| // SPDX-License-Identifier: GPL-2.0-or-later | 
 | /* | 
 |  * Procedures for maintaining information about logical memory blocks. | 
 |  * | 
 |  * Peter Bergner, IBM Corp.	June 2001. | 
 |  * Copyright (C) 2001 Peter Bergner. | 
 |  */ | 
 |  | 
 | #include <linux/kernel.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/init.h> | 
 | #include <linux/bitops.h> | 
 | #include <linux/poison.h> | 
 | #include <linux/pfn.h> | 
 | #include <linux/debugfs.h> | 
 | #include <linux/kmemleak.h> | 
 | #include <linux/seq_file.h> | 
 | #include <linux/memblock.h> | 
 |  | 
 | #include <asm/sections.h> | 
 | #include <linux/io.h> | 
 |  | 
 | #include "internal.h" | 
 |  | 
 | #define INIT_MEMBLOCK_REGIONS			128 | 
 | #define INIT_PHYSMEM_REGIONS			4 | 
 |  | 
 | #ifndef INIT_MEMBLOCK_RESERVED_REGIONS | 
 | # define INIT_MEMBLOCK_RESERVED_REGIONS		INIT_MEMBLOCK_REGIONS | 
 | #endif | 
 |  | 
 | #ifndef INIT_MEMBLOCK_MEMORY_REGIONS | 
 | #define INIT_MEMBLOCK_MEMORY_REGIONS		INIT_MEMBLOCK_REGIONS | 
 | #endif | 
 |  | 
 | /** | 
 |  * DOC: memblock overview | 
 |  * | 
 |  * Memblock is a method of managing memory regions during the early | 
 |  * boot period when the usual kernel memory allocators are not up and | 
 |  * running. | 
 |  * | 
 |  * Memblock views the system memory as collections of contiguous | 
 |  * regions. There are several types of these collections: | 
 |  * | 
 |  * * ``memory`` - describes the physical memory available to the | 
 |  *   kernel; this may differ from the actual physical memory installed | 
 |  *   in the system, for instance when the memory is restricted with | 
 |  *   ``mem=`` command line parameter | 
 |  * * ``reserved`` - describes the regions that were allocated | 
 |  * * ``physmem`` - describes the actual physical memory available during | 
 |  *   boot regardless of the possible restrictions and memory hot(un)plug; | 
 |  *   the ``physmem`` type is only available on some architectures. | 
 |  * | 
 |  * Each region is represented by struct memblock_region that | 
 |  * defines the region extents, its attributes and NUMA node id on NUMA | 
 |  * systems. Every memory type is described by the struct memblock_type | 
 |  * which contains an array of memory regions along with | 
 |  * the allocator metadata. The "memory" and "reserved" types are nicely | 
 |  * wrapped with struct memblock. This structure is statically | 
 |  * initialized at build time. The region arrays are initially sized to | 
 |  * %INIT_MEMBLOCK_MEMORY_REGIONS for "memory" and | 
 |  * %INIT_MEMBLOCK_RESERVED_REGIONS for "reserved". The region array | 
 |  * for "physmem" is initially sized to %INIT_PHYSMEM_REGIONS. | 
 |  * The memblock_allow_resize() enables automatic resizing of the region | 
 |  * arrays during addition of new regions. This feature should be used | 
 |  * with care so that memory allocated for the region array will not | 
 |  * overlap with areas that should be reserved, for example initrd. | 
 |  * | 
 |  * The early architecture setup should tell memblock what the physical | 
 |  * memory layout is by using memblock_add() or memblock_add_node() | 
 |  * functions. The first function does not assign the region to a NUMA | 
 |  * node and it is appropriate for UMA systems. Yet, it is possible to | 
 |  * use it on NUMA systems as well and assign the region to a NUMA node | 
 |  * later in the setup process using memblock_set_node(). The | 
 |  * memblock_add_node() performs such an assignment directly. | 
 |  * | 
 |  * Once memblock is setup the memory can be allocated using one of the | 
 |  * API variants: | 
 |  * | 
 |  * * memblock_phys_alloc*() - these functions return the **physical** | 
 |  *   address of the allocated memory | 
 |  * * memblock_alloc*() - these functions return the **virtual** address | 
 |  *   of the allocated memory. | 
 |  * | 
 |  * Note, that both API variants use implicit assumptions about allowed | 
 |  * memory ranges and the fallback methods. Consult the documentation | 
 |  * of memblock_alloc_internal() and memblock_alloc_range_nid() | 
 |  * functions for more elaborate description. | 
 |  * | 
 |  * As the system boot progresses, the architecture specific mem_init() | 
 |  * function frees all the memory to the buddy page allocator. | 
 |  * | 
 |  * Unless an architecture enables %CONFIG_ARCH_KEEP_MEMBLOCK, the | 
 |  * memblock data structures (except "physmem") will be discarded after the | 
 |  * system initialization completes. | 
 |  */ | 
 |  | 
 | #ifndef CONFIG_NUMA | 
 | struct pglist_data __refdata contig_page_data; | 
 | EXPORT_SYMBOL(contig_page_data); | 
 | #endif | 
 |  | 
 | unsigned long max_low_pfn; | 
 | unsigned long min_low_pfn; | 
 | unsigned long max_pfn; | 
 | unsigned long long max_possible_pfn; | 
 |  | 
 | static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_MEMORY_REGIONS] __initdata_memblock; | 
 | static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_RESERVED_REGIONS] __initdata_memblock; | 
 | #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP | 
 | static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS]; | 
 | #endif | 
 |  | 
 | struct memblock memblock __initdata_memblock = { | 
 | 	.memory.regions		= memblock_memory_init_regions, | 
 | 	.memory.max		= INIT_MEMBLOCK_MEMORY_REGIONS, | 
 | 	.memory.name		= "memory", | 
 |  | 
 | 	.reserved.regions	= memblock_reserved_init_regions, | 
 | 	.reserved.max		= INIT_MEMBLOCK_RESERVED_REGIONS, | 
 | 	.reserved.name		= "reserved", | 
 |  | 
 | 	.bottom_up		= false, | 
 | 	.current_limit		= MEMBLOCK_ALLOC_ANYWHERE, | 
 | }; | 
 |  | 
 | #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP | 
 | struct memblock_type physmem = { | 
 | 	.regions		= memblock_physmem_init_regions, | 
 | 	.max			= INIT_PHYSMEM_REGIONS, | 
 | 	.name			= "physmem", | 
 | }; | 
 | #endif | 
 |  | 
 | /* | 
 |  * keep a pointer to &memblock.memory in the text section to use it in | 
 |  * __next_mem_range() and its helpers. | 
 |  *  For architectures that do not keep memblock data after init, this | 
 |  * pointer will be reset to NULL at memblock_discard() | 
 |  */ | 
 | static __refdata struct memblock_type *memblock_memory = &memblock.memory; | 
 |  | 
 | #define for_each_memblock_type(i, memblock_type, rgn)			\ | 
 | 	for (i = 0, rgn = &memblock_type->regions[0];			\ | 
 | 	     i < memblock_type->cnt;					\ | 
 | 	     i++, rgn = &memblock_type->regions[i]) | 
 |  | 
 | #define memblock_dbg(fmt, ...)						\ | 
 | 	do {								\ | 
 | 		if (memblock_debug)					\ | 
 | 			pr_info(fmt, ##__VA_ARGS__);			\ | 
 | 	} while (0) | 
 |  | 
 | static int memblock_debug __initdata_memblock; | 
 | static bool system_has_some_mirror __initdata_memblock; | 
 | static int memblock_can_resize __initdata_memblock; | 
 | static int memblock_memory_in_slab __initdata_memblock; | 
 | static int memblock_reserved_in_slab __initdata_memblock; | 
 |  | 
 | bool __init_memblock memblock_has_mirror(void) | 
 | { | 
 | 	return system_has_some_mirror; | 
 | } | 
 |  | 
 | static enum memblock_flags __init_memblock choose_memblock_flags(void) | 
 | { | 
 | 	return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE; | 
 | } | 
 |  | 
 | /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */ | 
 | static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size) | 
 | { | 
 | 	return *size = min(*size, PHYS_ADDR_MAX - base); | 
 | } | 
 |  | 
 | /* | 
 |  * Address comparison utilities | 
 |  */ | 
 | unsigned long __init_memblock | 
 | memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1, phys_addr_t base2, | 
 | 		       phys_addr_t size2) | 
 | { | 
 | 	return ((base1 < (base2 + size2)) && (base2 < (base1 + size1))); | 
 | } | 
 |  | 
 | bool __init_memblock memblock_overlaps_region(struct memblock_type *type, | 
 | 					phys_addr_t base, phys_addr_t size) | 
 | { | 
 | 	unsigned long i; | 
 |  | 
 | 	memblock_cap_size(base, &size); | 
 |  | 
 | 	for (i = 0; i < type->cnt; i++) | 
 | 		if (memblock_addrs_overlap(base, size, type->regions[i].base, | 
 | 					   type->regions[i].size)) | 
 | 			return true; | 
 | 	return false; | 
 | } | 
 |  | 
 | /** | 
 |  * __memblock_find_range_bottom_up - find free area utility in bottom-up | 
 |  * @start: start of candidate range | 
 |  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or | 
 |  *       %MEMBLOCK_ALLOC_ACCESSIBLE | 
 |  * @size: size of free area to find | 
 |  * @align: alignment of free area to find | 
 |  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node | 
 |  * @flags: pick from blocks based on memory attributes | 
 |  * | 
 |  * Utility called from memblock_find_in_range_node(), find free area bottom-up. | 
 |  * | 
 |  * Return: | 
 |  * Found address on success, 0 on failure. | 
 |  */ | 
 | static phys_addr_t __init_memblock | 
 | __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end, | 
 | 				phys_addr_t size, phys_addr_t align, int nid, | 
 | 				enum memblock_flags flags) | 
 | { | 
 | 	phys_addr_t this_start, this_end, cand; | 
 | 	u64 i; | 
 |  | 
 | 	for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) { | 
 | 		this_start = clamp(this_start, start, end); | 
 | 		this_end = clamp(this_end, start, end); | 
 |  | 
 | 		cand = round_up(this_start, align); | 
 | 		if (cand < this_end && this_end - cand >= size) | 
 | 			return cand; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * __memblock_find_range_top_down - find free area utility, in top-down | 
 |  * @start: start of candidate range | 
 |  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or | 
 |  *       %MEMBLOCK_ALLOC_ACCESSIBLE | 
 |  * @size: size of free area to find | 
 |  * @align: alignment of free area to find | 
 |  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node | 
 |  * @flags: pick from blocks based on memory attributes | 
 |  * | 
 |  * Utility called from memblock_find_in_range_node(), find free area top-down. | 
 |  * | 
 |  * Return: | 
 |  * Found address on success, 0 on failure. | 
 |  */ | 
 | static phys_addr_t __init_memblock | 
 | __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end, | 
 | 			       phys_addr_t size, phys_addr_t align, int nid, | 
 | 			       enum memblock_flags flags) | 
 | { | 
 | 	phys_addr_t this_start, this_end, cand; | 
 | 	u64 i; | 
 |  | 
 | 	for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end, | 
 | 					NULL) { | 
