect_cfg_set, |
| NAND_ERASED_CW_DETECT_CFG, 1, NAND_ERASED_CW_SET | NAND_BAM_NEXT_SGL); |
| } |
| |
| /* |
| * Helper to prepare DMA descriptors for configuring registers |
| * before reading each codeword in NAND page. |
| */ |
| static void |
| config_nand_cw_read(struct nand_chip *chip, bool use_ecc, int cw) |
| { |
| struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); |
| struct nand_ecc_ctrl *ecc = &chip->ecc; |
| |
| __le32 *reg = &nandc->regs->read_location0; |
| |
| if (nandc->props->qpic_version2 && qcom_nandc_is_last_cw(ecc, cw)) |
| reg = &nandc->regs->read_location_last0; |
| |
| if (nandc->props->supports_bam) |
| qcom_write_reg_dma(nandc, reg, NAND_READ_LOCATION_0, 4, NAND_BAM_NEXT_SGL); |
| |
| qcom_write_reg_dma(nandc, &nandc->regs->cmd, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL); |
| qcom_write_reg_dma(nandc, &nandc->regs->exec, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL); |
| |
| if (use_ecc) { |
| qcom_read_reg_dma(nandc, NAND_FLASH_STATUS, 2, 0); |
| qcom_read_reg_dma(nandc, NAND_ERASED_CW_DETECT_STATUS, 1, |
| NAND_BAM_NEXT_SGL); |
| } else { |
| qcom_read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL); |
| } |
| } |
| |
| /* |
| * Helper to prepare dma descriptors to configure registers needed for reading a |
| * single codeword in page |
| */ |
| static void |
| config_nand_single_cw_page_read(struct nand_chip *chip, |
| bool use_ecc, int cw) |
| { |
| config_nand_page_read(chip); |
| config_nand_cw_read(chip, use_ecc, cw); |
| } |
| |
| /* |
| * Helper to prepare DMA descriptors used to configure registers needed for |
| * before writing a NAND page. |
| */ |
| static void config_nand_page_write(struct nand_chip *chip) |
| { |
| struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); |
| |
| qcom_write_reg_dma(nandc, &nandc->regs->addr0, NAND_ADDR0, 2, 0); |
| qcom_write_reg_dma(nandc, &nandc->regs->cfg0, NAND_DEV0_CFG0, 3, 0); |
| if (!nandc->props->qpic_version2) |
| qcom_write_reg_dma(nandc, &nandc->regs->ecc_buf_cfg, NAND_EBI2_ECC_BUF_CFG, 1, |
| NAND_BAM_NEXT_SGL); |
| } |
| |
| /* |
| * Helper to prepare DMA descriptors for configuring registers |
| * before writing each codeword in NAND page. |
| */ |
| static void config_nand_cw_write(struct nand_chip *chip) |
| { |
| struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); |
| |
| qcom_write_reg_dma(nandc, &nandc->regs->cmd, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL); |
| qcom_write_reg_dma(nandc, &nandc->regs->exec, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL); |
| |
| qcom_read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL); |
| |
| qcom_write_reg_dma(nandc, &nandc->regs->clrflashstatus, NAND_FLASH_STATUS, 1, 0); |
| qcom_write_reg_dma(nandc, &nandc->regs->clrreadstatus, NAND_READ_STATUS, 1, |
| NAND_BAM_NEXT_SGL); |
| } |
| |
| /* |
| * when using BCH ECC, the HW flags an error in NAND_FLASH_STATUS if it read |
| * an erased CW, and reports an erased CW in NAND_ERASED_CW_DETECT_STATUS. |
| * |
| * when using RS ECC, the HW reports the same erros when reading an erased CW, |
| * but it notifies that it is an erased CW by placing special characters at |
| * certain offsets in the buffer. |
| * |
| * verify if the page is erased or not, and fix up the page for RS ECC by |
| * replacing the special characters with 0xff. |
| */ |
| static bool erased_chunk_check_and_fixup(u8 *data_buf, int data_len) |
| { |
| u8 empty1, empty2; |
| |
| /* |
| * an erased page flags an error in NAND_FLASH_STATUS, check if the page |
| * is erased by looking for 0x54s at offsets 3 and 175 from the |
| * beginning of each codeword |
| */ |
| |
| empty1 = data_buf[3]; |
| empty2 = data_buf[175]; |
| |
| /* |
| * if the erased codework markers, if they exist override them with |
| * 0xffs |
| */ |
| if ((empty1 == 0x54 && empty2 == 0xff) || |
| (empty1 == 0xff && empty2 == 0x54)) { |
| data_buf[3] = 0xff; |
| data_buf[175] = 0xff; |
| } |
| |
| /* |
| * check if the entire chunk contains 0xffs or not. if it doesn't, then |
| * restore the original values at the special offsets |
| */ |
| if (memchr_inv(data_buf, 0xff, data_len)) { |
| data_buf[3] = empty1; |
| data_buf[175] = empty2; |
| |
| return false; |
| } |
| |
| return true; |
| } |
| |
| struct read_stats { |
| __le32 flash; |
| __le32 buffer; |
| __le32 erased_cw; |
| }; |
| |
| /* reads back FLASH_STATUS register set by the controller */ |
| static int check_flash_errors(struct qcom_nand_host *host, int cw_cnt) |
| { |
| struct nand_chip *chip = &host->chip; |
| struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); |
| int i; |
| |
| qcom_nandc_dev_to_mem(nandc, true); |
| |
| for (i = 0; i < cw_cnt; i++) { |
| u32 flash = le32_to_cpu(nandc->reg_read_buf[i]); |
| |
| if (flash & (FS_OP_ERR | FS_MPU_ERR)) |
| return -EIO; |
| } |
| |
| return 0; |
| } |
| |
| /* performs raw read for one codeword */ |
| static int |
| qcom_nandc_read_cw_raw(struct mtd_info *mtd, struct nand_chip *chip, |
| u8 *data_buf, u8 *oob_buf, int page, int cw) |
| { |
| struct qcom_nand_host *host = to_qcom_nand_host(chip); |
| struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); |
| struct nand_ecc_ctrl *ecc = &chip->ecc; |
| int data_size1, data_size2, oob_size1, oob_size2; |
| int ret, reg_off = FLASH_BUF_ACC, read_loc = 0; |
| int raw_cw = cw; |
| |
| nand_read_page_op(chip, page, 0, NULL, 0); |
| nandc->buf_count = 0; |
| nandc->buf_start = 0; |
| qcom_clear_read_regs(nandc); |
| host->use_ecc = false; |
| |
| if (nandc->props->qpic_version2) |
| raw_cw = ecc->steps - 1; |
| |
| qcom_clear_bam_transaction(nandc); |
| set_address(host, host->cw_size * cw, page); |
| update_rw_regs(host, 1, true, raw_cw); |
| config_nand_page_read(chip); |
| |
| data_size1 = mtd->writesize - host->cw_size * (ecc->steps - 1); |
| oob_size1 = host->bbm_size; |
| |
| if (qcom_nandc_is_last_cw(ecc, cw) && !host->codeword_fixup) { |
| data_size2 = ecc->size - data_size1 - |
| ((ecc->steps - 1) * 4); |
| oob_size2 = (ecc->steps * 4) + host->ecc_bytes_hw + |
| host->spare_bytes; |
| } else { |
| data_size2 = host->cw_data - data_size1; |
| oob_size2 = host->ecc_bytes_hw + host->spare_bytes; |
| } |
| |
| if (nandc->props->supports_bam) { |
| nandc_set_read_loc(chip, cw, 0, read_loc, data_size1, 0); |
| read_loc += data_size1; |
| |
| nandc_set_read_loc(chip, cw, 1, read_loc, oob_size1, 0); |
| read_loc += oob_size1; |
| |
| nandc_set_read_loc(chip, cw, 2, read_loc, data_size2, 0); |
| read_loc += data_size2; |
| |
| nandc_set_read_loc(chip, cw, 3, read_loc, oob_size2, 1); |
| } |
| |
| config_nand_cw_read(chip, false, raw_cw); |
| |
| qcom_read_data_dma(nandc, reg_off, data_buf, data_size1, 0); |
| reg_off += data_size1; |
| |
| qcom_read_data_dma(nandc, reg_off, oob_buf, oob_size1, 0); |
| reg_off += oob_size1; |
| |
| qcom_read_data_dma(nandc, reg_off, data_buf + data_size1, data_size2, 0); |
| reg_off += data_size2; |
| |
| qcom_read_data_dma(nandc, reg_off, oob_buf + oob_size1, oob_size2, 0); |
| |
| ret = qcom_submit_descs(nandc); |
| if (ret) { |
| dev_err(nandc->dev, "failure to read raw cw %d\n", cw); |
| return ret; |
| } |
| |
| return check_flash_errors(host, 1); |
| } |
| |
| /* |
| * Bitflips can happen in erased codewords also so this function counts the |
| * number of 0 in each CW for which ECC engine returns the uncorrectable |
| * error. The page will be assumed as erased if this count is less than or |
| * equal to the ecc->strength for each CW. |
| * |
| * 1. Both DATA and OOB need to be checked for number of 0. The |
| * top-level API can be called with only data buf or OOB buf so use |
| * chip->data_buf if data buf is null and chip->oob_poi if oob buf |
| * is null for copying the raw bytes. |
| * 2. Perform raw read for all the CW which has uncorrectable errors. |
| * 3. For each CW, check the number of 0 in cw_data and usable OOB bytes. |
| * The BBM and spare bytes bit flip won’t affect the ECC so don’t check |
| * the number of bitflips in this area. |
| */ |
| static int |
| check_for_erased_page(struct qcom_nand_host *host, u8 *data_buf, |
| u8 *oob_buf, unsigned long uncorrectable_cws, |