 | 		this_start = clamp(this_start, start, end); | 
 | 		this_end = clamp(this_end, start, end); | 
 |  | 
 | 		if (this_end < size) | 
 | 			continue; | 
 |  | 
 | 		cand = round_down(this_end - size, align); | 
 | 		if (cand >= this_start) | 
 | 			return cand; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * memblock_find_in_range_node - find free area in given range and node | 
 |  * @size: size of free area to find | 
 |  * @align: alignment of free area to find | 
 |  * @start: start of candidate range | 
 |  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or | 
 |  *       %MEMBLOCK_ALLOC_ACCESSIBLE | 
 |  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node | 
 |  * @flags: pick from blocks based on memory attributes | 
 |  * | 
 |  * Find @size free area aligned to @align in the specified range and node. | 
 |  * | 
 |  * Return: | 
 |  * Found address on success, 0 on failure. | 
 |  */ | 
 | static phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size, | 
 | 					phys_addr_t align, phys_addr_t start, | 
 | 					phys_addr_t end, int nid, | 
 | 					enum memblock_flags flags) | 
 | { | 
 | 	/* pump up @end */ | 
 | 	if (end == MEMBLOCK_ALLOC_ACCESSIBLE || | 
 | 	    end == MEMBLOCK_ALLOC_NOLEAKTRACE) | 
 | 		end = memblock.current_limit; | 
 |  | 
 | 	/* avoid allocating the first page */ | 
 | 	start = max_t(phys_addr_t, start, PAGE_SIZE); | 
 | 	end = max(start, end); | 
 |  | 
 | 	if (memblock_bottom_up()) | 
 | 		return __memblock_find_range_bottom_up(start, end, size, align, | 
 | 						       nid, flags); | 
 | 	else | 
 | 		return __memblock_find_range_top_down(start, end, size, align, | 
 | 						      nid, flags); | 
 | } | 
 |  | 
 | /** | 
 |  * memblock_find_in_range - find free area in given range | 
 |  * @start: start of candidate range | 
 |  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or | 
 |  *       %MEMBLOCK_ALLOC_ACCESSIBLE | 
 |  * @size: size of free area to find | 
 |  * @align: alignment of free area to find | 
 |  * | 
 |  * Find @size free area aligned to @align in the specified range. | 
 |  * | 
 |  * Return: | 
 |  * Found address on success, 0 on failure. | 
 |  */ | 
 | static phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start, | 
 | 					phys_addr_t end, phys_addr_t size, | 
 | 					phys_addr_t align) | 
 | { | 
 | 	phys_addr_t ret; | 
 | 	enum memblock_flags flags = choose_memblock_flags(); | 
 |  | 
 | again: | 
 | 	ret = memblock_find_in_range_node(size, align, start, end, | 
 | 					    NUMA_NO_NODE, flags); | 
 |  | 
 | 	if (!ret && (flags & MEMBLOCK_MIRROR)) { | 
 | 		pr_warn_ratelimited("Could not allocate %pap bytes of mirrored memory\n", | 
 | 			&size); | 
 | 		flags &= ~MEMBLOCK_MIRROR; | 
 | 		goto again; | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r) | 
 | { | 
 | 	type->total_size -= type->regions[r].size; | 
 | 	memmove(&type->regions[r], &type->regions[r + 1], | 
 | 		(type->cnt - (r + 1)) * sizeof(type->regions[r])); | 
 | 	type->cnt--; | 
 |  | 
 | 	/* Special case for empty arrays */ | 
 | 	if (type->cnt == 0) { | 
 | 		WARN_ON(type->total_size != 0); | 
 | 		type->regions[0].base = 0; | 
 | 		type->regions[0].size = 0; | 
 | 		type->regions[0].flags = 0; | 
 | 		memblock_set_region_node(&type->regions[0], MAX_NUMNODES); | 
 | 	} | 
 | } | 
 |  | 
 | #ifndef CONFIG_ARCH_KEEP_MEMBLOCK | 
 | /** | 
 |  * memblock_discard - discard memory and reserved arrays if they were allocated | 
 |  */ | 
 | void __init memblock_discard(void) | 
 | { | 
 | 	phys_addr_t addr, size; | 
 |  | 
 | 	if (memblock.reserved.regions != memblock_reserved_init_regions) { | 
 | 		addr = __pa(memblock.reserved.regions); | 
 | 		size = PAGE_ALIGN(sizeof(struct memblock_region) * | 
 | 				  memblock.reserved.max); | 
 | 		if (memblock_reserved_in_slab) | 
 | 			kfree(memblock.reserved.regions); | 
 | 		else | 
 | 			memblock_free_late(addr, size); | 
 | 	} | 
 |  | 
 | 	if (memblock.memory.regions != memblock_memory_init_regions) { | 
 | 		addr = __pa(memblock.memory.regions); | 
 | 		size = PAGE_ALIGN(sizeof(struct memblock_region) * | 
 | 				  memblock.memory.max); | 
 | 		if (memblock_memory_in_slab) | 
 | 			kfree(memblock.memory.regions); | 
 | 		else | 
 | 			memblock_free_late(addr, size); | 
 | 	} | 
 |  | 
 | 	memblock_memory = NULL; | 
 | } | 
 | #endif | 
 |  | 
 | /** | 
 |  * memblock_double_array - double the size of the memblock regions array | 
 |  * @type: memblock type of the regions array being doubled | 
 |  * @new_area_start: starting address of memory range to avoid overlap with | 
 |  * @new_area_size: size of memory range to avoid overlap with | 
 |  * | 
 |  * Double the size of the @type regions array. If memblock is being used to | 
 |  * allocate memory for a new reserved regions array and there is a previously | 
 |  * allocated memory range [@new_area_start, @new_area_start + @new_area_size] | 
 |  * waiting to be reserved, ensure the memory used by the new array does | 
 |  * not overlap. | 
 |  * | 
 |  * Return: | 
 |  * 0 on success, -1 on failure. | 
 |  */ | 
 | static int __init_memblock memblock_double_array(struct memblock_type *type, | 
 | 						phys_addr_t new_area_start, | 
 | 						phys_addr_t new_area_size) | 
 | { | 
 | 	struct memblock_region *new_array, *old_array; | 
 | 	phys_addr_t old_alloc_size, new_alloc_size; | 
 | 	phys_addr_t old_size, new_size, addr, new_end; | 
 | 	int use_slab = slab_is_available(); | 
 | 	int *in_slab; | 
 |  | 
 | 	/* We don't allow resizing until we know about the reserved regions | 
 | 	 * of memory that aren't suitable for allocation | 
 | 	 */ | 
 | 	if (!memblock_can_resize) | 
 | 		panic("memblock: cannot resize %s array\n", type->name); | 
 |  | 
 | 	/* Calculate new doubled size */ | 
 | 	old_size = type->max * sizeof(struct memblock_region); | 
 | 	new_size = old_size << 1; | 
 | 	/* | 
 | 	 * We need to allocated new one align to PAGE_SIZE, | 
 | 	 *   so we can free them completely later. | 
 | 	 */ | 
 | 	old_alloc_size = PAGE_ALIGN(old_size); | 
 | 	new_alloc_size = PAGE_ALIGN(new_size); | 
 |  | 
 | 	/* Retrieve the slab flag */ | 
 | 	if (type == &memblock.memory) | 
 | 		in_slab = &memblock_memory_in_slab; | 
 | 	else | 
 | 		in_slab = &memblock_reserved_in_slab; | 
 |  | 
 | 	/* Try to find some space for it */ | 
 | 	if (use_slab) { | 
 | 		new_array = kmalloc(new_size, GFP_KERNEL); | 
 | 		addr = new_array ? __pa(new_array) : 0; | 
 | 	} else { | 
 | 		/* only exclude range when trying to double reserved.regions */ | 
 | 		if (type != &memblock.reserved) | 
 | 			new_area_start = new_area_size = 0; | 
 |  | 
 | 		addr = memblock_find_in_range(new_area_start + new_area_size, | 
 | 						memblock.current_limit, | 
 | 						new_alloc_size, PAGE_SIZE); | 
 | 		if (!addr && new_area_size) | 
 | 			addr = memblock_find_in_range(0, | 
 | 				min(new_area_start, memblock.current_limit), | 
 | 				new_alloc_size, PAGE_SIZE); | 
 |  | 
 | 		new_array = addr ? __va(addr) : NULL; | 
 | 	} | 
 | 	if (!addr) { | 
 | 		pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n", | 
 | 		       type->name, type->max, type->max * 2); | 
 | 		return -1; | 
 | 	} | 
 |  | 
 | 	new_end = addr + new_size - 1; | 
 | 	memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]", | 
 | 			type->name, type->max * 2, &addr, &new_end); | 
 |  | 
 | 	/* | 
 | 	 * Found space, we now need to move the array over before we add the | 
 | 	 * reserved region since it may be our reserved array itself that is | 
 | 	 * full. | 
 | 	 */ | 
 | 	memcpy(new_array, type->regions, old_size); | 
 | 	memset(new_array + type->max, 0, old_size); | 
 | 	old_array = type->regions; | 
 | 	type->regions = new_array; | 
 | 	type->max <<= 1; | 
 |  | 
 | 	/* Free old array. We needn't free it if the array is the static one */ | 
 | 	if (*in_slab) | 
 | 		kfree(old_array); | 
 | 	else if (old_array != memblock_memory_init_regions && | 
 | 		 old_array != memblock_reserved_init_regions) | 
 | 		memblock_free(old_array, old_alloc_size); | 
 |  | 
 | 	/* | 
 | 	 * Reserve the new array if that comes from the memblock.  Otherwise, we | 
 | 	 * needn't do it | 
 | 	 */ | 
 | 	if (!use_slab) | 
 | 		BUG_ON(memblock_reserve(addr, new_alloc_size)); | 
 |  | 
 | 	/* Update slab flag */ | 
 | 	*in_slab = use_slab; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * memblock_merge_regions - merge neighboring compatible regions | 
 |  * @type: memblock type to scan | 
 |  * @start_rgn: start scanning from (@start_rgn - 1) | 
 |  * @end_rgn: end scanning at (@end_rgn - 1) | 
 |  * Scan @type and merge neighboring compatible regions in [@start_rgn - 1, @end_rgn) | 
 |  */ | 
 | static void __init_memblock memblock_merge_regions(struct memblock_type *type, | 
 | 						   unsigned long start_rgn, | 
 | 						   unsigned long end_rgn) | 
 | { | 
 | 	int i = 0; | 
 | 	if (start_rgn) | 
 | 		i = start_rgn - 1; | 
 | 	end_rgn = min(end_rgn, type->cnt - 1); | 
 | 	while (i < end_rgn) { | 
 | 		struct memblock_region *this = &type->regions[i]; | 
 | 		struct memblock_region *next = &type->regions[i + 1]; | 
 |  | 
 | 		if (this->base + this->size != next->base || | 
 | 		    memblock_get_region_node(this) != | 
 | 		    memblock_get_region_node(next) || | 
 | 		    this->flags != next->flags) { | 
 | 			BUG_ON(this->base + this->size > next->base); | 
 | 			i++; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		this->size += next->size; | 
 | 		/* move forward from next + 1, index of which is i + 2 */ | 
 | 		memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next)); | 
 | 		type->cnt--; | 
 | 		end_rgn--; | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * memblock_insert_region - insert new memblock region | 
 |  * @type:	memblock type to insert into | 
 |  * @idx:	index for the insertion point | 
 |  * @base:	base address of the new region | 
 |  * @size:	size of the new region | 
 |  * @nid:	node id of the new region | 
 |  * @flags:	flags of the new region | 
 |  * | 
 |  * Insert new memblock region [@base, @base + @size) into @type at @idx. | 
 |  * @type must already have extra room to accommodate the new region. | 
 |  */ | 
 | static void __init_memblock memblock_insert_region(struct memblock_type *type, | 
 | 						   int idx, phys_addr_t base, | 
 | 						   phys_addr_t size, | 
 | 						   int nid, | 
 | 						   enum memblock_flags flags) | 
 | { | 
 | 	struct memblock_region *rgn = &type->regions[idx]; | 