| int page, unsigned int max_bitflips) |
| { |
| struct nand_chip *chip = &host->chip; |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| struct nand_ecc_ctrl *ecc = &chip->ecc; |
| u8 *cw_data_buf, *cw_oob_buf; |
| int cw, data_size, oob_size, ret; |
| |
| if (!data_buf) |
| data_buf = nand_get_data_buf(chip); |
| |
| if (!oob_buf) { |
| nand_get_data_buf(chip); |
| oob_buf = chip->oob_poi; |
| } |
| |
| for_each_set_bit(cw, &uncorrectable_cws, ecc->steps) { |
| if (qcom_nandc_is_last_cw(ecc, cw) && !host->codeword_fixup) { |
| data_size = ecc->size - ((ecc->steps - 1) * 4); |
| oob_size = (ecc->steps * 4) + host->ecc_bytes_hw; |
| } else { |
| data_size = host->cw_data; |
| oob_size = host->ecc_bytes_hw; |
| } |
| |
| /* determine starting buffer address for current CW */ |
| cw_data_buf = data_buf + (cw * host->cw_data); |
| cw_oob_buf = oob_buf + (cw * ecc->bytes); |
| |
| ret = qcom_nandc_read_cw_raw(mtd, chip, cw_data_buf, |
| cw_oob_buf, page, cw); |
| if (ret) |
| return ret; |
| |
| /* |
| * make sure it isn't an erased page reported |
| * as not-erased by HW because of a few bitflips |
| */ |
| ret = nand_check_erased_ecc_chunk(cw_data_buf, data_size, |
| cw_oob_buf + host->bbm_size, |
| oob_size, NULL, |
| 0, ecc->strength); |
| if (ret < 0) { |
| mtd->ecc_stats.failed++; |
| } else { |
| mtd->ecc_stats.corrected += ret; |
| max_bitflips = max_t(unsigned int, max_bitflips, ret); |
| } |
| } |
| |
| return max_bitflips; |
| } |
| |
| /* |
| * reads back status registers set by the controller to notify page read |
| * errors. this is equivalent to what 'ecc->correct()' would do. |
| */ |
| static int parse_read_errors(struct qcom_nand_host *host, u8 *data_buf, |
| u8 *oob_buf, int page) |
| { |
| struct nand_chip *chip = &host->chip; |
| struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| struct nand_ecc_ctrl *ecc = &chip->ecc; |
| unsigned int max_bitflips = 0, uncorrectable_cws = 0; |
| struct read_stats *buf; |
| bool flash_op_err = false, erased; |
| int i; |
| u8 *data_buf_start = data_buf, *oob_buf_start = oob_buf; |
| |
| buf = (struct read_stats *)nandc->reg_read_buf; |
| qcom_nandc_dev_to_mem(nandc, true); |
| |
| for (i = 0; i < ecc->steps; i++, buf++) { |
| u32 flash, buffer, erased_cw; |
| int data_len, oob_len; |
| |
| if (qcom_nandc_is_last_cw(ecc, i)) { |
| data_len = ecc->size - ((ecc->steps - 1) << 2); |
| oob_len = ecc->steps << 2; |
| } else { |
| data_len = host->cw_data; |
| oob_len = 0; |
| } |
| |
| flash = le32_to_cpu(buf->flash); |
| buffer = le32_to_cpu(buf->buffer); |
| erased_cw = le32_to_cpu(buf->erased_cw); |
| |
| /* |
| * Check ECC failure for each codeword. ECC failure can |
| * happen in either of the following conditions |
| * 1. If number of bitflips are greater than ECC engine |
| * capability. |
| * 2. If this codeword contains all 0xff for which erased |
| * codeword detection check will be done. |
| */ |
| if ((flash & FS_OP_ERR) && (buffer & BS_UNCORRECTABLE_BIT)) { |
| /* |
| * For BCH ECC, ignore erased codeword errors, if |
| * ERASED_CW bits are set. |
| */ |
| if (host->bch_enabled) { |
| erased = (erased_cw & ERASED_CW) == ERASED_CW; |
| /* |
| * For RS ECC, HW reports the erased CW by placing |
| * special characters at certain offsets in the buffer. |
| * These special characters will be valid only if |
| * complete page is read i.e. data_buf is not NULL. |
| */ |
| } else if (data_buf) { |
| erased = erased_chunk_check_and_fixup(data_buf, |
| data_len); |
| } else { |
| erased = false; |
| } |
| |
| if (!erased) |
| uncorrectable_cws |= BIT(i); |
| /* |
| * Check if MPU or any other operational error (timeout, |
| * device failure, etc.) happened for this codeword and |
| * make flash_op_err true. If flash_op_err is set, then |
| * EIO will be returned for page read. |
| */ |
| } else if (flash & (FS_OP_ERR | FS_MPU_ERR)) { |
| flash_op_err = true; |
| /* |
| * No ECC or operational errors happened. Check the number of |
| * bits corrected and update the ecc_stats.corrected. |
| */ |
| } else { |
| unsigned int stat; |
| |
| stat = buffer & BS_CORRECTABLE_ERR_MSK; |
| mtd->ecc_stats.corrected += stat; |
| max_bitflips = max(max_bitflips, stat); |
| } |
| |
| if (data_buf) |
| data_buf += data_len; |
| if (oob_buf) |
| oob_buf += oob_len + ecc->bytes; |
| } |
| |
| if (flash_op_err) |
| return -EIO; |
| |
| if (!uncorrectable_cws) |
| return max_bitflips; |
| |
| return check_for_erased_page(host, data_buf_start, oob_buf_start, |
| uncorrectable_cws, page, |
| max_bitflips); |
| } |
| |
| /* |
| * helper to perform the actual page read operation, used by ecc->read_page(), |
| * ecc->read_oob() |
| */ |
| static int read_page_ecc(struct qcom_nand_host *host, u8 *data_buf, |
| u8 *oob_buf, int page) |
| { |
| struct nand_chip *chip = &host->chip; |
| struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); |
| struct nand_ecc_ctrl *ecc = &chip->ecc; |
| u8 *data_buf_start = data_buf, *oob_buf_start = oob_buf; |
| int i, ret; |
| |
| config_nand_page_read(chip); |
| |
| /* queue cmd descs for each codeword */ |
| for (i = 0; i < ecc->steps; i++) { |
| int data_size, oob_size; |
| |
| if (qcom_nandc_is_last_cw(ecc, i) && !host->codeword_fixup) { |
| data_size = ecc->size - ((ecc->steps - 1) << 2); |
| oob_size = (ecc->steps << 2) + host->ecc_bytes_hw + |
| host->spare_bytes; |
| } else { |
| data_size = host->cw_data; |
| oob_size = host->ecc_bytes_hw + host->spare_bytes; |
| } |
| |
| if (nandc->props->supports_bam) { |
| if (data_buf && oob_buf) { |
| nandc_set_read_loc(chip, i, 0, 0, data_size, 0); |
| nandc_set_read_loc(chip, i, 1, data_size, |
| oob_size, 1); |
| } else if (data_buf) { |
| nandc_set_read_loc(chip, i, 0, 0, data_size, 1); |
| } else { |
| nandc_set_read_loc(chip, i, 0, data_size, |
| oob_size, 1); |
| } |
| } |
| |
| config_nand_cw_read(chip, true, i); |
| |
| if (data_buf) |
| qcom_read_data_dma(nandc, FLASH_BUF_ACC, data_buf, |
| data_size, 0); |
| |
| /* |
| * when ecc is enabled, the controller doesn't read the real |
| * or dummy bad block markers in each chunk. To maintain a |
| * consistent layout across RAW and ECC reads, we just |
| * leave the real/dummy BBM offsets empty (i.e, filled with |
| * 0xffs) |
| */ |
| if (oob_buf) { |
| int j; |
| |
| for (j = 0; j < host->bbm_size; j++) |
| *oob_buf++ = 0xff; |
| |
| qcom_read_data_dma(nandc, FLASH_BUF_ACC + data_size, |
| oob_buf, oob_size, 0); |
| } |
| |
| if (data_buf) |
| data_buf += data_size; |
| if (oob_buf) |
| oob_buf += oob_size; |
| } |
| |
| ret = qcom_submit_descs(nandc); |
| if (ret) { |
| dev_err(nandc->dev, "failure to read page/oob\n"); |
| return ret; |
| } |
| |
| return parse_read_errors(host, data_buf_start, oob_buf_start, page); |
| } |
| |
| /* |
| * a helper that copies the last step/codeword of a page (containing free oob) |
| * into our local buffer |
| */ |
| static int copy_last_cw(struct qcom_nand_host *host, int page) |
| { |
| struct nand_chip *chip = &host->chip; |
| struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); |
| struct nand_ecc_ctrl *ecc = &chip->ecc; |
| int size; |
| int ret; |
| |
| qcom_clear_read_regs(nandc); |
| |
| size = host->use_ecc ? host->cw_data : host->cw_size; |
| |
| /* prepare a clean read buffer */ |
| memset(nandc->data_buffer, 0xff, size); |
| |
| set_address(host, host->cw_size * (ecc->steps - 1), page); |
| update_rw_regs(host, 1, true, ecc->steps - 1); |
| |
| config_nand_single_cw_page_read(chip, host->use_ecc, ecc->steps - 1); |
| |
| qcom_read_data_dma(nandc, FLASH_BUF_ACC, nandc->data_buffer, size, 0); |
| |
| ret = qcom_submit_descs(nandc); |
| if (ret) |
| dev_err(nandc->dev, "failed to copy last codeword\n"); |
| |
| return ret; |
| } |
| |
| static bool qcom_nandc_is_boot_partition(struct qcom_nand_host *host, int page) |
| { |
| struct qcom_nand_boot_partition *boot_partition; |
| u32 start, end; |
| int i; |
| |
| /* |
| * Since the frequent access will be to the non-boot partitions like rootfs, |
| * optimize the page check by: |
| * |
| * 1. Checking if the page lies after the last boot partition. |
| * 2. Checking from the boot partition end. |
| */ |
| |
| /* First check the last boot partition */ |
| boot_partition = &host->boot_partitions[host->nr_boot_partitions - 1]; |
| start = boot_partition->page_offset; |
| end = start + boot_partition->page_size; |
| |
| /* Page is after the last boot partition end. This is NOT a boot partition */ |
| if (page > end) |
| return false; |
| |
| /* Actually check if it's a boot partition */ |
| if (page < end && page >= start) |
| return true; |
| |
| /* Check the other boot partitions starting from the second-last partition */ |
| for (i = host->nr_boot_partitions - 2; i >= 0; i--) { |
| boot_partition = &host->boot_partitions[i]; |
| start = boot_partition->page_offset; |
| end = start + boot_partition->page_size; |
| |
| if (page < end && page >= start) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static void qcom_nandc_codeword_fixup(struct qcom_nand_host *host, int page) |
| { |
| bool codeword_fixup = qcom_nandc_is_boot_partition(host, page); |
| |
| /* Skip conf write if we are already in the correct mode */ |
| if (codeword_fixup == host->codeword_fixup) |
| return; |
| |
| host->codeword_fixup = codeword_fixup; |
| |
| host->cw_data = codeword_fixup ? 512 : 516; |
| host->spare_bytes = host->cw_size - host->ecc_bytes_hw - |
| host->bbm_size - host->cw_data; |
| |
| host->cfg0 &= ~(SPARE_SIZE_BYTES_MASK | UD_SIZE_BYTES_MASK); |
| host->cfg0 |= FIELD_PREP(SPARE_SIZE_BYTES_MASK, host->spare_bytes) | |
| FIELD_PREP(UD_SIZE_BYTES_MASK, host->cw_data); |
| |
| host->ecc_bch_cfg &= ~ECC_NUM_DATA_BYTES_MASK; |
| host->ecc_bch_cfg |= FIELD_PREP(ECC_NUM_DATA_BYTES_MASK, host->cw_data); |
| host->ecc_buf_cfg = FIELD_PREP(NUM_STEPS_MASK, host->cw_data - 1); |
| } |
| |
| /* implements ecc->read_page() */ |
| static int qcom_nandc_read_page(struct nand_chip *chip, u8 *buf, |
| int oob_required, int page) |
| { |
| struct qcom_nand_host *host = to_qcom_nand_host(chip); |
| struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); |
| struct nand_ecc_ctrl *ecc = &chip->ecc; |
| u8 *data_buf, *oob_buf = NULL; |
| |
| if (host->nr_boot_partitions) |
| qcom_nandc_codeword_fixup(host, page); |
| |
| nand_read_page_op(chip, page, 0, NULL, 0); |
| nandc->buf_count = 0; |
| nandc->buf_start = 0; |
| host->use_ecc = true; |
| qcom_clear_read_regs(nandc); |
| set_address(host, 0, page); |
| update_rw_regs(host, ecc->steps, true, 0); |
| |
| data_buf = buf; |
| oob_buf = oob_required ? chip->oob_poi : NULL; |
| |
| qcom_clear_bam_transaction(nandc); |
| |
| return read_page_ecc(host, data_buf, oob_buf, page); |
| } |
| |
| /* implements ecc->read_page_raw() */ |
| static int qcom_nandc_read_page_raw(struct nand_chip *chip, u8 *buf, |
| int oob_required, int page) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| struct qcom_nand_host *host = to_qcom_nand_host(chip); |
| struct nand_ecc_ctrl *ecc = &chip->ecc; |
| int cw, ret; |
| u8 *data_buf = buf, *oob_buf = chip->oob_poi; |
| |
| if (host->nr_boot_partitions) |
| qcom_nandc_codeword_fixup(host, page); |
| |
| for (cw = 0; cw < ecc->steps; cw++) { |
| ret = qcom_nandc_read_cw_raw(mtd, chip, data_buf, oob_buf, |
| page, cw); |
| if (ret) |
| return ret; |
| |
| data_buf += host->cw_data; |
| oob_buf += ecc->bytes; |
| } |
| |
| return 0; |
| } |
| |
| /* implements ecc->read_oob() */ |
| static int qcom_nandc_read_oob(struct nand_chip *chip, int page) |
| { |
| struct qcom_nand_host *host = to_qcom_nand_host(chip); |
| struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); |
| struct nand_ecc_ctrl *ecc = &chip->ecc; |
| |
| if (host->nr_boot_partitions) |
| qcom_nandc_codeword_fixup(host, page); |
| |
| qcom_clear_read_regs(nandc); |
| qcom_clear_bam_transaction(nandc); |
| |
| host->use_ecc = true; |
| set_address(host, 0, page); |
| update_rw_regs(host, ecc->steps, true, 0); |
| |
| return read_page_ecc(host, NULL, chip->oob_poi, page); |
| } |
| |
| /* implements ecc->write_page() */ |
| static int qcom_nandc_write_page(struct nand_chip *chip, const u8 *buf, |
| int oob_required, int page) |
| { |
| struct qcom_nand_host *host = to_qcom_nand_host(chip); |
| struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); |
| struct nand_ecc_ctrl *ecc = &chip->ecc; |
| u8 *data_buf, *oob_buf; |
| int i, ret; |
| |
| if (host->nr_boot_partitions) |
| qcom_nandc_codeword_fixup(host, page); |
| |
| nand_prog_page_begin_op(chip, page, 0, NULL, 0); |
| |
| set_address(host, 0, page); |
| nandc->buf_count = 0; |
| nandc->buf_start = 0; |
| qcom_clear_read_regs(nandc); |
| qcom_clear_bam_transaction(nandc); |
| |
| data_buf = (u8 *)buf; |
| oob_buf = chip->oob_poi; |
| |
| host->use_ecc = true; |
| update_rw_regs(host, ecc->steps, false, 0); |
| config_nand_page_write(chip); |
| |
| for (i = 0; i < ecc->steps; i++) { |
| int data_size, oob_size; |
| |
| if (qcom_nandc_is_last_cw(ecc, i) && !host->codeword_fixup) { |
| data_size = ecc->size - ((ecc->steps - 1) << 2); |
| oob_size = (ecc->steps << 2) + host->ecc_bytes_hw + |
| host->spare_bytes; |
| } else { |
| data_size = host->cw_data; |
| oob_size = ecc->bytes; |
| } |
| |
| qcom_write_data_dma(nandc, FLASH_BUF_ACC, data_buf, data_size, |
| i == (ecc->steps - 1) ? NAND_BAM_NO_EOT : 0); |
| |
| /* |
| * when ECC is enabled, we don't really need to write anything |
| * to oob for the first n - 1 codewords since these oob regions |
| * just contain ECC bytes that's written by the controller |
| * itself. For the last codeword, we skip the bbm positions and |
| * write to the free oob area. |
| */ |
| if (qcom_nandc_is_last_cw(ecc, i)) { |
| oob_buf += host->bbm_size; |
| |
| qcom_write_data_dma(nandc, FLASH_BUF_ACC + data_size, |
| oob_buf, oob_size, 0); |
| } |
| |
| config_nand_cw_write(chip); |
| |
| data_buf += data_size; |
| oob_buf += oob_size; |
| } |
| |
| ret = qcom_submit_descs(nandc); |
| if (ret) { |
| dev_err(nandc->dev, "failure to write page\n"); |
| return ret; |
| } |
| |
| return nand_prog_page_end_op(chip); |
| } |
| |
| /* implements ecc->write_page_raw() */ |
| static int qcom_nandc_write_page_raw(struct nand_chip *chip, |
| const u8 *buf, int oob_required, |
| int page) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| struct qcom_nand_host *host = to_qcom_nand_host(chip); |
| struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); |
| struct nand_ecc_ctrl *ecc = &chip->ecc; |
| u8 *data_buf, *oob_buf; |
| int i, ret; |
| |
| if (host->nr_boot_partitions) |
| qcom_nandc_codeword_fixup(host, page); |
| |
| nand_prog_page_begin_op(chip, page, 0, NULL, 0); |
| qcom_clear_read_regs(nandc); |
| qcom_clear_bam_transaction(nandc); |
| |
| data_buf = (u8 *)buf; |
| oob_buf = chip->oob_poi; |
| |
| host->use_ecc = false; |
| update_rw_regs(host, ecc->steps, false, 0); |
| config_nand_page_write(chip); |
| |
| for (i = 0; i < ecc->steps; i++) { |
| int data_size1, data_size2, oob_size1, oob_size2; |
| int reg_off = FLASH_BUF_ACC; |
| |
| data_size1 = mtd->writesize - host->cw_size * (ecc->steps - 1); |
| oob_size1 = host->bbm_size; |
| |
| if (qcom_nandc_is_last_cw(ecc, i) && !host->codeword_fixup) { |
| data_size2 = ecc->size - data_size1 - |
| ((ecc->steps - 1) << 2); |
| oob_size2 = (ecc->steps << 2) + host->ecc_bytes_hw + |
| host->spare_bytes; |
| } else { |
| data_size2 = host->cw_data - data_size1; |
| oob_size2 = host->ecc_bytes_hw + host->spare_bytes; |
| } |
| |
| qcom_write_data_dma(nandc, reg_off, data_buf, data_size1, |
| NAND_BAM_NO_EOT); |
| reg_off += data_size1; |
| data_buf += data_size1; |
| |
| qcom_write_data_dma(nandc, reg_off, oob_buf, oob_size1, |
| NAND_BAM_NO_EOT); |
| reg_off += oob_size1; |
| oob_buf += oob_size1; |
| |
| qcom_write_data_dma(nandc, reg_off, data_buf, data_size2, |
| NAND_BAM_NO_EOT); |
| reg_off += data_size2; |
| data_buf += data_size2; |
| |
| qcom_write_data_dma(nandc, reg_off, oob_buf, oob_size2, 0); |
| oob_buf += oob_size2; |
| |
| config_nand_cw_write(chip); |
| } |
| |
| ret = qcom_submit_descs(nandc); |
| if (ret) { |
| dev_err(nandc->dev, "failure to write raw page\n"); |
| return ret; |
| } |
| |
| return nand_prog_page_end_op(chip); |
| } |
| |
| /* |
| * implements ecc->write_oob() |