 |  | 
 | 	BUG_ON(type->cnt >= type->max); | 
 | 	memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn)); | 
 | 	rgn->base = base; | 
 | 	rgn->size = size; | 
 | 	rgn->flags = flags; | 
 | 	memblock_set_region_node(rgn, nid); | 
 | 	type->cnt++; | 
 | 	type->total_size += size; | 
 | } | 
 |  | 
 | /** | 
 |  * memblock_add_range - add new memblock region | 
 |  * @type: memblock type to add new region into | 
 |  * @base: base address of the new region | 
 |  * @size: size of the new region | 
 |  * @nid: nid of the new region | 
 |  * @flags: flags of the new region | 
 |  * | 
 |  * Add new memblock region [@base, @base + @size) into @type.  The new region | 
 |  * is allowed to overlap with existing ones - overlaps don't affect already | 
 |  * existing regions.  @type is guaranteed to be minimal (all neighbouring | 
 |  * compatible regions are merged) after the addition. | 
 |  * | 
 |  * Return: | 
 |  * 0 on success, -errno on failure. | 
 |  */ | 
 | static int __init_memblock memblock_add_range(struct memblock_type *type, | 
 | 				phys_addr_t base, phys_addr_t size, | 
 | 				int nid, enum memblock_flags flags) | 
 | { | 
 | 	bool insert = false; | 
 | 	phys_addr_t obase = base; | 
 | 	phys_addr_t end = base + memblock_cap_size(base, &size); | 
 | 	int idx, nr_new, start_rgn = -1, end_rgn; | 
 | 	struct memblock_region *rgn; | 
 |  | 
 | 	if (!size) | 
 | 		return 0; | 
 |  | 
 | 	/* special case for empty array */ | 
 | 	if (type->regions[0].size == 0) { | 
 | 		WARN_ON(type->cnt != 0 || type->total_size); | 
 | 		type->regions[0].base = base; | 
 | 		type->regions[0].size = size; | 
 | 		type->regions[0].flags = flags; | 
 | 		memblock_set_region_node(&type->regions[0], nid); | 
 | 		type->total_size = size; | 
 | 		type->cnt = 1; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * The worst case is when new range overlaps all existing regions, | 
 | 	 * then we'll need type->cnt + 1 empty regions in @type. So if | 
 | 	 * type->cnt * 2 + 1 is less than or equal to type->max, we know | 
 | 	 * that there is enough empty regions in @type, and we can insert | 
 | 	 * regions directly. | 
 | 	 */ | 
 | 	if (type->cnt * 2 + 1 <= type->max) | 
 | 		insert = true; | 
 |  | 
 | repeat: | 
 | 	/* | 
 | 	 * The following is executed twice.  Once with %false @insert and | 
 | 	 * then with %true.  The first counts the number of regions needed | 
 | 	 * to accommodate the new area.  The second actually inserts them. | 
 | 	 */ | 
 | 	base = obase; | 
 | 	nr_new = 0; | 
 |  | 
 | 	for_each_memblock_type(idx, type, rgn) { | 
 | 		phys_addr_t rbase = rgn->base; | 
 | 		phys_addr_t rend = rbase + rgn->size; | 
 |  | 
 | 		if (rbase >= end) | 
 | 			break; | 
 | 		if (rend <= base) | 
 | 			continue; | 
 | 		/* | 
 | 		 * @rgn overlaps.  If it separates the lower part of new | 
 | 		 * area, insert that portion. | 
 | 		 */ | 
 | 		if (rbase > base) { | 
 | #ifdef CONFIG_NUMA | 
 | 			WARN_ON(nid != memblock_get_region_node(rgn)); | 
 | #endif | 
 | 			WARN_ON(flags != rgn->flags); | 
 | 			nr_new++; | 
 | 			if (insert) { | 
 | 				if (start_rgn == -1) | 
 | 					start_rgn = idx; | 
 | 				end_rgn = idx + 1; | 
 | 				memblock_insert_region(type, idx++, base, | 
 | 						       rbase - base, nid, | 
 | 						       flags); | 
 | 			} | 
 | 		} | 
 | 		/* area below @rend is dealt with, forget about it */ | 
 | 		base = min(rend, end); | 
 | 	} | 
 |  | 
 | 	/* insert the remaining portion */ | 
 | 	if (base < end) { | 
 | 		nr_new++; | 
 | 		if (insert) { | 
 | 			if (start_rgn == -1) | 
 | 				start_rgn = idx; | 
 | 			end_rgn = idx + 1; | 
 | 			memblock_insert_region(type, idx, base, end - base, | 
 | 					       nid, flags); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (!nr_new) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * If this was the first round, resize array and repeat for actual | 
 | 	 * insertions; otherwise, merge and return. | 
 | 	 */ | 
 | 	if (!insert) { | 
 | 		while (type->cnt + nr_new > type->max) | 
 | 			if (memblock_double_array(type, obase, size) < 0) | 
 | 				return -ENOMEM; | 
 | 		insert = true; | 
 | 		goto repeat; | 
 | 	} else { | 
 | 		memblock_merge_regions(type, start_rgn, end_rgn); | 
 | 		return 0; | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * memblock_add_node - add new memblock region within a NUMA node | 
 |  * @base: base address of the new region | 
 |  * @size: size of the new region | 
 |  * @nid: nid of the new region | 
 |  * @flags: flags of the new region | 
 |  * | 
 |  * Add new memblock region [@base, @base + @size) to the "memory" | 
 |  * type. See memblock_add_range() description for mode details | 
 |  * | 
 |  * Return: | 
 |  * 0 on success, -errno on failure. | 
 |  */ | 
 | int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size, | 
 | 				      int nid, enum memblock_flags flags) | 
 | { | 
 | 	phys_addr_t end = base + size - 1; | 
 |  | 
 | 	memblock_dbg("%s: [%pa-%pa] nid=%d flags=%x %pS\n", __func__, | 
 | 		     &base, &end, nid, flags, (void *)_RET_IP_); | 
 |  | 
 | 	return memblock_add_range(&memblock.memory, base, size, nid, flags); | 
 | } | 
 |  | 
 | /** | 
 |  * memblock_add - add new memblock region | 
 |  * @base: base address of the new region | 
 |  * @size: size of the new region | 
 |  * | 
 |  * Add new memblock region [@base, @base + @size) to the "memory" | 
 |  * type. See memblock_add_range() description for mode details | 
 |  * | 
 |  * Return: | 
 |  * 0 on success, -errno on failure. | 
 |  */ | 
 | int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size) | 
 | { | 
 | 	phys_addr_t end = base + size - 1; | 
 |  | 
 | 	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__, | 
 | 		     &base, &end, (void *)_RET_IP_); | 
 |  | 
 | 	return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0); | 
 | } | 
 |  | 
 | /** | 
 |  * memblock_validate_numa_coverage - check if amount of memory with | 
 |  * no node ID assigned is less than a threshold | 
 |  * @threshold_bytes: maximal number of pages that can have unassigned node | 
 |  * ID (in bytes). | 
 |  * | 
 |  * A buggy firmware may report memory that does not belong to any node. | 
 |  * Check if amount of such memory is below @threshold_bytes. | 
 |  * | 
 |  * Return: true on success, false on failure. | 
 |  */ | 
 | bool __init_memblock memblock_validate_numa_coverage(unsigned long threshold_bytes) | 
 | { | 
 | 	unsigned long nr_pages = 0; | 
 | 	unsigned long start_pfn, end_pfn, mem_size_mb; | 
 | 	int nid, i; | 
 |  | 
 | 	/* calculate lose page */ | 
 | 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { | 
 | 		if (!numa_valid_node(nid)) | 
 | 			nr_pages += end_pfn - start_pfn; | 
 | 	} | 
 |  | 
 | 	if ((nr_pages << PAGE_SHIFT) >= threshold_bytes) { | 
 | 		mem_size_mb = memblock_phys_mem_size() >> 20; | 
 | 		pr_err("NUMA: no nodes coverage for %luMB of %luMB RAM\n", | 
 | 		       (nr_pages << PAGE_SHIFT) >> 20, mem_size_mb); | 
 | 		return false; | 
 | 	} | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 |  | 
 | /** | 
 |  * memblock_isolate_range - isolate given range into disjoint memblocks | 
 |  * @type: memblock type to isolate range for | 
 |  * @base: base of range to isolate | 
 |  * @size: size of range to isolate | 
 |  * @start_rgn: out parameter for the start of isolated region | 
 |  * @end_rgn: out parameter for the end of isolated region | 
 |  * | 
 |  * Walk @type and ensure that regions don't cross the boundaries defined by | 
 |  * [@base, @base + @size).  Crossing regions are split at the boundaries, | 
 |  * which may create at most two more regions.  The index of the first | 
 |  * region inside the range is returned in *@start_rgn and the index of the | 
 |  * first region after the range is returned in *@end_rgn. | 
 |  * | 
 |  * Return: | 
 |  * 0 on success, -errno on failure. | 
 |  */ | 
 | static int __init_memblock memblock_isolate_range(struct memblock_type *type, | 
 | 					phys_addr_t base, phys_addr_t size, | 
 | 					int *start_rgn, int *end_rgn) | 
 | { | 
 | 	phys_addr_t end = base + memblock_cap_size(base, &size); | 
 | 	int idx; | 
 | 	struct memblock_region *rgn; | 
 |  | 
 | 	*start_rgn = *end_rgn = 0; | 
 |  | 
 | 	if (!size) | 
 | 		return 0; | 
 |  | 
 | 	/* we'll create at most two more regions */ | 
 | 	while (type->cnt + 2 > type->max) | 
 | 		if (memblock_double_array(type, base, size) < 0) | 
 | 			return -ENOMEM; | 
 |  | 
 | 	for_each_memblock_type(idx, type, rgn) { | 
 | 		phys_addr_t rbase = rgn->base; | 
 | 		phys_addr_t rend = rbase + rgn->size; | 
 |  | 
 | 		if (rbase >= end) | 
 | 			break; | 
 | 		if (rend <= base) | 
 | 			continue; | 
 |  | 
 | 		if (rbase < base) { | 
 | 			/* | 
 | 			 * @rgn intersects from below.  Split and continue | 
 | 			 * to process the next region - the new top half. | 
 | 			 */ | 
 | 			rgn->base = base; | 
 | 			rgn->size -= base - rbase; | 
 | 			type->total_size -= base - rbase; | 
 | 			memblock_insert_region(type, idx, rbase, base - rbase, | 
 | 					       memblock_get_region_node(rgn), | 
 | 					       rgn->flags); | 
 | 		} else if (rend > end) { | 
 | 			/* | 
 | 			 * @rgn intersects from above.  Split and redo the | 
 | 			 * current region - the new bottom half. | 
 | 			 */ | 
 | 			rgn->base = end; | 
 | 			rgn->size -= end - rbase; | 
 | 			type->total_size -= end - rbase; | 
 | 			memblock_insert_region(type, idx--, rbase, end - rbase, | 
 | 					       memblock_get_region_node(rgn), | 
 | 					       rgn->flags); | 
 | 		} else { | 
 | 			/* @rgn is fully contained, record it */ | 
 | 			if (!*end_rgn) | 
 | 				*start_rgn = idx; | 
 | 			*end_rgn = idx + 1; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int __init_memblock memblock_remove_range(struct memblock_type *type, | 
 | 					  phys_addr_t base, phys_addr_t size) | 
 | { | 
 | 	int start_rgn, end_rgn; | 
 | 	int i, ret; | 
 |  | 
 | 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	for (i = end_rgn - 1; i >= start_rgn; i--) | 
 | 		memblock_remove_region(type, i); | 
 | 	return 0; | 
 | } | 
 |  | 
 | int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size) | 
 | { | 
 | 	phys_addr_t end = base + size - 1; | 
 |  | 
 | 	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__, | 
 | 		     &base, &end, (void *)_RET_IP_); | 
 |  | 
 | 	return memblock_remove_range(&memblock.memory, base, size); | 
 | } | 