| * |
| * the NAND controller cannot write only data or only OOB within a codeword |
| * since ECC is calculated for the combined codeword. So update the OOB from |
| * chip->oob_poi, and pad the data area with OxFF before writing. |
| */ |
| static int qcom_nandc_write_oob(struct nand_chip *chip, int page) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| struct qcom_nand_host *host = to_qcom_nand_host(chip); |
| struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); |
| struct nand_ecc_ctrl *ecc = &chip->ecc; |
| u8 *oob = chip->oob_poi; |
| int data_size, oob_size; |
| int ret; |
| |
| if (host->nr_boot_partitions) |
| qcom_nandc_codeword_fixup(host, page); |
| |
| host->use_ecc = true; |
| qcom_clear_bam_transaction(nandc); |
| |
| /* calculate the data and oob size for the last codeword/step */ |
| data_size = ecc->size - ((ecc->steps - 1) << 2); |
| oob_size = mtd->oobavail; |
| |
| memset(nandc->data_buffer, 0xff, host->cw_data); |
| /* override new oob content to last codeword */ |
| mtd_ooblayout_get_databytes(mtd, nandc->data_buffer + data_size, oob, |
| 0, mtd->oobavail); |
| |
| set_address(host, host->cw_size * (ecc->steps - 1), page); |
| update_rw_regs(host, 1, false, 0); |
| |
| config_nand_page_write(chip); |
| qcom_write_data_dma(nandc, FLASH_BUF_ACC, |
| nandc->data_buffer, data_size + oob_size, 0); |
| config_nand_cw_write(chip); |
| |
| ret = qcom_submit_descs(nandc); |
| if (ret) { |
| dev_err(nandc->dev, "failure to write oob\n"); |
| return ret; |
| } |
| |
| return nand_prog_page_end_op(chip); |
| } |
| |
| static int qcom_nandc_block_bad(struct nand_chip *chip, loff_t ofs) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| struct qcom_nand_host *host = to_qcom_nand_host(chip); |
| struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); |
| struct nand_ecc_ctrl *ecc = &chip->ecc; |
| int page, ret, bbpos, bad = 0; |
| |
| page = (int)(ofs >> chip->page_shift) & chip->pagemask; |
| |
| /* |
| * configure registers for a raw sub page read, the address is set to |
| * the beginning of the last codeword, we don't care about reading ecc |
| * portion of oob. we just want the first few bytes from this codeword |
| * that contains the BBM |
| */ |
| host->use_ecc = false; |
| |
| qcom_clear_bam_transaction(nandc); |
| ret = copy_last_cw(host, page); |
| if (ret) |
| goto err; |
| |
| if (check_flash_errors(host, 1)) { |
| dev_warn(nandc->dev, "error when trying to read BBM\n"); |
| goto err; |
| } |
| |
| bbpos = mtd->writesize - host->cw_size * (ecc->steps - 1); |
| |
| bad = nandc->data_buffer[bbpos] != 0xff; |
| |
| if (chip->options & NAND_BUSWIDTH_16) |
| bad = bad || (nandc->data_buffer[bbpos + 1] != 0xff); |
| err: |
| return bad; |
| } |
| |
| static int qcom_nandc_block_markbad(struct nand_chip *chip, loff_t ofs) |
| { |
| struct qcom_nand_host *host = to_qcom_nand_host(chip); |
| struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); |
| struct nand_ecc_ctrl *ecc = &chip->ecc; |
| int page, ret; |
| |
| qcom_clear_read_regs(nandc); |
| qcom_clear_bam_transaction(nandc); |
| |
| /* |
| * to mark the BBM as bad, we flash the entire last codeword with 0s. |
| * we don't care about the rest of the content in the codeword since |
| * we aren't going to use this block again |
| */ |
| memset(nandc->data_buffer, 0x00, host->cw_size); |
| |
| page = (int)(ofs >> chip->page_shift) & chip->pagemask; |
| |
| /* prepare write */ |
| host->use_ecc = false; |
| set_address(host, host->cw_size * (ecc->steps - 1), page); |
| update_rw_regs(host, 1, false, ecc->steps - 1); |
| |
| config_nand_page_write(chip); |
| qcom_write_data_dma(nandc, FLASH_BUF_ACC, |
| nandc->data_buffer, host->cw_size, 0); |
| config_nand_cw_write(chip); |
| |
| ret = qcom_submit_descs(nandc); |
| if (ret) { |
| dev_err(nandc->dev, "failure to update BBM\n"); |
| return ret; |
| } |
| |
| return nand_prog_page_end_op(chip); |
| } |
| |
| /* |
| * NAND controller page layout info |
| * |
| * Layout with ECC enabled: |
| * |
| * |----------------------| |---------------------------------| |
| * | xx.......yy| | *********xx.......yy| |
| * | DATA xx..ECC..yy| | DATA **SPARE**xx..ECC..yy| |
| * | (516) xx.......yy| | (516-n*4) **(n*4)**xx.......yy| |
| * | xx.......yy| | *********xx.......yy| |
| * |----------------------| |---------------------------------| |
| * codeword 1,2..n-1 codeword n |
| * <---(528/532 Bytes)--> <-------(528/532 Bytes)---------> |
| * |
| * n = Number of codewords in the page |
| * . = ECC bytes |
| * * = Spare/free bytes |
| * x = Unused byte(s) |
| * y = Reserved byte(s) |
| * |
| * 2K page: n = 4, spare = 16 bytes |
| * 4K page: n = 8, spare = 32 bytes |
| * 8K page: n = 16, spare = 64 bytes |
| * |
| * the qcom nand controller operates at a sub page/codeword level. each |
| * codeword is 528 and 532 bytes for 4 bit and 8 bit ECC modes respectively. |
| * the number of ECC bytes vary based on the ECC strength and the bus width. |
| * |
| * the first n - 1 codewords contains 516 bytes of user data, the remaining |
| * 12/16 bytes consist of ECC and reserved data. The nth codeword contains |
| * both user data and spare(oobavail) bytes that sum up to 516 bytes. |
| * |
| * When we access a page with ECC enabled, the reserved bytes(s) are not |
| * accessible at all. When reading, we fill up these unreadable positions |
| * with 0xffs. When writing, the controller skips writing the inaccessible |
| * bytes. |
| * |
| * Layout with ECC disabled: |
| * |
| * |------------------------------| |---------------------------------------| |
| * | yy xx.......| | bb *********xx.......| |
| * | DATA1 yy DATA2 xx..ECC..| | DATA1 bb DATA2 **SPARE**xx..ECC..| |
| * | (size1) yy (size2) xx.......| | (size1) bb (size2) **(n*4)**xx.......| |
| * | yy xx.......| | bb *********xx.......| |
| * |------------------------------| |---------------------------------------| |
| * codeword 1,2..n-1 codeword n |
| * <-------(528/532 Bytes)------> <-----------(528/532 Bytes)-----------> |
| * |
| * n = Number of codewords in the page |
| * . = ECC bytes |
| * * = Spare/free bytes |
| * x = Unused byte(s) |
| * y = Dummy Bad Bock byte(s) |
| * b = Real Bad Block byte(s) |
| * size1/size2 = function of codeword size and 'n' |
| * |
| * when the ECC block is disabled, one reserved byte (or two for 16 bit bus |
| * width) is now accessible. For the first n - 1 codewords, these are dummy Bad |
| * Block Markers. In the last codeword, this position contains the real BBM |
| * |
| * In order to have a consistent layout between RAW and ECC modes, we assume |
| * the following OOB layout arrangement: |
| * |
| * |-----------| |--------------------| |
| * |yyxx.......| |bb*********xx.......| |
| * |yyxx..ECC..| |bb*FREEOOB*xx..ECC..| |
| * |yyxx.......| |bb*********xx.......| |
| * |yyxx.......| |bb*********xx.......| |
| * |-----------| |--------------------| |
| * first n - 1 nth OOB region |
| * OOB regions |
| * |
| * n = Number of codewords in the page |
| * . = ECC bytes |
| * * = FREE OOB bytes |
| * y = Dummy bad block byte(s) (inaccessible when ECC enabled) |
| * x = Unused byte(s) |
| * b = Real bad block byte(s) (inaccessible when ECC enabled) |
| * |
| * This layout is read as is when ECC is disabled. When ECC is enabled, the |
| * inaccessible Bad Block byte(s) are ignored when we write to a page/oob, |
| * and assumed as 0xffs when we read a page/oob. The ECC, unused and |
| * dummy/real bad block bytes are grouped as ecc bytes (i.e, ecc->bytes is |
| * the sum of the three). |
| */ |
| static int qcom_nand_ooblayout_ecc(struct mtd_info *mtd, int section, |
| struct mtd_oob_region *oobregion) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| struct qcom_nand_host *host = to_qcom_nand_host(chip); |
| struct nand_ecc_ctrl *ecc = &chip->ecc; |
| |
| if (section > 1) |
| return -ERANGE; |
| |
| if (!section) { |
| oobregion->length = (ecc->bytes * (ecc->steps - 1)) + |
| host->bbm_size; |
| oobregion->offset = 0; |
| } else { |
| oobregion->length = host->ecc_bytes_hw + host->spare_bytes; |
| oobregion->offset = mtd->oobsize - oobregion->length; |
| } |
| |
| return 0; |
| } |
| |
| static int qcom_nand_ooblayout_free(struct mtd_info *mtd, int section, |
| struct mtd_oob_region *oobregion) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| struct qcom_nand_host *host = to_qcom_nand_host(chip); |
| struct nand_ecc_ctrl *ecc = &chip->ecc; |
| |
| if (section) |
| return -ERANGE; |
| |
| oobregion->length = ecc->steps * 4; |
| oobregion->offset = ((ecc->steps - 1) * ecc->bytes) + host->bbm_size; |
| |
| return 0; |
| } |
| |
| static const struct mtd_ooblayout_ops qcom_nand_ooblayout_ops = { |
| .ecc = qcom_nand_ooblayout_ecc, |
| .free = qcom_nand_ooblayout_free, |
| }; |
| |
| static int |
| qcom_nandc_calc_ecc_bytes(int step_size, int strength) |
| { |
| return strength == 4 ? 12 : 16; |
| } |
| |
| NAND_ECC_CAPS_SINGLE(qcom_nandc_ecc_caps, qcom_nandc_calc_ecc_bytes, |
| NANDC_STEP_SIZE, 4, 8); |
| |
| static int qcom_nand_attach_chip(struct nand_chip *chip) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| struct qcom_nand_host *host = to_qcom_nand_host(chip); |
| struct nand_ecc_ctrl *ecc = &chip->ecc; |
| struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); |
| int cwperpage, bad_block_byte, ret; |
| bool wide_bus; |
| int ecc_mode = 1; |
| |
| /* controller only supports 512 bytes data steps */ |
| ecc->size = NANDC_STEP_SIZE; |
| wide_bus = chip->options & NAND_BUSWIDTH_16 ? true : false; |
| cwperpage = mtd->writesize / NANDC_STEP_SIZE; |
| |
| /* |
| * Each CW has 4 available OOB bytes which will be protected with ECC |
| * so remaining bytes can be used for ECC. |
| */ |
| ret = nand_ecc_choose_conf(chip, &qcom_nandc_ecc_caps, |
| mtd->oobsize - (cwperpage * 4)); |
| if (ret) { |
| dev_err(nandc->dev, "No valid ECC settings possible\n"); |
| return ret; |
| } |
| |
| if (ecc->strength >= 8) { |
| /* 8 bit ECC defaults to BCH ECC on all platforms */ |
| host->bch_enabled = true; |
| ecc_mode = 1; |
| |
| if (wide_bus) { |
| host->ecc_bytes_hw = 14; |
| host->spare_bytes = 0; |
| host->bbm_size = 2; |
| } else { |
| host->ecc_bytes_hw = 13; |
| host->spare_bytes = 2; |
| host->bbm_size = 1; |
| } |
| } else { |
| /* |
| * if the controller supports BCH for 4 bit ECC, the controller |
| * uses lesser bytes for ECC. If RS is used, the ECC bytes is |
| * always 10 bytes |
| */ |
| if (nandc->props->ecc_modes & ECC_BCH_4BIT) { |
| /* BCH */ |
| host->bch_enabled = true; |
| ecc_mode = 0; |
| |
| if (wide_bus) { |
| host->ecc_bytes_hw = 8; |
| host->spare_bytes = 2; |
| host->bbm_size = 2; |
| } else { |
| host->ecc_bytes_hw = 7; |
| host->spare_bytes = 4; |
| host->bbm_size = 1; |
| } |
| } else { |
| /* RS */ |
| host->ecc_bytes_hw = 10; |
| |
| if (wide_bus) { |
| host->spare_bytes = 0; |
| host->bbm_size = 2; |
| } else { |
| host->spare_bytes = 1; |
| host->bbm_size = 1; |
| } |
| } |
| } |
| |
| /* |
| * we consider ecc->bytes as the sum of all the non-data content in a |
| * step. It gives us a clean representation of the oob area (even if |
| * all the bytes aren't used for ECC).It is always 16 bytes for 8 bit |
| * ECC and 12 bytes for 4 bit ECC |
| */ |
| ecc->bytes = host->ecc_bytes_hw + host->spare_bytes + host->bbm_size; |
| |
| ecc->read_page = qcom_nandc_read_page; |
| ecc->read_page_raw = qcom_nandc_read_page_raw; |
| ecc->read_oob = qcom_nandc_read_oob; |
| ecc->write_page = qcom_nandc_write_page; |
| ecc->write_page_raw = qcom_nandc_write_page_raw; |
| ecc->write_oob = qcom_nandc_write_oob; |
| |
| ecc->engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST; |
| |
| mtd_set_ooblayout(mtd, &qcom_nand_ooblayout_ops); |
| /* Free the initially allocated BAM transaction for reading the ONFI params */ |
| if (nandc->props->supports_bam) |
| qcom_free_bam_transaction(nandc); |
| |
| nandc->max_cwperpage = max_t(unsigned int, nandc->max_cwperpage, |
| cwperpage); |
| |
| /* Now allocate the BAM transaction based on updated max_cwperpage */ |
| if (nandc->props->supports_bam) { |
| nandc->bam_txn = qcom_alloc_bam_transaction(nandc); |
| if (!nandc->bam_txn) { |
| dev_err(nandc->dev, |
| "failed to allocate bam transaction\n"); |
| return -ENOMEM; |
| } |
| } |
| |
| /* |
| * DATA_UD_BYTES varies based on whether the read/write command protects |
| * spare data with ECC too. We protect spare data by default, so we set |
| * it to main + spare data, which are 512 and 4 bytes respectively. |
| */ |
| host->cw_data = 516; |
| |
| /* |
| * total bytes in a step, either 528 bytes for 4 bit ECC, or 532 bytes |
| * for 8 bit ECC |
| */ |
| host->cw_size = host->cw_data + ecc->bytes; |
| bad_block_byte = mtd->writesize - host->cw_size * (cwperpage - 1) + 1; |
| |
| host->cfg0 = FIELD_PREP(CW_PER_PAGE_MASK, (cwperpage - 1)) | |
| FIELD_PREP(UD_SIZE_BYTES_MASK, host->cw_data) | |
| FIELD_PREP(DISABLE_STATUS_AFTER_WRITE, 0) | |
| FIELD_PREP(NUM_ADDR_CYCLES_MASK, 5) | |
| FIELD_PREP(ECC_PARITY_SIZE_BYTES_RS, host->ecc_bytes_hw) | |
| FIELD_PREP(STATUS_BFR_READ, 0) | |
| FIELD_PREP(SET_RD_MODE_AFTER_STATUS, 1) | |
| FIELD_PREP(SPARE_SIZE_BYTES_MASK, host->spare_bytes); |
| |
| host->cfg1 = FIELD_PREP(NAND_RECOVERY_CYCLES_MASK, 7) | |
| FIELD_PREP(BAD_BLOCK_BYTE_NUM_MASK, bad_block_byte) | |
| FIELD_PREP(BAD_BLOCK_IN_SPARE_AREA, 0) | |
| FIELD_PREP(WR_RD_BSY_GAP_MASK, 2) | |
| FIELD_PREP(WIDE_FLASH, wide_bus) | |
| FIELD_PREP(ENABLE_BCH_ECC, host->bch_enabled); |
| |
| host->cfg0_raw = FIELD_PREP(CW_PER_PAGE_MASK, (cwperpage - 1)) | |
| FIELD_PREP(UD_SIZE_BYTES_MASK, host->cw_size) | |
| FIELD_PREP(NUM_ADDR_CYCLES_MASK, 5) | |
| FIELD_PREP(SPARE_SIZE_BYTES_MASK, 0); |
| |
| host->cfg1_raw = FIELD_PREP(NAND_RECOVERY_CYCLES_MASK, 7) | |
| FIELD_PREP(CS_ACTIVE_BSY, 0) | |
| FIELD_PREP(BAD_BLOCK_BYTE_NUM_MASK, 17) | |
| FIELD_PREP(BAD_BLOCK_IN_SPARE_AREA, 1) | |
| FIELD_PREP(WR_RD_BSY_GAP_MASK, 2) | |
| FIELD_PREP(WIDE_FLASH, wide_bus) | |
| FIELD_PREP(DEV0_CFG1_ECC_DISABLE, 1); |
| |
| host->ecc_bch_cfg = FIELD_PREP(ECC_CFG_ECC_DISABLE, !host->bch_enabled) | |
| FIELD_PREP(ECC_SW_RESET, 0) | |
| FIELD_PREP(ECC_NUM_DATA_BYTES_MASK, host->cw_data) | |
| FIELD_PREP(ECC_FORCE_CLK_OPEN, 1) | |
| FIELD_PREP(ECC_MODE_MASK, ecc_mode) | |
| FIELD_PREP(ECC_PARITY_SIZE_BYTES_BCH_MASK, host->ecc_bytes_hw); |
| |
| if (!nandc->props->qpic_version2) |
| host->ecc_buf_cfg = FIELD_PREP(NUM_STEPS_MASK, 0x203); |
| |
| host->clrflashstatus = FS_READY_BSY_N; |
| host->clrreadstatus = 0xc0; |
| nandc->regs->erased_cw_detect_cfg_clr = |
| cpu_to_le32(CLR_ERASED_PAGE_DET); |
| nandc->regs->erased_cw_detect_cfg_set = |
| cpu_to_le32(SET_ERASED_PAGE_DET); |
| |
| dev_dbg(nandc->dev, |
| "cfg0 %x cfg1 %x ecc_buf_cfg %x ecc_bch cfg %x cw_size %d cw_data %d strength %d parity_bytes %d steps %d\n", |
| host->cfg0, host->cfg1, host->ecc_buf_cfg, host->ecc_bch_cfg, |
| host->cw_size, host->cw_data, ecc->strength, ecc->bytes, |
| cwperpage); |
| |
| return 0; |
| } |
| |
| static int qcom_op_cmd_mapping(struct nand_chip *chip, u8 opcode, |
| struct qcom_op *q_op) |
| { |
| struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); |
| struct qcom_nand_host *host = to_qcom_nand_host(chip); |
| int cmd; |
| |
| switch (opcode) { |
| case NAND_CMD_RESET: |
| cmd = OP_RESET_DEVICE; |
| break; |
| case NAND_CMD_READID: |
| cmd = OP_FETCH_ID; |
| break; |
| case NAND_CMD_PARAM: |
| if (nandc->props->qpic_version2) |
| cmd = OP_PAGE_READ_ONFI_READ; |
| else |
| cmd = OP_PAGE_READ; |
| break; |
| case NAND_CMD_ERASE1: |
| case NAND_CMD_ERASE2: |
| cmd = OP_BLOCK_ERASE; |
| break; |
| case NAND_CMD_STATUS: |
| cmd = OP_CHECK_STATUS; |
| break; |
| case NAND_CMD_PAGEPROG: |
| cmd = OP_PROGRAM_PAGE; |
| q_op->flag = OP_PROGRAM_PAGE; |
| nandc->exec_opwrite = true; |
| break; |
| case NAND_CMD_READ0: |
| case NAND_CMD_READSTART: |
| if (host->use_ecc) |
| cmd = OP_PAGE_READ_WITH_ECC; |
| else |
| cmd = OP_PAGE_READ; |
| break; |
| default: |
| dev_err(nandc->dev, "Opcode not supported: %u\n", opcode); |
| return -EOPNOTSUPP; |
| } |
| |
| return cmd; |
| } |
| |
| /* NAND framework ->exec_op() hooks and related helpers */ |
| static int qcom_parse_instructions(struct nand_chip *chip, |
| const struct nand_subop *subop, |
| struct qcom_op *q_op) |