 |  | 
 | /** | 
 |  * memblock_free - free boot memory allocation | 
 |  * @ptr: starting address of the  boot memory allocation | 
 |  * @size: size of the boot memory block in bytes | 
 |  * | 
 |  * Free boot memory block previously allocated by memblock_alloc_xx() API. | 
 |  * The freeing memory will not be released to the buddy allocator. | 
 |  */ | 
 | void __init_memblock memblock_free(void *ptr, size_t size) | 
 | { | 
 | 	if (ptr) | 
 | 		memblock_phys_free(__pa(ptr), size); | 
 | } | 
 |  | 
 | /** | 
 |  * memblock_phys_free - free boot memory block | 
 |  * @base: phys starting address of the  boot memory block | 
 |  * @size: size of the boot memory block in bytes | 
 |  * | 
 |  * Free boot memory block previously allocated by memblock_phys_alloc_xx() API. | 
 |  * The freeing memory will not be released to the buddy allocator. | 
 |  */ | 
 | int __init_memblock memblock_phys_free(phys_addr_t base, phys_addr_t size) | 
 | { | 
 | 	phys_addr_t end = base + size - 1; | 
 |  | 
 | 	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__, | 
 | 		     &base, &end, (void *)_RET_IP_); | 
 |  | 
 | 	kmemleak_free_part_phys(base, size); | 
 | 	return memblock_remove_range(&memblock.reserved, base, size); | 
 | } | 
 |  | 
 | int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size) | 
 | { | 
 | 	phys_addr_t end = base + size - 1; | 
 |  | 
 | 	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__, | 
 | 		     &base, &end, (void *)_RET_IP_); | 
 |  | 
 | 	return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0); | 
 | } | 
 |  | 
 | #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP | 
 | int __init_memblock memblock_physmem_add(phys_addr_t base, phys_addr_t size) | 
 | { | 
 | 	phys_addr_t end = base + size - 1; | 
 |  | 
 | 	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__, | 
 | 		     &base, &end, (void *)_RET_IP_); | 
 |  | 
 | 	return memblock_add_range(&physmem, base, size, MAX_NUMNODES, 0); | 
 | } | 
 | #endif | 
 |  | 
 | /** | 
 |  * memblock_setclr_flag - set or clear flag for a memory region | 
 |  * @type: memblock type to set/clear flag for | 
 |  * @base: base address of the region | 
 |  * @size: size of the region | 
 |  * @set: set or clear the flag | 
 |  * @flag: the flag to update | 
 |  * | 
 |  * This function isolates region [@base, @base + @size), and sets/clears flag | 
 |  * | 
 |  * Return: 0 on success, -errno on failure. | 
 |  */ | 
 | static int __init_memblock memblock_setclr_flag(struct memblock_type *type, | 
 | 				phys_addr_t base, phys_addr_t size, int set, int flag) | 
 | { | 
 | 	int i, ret, start_rgn, end_rgn; | 
 |  | 
 | 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	for (i = start_rgn; i < end_rgn; i++) { | 
 | 		struct memblock_region *r = &type->regions[i]; | 
 |  | 
 | 		if (set) | 
 | 			r->flags |= flag; | 
 | 		else | 
 | 			r->flags &= ~flag; | 
 | 	} | 
 |  | 
 | 	memblock_merge_regions(type, start_rgn, end_rgn); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG. | 
 |  * @base: the base phys addr of the region | 
 |  * @size: the size of the region | 
 |  * | 
 |  * Return: 0 on success, -errno on failure. | 
 |  */ | 
 | int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size) | 
 | { | 
 | 	return memblock_setclr_flag(&memblock.memory, base, size, 1, MEMBLOCK_HOTPLUG); | 
 | } | 
 |  | 
 | /** | 
 |  * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region. | 
 |  * @base: the base phys addr of the region | 
 |  * @size: the size of the region | 
 |  * | 
 |  * Return: 0 on success, -errno on failure. | 
 |  */ | 
 | int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size) | 
 | { | 
 | 	return memblock_setclr_flag(&memblock.memory, base, size, 0, MEMBLOCK_HOTPLUG); | 
 | } | 
 |  | 
 | /** | 
 |  * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR. | 
 |  * @base: the base phys addr of the region | 
 |  * @size: the size of the region | 
 |  * | 
 |  * Return: 0 on success, -errno on failure. | 
 |  */ | 
 | int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size) | 
 | { | 
 | 	if (!mirrored_kernelcore) | 
 | 		return 0; | 
 |  | 
 | 	system_has_some_mirror = true; | 
 |  | 
 | 	return memblock_setclr_flag(&memblock.memory, base, size, 1, MEMBLOCK_MIRROR); | 
 | } | 
 |  | 
 | /** | 
 |  * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP. | 
 |  * @base: the base phys addr of the region | 
 |  * @size: the size of the region | 
 |  * | 
 |  * The memory regions marked with %MEMBLOCK_NOMAP will not be added to the | 
 |  * direct mapping of the physical memory. These regions will still be | 
 |  * covered by the memory map. The struct page representing NOMAP memory | 
 |  * frames in the memory map will be PageReserved() | 
 |  * | 
 |  * Note: if the memory being marked %MEMBLOCK_NOMAP was allocated from | 
 |  * memblock, the caller must inform kmemleak to ignore that memory | 
 |  * | 
 |  * Return: 0 on success, -errno on failure. | 
 |  */ | 
 | int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size) | 
 | { | 
 | 	return memblock_setclr_flag(&memblock.memory, base, size, 1, MEMBLOCK_NOMAP); | 
 | } | 
 |  | 
 | /** | 
 |  * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region. | 
 |  * @base: the base phys addr of the region | 
 |  * @size: the size of the region | 
 |  * | 
 |  * Return: 0 on success, -errno on failure. | 
 |  */ | 
 | int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size) | 
 | { | 
 | 	return memblock_setclr_flag(&memblock.memory, base, size, 0, MEMBLOCK_NOMAP); | 
 | } | 
 |  | 
 | /** | 
 |  * memblock_reserved_mark_noinit - Mark a reserved memory region with flag | 
 |  * MEMBLOCK_RSRV_NOINIT which results in the struct pages not being initialized | 
 |  * for this region. | 
 |  * @base: the base phys addr of the region | 
 |  * @size: the size of the region | 
 |  * | 
 |  * struct pages will not be initialized for reserved memory regions marked with | 
 |  * %MEMBLOCK_RSRV_NOINIT. | 
 |  * | 
 |  * Return: 0 on success, -errno on failure. | 
 |  */ | 
 | int __init_memblock memblock_reserved_mark_noinit(phys_addr_t base, phys_addr_t size) | 
 | { | 
 | 	return memblock_setclr_flag(&memblock.reserved, base, size, 1, | 
 | 				    MEMBLOCK_RSRV_NOINIT); | 
 | } | 
 |  | 
 | static bool should_skip_region(struct memblock_type *type, | 
 | 			       struct memblock_region *m, | 
 | 			       int nid, int flags) | 
 | { | 
 | 	int m_nid = memblock_get_region_node(m); | 
 |  | 
 | 	/* we never skip regions when iterating memblock.reserved or physmem */ | 
 | 	if (type != memblock_memory) | 
 | 		return false; | 
 |  | 
 | 	/* only memory regions are associated with nodes, check it */ | 
 | 	if (numa_valid_node(nid) && nid != m_nid) | 
 | 		return true; | 
 |  | 
 | 	/* skip hotpluggable memory regions if needed */ | 
 | 	if (movable_node_is_enabled() && memblock_is_hotpluggable(m) && | 
 | 	    !(flags & MEMBLOCK_HOTPLUG)) | 
 | 		return true; | 
 |  | 
 | 	/* if we want mirror memory skip non-mirror memory regions */ | 
 | 	if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m)) | 
 | 		return true; | 
 |  | 
 | 	/* skip nomap memory unless we were asked for it explicitly */ | 
 | 	if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m)) | 
 | 		return true; | 
 |  | 
 | 	/* skip driver-managed memory unless we were asked for it explicitly */ | 
 | 	if (!(flags & MEMBLOCK_DRIVER_MANAGED) && memblock_is_driver_managed(m)) | 
 | 		return true; | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | /** | 
 |  * __next_mem_range - next function for for_each_free_mem_range() etc. | 
 |  * @idx: pointer to u64 loop variable | 
 |  * @nid: node selector, %NUMA_NO_NODE for all nodes | 
 |  * @flags: pick from blocks based on memory attributes | 
 |  * @type_a: pointer to memblock_type from where the range is taken | 
 |  * @type_b: pointer to memblock_type which excludes memory from being taken | 
 |  * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL | 
 |  * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL | 
 |  * @out_nid: ptr to int for nid of the range, can be %NULL | 
 |  * | 
 |  * Find the first area from *@idx which matches @nid, fill the out | 
 |  * parameters, and update *@idx for the next iteration.  The lower 32bit of | 
 |  * *@idx contains index into type_a and the upper 32bit indexes the | 
 |  * areas before each region in type_b.	For example, if type_b regions | 
 |  * look like the following, | 
 |  * | 
 |  *	0:[0-16), 1:[32-48), 2:[128-130) | 
 |  * | 
 |  * The upper 32bit indexes the following regions. | 
 |  * | 
 |  *	0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX) | 
 |  * | 
 |  * As both region arrays are sorted, the function advances the two indices | 
 |  * in lockstep and returns each intersection. | 
 |  */ | 
 | void __next_mem_range(u64 *idx, int nid, enum memblock_flags flags, | 
 | 		      struct memblock_type *type_a, | 
 | 		      struct memblock_type *type_b, phys_addr_t *out_start, | 
 | 		      phys_addr_t *out_end, int *out_nid) | 
 | { | 
 | 	int idx_a = *idx & 0xffffffff; | 
 | 	int idx_b = *idx >> 32; | 
 |  | 
 | 	for (; idx_a < type_a->cnt; idx_a++) { | 
 | 		struct memblock_region *m = &type_a->regions[idx_a]; | 
 |  | 
 | 		phys_addr_t m_start = m->base; | 
 | 		phys_addr_t m_end = m->base + m->size; | 
 | 		int	    m_nid = memblock_get_region_node(m); | 
 |  | 
 | 		if (should_skip_region(type_a, m, nid, flags)) | 
 | 			continue; | 
 |  | 
 | 		if (!type_b) { | 
 | 			if (out_start) | 
 | 				*out_start = m_start; | 
 | 			if (out_end) | 
 | 				*out_end = m_end; | 
 | 			if (out_nid) | 
 | 				*out_nid = m_nid; | 
 | 			idx_a++; | 
 | 			*idx = (u32)idx_a | (u64)idx_b << 32; | 
 | 			return; | 
 | 		} | 
 |  | 
 | 		/* scan areas before each reservation */ | 
 | 		for (; idx_b < type_b->cnt + 1; idx_b++) { | 
 | 			struct memblock_region *r; | 
 | 			phys_addr_t r_start; | 
 | 			phys_addr_t r_end; | 
 |  | 
 | 			r = &type_b->regions[idx_b]; | 
 | 			r_start = idx_b ? r[-1].base + r[-1].size : 0; | 
 | 			r_end = idx_b < type_b->cnt ? | 
 | 				r->base : PHYS_ADDR_MAX; | 
 |  | 
 | 			/* | 
 | 			 * if idx_b advanced past idx_a, | 
 | 			 * break out to advance idx_a | 
 | 			 */ | 
 | 			if (r_start >= m_end) | 
 | 				break; | 
 | 			/* if the two regions intersect, we're done */ | 
 | 			if (m_start < r_end) { | 
 | 				if (out_start) | 
 | 					*out_start = | 