| { |
| const struct nand_op_instr *instr = NULL; |
| unsigned int op_id; |
| int i, ret; |
| |
| for (op_id = 0; op_id < subop->ninstrs; op_id++) { |
| unsigned int offset, naddrs; |
| const u8 *addrs; |
| |
| instr = &subop->instrs[op_id]; |
| |
| switch (instr->type) { |
| case NAND_OP_CMD_INSTR: |
| ret = qcom_op_cmd_mapping(chip, instr->ctx.cmd.opcode, q_op); |
| if (ret < 0) |
| return ret; |
| |
| q_op->cmd_reg = cpu_to_le32(ret); |
| q_op->rdy_delay_ns = instr->delay_ns; |
| break; |
| |
| case NAND_OP_ADDR_INSTR: |
| offset = nand_subop_get_addr_start_off(subop, op_id); |
| naddrs = nand_subop_get_num_addr_cyc(subop, op_id); |
| addrs = &instr->ctx.addr.addrs[offset]; |
| |
| for (i = 0; i < min_t(unsigned int, 4, naddrs); i++) |
| q_op->addr1_reg |= cpu_to_le32(addrs[i] << (i * 8)); |
| |
| if (naddrs > 4) |
| q_op->addr2_reg |= cpu_to_le32(addrs[4]); |
| |
| q_op->rdy_delay_ns = instr->delay_ns; |
| break; |
| |
| case NAND_OP_DATA_IN_INSTR: |
| q_op->data_instr = instr; |
| q_op->data_instr_idx = op_id; |
| q_op->rdy_delay_ns = instr->delay_ns; |
| fallthrough; |
| case NAND_OP_DATA_OUT_INSTR: |
| q_op->rdy_delay_ns = instr->delay_ns; |
| break; |
| |
| case NAND_OP_WAITRDY_INSTR: |
| q_op->rdy_timeout_ms = instr->ctx.waitrdy.timeout_ms; |
| q_op->rdy_delay_ns = instr->delay_ns; |
| break; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static void qcom_delay_ns(unsigned int ns) |
| { |
| if (!ns) |
| return; |
| |
| if (ns < 10000) |
| ndelay(ns); |
| else |
| udelay(DIV_ROUND_UP(ns, 1000)); |
| } |
| |
| static int qcom_wait_rdy_poll(struct nand_chip *chip, unsigned int time_ms) |
| { |
| struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); |
| unsigned long start = jiffies + msecs_to_jiffies(time_ms); |
| u32 flash; |
| |
| qcom_nandc_dev_to_mem(nandc, true); |
| |
| do { |
| flash = le32_to_cpu(nandc->reg_read_buf[0]); |
| if (flash & FS_READY_BSY_N) |
| return 0; |
| cpu_relax(); |
| } while (time_after(start, jiffies)); |
| |
| dev_err(nandc->dev, "Timeout waiting for device to be ready:0x%08x\n", flash); |
| |
| return -ETIMEDOUT; |
| } |
| |
| static int qcom_read_status_exec(struct nand_chip *chip, |
| const struct nand_subop *subop) |
| { |
| struct qcom_nand_host *host = to_qcom_nand_host(chip); |
| struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); |
| struct nand_ecc_ctrl *ecc = &chip->ecc; |
| struct qcom_op q_op = {}; |
| const struct nand_op_instr *instr = NULL; |
| unsigned int op_id = 0; |
| unsigned int len = 0; |
| int ret, num_cw, i; |
| u32 flash_status; |
| |
| host->status = NAND_STATUS_READY | NAND_STATUS_WP; |
| |
| ret = qcom_parse_instructions(chip, subop, &q_op); |
| if (ret) |
| return ret; |
| |
| num_cw = nandc->exec_opwrite ? ecc->steps : 1; |
| nandc->exec_opwrite = false; |
| |
| nandc->buf_count = 0; |
| nandc->buf_start = 0; |
| host->use_ecc = false; |
| |
| qcom_clear_read_regs(nandc); |
| qcom_clear_bam_transaction(nandc); |
| |
| nandc->regs->cmd = q_op.cmd_reg; |
| nandc->regs->exec = cpu_to_le32(1); |
| |
| qcom_write_reg_dma(nandc, &nandc->regs->cmd, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL); |
| qcom_write_reg_dma(nandc, &nandc->regs->exec, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL); |
| qcom_read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL); |
| |
| ret = qcom_submit_descs(nandc); |
| if (ret) { |
| dev_err(nandc->dev, "failure in submitting status descriptor\n"); |
| goto err_out; |
| } |
| |
| qcom_nandc_dev_to_mem(nandc, true); |
| |
| for (i = 0; i < num_cw; i++) { |
| flash_status = le32_to_cpu(nandc->reg_read_buf[i]); |
| |
| if (flash_status & FS_MPU_ERR) |
| host->status &= ~NAND_STATUS_WP; |
| |
| if (flash_status & FS_OP_ERR || |
| (i == (num_cw - 1) && (flash_status & FS_DEVICE_STS_ERR))) |
| host->status |= NAND_STATUS_FAIL; |
| } |
| |
| flash_status = host->status; |
| instr = q_op.data_instr; |
| op_id = q_op.data_instr_idx; |
| len = nand_subop_get_data_len(subop, op_id); |
| memcpy(instr->ctx.data.buf.in, &flash_status, len); |
| |
| err_out: |
| return ret; |
| } |
| |
| static int qcom_read_id_type_exec(struct nand_chip *chip, const struct nand_subop *subop) |
| { |
| struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); |
| struct qcom_nand_host *host = to_qcom_nand_host(chip); |
| struct qcom_op q_op = {}; |
| const struct nand_op_instr *instr = NULL; |
| unsigned int op_id = 0; |
| unsigned int len = 0; |
| int ret; |
| |
| ret = qcom_parse_instructions(chip, subop, &q_op); |
| if (ret) |
| return ret; |
| |
| nandc->buf_count = 0; |
| nandc->buf_start = 0; |
| host->use_ecc = false; |
| |
| qcom_clear_read_regs(nandc); |
| qcom_clear_bam_transaction(nandc); |
| |
| nandc->regs->cmd = q_op.cmd_reg; |
| nandc->regs->addr0 = q_op.addr1_reg; |
| nandc->regs->addr1 = q_op.addr2_reg; |
| nandc->regs->chip_sel = cpu_to_le32(nandc->props->supports_bam ? 0 : DM_EN); |
| nandc->regs->exec = cpu_to_le32(1); |
| |
| qcom_write_reg_dma(nandc, &nandc->regs->cmd, NAND_FLASH_CMD, 4, NAND_BAM_NEXT_SGL); |
| qcom_write_reg_dma(nandc, &nandc->regs->exec, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL); |
| |
| qcom_read_reg_dma(nandc, NAND_READ_ID, 1, NAND_BAM_NEXT_SGL); |
| |
| ret = qcom_submit_descs(nandc); |
| if (ret) { |
| dev_err(nandc->dev, "failure in submitting read id descriptor\n"); |
| goto err_out; |
| } |
| |
| instr = q_op.data_instr; |
| op_id = q_op.data_instr_idx; |
| len = nand_subop_get_data_len(subop, op_id); |
| |
| qcom_nandc_dev_to_mem(nandc, true); |
| memcpy(instr->ctx.data.buf.in, nandc->reg_read_buf, len); |
| |
| err_out: |
| return ret; |
| } |
| |
| static int qcom_misc_cmd_type_exec(struct nand_chip *chip, const struct nand_subop *subop) |
| { |
| struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); |
| struct qcom_nand_host *host = to_qcom_nand_host(chip); |
| struct qcom_op q_op = {}; |
| int ret; |
| int instrs = 1; |
| |
| ret = qcom_parse_instructions(chip, subop, &q_op); |
| if (ret) |
| return ret; |
| |
| if (q_op.flag == OP_PROGRAM_PAGE) { |
| goto wait_rdy; |
| } else if (q_op.cmd_reg == cpu_to_le32(OP_BLOCK_ERASE)) { |
| q_op.cmd_reg |= cpu_to_le32(PAGE_ACC | LAST_PAGE); |
| nandc->regs->addr0 = q_op.addr1_reg; |
| nandc->regs->addr1 = q_op.addr2_reg; |
| nandc->regs->cfg0 = cpu_to_le32(host->cfg0_raw & ~CW_PER_PAGE_MASK); |
| nandc->regs->cfg1 = cpu_to_le32(host->cfg1_raw); |
| instrs = 3; |
| } else if (q_op.cmd_reg != cpu_to_le32(OP_RESET_DEVICE)) { |
| return 0; |
| } |
| |
| nandc->buf_count = 0; |
| nandc->buf_start = 0; |
| host->use_ecc = false; |
| |
| qcom_clear_read_regs(nandc); |
| qcom_clear_bam_transaction(nandc); |
| |
| nandc->regs->cmd = q_op.cmd_reg; |
| nandc->regs->exec = cpu_to_le32(1); |
| |
| qcom_write_reg_dma(nandc, &nandc->regs->cmd, NAND_FLASH_CMD, instrs, NAND_BAM_NEXT_SGL); |
| if (q_op.cmd_reg == cpu_to_le32(OP_BLOCK_ERASE)) |
| qcom_write_reg_dma(nandc, &nandc->regs->cfg0, NAND_DEV0_CFG0, 2, NAND_BAM_NEXT_SGL); |
| |
| qcom_write_reg_dma(nandc, &nandc->regs->exec, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL); |
| qcom_read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL); |
| |
| ret = qcom_submit_descs(nandc); |
| if (ret) { |
| dev_err(nandc->dev, "failure in submitting misc descriptor\n"); |
| goto err_out; |
| } |
| |
| wait_rdy: |
| qcom_delay_ns(q_op.rdy_delay_ns); |
| ret = qcom_wait_rdy_poll(chip, q_op.rdy_timeout_ms); |
| |
| err_out: |
| return ret; |
| } |
| |
| static int qcom_param_page_type_exec(struct nand_chip *chip, const struct nand_subop *subop) |
| { |
| struct qcom_nand_host *host = to_qcom_nand_host(chip); |
| struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); |
| struct qcom_op q_op = {}; |
| const struct nand_op_instr *instr = NULL; |
| unsigned int op_id = 0; |
| unsigned int len = 0; |
| int ret; |
| |
| ret = qcom_parse_instructions(chip, subop, &q_op); |
| if (ret) |
| return ret; |
| |
| q_op.cmd_reg |= cpu_to_le32(PAGE_ACC | LAST_PAGE); |
| |
| nandc->buf_count = 0; |
| nandc->buf_start = 0; |
| host->use_ecc = false; |
| qcom_clear_read_regs(nandc); |
| qcom_clear_bam_transaction(nandc); |
| |
| nandc->regs->cmd = q_op.cmd_reg; |
| nandc->regs->addr0 = 0; |
| nandc->regs->addr1 = 0; |
| |
| nandc->regs->cfg0 = cpu_to_le32(FIELD_PREP(CW_PER_PAGE_MASK, 0) | |
| FIELD_PREP(UD_SIZE_BYTES_MASK, 512) | |
| FIELD_PREP(NUM_ADDR_CYCLES_MASK, 5) | |
| FIELD_PREP(SPARE_SIZE_BYTES_MASK, 0)); |
| |
| nandc->regs->cfg1 = cpu_to_le32(FIELD_PREP(NAND_RECOVERY_CYCLES_MASK, 7) | |
| FIELD_PREP(BAD_BLOCK_BYTE_NUM_MASK, 17) | |
| FIELD_PREP(CS_ACTIVE_BSY, 0) | |
| FIELD_PREP(BAD_BLOCK_IN_SPARE_AREA, 1) | |
| FIELD_PREP(WR_RD_BSY_GAP_MASK, 2) | |
| FIELD_PREP(WIDE_FLASH, 0) | |
| FIELD_PREP(DEV0_CFG1_ECC_DISABLE, 1)); |
| |
| if (!nandc->props->qpic_version2) |
| nandc->regs->ecc_buf_cfg = cpu_to_le32(ECC_CFG_ECC_DISABLE); |
| |
| /* configure CMD1 and VLD for ONFI param probing in QPIC v1 */ |
| if (!nandc->props->qpic_version2) { |
| nandc->regs->vld = cpu_to_le32((nandc->vld & ~READ_START_VLD)); |
| nandc->regs->cmd1 = cpu_to_le32((nandc->cmd1 & ~READ_ADDR_MASK) | |
| FIELD_PREP(READ_ADDR_MASK, NAND_CMD_PARAM)); |
| } |
| |
| nandc->regs->exec = cpu_to_le32(1); |
| |
| if (!nandc->props->qpic_version2) { |
| nandc->regs->orig_cmd1 = cpu_to_le32(nandc->cmd1); |
| nandc->regs->orig_vld = cpu_to_le32(nandc->vld); |
| } |
| |
| instr = q_op.data_instr; |
| op_id = q_op.data_instr_idx; |
| len = nand_subop_get_data_len(subop, op_id); |
| |
| nandc_set_read_loc(chip, 0, 0, 0, len, 1); |
| |
| if (!nandc->props->qpic_version2) { |
| qcom_write_reg_dma(nandc, &nandc->regs->vld, NAND_DEV_CMD_VLD, 1, 0); |
| qcom_write_reg_dma(nandc, &nandc->regs->cmd1, NAND_DEV_CMD1, 1, NAND_BAM_NEXT_SGL); |
| } |
| |
| nandc->buf_count = len; |
| memset(nandc->data_buffer, 0xff, nandc->buf_count); |
| |
| config_nand_single_cw_page_read(chip, false, 0); |
| |
| qcom_read_data_dma(nandc, FLASH_BUF_ACC, nandc->data_buffer, |
| nandc->buf_count, 0); |
| |
| /* restore CMD1 and VLD regs */ |
| if (!nandc->props->qpic_version2) { |
| qcom_write_reg_dma(nandc, &nandc->regs->orig_cmd1, NAND_DEV_CMD1_RESTORE, 1, 0); |
| qcom_write_reg_dma(nandc, &nandc->regs->orig_vld, NAND_DEV_CMD_VLD_RESTORE, 1, |
| NAND_BAM_NEXT_SGL); |
| } |
| |
| ret = qcom_submit_descs(nandc); |
| if (ret) { |
| dev_err(nandc->dev, "failure in submitting param page descriptor\n"); |
| goto err_out; |
| } |
| |
| ret = qcom_wait_rdy_poll(chip, q_op.rdy_timeout_ms); |
| if (ret) |
| goto err_out; |
| |
| memcpy(instr->ctx.data.buf.in, nandc->data_buffer, len); |
| |
| err_out: |
| return ret; |
| } |
| |
| static const struct nand_op_parser qcom_op_parser = NAND_OP_PARSER( |
| NAND_OP_PARSER_PATTERN( |
| qcom_read_id_type_exec, |
| NAND_OP_PARSER_PAT_CMD_ELEM(false), |
| NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYCLE), |
| NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 8)), |
| NAND_OP_PARSER_PATTERN( |
| qcom_read_status_exec, |
| NAND_OP_PARSER_PAT_CMD_ELEM(false), |
| NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 1)), |
| NAND_OP_PARSER_PATTERN( |
| qcom_param_page_type_exec, |
| NAND_OP_PARSER_PAT_CMD_ELEM(false), |
| NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYCLE), |
| NAND_OP_PARSER_PAT_WAITRDY_ELEM(true), |
| NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 512)), |
| NAND_OP_PARSER_PATTERN( |
| qcom_misc_cmd_type_exec, |
| NAND_OP_PARSER_PAT_CMD_ELEM(false), |
| NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYCLE), |
| NAND_OP_PARSER_PAT_CMD_ELEM(true), |
| NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), |
| ); |
| |
| static int qcom_check_op(struct nand_chip *chip, |
| const struct nand_operation *op) |
| { |
| const struct nand_op_instr *instr; |
| int op_id; |
| |
| for (op_id = 0; op_id < op->ninstrs; op_id++) { |
| instr = &op->instrs[op_id]; |
| |
| switch (instr->type) { |
| case NAND_OP_CMD_INSTR: |
| if (instr->ctx.cmd.opcode != NAND_CMD_RESET && |
| instr->ctx.cmd.opcode != NAND_CMD_READID && |
| instr->ctx.cmd.opcode != NAND_CMD_PARAM && |
| instr->ctx.cmd.opcode != NAND_CMD_ERASE1 && |
| instr->ctx.cmd.opcode != NAND_CMD_ERASE2 && |
| instr->ctx.cmd.opcode != NAND_CMD_STATUS && |
| instr->ctx.cmd.opcode != NAND_CMD_PAGEPROG && |
| instr->ctx.cmd.opcode != NAND_CMD_READ0 && |
| instr->ctx.cmd.opcode != NAND_CMD_READSTART) |
| return -EOPNOTSUPP; |
| break; |
| default: |
| break; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int qcom_nand_exec_op(struct nand_chip *chip, |
| const struct nand_operation *op, bool check_only) |
| { |
| if (check_only) |
| return qcom_check_op(chip, op); |
| |
| return nand_op_parser_exec_op(chip, &qcom_op_parser, op, check_only); |
| } |
| |
| static const struct nand_controller_ops qcom_nandc_ops = { |
| .attach_chip = qcom_nand_attach_chip, |
| .exec_op = qcom_nand_exec_op, |
| }; |
| |
| /* one time setup of a few nand controller registers */ |
| static int qcom_nandc_setup(struct qcom_nand_controller *nandc) |
| { |
| u32 nand_ctrl; |
| |
| nand_controller_init(nandc->controller); |
| nandc->controller->ops = &qcom_nandc_ops; |
| |
| /* kill onenand */ |
| if (!nandc->props->nandc_part_of_qpic) |
| nandc_write(nandc, SFLASHC_BURST_CFG, 0); |
| |
| if (!nandc->props->qpic_version2) |
| nandc_write(nandc, dev_cmd_reg_addr(nandc, NAND_DEV_CMD_VLD), |
| NAND_DEV_CMD_VLD_VAL); |
| |
| /* enable ADM or BAM DMA */ |
| if (nandc->props->supports_bam) { |
| nand_ctrl = nandc_read(nandc, NAND_CTRL); |
| |
| /* |
| *NAND_CTRL is an operational registers, and CPU |
| * access to operational registers are read only |
| * in BAM mode. So update the NAND_CTRL register |
| * only if it is not in BAM mode. In most cases BAM |
| * mode will be enabled in bootloader |
| */ |
| if (!(nand_ctrl & BAM_MODE_EN)) |
| nandc_write(nandc, NAND_CTRL, nand_ctrl | BAM_MODE_EN); |
| } else { |
| nandc_write(nandc, NAND_FLASH_CHIP_SELECT, DM_EN); |
| } |
| |
| /* save the original values of these registers */ |
| if (!nandc->props->qpic_version2) { |
| nandc->cmd1 = nandc_read(nandc, dev_cmd_reg_addr(nandc, NAND_DEV_CMD1)); |
| nandc->vld = NAND_DEV_CMD_VLD_VAL; |
| } |
| |
| return 0; |
| } |
| |
| static const char * const probes[] = { "cmdlinepart", "ofpart", "qcomsmem", NULL }; |
| |
| static int qcom_nand_host_parse_boot_partitions(struct qcom_nand_controller *nandc, |
| struct qcom_nand_host *host, |
| struct device_node *dn) |
| { |
| struct nand_chip *chip = &host->chip; |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| struct qcom_nand_boot_partition *boot_partition; |
| struct device *dev = nandc->dev; |
| int partitions_count, i, j, ret; |
| |
| if (!of_property_present(dn, "qcom,boot-partitions")) |
| return 0; |
| |
| partitions_count = of_property_count_u32_elems(dn, "qcom,boot-partitions"); |
| if (partitions_count <= 0) { |
| dev_err(dev, "Error parsing boot partition\n"); |
| return partitions_count ? partitions_count : -EINVAL; |
| } |
| |
| host->nr_boot_partitions = partitions_count / 2; |
| host->boot_partitions = devm_kcalloc(dev, host->nr_boot_partitions, |
| sizeof(*host->boot_partitions), GFP_KERNEL); |
| if (!host->boot_partitions) { |
| host->nr_boot_partitions = 0; |
| return -ENOMEM; |
| } |
| |
| for (i = 0, j = 0; i < host->nr_boot_partitions; i++, j += 2) { |
| boot_partition = &host->boot_partitions[i]; |
| |
| ret = of_property_read_u32_index(dn, "qcom,boot-partitions", j, |
| &boot_partition->page_offset); |
| if (ret) { |
| dev_err(dev, "Error parsing boot partition offset at index %d\n", i); |
| host->nr_boot_partitions = 0; |
| return ret; |
| } |
| |
| if (boot_partition->page_offset % mtd->writesize) { |
| dev_err(dev, "Boot partition offset not multiple of writesize at index %i\n", |
| i); |
| host->nr_boot_partitions = 0; |
| return -EINVAL; |
| } |
| /* Convert offset to nand pages */ |
| boot_partition->page_offset /= mtd->writesize; |
| |
| ret = of_property_read_u32_index(dn, "qcom,boot-partitions", j + 1, |
| &boot_partition->page_size); |
| if (ret) { |
| dev_err(dev, "Error parsing boot partition size at index %d\n", i); |
| host->nr_boot_partitions = 0; |
| return ret; |
| } |
| |
| if (boot_partition->page_size % mtd->writesize) { |
| dev_err(dev, "Boot partition size not multiple of writesize at index %i\n", |