 | 						max(m_start, r_start); | 
 | 				if (out_end) | 
 | 					*out_end = min(m_end, r_end); | 
 | 				if (out_nid) | 
 | 					*out_nid = m_nid; | 
 | 				/* | 
 | 				 * The region which ends first is | 
 | 				 * advanced for the next iteration. | 
 | 				 */ | 
 | 				if (m_end <= r_end) | 
 | 					idx_a++; | 
 | 				else | 
 | 					idx_b++; | 
 | 				*idx = (u32)idx_a | (u64)idx_b << 32; | 
 | 				return; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* signal end of iteration */ | 
 | 	*idx = ULLONG_MAX; | 
 | } | 
 |  | 
 | /** | 
 |  * __next_mem_range_rev - generic next function for for_each_*_range_rev() | 
 |  * | 
 |  * @idx: pointer to u64 loop variable | 
 |  * @nid: node selector, %NUMA_NO_NODE for all nodes | 
 |  * @flags: pick from blocks based on memory attributes | 
 |  * @type_a: pointer to memblock_type from where the range is taken | 
 |  * @type_b: pointer to memblock_type which excludes memory from being taken | 
 |  * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL | 
 |  * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL | 
 |  * @out_nid: ptr to int for nid of the range, can be %NULL | 
 |  * | 
 |  * Finds the next range from type_a which is not marked as unsuitable | 
 |  * in type_b. | 
 |  * | 
 |  * Reverse of __next_mem_range(). | 
 |  */ | 
 | void __init_memblock __next_mem_range_rev(u64 *idx, int nid, | 
 | 					  enum memblock_flags flags, | 
 | 					  struct memblock_type *type_a, | 
 | 					  struct memblock_type *type_b, | 
 | 					  phys_addr_t *out_start, | 
 | 					  phys_addr_t *out_end, int *out_nid) | 
 | { | 
 | 	int idx_a = *idx & 0xffffffff; | 
 | 	int idx_b = *idx >> 32; | 
 |  | 
 | 	if (*idx == (u64)ULLONG_MAX) { | 
 | 		idx_a = type_a->cnt - 1; | 
 | 		if (type_b != NULL) | 
 | 			idx_b = type_b->cnt; | 
 | 		else | 
 | 			idx_b = 0; | 
 | 	} | 
 |  | 
 | 	for (; idx_a >= 0; idx_a--) { | 
 | 		struct memblock_region *m = &type_a->regions[idx_a]; | 
 |  | 
 | 		phys_addr_t m_start = m->base; | 
 | 		phys_addr_t m_end = m->base + m->size; | 
 | 		int m_nid = memblock_get_region_node(m); | 
 |  | 
 | 		if (should_skip_region(type_a, m, nid, flags)) | 
 | 			continue; | 
 |  | 
 | 		if (!type_b) { | 
 | 			if (out_start) | 
 | 				*out_start = m_start; | 
 | 			if (out_end) | 
 | 				*out_end = m_end; | 
 | 			if (out_nid) | 
 | 				*out_nid = m_nid; | 
 | 			idx_a--; | 
 | 			*idx = (u32)idx_a | (u64)idx_b << 32; | 
 | 			return; | 
 | 		} | 
 |  | 
 | 		/* scan areas before each reservation */ | 
 | 		for (; idx_b >= 0; idx_b--) { | 
 | 			struct memblock_region *r; | 
 | 			phys_addr_t r_start; | 
 | 			phys_addr_t r_end; | 
 |  | 
 | 			r = &type_b->regions[idx_b]; | 
 | 			r_start = idx_b ? r[-1].base + r[-1].size : 0; | 
 | 			r_end = idx_b < type_b->cnt ? | 
 | 				r->base : PHYS_ADDR_MAX; | 
 | 			/* | 
 | 			 * if idx_b advanced past idx_a, | 
 | 			 * break out to advance idx_a | 
 | 			 */ | 
 |  | 
 | 			if (r_end <= m_start) | 
 | 				break; | 
 | 			/* if the two regions intersect, we're done */ | 
 | 			if (m_end > r_start) { | 
 | 				if (out_start) | 
 | 					*out_start = max(m_start, r_start); | 
 | 				if (out_end) | 
 | 					*out_end = min(m_end, r_end); | 
 | 				if (out_nid) | 
 | 					*out_nid = m_nid; | 
 | 				if (m_start >= r_start) | 
 | 					idx_a--; | 
 | 				else | 
 | 					idx_b--; | 
 | 				*idx = (u32)idx_a | (u64)idx_b << 32; | 
 | 				return; | 
 | 			} | 
 | 		} | 
 | 	} | 
 | 	/* signal end of iteration */ | 
 | 	*idx = ULLONG_MAX; | 
 | } | 
 |  | 
 | /* | 
 |  * Common iterator interface used to define for_each_mem_pfn_range(). | 
 |  */ | 
 | void __init_memblock __next_mem_pfn_range(int *idx, int nid, | 
 | 				unsigned long *out_start_pfn, | 
 | 				unsigned long *out_end_pfn, int *out_nid) | 
 | { | 
 | 	struct memblock_type *type = &memblock.memory; | 
 | 	struct memblock_region *r; | 
 | 	int r_nid; | 
 |  | 
 | 	while (++*idx < type->cnt) { | 
 | 		r = &type->regions[*idx]; | 
 | 		r_nid = memblock_get_region_node(r); | 
 |  | 
 | 		if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size)) | 
 | 			continue; | 
 | 		if (!numa_valid_node(nid) || nid == r_nid) | 
 | 			break; | 
 | 	} | 
 | 	if (*idx >= type->cnt) { | 
 | 		*idx = -1; | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (out_start_pfn) | 
 | 		*out_start_pfn = PFN_UP(r->base); | 
 | 	if (out_end_pfn) | 
 | 		*out_end_pfn = PFN_DOWN(r->base + r->size); | 
 | 	if (out_nid) | 
 | 		*out_nid = r_nid; | 
 | } | 
 |  | 
 | /** | 
 |  * memblock_set_node - set node ID on memblock regions | 
 |  * @base: base of area to set node ID for | 
 |  * @size: size of area to set node ID for | 
 |  * @type: memblock type to set node ID for | 
 |  * @nid: node ID to set | 
 |  * | 
 |  * Set the nid of memblock @type regions in [@base, @base + @size) to @nid. | 
 |  * Regions which cross the area boundaries are split as necessary. | 
 |  * | 
 |  * Return: | 
 |  * 0 on success, -errno on failure. | 
 |  */ | 
 | int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size, | 
 | 				      struct memblock_type *type, int nid) | 
 | { | 
 | #ifdef CONFIG_NUMA | 
 | 	int start_rgn, end_rgn; | 
 | 	int i, ret; | 
 |  | 
 | 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	for (i = start_rgn; i < end_rgn; i++) | 
 | 		memblock_set_region_node(&type->regions[i], nid); | 
 |  | 
 | 	memblock_merge_regions(type, start_rgn, end_rgn); | 
 | #endif | 
 | 	return 0; | 
 | } | 
 |  | 
 | #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT | 
 | /** | 
 |  * __next_mem_pfn_range_in_zone - iterator for for_each_*_range_in_zone() | 
 |  * | 
 |  * @idx: pointer to u64 loop variable | 
 |  * @zone: zone in which all of the memory blocks reside | 
 |  * @out_spfn: ptr to ulong for start pfn of the range, can be %NULL | 
 |  * @out_epfn: ptr to ulong for end pfn of the range, can be %NULL | 
 |  * | 
 |  * This function is meant to be a zone/pfn specific wrapper for the | 
 |  * for_each_mem_range type iterators. Specifically they are used in the | 
 |  * deferred memory init routines and as such we were duplicating much of | 
 |  * this logic throughout the code. So instead of having it in multiple | 
 |  * locations it seemed like it would make more sense to centralize this to | 
 |  * one new iterator that does everything they need. | 
 |  */ | 
 | void __init_memblock | 
 | __next_mem_pfn_range_in_zone(u64 *idx, struct zone *zone, | 
 | 			     unsigned long *out_spfn, unsigned long *out_epfn) | 
 | { | 
 | 	int zone_nid = zone_to_nid(zone); | 
 | 	phys_addr_t spa, epa; | 
 |  | 
 | 	__next_mem_range(idx, zone_nid, MEMBLOCK_NONE, | 
 | 			 &memblock.memory, &memblock.reserved, | 
 | 			 &spa, &epa, NULL); | 
 |  | 
 | 	while (*idx != U64_MAX) { | 
 | 		unsigned long epfn = PFN_DOWN(epa); | 
 | 		unsigned long spfn = PFN_UP(spa); | 
 |  | 
 | 		/* | 
 | 		 * Verify the end is at least past the start of the zone and | 
 | 		 * that we have at least one PFN to initialize. | 
 | 		 */ | 
 | 		if (zone->zone_start_pfn < epfn && spfn < epfn) { | 
 | 			/* if we went too far just stop searching */ | 
 | 			if (zone_end_pfn(zone) <= spfn) { | 
 | 				*idx = U64_MAX; | 
 | 				break; | 
 | 			} | 
 |  | 
 | 			if (out_spfn) | 
 | 				*out_spfn = max(zone->zone_start_pfn, spfn); | 
 | 			if (out_epfn) | 
 | 				*out_epfn = min(zone_end_pfn(zone), epfn); | 
 |  | 
 | 			return; | 
 | 		} | 
 |  | 
 | 		__next_mem_range(idx, zone_nid, MEMBLOCK_NONE, | 
 | 				 &memblock.memory, &memblock.reserved, | 
 | 				 &spa, &epa, NULL); | 
 | 	} | 
 |  | 
 | 	/* signal end of iteration */ | 
 | 	if (out_spfn) | 
 | 		*out_spfn = ULONG_MAX; | 
 | 	if (out_epfn) | 
 | 		*out_epfn = 0; | 
 | } | 
 |  | 
 | #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ | 
 |  | 
 | /** | 
 |  * memblock_alloc_range_nid - allocate boot memory block | 
 |  * @size: size of memory block to be allocated in bytes | 
 |  * @align: alignment of the region and block's size | 
 |  * @start: the lower bound of the memory region to allocate (phys address) | 
 |  * @end: the upper bound of the memory region to allocate (phys address) | 
 |  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node | 
 |  * @exact_nid: control the allocation fall back to other nodes | 
 |  * | 
 |  * The allocation is performed from memory region limited by | 
 |  * memblock.current_limit if @end == %MEMBLOCK_ALLOC_ACCESSIBLE. | 
 |  * | 
 |  * If the specified node can not hold the requested memory and @exact_nid | 
 |  * is false, the allocation falls back to any node in the system. | 
 |  * | 
 |  * For systems with memory mirroring, the allocation is attempted first | 
 |  * from the regions with mirroring enabled and then retried from any | 
 |  * memory region. | 
 |  * | 
 |  * In addition, function using kmemleak_alloc_phys for allocated boot | 
 |  * memory block, it is never reported as leaks. | 
 |  * | 
 |  * Return: | 
 |  * Physical address of allocated memory block on success, %0 on failure. | 
 |  */ | 
 | phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size, | 
 | 					phys_addr_t align, phys_addr_t start, | 
 | 					phys_addr_t end, int nid, | 
 | 					bool exact_nid) | 
 | { | 
 | 	enum memblock_flags flags = choose_memblock_flags(); | 
 | 	phys_addr_t found; | 
 |  | 
 | 	/* | 
 | 	 * Detect any accidental use of these APIs after slab is ready, as at | 
 | 	 * this moment memblock may be deinitialized already and its | 
 | 	 * internal data may be destroyed (after execution of memblock_free_all) | 
 | 	 */ | 
 | 	if (WARN_ON_ONCE(slab_is_available())) { | 
 | 		void *vaddr = kzalloc_node(size, GFP_NOWAIT, nid); | 
 |  | 
 | 		return vaddr ? virt_to_phys(vaddr) : 0; | 
 | 	} | 
 |  | 
 | 	if (!align) { | 
 | 		/* Can't use WARNs this early in boot on powerpc */ | 
 | 		dump_stack(); | 
 | 		align = SMP_CACHE_BYTES; | 
 | 	} | 
 |  | 
 | again: | 
 | 	found = memblock_find_in_range_node(size, align, start, end, nid, | 
 | 					    flags); | 
 | 	if (found && !memblock_reserve(found, size)) | 
 | 		goto done; | 
 |  | 
 | 	if (numa_valid_node(nid) && !exact_nid) { | 
 | 		found = memblock_find_in_range_node(size, align, start, | 
 | 						    end, NUMA_NO_NODE, | 
 | 						    flags); | 
 | 		if (found && !memblock_reserve(found, size)) | 
 | 			goto done; | 
 | 	} | 
 |  | 
 | 	if (flags & MEMBLOCK_MIRROR) { | 
 | 		flags &= ~MEMBLOCK_MIRROR; | 