| i); |
| host->nr_boot_partitions = 0; |
| return -EINVAL; |
| } |
| /* Convert size to nand pages */ |
| boot_partition->page_size /= mtd->writesize; |
| } |
| |
| return 0; |
| } |
| |
| static int qcom_nand_host_init_and_register(struct qcom_nand_controller *nandc, |
| struct qcom_nand_host *host, |
| struct device_node *dn) |
| { |
| struct nand_chip *chip = &host->chip; |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| struct device *dev = nandc->dev; |
| int ret; |
| |
| ret = of_property_read_u32(dn, "reg", &host->cs); |
| if (ret) { |
| dev_err(dev, "can't get chip-select\n"); |
| return -ENXIO; |
| } |
| |
| nand_set_flash_node(chip, dn); |
| mtd->name = devm_kasprintf(dev, GFP_KERNEL, "qcom_nand.%d", host->cs); |
| if (!mtd->name) |
| return -ENOMEM; |
| |
| mtd->owner = THIS_MODULE; |
| mtd->dev.parent = dev; |
| |
| /* |
| * the bad block marker is readable only when we read the last codeword |
| * of a page with ECC disabled. currently, the nand_base and nand_bbt |
| * helpers don't allow us to read BB from a nand chip with ECC |
| * disabled (MTD_OPS_PLACE_OOB is set by default). use the block_bad |
| * and block_markbad helpers until we permanently switch to using |
| * MTD_OPS_RAW for all drivers (with the help of badblockbits) |
| */ |
| chip->legacy.block_bad = qcom_nandc_block_bad; |
| chip->legacy.block_markbad = qcom_nandc_block_markbad; |
| |
| chip->controller = nandc->controller; |
| chip->options |= NAND_NO_SUBPAGE_WRITE | NAND_USES_DMA | |
| NAND_SKIP_BBTSCAN; |
| |
| /* set up initial status value */ |
| host->status = NAND_STATUS_READY | NAND_STATUS_WP; |
| |
| ret = nand_scan(chip, 1); |
| if (ret) |
| return ret; |
| |
| ret = mtd_device_parse_register(mtd, probes, NULL, NULL, 0); |
| if (ret) |
| goto err; |
| |
| if (nandc->props->use_codeword_fixup) { |
| ret = qcom_nand_host_parse_boot_partitions(nandc, host, dn); |
| if (ret) |
| goto err; |
| } |
| |
| return 0; |
| |
| err: |
| nand_cleanup(chip); |
| return ret; |
| } |
| |
| static int qcom_probe_nand_devices(struct qcom_nand_controller *nandc) |
| { |
| struct device *dev = nandc->dev; |
| struct device_node *dn = dev->of_node, *child; |
| struct qcom_nand_host *host; |
| int ret = -ENODEV; |
| |
| for_each_available_child_of_node(dn, child) { |
| host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL); |
| if (!host) { |
| of_node_put(child); |
| return -ENOMEM; |
| } |
| |
| ret = qcom_nand_host_init_and_register(nandc, host, child); |
| if (ret) { |
| devm_kfree(dev, host); |
| continue; |
| } |
| |
| list_add_tail(&host->node, &nandc->host_list); |
| } |
| |
| return ret; |
| } |
| |
| /* parse custom DT properties here */ |
| static int qcom_nandc_parse_dt(struct platform_device *pdev) |
| { |
| struct qcom_nand_controller *nandc = platform_get_drvdata(pdev); |
| struct device_node *np = nandc->dev->of_node; |
| int ret; |
| |
| if (!nandc->props->supports_bam) { |
| ret = of_property_read_u32(np, "qcom,cmd-crci", |
| &nandc->cmd_crci); |
| if (ret) { |
| dev_err(nandc->dev, "command CRCI unspecified\n"); |
| return ret; |
| } |
| |
| ret = of_property_read_u32(np, "qcom,data-crci", |
| &nandc->data_crci); |
| if (ret) { |
| dev_err(nandc->dev, "data CRCI unspecified\n"); |
| return ret; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int qcom_nandc_probe(struct platform_device *pdev) |
| { |
| struct qcom_nand_controller *nandc; |
| struct nand_controller *controller; |
| const void *dev_data; |
| struct device *dev = &pdev->dev; |
| struct resource *res; |
| int ret; |
| |
| nandc = devm_kzalloc(&pdev->dev, sizeof(*nandc) + sizeof(*controller), |
| GFP_KERNEL); |
| if (!nandc) |
| return -ENOMEM; |
| controller = (struct nand_controller *)&nandc[1]; |
| |
| platform_set_drvdata(pdev, nandc); |
| nandc->dev = dev; |
| nandc->controller = controller; |
| |
| dev_data = of_device_get_match_data(dev); |
| if (!dev_data) { |
| dev_err(&pdev->dev, "failed to get device data\n"); |
| return -ENODEV; |
| } |
| |
| nandc->props = dev_data; |
| |
| nandc->core_clk = devm_clk_get(dev, "core"); |
| if (IS_ERR(nandc->core_clk)) |
| return PTR_ERR(nandc->core_clk); |
| |
| nandc->aon_clk = devm_clk_get(dev, "aon"); |
| if (IS_ERR(nandc->aon_clk)) |
| return PTR_ERR(nandc->aon_clk); |
| |
| ret = qcom_nandc_parse_dt(pdev); |
| if (ret) |
| return ret; |
| |
| nandc->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res); |
| if (IS_ERR(nandc->base)) |
| return PTR_ERR(nandc->base); |
| |
| nandc->base_phys = res->start; |
| nandc->base_dma = dma_map_resource(dev, res->start, |
| resource_size(res), |
| DMA_BIDIRECTIONAL, 0); |
| if (dma_mapping_error(dev, nandc->base_dma)) |
| return -ENXIO; |
| |
| ret = clk_prepare_enable(nandc->core_clk); |
| if (ret) |
| goto err_core_clk; |
| |
| ret = clk_prepare_enable(nandc->aon_clk); |
| if (ret) |
| goto err_aon_clk; |
| |
| ret = qcom_nandc_alloc(nandc); |
| if (ret) |
| goto err_nandc_alloc; |
| |
| ret = qcom_nandc_setup(nandc); |
| if (ret) |
| goto err_setup; |
| |
| ret = qcom_probe_nand_devices(nandc); |
| if (ret) |
| goto err_setup; |
| |
| return 0; |
| |
| err_setup: |
| qcom_nandc_unalloc(nandc); |
| err_nandc_alloc: |
| clk_disable_unprepare(nandc->aon_clk); |
| err_aon_clk: |
| clk_disable_unprepare(nandc->core_clk); |
| err_core_clk: |
| dma_unmap_resource(dev, nandc->base_dma, resource_size(res), |
| DMA_BIDIRECTIONAL, 0); |
| return ret; |
| } |
| |
| static void qcom_nandc_remove(struct platform_device *pdev) |
| { |
| struct qcom_nand_controller *nandc = platform_get_drvdata(pdev); |
| struct resource *res = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| struct qcom_nand_host *host; |
| struct nand_chip *chip; |
| int ret; |
| |
| list_for_each_entry(host, &nandc->host_list, node) { |
| chip = &host->chip; |
| ret = mtd_device_unregister(nand_to_mtd(chip)); |
| WARN_ON(ret); |
| nand_cleanup(chip); |
| } |
| |
| qcom_nandc_unalloc(nandc); |
| |
| clk_disable_unprepare(nandc->aon_clk); |
| clk_disable_unprepare(nandc->core_clk); |
| |
| dma_unmap_resource(&pdev->dev, nandc->base_dma, resource_size(res), |
| DMA_BIDIRECTIONAL, 0); |
| } |
| |
| static const struct qcom_nandc_props ipq806x_nandc_props = { |
| .ecc_modes = (ECC_RS_4BIT | ECC_BCH_8BIT), |
| .supports_bam = false, |
| .use_codeword_fixup = true, |
| .dev_cmd_reg_start = 0x0, |
| }; |
| |
| static const struct qcom_nandc_props ipq4019_nandc_props = { |
| .ecc_modes = (ECC_BCH_4BIT | ECC_BCH_8BIT), |
| .supports_bam = true, |
| .nandc_part_of_qpic = true, |
| .dev_cmd_reg_start = 0x0, |
| }; |
| |
| static const struct qcom_nandc_props ipq8074_nandc_props = { |
| .ecc_modes = (ECC_BCH_4BIT | ECC_BCH_8BIT), |
| .supports_bam = true, |
| .nandc_part_of_qpic = true, |
| .dev_cmd_reg_start = 0x7000, |
| }; |
| |
| static const struct qcom_nandc_props sdx55_nandc_props = { |
| .ecc_modes = (ECC_BCH_4BIT | ECC_BCH_8BIT), |
| .supports_bam = true, |
| .nandc_part_of_qpic = true, |
| .qpic_version2 = true, |
| .dev_cmd_reg_start = 0x7000, |
| }; |
| |
| /* |
| * data will hold a struct pointer containing more differences once we support |
| * more controller variants |
| */ |
| static const struct of_device_id qcom_nandc_of_match[] = { |
| { |
| .compatible = "qcom,ipq806x-nand", |
| .data = &ipq806x_nandc_props, |
| }, |
| { |
| .compatible = "qcom,ipq4019-nand", |
| .data = &ipq4019_nandc_props, |
| }, |
| { |
| .compatible = "qcom,ipq6018-nand", |
| .data = &ipq8074_nandc_props, |
| }, |
| { |
| .compatible = "qcom,ipq8074-nand", |
| .data = &ipq8074_nandc_props, |
| }, |
| { |
| .compatible = "qcom,sdx55-nand", |
| .data = &sdx55_nandc_props, |
| }, |
| {} |
| }; |
| MODULE_DEVICE_TABLE(of, qcom_nandc_of_match); |
| |
| static struct platform_driver qcom_nandc_driver = { |
| .driver = { |
| .name = "qcom-nandc", |
| .of_match_table = qcom_nandc_of_match, |
| }, |
| .probe = qcom_nandc_probe, |
| .remove = qcom_nandc_remove, |
| }; |
| module_platform_driver(qcom_nandc_driver); |
| |
| MODULE_AUTHOR("Archit Taneja <architt@codeaurora.org>"); |
| MODULE_DESCRIPTION("Qualcomm NAND Controller driver"); |
| MODULE_LICENSE("GPL v2"); |