 | 		pr_warn_ratelimited("Could not allocate %pap bytes of mirrored memory\n", | 
 | 			&size); | 
 | 		goto again; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 |  | 
 | done: | 
 | 	/* | 
 | 	 * Skip kmemleak for those places like kasan_init() and | 
 | 	 * early_pgtable_alloc() due to high volume. | 
 | 	 */ | 
 | 	if (end != MEMBLOCK_ALLOC_NOLEAKTRACE) | 
 | 		/* | 
 | 		 * Memblock allocated blocks are never reported as | 
 | 		 * leaks. This is because many of these blocks are | 
 | 		 * only referred via the physical address which is | 
 | 		 * not looked up by kmemleak. | 
 | 		 */ | 
 | 		kmemleak_alloc_phys(found, size, 0); | 
 |  | 
 | 	/* | 
 | 	 * Some Virtual Machine platforms, such as Intel TDX or AMD SEV-SNP, | 
 | 	 * require memory to be accepted before it can be used by the | 
 | 	 * guest. | 
 | 	 * | 
 | 	 * Accept the memory of the allocated buffer. | 
 | 	 */ | 
 | 	accept_memory(found, size); | 
 |  | 
 | 	return found; | 
 | } | 
 |  | 
 | /** | 
 |  * memblock_phys_alloc_range - allocate a memory block inside specified range | 
 |  * @size: size of memory block to be allocated in bytes | 
 |  * @align: alignment of the region and block's size | 
 |  * @start: the lower bound of the memory region to allocate (physical address) | 
 |  * @end: the upper bound of the memory region to allocate (physical address) | 
 |  * | 
 |  * Allocate @size bytes in the between @start and @end. | 
 |  * | 
 |  * Return: physical address of the allocated memory block on success, | 
 |  * %0 on failure. | 
 |  */ | 
 | phys_addr_t __init memblock_phys_alloc_range(phys_addr_t size, | 
 | 					     phys_addr_t align, | 
 | 					     phys_addr_t start, | 
 | 					     phys_addr_t end) | 
 | { | 
 | 	memblock_dbg("%s: %llu bytes align=0x%llx from=%pa max_addr=%pa %pS\n", | 
 | 		     __func__, (u64)size, (u64)align, &start, &end, | 
 | 		     (void *)_RET_IP_); | 
 | 	return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE, | 
 | 					false); | 
 | } | 
 |  | 
 | /** | 
 |  * memblock_phys_alloc_try_nid - allocate a memory block from specified NUMA node | 
 |  * @size: size of memory block to be allocated in bytes | 
 |  * @align: alignment of the region and block's size | 
 |  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node | 
 |  * | 
 |  * Allocates memory block from the specified NUMA node. If the node | 
 |  * has no available memory, attempts to allocated from any node in the | 
 |  * system. | 
 |  * | 
 |  * Return: physical address of the allocated memory block on success, | 
 |  * %0 on failure. | 
 |  */ | 
 | phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid) | 
 | { | 
 | 	return memblock_alloc_range_nid(size, align, 0, | 
 | 					MEMBLOCK_ALLOC_ACCESSIBLE, nid, false); | 
 | } | 
 |  | 
 | /** | 
 |  * memblock_alloc_internal - allocate boot memory block | 
 |  * @size: size of memory block to be allocated in bytes | 
 |  * @align: alignment of the region and block's size | 
 |  * @min_addr: the lower bound of the memory region to allocate (phys address) | 
 |  * @max_addr: the upper bound of the memory region to allocate (phys address) | 
 |  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node | 
 |  * @exact_nid: control the allocation fall back to other nodes | 
 |  * | 
 |  * Allocates memory block using memblock_alloc_range_nid() and | 
 |  * converts the returned physical address to virtual. | 
 |  * | 
 |  * The @min_addr limit is dropped if it can not be satisfied and the allocation | 
 |  * will fall back to memory below @min_addr. Other constraints, such | 
 |  * as node and mirrored memory will be handled again in | 
 |  * memblock_alloc_range_nid(). | 
 |  * | 
 |  * Return: | 
 |  * Virtual address of allocated memory block on success, NULL on failure. | 
 |  */ | 
 | static void * __init memblock_alloc_internal( | 
 | 				phys_addr_t size, phys_addr_t align, | 
 | 				phys_addr_t min_addr, phys_addr_t max_addr, | 
 | 				int nid, bool exact_nid) | 
 | { | 
 | 	phys_addr_t alloc; | 
 |  | 
 |  | 
 | 	if (max_addr > memblock.current_limit) | 
 | 		max_addr = memblock.current_limit; | 
 |  | 
 | 	alloc = memblock_alloc_range_nid(size, align, min_addr, max_addr, nid, | 
 | 					exact_nid); | 
 |  | 
 | 	/* retry allocation without lower limit */ | 
 | 	if (!alloc && min_addr) | 
 | 		alloc = memblock_alloc_range_nid(size, align, 0, max_addr, nid, | 
 | 						exact_nid); | 
 |  | 
 | 	if (!alloc) | 
 | 		return NULL; | 
 |  | 
 | 	return phys_to_virt(alloc); | 
 | } | 
 |  | 
 | /** | 
 |  * memblock_alloc_exact_nid_raw - allocate boot memory block on the exact node | 
 |  * without zeroing memory | 
 |  * @size: size of memory block to be allocated in bytes | 
 |  * @align: alignment of the region and block's size | 
 |  * @min_addr: the lower bound of the memory region from where the allocation | 
 |  *	  is preferred (phys address) | 
 |  * @max_addr: the upper bound of the memory region from where the allocation | 
 |  *	      is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to | 
 |  *	      allocate only from memory limited by memblock.current_limit value | 
 |  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node | 
 |  * | 
 |  * Public function, provides additional debug information (including caller | 
 |  * info), if enabled. Does not zero allocated memory. | 
 |  * | 
 |  * Return: | 
 |  * Virtual address of allocated memory block on success, NULL on failure. | 
 |  */ | 
 | void * __init memblock_alloc_exact_nid_raw( | 
 | 			phys_addr_t size, phys_addr_t align, | 
 | 			phys_addr_t min_addr, phys_addr_t max_addr, | 
 | 			int nid) | 
 | { | 
 | 	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n", | 
 | 		     __func__, (u64)size, (u64)align, nid, &min_addr, | 
 | 		     &max_addr, (void *)_RET_IP_); | 
 |  | 
 | 	return memblock_alloc_internal(size, align, min_addr, max_addr, nid, | 
 | 				       true); | 
 | } | 
 |  | 
 | /** | 
 |  * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing | 
 |  * memory and without panicking | 
 |  * @size: size of memory block to be allocated in bytes | 
 |  * @align: alignment of the region and block's size | 
 |  * @min_addr: the lower bound of the memory region from where the allocation | 
 |  *	  is preferred (phys address) | 
 |  * @max_addr: the upper bound of the memory region from where the allocation | 
 |  *	      is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to | 
 |  *	      allocate only from memory limited by memblock.current_limit value | 
 |  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node | 
 |  * | 
 |  * Public function, provides additional debug information (including caller | 
 |  * info), if enabled. Does not zero allocated memory, does not panic if request | 
 |  * cannot be satisfied. | 
 |  * | 
 |  * Return: | 
 |  * Virtual address of allocated memory block on success, NULL on failure. | 
 |  */ | 
 | void * __init memblock_alloc_try_nid_raw( | 
 | 			phys_addr_t size, phys_addr_t align, | 
 | 			phys_addr_t min_addr, phys_addr_t max_addr, | 
 | 			int nid) | 
 | { | 
 | 	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n", | 
 | 		     __func__, (u64)size, (u64)align, nid, &min_addr, | 
 | 		     &max_addr, (void *)_RET_IP_); | 
 |  | 
 | 	return memblock_alloc_internal(size, align, min_addr, max_addr, nid, | 
 | 				       false); | 
 | } | 
 |  | 
 | /** | 
 |  * memblock_alloc_try_nid - allocate boot memory block | 
 |  * @size: size of memory block to be allocated in bytes | 
 |  * @align: alignment of the region and block's size | 
 |  * @min_addr: the lower bound of the memory region from where the allocation | 
 |  *	  is preferred (phys address) | 
 |  * @max_addr: the upper bound of the memory region from where the allocation | 
 |  *	      is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to | 
 |  *	      allocate only from memory limited by memblock.current_limit value | 
 |  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node | 
 |  * | 
 |  * Public function, provides additional debug information (including caller | 
 |  * info), if enabled. This function zeroes the allocated memory. | 
 |  * | 
 |  * Return: | 
 |  * Virtual address of allocated memory block on success, NULL on failure. | 
 |  */ | 
 | void * __init memblock_alloc_try_nid( | 
 | 			phys_addr_t size, phys_addr_t align, | 
 | 			phys_addr_t min_addr, phys_addr_t max_addr, | 
 | 			int nid) | 
 | { | 
 | 	void *ptr; | 
 |  | 
 | 	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n", | 
 | 		     __func__, (u64)size, (u64)align, nid, &min_addr, | 
 | 		     &max_addr, (void *)_RET_IP_); | 
 | 	ptr = memblock_alloc_internal(size, align, | 
 | 					   min_addr, max_addr, nid, false); | 
 | 	if (ptr) | 
 | 		memset(ptr, 0, size); | 
 |  | 
 | 	return ptr; | 
 | } | 
 |  | 
 | /** | 
 |  * memblock_free_late - free pages directly to buddy allocator | 
 |  * @base: phys starting address of the  boot memory block | 
 |  * @size: size of the boot memory block in bytes | 
 |  * | 
 |  * This is only useful when the memblock allocator has already been torn | 
 |  * down, but we are still initializing the system.  Pages are released directly | 
 |  * to the buddy allocator. | 
 |  */ | 
 | void __init memblock_free_late(phys_addr_t base, phys_addr_t size) | 
 | { | 
 | 	phys_addr_t cursor, end; | 
 |  | 
 | 	end = base + size - 1; | 
 | 	memblock_dbg("%s: [%pa-%pa] %pS\n", | 
 | 		     __func__, &base, &end, (void *)_RET_IP_); | 
 | 	kmemleak_free_part_phys(base, size); | 
 | 	cursor = PFN_UP(base); | 
 | 	end = PFN_DOWN(base + size); | 
 |  | 
 | 	for (; cursor < end; cursor++) { | 
 | 		memblock_free_pages(pfn_to_page(cursor), cursor, 0); | 
 | 		totalram_pages_inc(); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Remaining API functions | 
 |  */ | 
 |  | 
 | phys_addr_t __init_memblock memblock_phys_mem_size(void) | 
 | { | 
 | 	return memblock.memory.total_size; | 
 | } | 
 |  | 
 | phys_addr_t __init_memblock memblock_reserved_size(void) | 
 | { | 
 | 	return memblock.reserved.total_size; | 
 | } | 
 |  | 
 | /** | 
 |  * memblock_estimated_nr_free_pages - return estimated number of free pages | 
 |  * from memblock point of view | 
 |  * | 
 |  * During bootup, subsystems might need a rough estimate of the number of free | 
 |  * pages in the whole system, before precise numbers are available from the | 
 |  * buddy. Especially with CONFIG_DEFERRED_STRUCT_PAGE_INIT, the numbers | 
 |  * obtained from the buddy might be very imprecise during bootup. | 
 |  * | 
 |  * Return: | 
 |  * An estimated number of free pages from memblock point of view. | 
 |  */ | 
 | unsigned long __init memblock_estimated_nr_free_pages(void) | 
 | { | 
 | 	return PHYS_PFN(memblock_phys_mem_size() - memblock_reserved_size()); | 
 | } | 
 |  | 
 | /* lowest address */ | 
 | phys_addr_t __init_memblock memblock_start_of_DRAM(void) | 
 | { | 
 | 	return memblock.memory.regions[0].base; | 
 | } | 
 |  | 
 | phys_addr_t __init_memblock memblock_end_of_DRAM(void) | 
 | { | 
 | 	int idx = memblock.memory.cnt - 1; | 
 |  | 
 | 	return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size); | 
 | } | 
 |  | 
 | static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit) | 
 | { | 
 | 	phys_addr_t max_addr = PHYS_ADDR_MAX; | 
 | 	struct memblock_region *r; | 
 |  | 
 | 	/* | 
 | 	 * translate the memory @limit size into the max address within one of | 
 | 	 * the memory memblock regions, if the @limit exceeds the total size | 
 | 	 * of those regions, max_addr will keep original value PHYS_ADDR_MAX | 
 | 	 */ | 
 | 	for_each_mem_region(r) { | 
 | 		if (limit <= r->size) { | 
 | 			max_addr = r->base + limit; | 
 | 			break; | 
 | 		} | 
 | 		limit -= r->size; | 
 | 	} | 
 |  | 
 | 	return max_addr; | 
 | } | 
 |  | 
 | void __init memblock_enforce_memory_limit(phys_addr_t limit) | 
 | { | 
 | 	phys_addr_t max_addr; | 
 |  | 
 | 	if (!limit) | 
 | 		return; | 
 |  | 
 | 	max_addr = __find_max_addr(limit); | 
 |  | 
 | 	/* @limit exceeds the total size of the memory, do nothing */ | 
 | 	if (max_addr == PHYS_ADDR_MAX) | 
 | 		return; | 
 |  | 
 | 	/* truncate both memory and reserved regions */ | 
 | 	memblock_remove_range(&memblock.memory, max_addr, | 
 | 			      PHYS_ADDR_MAX); | 
 | 	memblock_remove_range(&memblock.reserved, max_addr, | 
 | 			      PHYS_ADDR_MAX); | 
 | } | 
 |  | 
 | void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size) | 
 | { | 
 | 	int start_rgn, end_rgn; | 
 | 	int i, ret; | 
 |  | 
 | 	if (!size) | 
 | 		return; | 
 |  | 
 | 	if (!memblock_memory->total_size) { | 
 | 		pr_warn("%s: No memory registered yet\n", __func__); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	ret = memblock_isolate_range(&memblock.memory, base, size, | 
 | 						&start_rgn, &end_rgn); | 
 | 	if (ret) | 
 | 		return; | 
 |  | 
 | 	/* remove all the MAP regions */ | 
 | 	for (i = memblock.memory.cnt - 1; i >= end_rgn; i--) | 
 | 		if (!memblock_is_nomap(&memblock.memory.regions[i])) | 
 | 			memblock_remove_region(&memblock.memory, i); | 
 |  | 
 | 	for (i = start_rgn - 1; i >= 0; i--) | 
 | 		if (!memblock_is_nomap(&memblock.memory.regions[i])) | 
 | 			memblock_remove_region(&memblock.memory, i); | 
 |  | 
 | 	/* truncate the reserved regions */ | 
 | 	memblock_remove_range(&memblock.reserved, 0, base); | 
 | 	memblock_remove_range(&memblock.reserved, | 
 | 			base + size, PHYS_ADDR_MAX); | 
 | } | 
 |  | 
 | void __init memblock_mem_limit_remove_map(phys_addr_t limit) | 
 | { | 
 | 	phys_addr_t max_addr; | 
 |  | 
 | 	if (!limit) | 
 | 		return; | 
 |  | 
 | 	max_addr = __find_max_addr(limit); | 
 |  | 
 | 	/* @limit exceeds the total size of the memory, do nothing */ | 
 | 	if (max_addr == PHYS_ADDR_MAX) | 
 | 		return; | 
 |  | 
 | 	memblock_cap_memory_range(0, max_addr); | 
 | } | 
 |  | 
 | static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr) | 
 | { | 
 | 	unsigned int left = 0, right = type->cnt; | 
 |  | 
 | 	do { | 
 | 		unsigned int mid = (right + left) / 2; | 
 |  | 
 | 		if (addr < type->regions[mid].base) | 
 | 			right = mid; | 
 | 		else if (addr >= (type->regions[mid].base + | 
 | 				  type->regions[mid].size)) | 
 | 			left = mid + 1; | 
 | 		else | 
 | 			return mid; | 
 | 	} while (left < right); | 
 | 	return -1; | 
 | } | 
 |  | 
 | bool __init_memblock memblock_is_reserved(phys_addr_t addr) | 
 | { | 
 | 	return memblock_search(&memblock.reserved, addr) != -1; | 
 | } | 
 |  | 
 | bool __init_memblock memblock_is_memory(phys_addr_t addr) | 
 | { | 
 | 	return memblock_search(&memblock.memory, addr) != -1; | 
 | } | 
 |  | 
 | bool __init_memblock memblock_is_map_memory(phys_addr_t addr) | 
 | { | 
 | 	int i = memblock_search(&memblock.memory, addr); | 
 |  | 
 | 	if (i == -1) | 
 | 		return false; | 
 | 	return !memblock_is_nomap(&memblock.memory.regions[i]); | 
 | } | 
 |  | 
 | int __init_memblock memblock_search_pfn_nid(unsigned long pfn, | 
 | 			 unsigned long *start_pfn, unsigned long *end_pfn) | 
 | { | 
 | 	struct memblock_type *type = &memblock.memory; | 
 | 	int mid = memblock_search(type, PFN_PHYS(pfn)); | 
 |  | 
 | 	if (mid == -1) | 
 | 		return NUMA_NO_NODE; | 
 |  | 
 | 	*start_pfn = PFN_DOWN(type->regions[mid].base); | 
 | 	*end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size); | 
 |  | 
 | 	return memblock_get_region_node(&type->regions[mid]); | 
 | } | 
 |  | 
 | /** | 
 |  * memblock_is_region_memory - check if a region is a subset of memory | 
 |  * @base: base of region to check | 
 |  * @size: size of region to check | 
 |  * | 
 |  * Check if the region [@base, @base + @size) is a subset of a memory block. | 
 |  * | 
 |  * Return: | 
 |  * 0 if false, non-zero if true | 
 |  */ | 
 | bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size) | 
 | { | 
 | 	int idx = memblock_search(&memblock.memory, base); | 
 | 	phys_addr_t end = base + memblock_cap_size(base, &size); | 
 |  | 
 | 	if (idx == -1) | 
 | 		return false; | 
 | 	return (memblock.memory.regions[idx].base + | 
 | 		 memblock.memory.regions[idx].size) >= end; | 
 | } | 
 |  | 
 | /** | 
 |  * memblock_is_region_reserved - check if a region intersects reserved memory | 
 |  * @base: base of region to check | 
 |  * @size: size of region to check | 
 |  * | 
 |  * Check if the region [@base, @base + @size) intersects a reserved | 
 |  * memory block. | 
 |  * | 
 |  * Return: | 
 |  * True if they intersect, false if not. | 
 |  */ | 
 | bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size) | 
 | { | 
 | 	return memblock_overlaps_region(&memblock.reserved, base, size); | 
 | } | 
 |  | 
 | void __init_memblock memblock_trim_memory(phys_addr_t align) | 
 | { | 
 | 	phys_addr_t start, end, orig_start, orig_end; | 
 | 	struct memblock_region *r; | 
 |  | 
 | 	for_each_mem_region(r) { | 
 | 		orig_start = r->base; | 
 | 		orig_end = r->base + r->size; | 
 | 		start = round_up(orig_start, align); | 
 | 		end = round_down(orig_end, align); | 
 |  | 
 | 		if (start == orig_start && end == orig_end) | 
 | 			continue; | 
 |  | 
 | 		if (start < end) { | 
 | 			r->base = start; | 
 | 			r->size = end - start; | 
 | 		} else { | 
 | 			memblock_remove_region(&memblock.memory, | 
 | 					       r - memblock.memory.regions); | 
 | 			r--; | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | void __init_memblock memblock_set_current_limit(phys_addr_t limit) | 
 | { | 
 | 	memblock.current_limit = limit; | 
 | } | 
 |  | 
 | phys_addr_t __init_memblock memblock_get_current_limit(void) | 
 | { | 
 | 	return memblock.current_limit; | 
 | } | 
 |  | 
 | static void __init_memblock memblock_dump(struct memblock_type *type) | 
 | { | 
 | 	phys_addr_t base, end, size; | 
 | 	enum memblock_flags flags; | 
 | 	int idx; | 
 | 	struct memblock_region *rgn; | 
 |  | 
 | 	pr_info(" %s.cnt  = 0x%lx\n", type->name, type->cnt); | 
 |  | 
 | 	for_each_memblock_type(idx, type, rgn) { | 
 | 		char nid_buf[32] = ""; | 
 |  | 
 | 		base = rgn->base; | 
 | 		size = rgn->size; | 
 | 		end = base + size - 1; | 
 | 		flags = rgn->flags; | 
 | #ifdef CONFIG_NUMA | 
 | 		if (numa_valid_node(memblock_get_region_node(rgn))) | 
 | 			snprintf(nid_buf, sizeof(nid_buf), " on node %d", | 
 | 				 memblock_get_region_node(rgn)); | 
 | #endif | 
 | 		pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n", | 
 | 			type->name, idx, &base, &end, &size, nid_buf, flags); | 
 | 	} | 
 | } | 
 |  | 
 | static void __init_memblock __memblock_dump_all(void) | 
 | { | 
 | 	pr_info("MEMBLOCK configuration:\n"); | 
 | 	pr_info(" memory size = %pa reserved size = %pa\n", | 
 | 		&memblock.memory.total_size, | 
 | 		&memblock.reserved.total_size); | 
 |  | 
 | 	memblock_dump(&memblock.memory); | 
 | 	memblock_dump(&memblock.reserved); | 
 | #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP | 
 | 	memblock_dump(&physmem); | 
 | #endif | 
 | } | 
 |  | 
 | void __init_memblock memblock_dump_all(void) | 
 | { | 
 | 	if (memblock_debug) | 
 | 		__memblock_dump_all(); | 
 | } | 
 |  | 
 | void __init memblock_allow_resize(void) | 
 | { | 
 | 	memblock_can_resize = 1; | 
 | } | 
 |  | 
 | static int __init early_memblock(char *p) | 
 | { | 
 | 	if (p && strstr(p, "debug")) | 
 | 		memblock_debug = 1; | 
 | 	return 0; | 
 | } | 
 | early_param("memblock", early_memblock); | 
 |  | 
 | static void __init free_memmap(unsigned long start_pfn, unsigned long end_pfn) | 
 | { | 
 | 	struct page *start_pg, *end_pg; | 
 | 	phys_addr_t pg, pgend; | 
 |  | 
 | 	/* | 
 | 	 * Convert start_pfn/end_pfn to a struct page pointer. | 
 | 	 */ | 
 | 	start_pg = pfn_to_page(start_pfn - 1) + 1; | 
 | 	end_pg = pfn_to_page(end_pfn - 1) + 1; | 
 |  | 
 | 	/* | 
 | 	 * Convert to physical addresses, and round start upwards and end | 
 | 	 * downwards. | 
 | 	 */ | 
 | 	pg = PAGE_ALIGN(__pa(start_pg)); | 
 | 	pgend = PAGE_ALIGN_DOWN(__pa(end_pg)); | 
 |  | 
 | 	/* | 
 | 	 * If there are free pages between these, free the section of the | 
 | 	 * memmap array. | 
 | 	 */ | 
 | 	if (pg < pgend) | 
 | 		memblock_phys_free(pg, pgend - pg); | 
 | } | 
 |  | 
 | /* | 
 |  * The mem_map array can get very big.  Free the unused area of the memory map. | 
 |  */ | 
 | static void __init free_unused_memmap(void) | 
 | { | 
 | 	unsigned long start, end, prev_end = 0; | 
 | 	int i; | 
 |  | 
 | 	if (!IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) || | 
 | 	    IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP)) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * This relies on each bank being in address order. | 
 | 	 * The banks are sorted previously in bootmem_init(). | 
 | 	 */ | 
 | 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, NULL) { | 
 | #ifdef CONFIG_SPARSEMEM | 
 | 		/* | 
 | 		 * Take care not to free memmap entries that don't exist | 
 | 		 * due to SPARSEMEM sections which aren't present. | 
 | 		 */ | 
 | 		start = min(start, ALIGN(prev_end, PAGES_PER_SECTION)); | 
 | #endif | 
 | 		/* | 
 | 		 * Align down here since many operations in VM subsystem | 
 | 		 * presume that there are no holes in the memory map inside | 
 | 		 * a pageblock | 
 | 		 */ | 
 | 		start = pageblock_start_pfn(start); | 
 |  | 
 | 		/* | 
 | 		 * If we had a previous bank, and there is a space | 
 | 		 * between the current bank and the previous, free it. | 
 | 		 */ | 
 | 		if (prev_end && prev_end < start) | 
 | 			free_memmap(prev_end, start); | 
 |  | 
 | 		/* | 
 | 		 * Align up here since many operations in VM subsystem | 
 | 		 * presume that there are no holes in the memory map inside | 
 | 		 * a pageblock | 
 | 		 */ | 
 | 		prev_end = pageblock_align(end); | 
 | 	} | 
 |  | 
 | #ifdef CONFIG_SPARSEMEM | 
 | 	if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION)) { | 
 | 		prev_end = pageblock_align(end); | 
 | 		free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION)); | 
 | 	} | 
 | #endif | 
 | } | 
 |  | 
 | static void __init __free_pages_memory(unsigned long start, unsigned long end) | 
 | { | 
 | 	int order; | 
 |  | 
 | 	while (start < end) { | 
 | 		/* | 
 | 		 * Free the pages in the largest chunks alignment allows. | 
 | 		 * | 
 | 		 * __ffs() behaviour is undefined for 0. start == 0 is | 
 | 		 * MAX_PAGE_ORDER-aligned, set order to MAX_PAGE_ORDER for | 
 | 		 * the case. | 
 | 		 */ | 
 | 		if (start) | 
 | 			order = min_t(int, MAX_PAGE_ORDER, __ffs(start)); | 
 | 		else | 
 | 			order = MAX_PAGE_ORDER; | 
 |  | 
 | 		while (start + (1UL << order) > end) | 
 | 			order--; | 
 |  | 
 | 		memblock_free_pages(pfn_to_page(start), start, order); | 
 |  | 
 | 		start += (1UL << order); | 
 | 	} | 
 | } | 
 |  | 
 | static unsigned long __init __free_memory_core(phys_addr_t start, | 
 | 				 phys_addr_t end) | 
 | { | 
 | 	unsigned long start_pfn = PFN_UP(start); | 
 | 	unsigned long end_pfn = min_t(unsigned long, | 
 | 				      PFN_DOWN(end), max_low_pfn); | 
 |  | 
 | 	if (start_pfn >= end_pfn) | 
 | 		return 0; | 
 |  | 
 | 	__free_pages_memory(start_pfn, end_pfn); | 
 |  | 
 | 	return end_pfn - start_pfn; | 
 | } | 
 |  | 
 | static void __init memmap_init_reserved_pages(void) | 
 | { | 
 | 	struct memblock_region *region; | 
 | 	phys_addr_t start, end; | 
 | 	int nid; | 
 |  | 
 | 	/* | 
 | 	 * set nid on all reserved pages and also treat struct | 
 | 	 * pages for the NOMAP regions as PageReserved | 
 | 	 */ | 
 | 	for_each_mem_region(region) { | 
 | 		nid = memblock_get_region_node(region); | 
 | 		start = region->base; | 
 | 		end = start + region->size; | 
 |  | 
 | 		if (memblock_is_nomap(region)) | 
 | 			reserve_bootmem_region(start, end, nid); | 
 |  | 
 | 		memblock_set_node(start, end, &memblock.reserved, nid); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * initialize struct pages for reserved regions that don't have | 
 | 	 * the MEMBLOCK_RSRV_NOINIT flag set | 
 | 	 */ | 
 | 	for_each_reserved_mem_region(region) { | 
 | 		if (!memblock_is_reserved_noinit(region)) { | 
 | 			nid = memblock_get_region_node(region); | 
 | 			start = region->base; | 
 | 			end = start + region->size; | 
 |  | 
 | 			if (!numa_valid_node(nid)) | 
 | 				nid = early_pfn_to_nid(PFN_DOWN(start)); | 
 |  | 
 | 			reserve_bootmem_region(start, end, nid); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static unsigned long __init free_low_memory_core_early(void) | 
 | { | 
 | 	unsigned long count = 0; | 
 | 	phys_addr_t start, end; | 
 | 	u64 i; | 
 |  | 
 | 	memblock_clear_hotplug(0, -1); | 
 |  | 
 | 	memmap_init_reserved_pages(); | 
 |  | 
 | 	/* | 
 | 	 * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id | 
 | 	 *  because in some case like Node0 doesn't have RAM installed | 
 | 	 *  low ram will be on Node1 | 
 | 	 */ | 
 | 	for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, | 
 | 				NULL) | 
 | 		count += __free_memory_core(start, end); | 
 |  | 
 | 	return count; | 
 | } | 
 |  | 
 | static int reset_managed_pages_done __initdata; | 
 |  | 
 | static void __init reset_node_managed_pages(pg_data_t *pgdat) | 
 | { | 
 | 	struct zone *z; | 
 |  | 
 | 	for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++) | 
 | 		atomic_long_set(&z->managed_pages, 0); | 
 | } | 
 |  | 
 | void __init reset_all_zones_managed_pages(void) | 
 | { | 
 | 	struct pglist_data *pgdat; | 
 |  | 
 | 	if (reset_managed_pages_done) | 
 | 		return; | 
 |  | 
 | 	for_each_online_pgdat(pgdat) | 
 | 		reset_node_managed_pages(pgdat); | 
 |  | 
 | 	reset_managed_pages_done = 1; | 
 | } | 
 |  | 
 | /** | 
 |  * memblock_free_all - release free pages to the buddy allocator | 
 |  */ | 
 | void __init memblock_free_all(void) | 
 | { | 
 | 	unsigned long pages; | 
 |  | 
 | 	free_unused_memmap(); | 
 | 	reset_all_zones_managed_pages(); | 
 |  | 
 | 	pages = free_low_memory_core_early(); | 
 | 	totalram_pages_add(pages); | 
 | } | 
 |  | 
 | /* Keep a table to reserve named memory */ | 
 | #define RESERVE_MEM_MAX_ENTRIES		8 | 
 | #define RESERVE_MEM_NAME_SIZE		16 | 
 | struct reserve_mem_table { | 
 | 	char			name[RESERVE_MEM_NAME_SIZE]; | 
 | 	phys_addr_t		start; | 
 | 	phys_addr_t		size; | 
 | }; | 
 | static struct reserve_mem_table reserved_mem_table[RESERVE_MEM_MAX_ENTRIES]; | 
 | static int reserved_mem_count; | 
 |  | 
 | /* Add wildcard region with a lookup name */ | 
 | static void __init reserved_mem_add(phys_addr_t start, phys_addr_t size, | 
 | 				   const char *name) | 
 | { | 
 | 	struct reserve_mem_table *map; | 
 |  | 
 | 	map = &reserved_mem_table[reserved_mem_count++]; | 
 | 	map->start = start; | 
 | 	map->size = size; | 
 | 	strscpy(map->name, name); | 
 | } | 
 |  | 
 | /** | 
 |  * reserve_mem_find_by_name - Find reserved memory region with a given name | 
 |  * @name: The name that is attached to a reserved memory region | 
 |  * @start: If found, holds the start address | 
 |  * @size: If found, holds the size of the address. | 
 |  * | 
 |  * @start and @size are only updated if @name is found. | 
 |  * | 
 |  * Returns: 1 if found or 0 if not found. | 
 |  */ | 
 | int reserve_mem_find_by_name(const char *name, phys_addr_t *start, phys_addr_t *size) | 
 | { | 
 | 	struct reserve_mem_table *map; | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < reserved_mem_count; i++) { | 
 | 		map = &reserved_mem_table[i]; | 
 | 		if (!map->size) | 
 | 			continue; | 
 | 		if (strcmp(name, map->name) == 0) { | 
 | 			*start = map->start; | 
 | 			*size = map->size; | 
 | 			return 1; | 
 | 		} | 
 | 	} | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL_GPL(reserve_mem_find_by_name); | 
 |  | 
 | /* | 
 |  * Parse reserve_mem=nn:align:name | 
 |  */ | 
 | static int __init reserve_mem(char *p) | 
 | { | 
 | 	phys_addr_t start, size, align, tmp; | 
 | 	char *name; | 
 | 	char *oldp; | 
 | 	int len; | 
 |  | 
 | 	if (!p) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* Check if there's room for more reserved memory */ | 
 | 	if (reserved_mem_count >= RESERVE_MEM_MAX_ENTRIES) | 
 | 		return -EBUSY; | 
 |  | 
 | 	oldp = p; | 
 | 	size = memparse(p, &p); | 
 | 	if (!size || p == oldp) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (*p != ':') | 
 | 		return -EINVAL; | 
 |  | 
 | 	align = memparse(p+1, &p); | 
 | 	if (*p != ':') | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* | 
 | 	 * memblock_phys_alloc() doesn't like a zero size align, | 
 | 	 * but it is OK for this command to have it. | 
 | 	 */ | 
 | 	if (align < SMP_CACHE_BYTES) | 
 | 		align = SMP_CACHE_BYTES; | 
 |  | 
 | 	name = p + 1; | 
 | 	len = strlen(name); | 
 |  | 
 | 	/* name needs to have length but not too big */ | 
 | 	if (!len || len >= RESERVE_MEM_NAME_SIZE) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* Make sure that name has text */ | 
 | 	for (p = name; *p; p++) { | 
 | 		if (!isspace(*p)) | 
 | 			break; | 
 | 	} | 
 | 	if (!*p) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* Make sure the name is not already used */ | 
 | 	if (reserve_mem_find_by_name(name, &start, &tmp)) | 
 | 		return -EBUSY; | 
 |  | 
 | 	start = memblock_phys_alloc(size, align); | 
 | 	if (!start) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	reserved_mem_add(start, size, name); | 
 |  | 
 | 	return 1; | 
 | } | 
 | __setup("reserve_mem=", reserve_mem); | 
 |  | 
 | #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_ARCH_KEEP_MEMBLOCK) | 
 | static const char * const flagname[] = { | 
 | 	[ilog2(MEMBLOCK_HOTPLUG)] = "HOTPLUG", | 
 | 	[ilog2(MEMBLOCK_MIRROR)] = "MIRROR", | 
 | 	[ilog2(MEMBLOCK_NOMAP)] = "NOMAP", | 
 | 	[ilog2(MEMBLOCK_DRIVER_MANAGED)] = "DRV_MNG", | 
 | 	[ilog2(MEMBLOCK_RSRV_NOINIT)] = "RSV_NIT", | 
 | }; | 
 |  | 
 | static int memblock_debug_show(struct seq_file *m, void *private) | 
 | { | 
 | 	struct memblock_type *type = m->private; | 
 | 	struct memblock_region *reg; | 
 | 	int i, j, nid; | 
 | 	unsigned int count = ARRAY_SIZE(flagname); | 
 | 	phys_addr_t end; | 
 |  | 
 | 	for (i = 0; i < type->cnt; i++) { | 
 | 		reg = &type->regions[i]; | 
 | 		end = reg->base + reg->size - 1; | 
 | 		nid = memblock_get_region_node(reg); | 
 |  | 
 | 		seq_printf(m, "%4d: ", i); | 
 | 		seq_printf(m, "%pa..%pa ", ®->base, &end); | 
 | 		if (numa_valid_node(nid)) | 
 | 			seq_printf(m, "%4d ", nid); | 
 | 		else | 
 | 			seq_printf(m, "%4c ", 'x'); | 
 | 		if (reg->flags) { | 
 | 			for (j = 0; j < count; j++) { | 
 | 				if (reg->flags & (1U << j)) { | 
 | 					seq_printf(m, "%s\n", flagname[j]); | 
 | 					break; | 
 | 				} | 
 | 			} | 
 | 			if (j == count) | 
 | 				seq_printf(m, "%s\n", "UNKNOWN"); | 
 | 		} else { | 
 | 			seq_printf(m, "%s\n", "NONE"); | 
 | 		} | 
 | 	} | 
 | 	return 0; | 
 | } | 
 | DEFINE_SHOW_ATTRIBUTE(memblock_debug); | 
 |  | 
 | static int __init memblock_init_debugfs(void) | 
 | { | 
 | 	struct dentry *root = debugfs_create_dir("memblock", NULL); | 
 |  | 
 | 	debugfs_create_file("memory", 0444, root, | 
 | 			    &memblock.memory, &memblock_debug_fops); | 
 | 	debugfs_create_file("reserved", 0444, root, | 
 | 			    &memblock.reserved, &memblock_debug_fops); | 
 | #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP | 
 | 	debugfs_create_file("physmem", 0444, root, &physmem, | 
 | 			    &memblock_debug_fops); | 
 | #endif | 
 |  | 
 | 	return 0; | 
 | } | 
 | __initcall(memblock_init_debugfs); | 
 |  | 
 | #endif /* CONFIG_DEBUG_FS */ |