|  | // SPDX-License-Identifier: GPL-2.0-only | 
|  | /* | 
|  | *  linux/mm/oom_kill.c | 
|  | * | 
|  | *  Copyright (C)  1998,2000  Rik van Riel | 
|  | *	Thanks go out to Claus Fischer for some serious inspiration and | 
|  | *	for goading me into coding this file... | 
|  | *  Copyright (C)  2010  Google, Inc. | 
|  | *	Rewritten by David Rientjes | 
|  | * | 
|  | *  The routines in this file are used to kill a process when | 
|  | *  we're seriously out of memory. This gets called from __alloc_pages() | 
|  | *  in mm/page_alloc.c when we really run out of memory. | 
|  | * | 
|  | *  Since we won't call these routines often (on a well-configured | 
|  | *  machine) this file will double as a 'coding guide' and a signpost | 
|  | *  for newbie kernel hackers. It features several pointers to major | 
|  | *  kernel subsystems and hints as to where to find out what things do. | 
|  | */ | 
|  |  | 
|  | #include <linux/oom.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/err.h> | 
|  | #include <linux/gfp.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/sched/mm.h> | 
|  | #include <linux/sched/coredump.h> | 
|  | #include <linux/sched/task.h> | 
|  | #include <linux/sched/debug.h> | 
|  | #include <linux/swap.h> | 
|  | #include <linux/syscalls.h> | 
|  | #include <linux/timex.h> | 
|  | #include <linux/jiffies.h> | 
|  | #include <linux/cpuset.h> | 
|  | #include <linux/export.h> | 
|  | #include <linux/notifier.h> | 
|  | #include <linux/memcontrol.h> | 
|  | #include <linux/mempolicy.h> | 
|  | #include <linux/security.h> | 
|  | #include <linux/ptrace.h> | 
|  | #include <linux/freezer.h> | 
|  | #include <linux/ftrace.h> | 
|  | #include <linux/ratelimit.h> | 
|  | #include <linux/kthread.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/mmu_notifier.h> | 
|  | #include <linux/cred.h> | 
|  |  | 
|  | #include <asm/tlb.h> | 
|  | #include "internal.h" | 
|  | #include "slab.h" | 
|  |  | 
|  | #define CREATE_TRACE_POINTS | 
|  | #include <trace/events/oom.h> | 
|  |  | 
|  | static int sysctl_panic_on_oom; | 
|  | static int sysctl_oom_kill_allocating_task; | 
|  | static int sysctl_oom_dump_tasks = 1; | 
|  |  | 
|  | /* | 
|  | * Serializes oom killer invocations (out_of_memory()) from all contexts to | 
|  | * prevent from over eager oom killing (e.g. when the oom killer is invoked | 
|  | * from different domains). | 
|  | * | 
|  | * oom_killer_disable() relies on this lock to stabilize oom_killer_disabled | 
|  | * and mark_oom_victim | 
|  | */ | 
|  | DEFINE_MUTEX(oom_lock); | 
|  | /* Serializes oom_score_adj and oom_score_adj_min updates */ | 
|  | DEFINE_MUTEX(oom_adj_mutex); | 
|  |  | 
|  | static inline bool is_memcg_oom(struct oom_control *oc) | 
|  | { | 
|  | return oc->memcg != NULL; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_NUMA | 
|  | /** | 
|  | * oom_cpuset_eligible() - check task eligibility for kill | 
|  | * @start: task struct of which task to consider | 
|  | * @oc: pointer to struct oom_control | 
|  | * | 
|  | * Task eligibility is determined by whether or not a candidate task, @tsk, | 
|  | * shares the same mempolicy nodes as current if it is bound by such a policy | 
|  | * and whether or not it has the same set of allowed cpuset nodes. | 
|  | * | 
|  | * This function is assuming oom-killer context and 'current' has triggered | 
|  | * the oom-killer. | 
|  | */ | 
|  | static bool oom_cpuset_eligible(struct task_struct *start, | 
|  | struct oom_control *oc) | 
|  | { | 
|  | struct task_struct *tsk; | 
|  | bool ret = false; | 
|  | const nodemask_t *mask = oc->nodemask; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | for_each_thread(start, tsk) { | 
|  | if (mask) { | 
|  | /* | 
|  | * If this is a mempolicy constrained oom, tsk's | 
|  | * cpuset is irrelevant.  Only return true if its | 
|  | * mempolicy intersects current, otherwise it may be | 
|  | * needlessly killed. | 
|  | */ | 
|  | ret = mempolicy_in_oom_domain(tsk, mask); | 
|  | } else { | 
|  | /* | 
|  | * This is not a mempolicy constrained oom, so only | 
|  | * check the mems of tsk's cpuset. | 
|  | */ | 
|  | ret = cpuset_mems_allowed_intersects(current, tsk); | 
|  | } | 
|  | if (ret) | 
|  | break; | 
|  | } | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | #else | 
|  | static bool oom_cpuset_eligible(struct task_struct *tsk, struct oom_control *oc) | 
|  | { | 
|  | return true; | 
|  | } | 
|  | #endif /* CONFIG_NUMA */ | 
|  |  | 
|  | /* | 
|  | * The process p may have detached its own ->mm while exiting or through | 
|  | * kthread_use_mm(), but one or more of its subthreads may still have a valid | 
|  | * pointer.  Return p, or any of its subthreads with a valid ->mm, with | 
|  | * task_lock() held. | 
|  | */ | 
|  | struct task_struct *find_lock_task_mm(struct task_struct *p) | 
|  | { | 
|  | struct task_struct *t; | 
|  |  | 
|  | rcu_read_lock(); | 
|  |  | 
|  | for_each_thread(p, t) { | 
|  | task_lock(t); | 
|  | if (likely(t->mm)) | 
|  | goto found; | 
|  | task_unlock(t); | 
|  | } | 
|  | t = NULL; | 
|  | found: | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | return t; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * order == -1 means the oom kill is required by sysrq, otherwise only | 
|  | * for display purposes. | 
|  | */ | 
|  | static inline bool is_sysrq_oom(struct oom_control *oc) | 
|  | { | 
|  | return oc->order == -1; | 
|  | } | 
|  |  | 
|  | /* return true if the task is not adequate as candidate victim task. */ | 
|  | static bool oom_unkillable_task(struct task_struct *p) | 
|  | { | 
|  | if (is_global_init(p)) | 
|  | return true; | 
|  | if (p->flags & PF_KTHREAD) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check whether unreclaimable slab amount is greater than | 
|  | * all user memory(LRU pages). | 
|  | * dump_unreclaimable_slab() could help in the case that | 
|  | * oom due to too much unreclaimable slab used by kernel. | 
|  | */ | 
|  | static bool should_dump_unreclaim_slab(void) | 
|  | { | 
|  | unsigned long nr_lru; | 
|  |  | 
|  | nr_lru = global_node_page_state(NR_ACTIVE_ANON) + | 
|  | global_node_page_state(NR_INACTIVE_ANON) + | 
|  | global_node_page_state(NR_ACTIVE_FILE) + | 
|  | global_node_page_state(NR_INACTIVE_FILE) + | 
|  | global_node_page_state(NR_ISOLATED_ANON) + | 
|  | global_node_page_state(NR_ISOLATED_FILE) + | 
|  | global_node_page_state(NR_UNEVICTABLE); | 
|  |  | 
|  | return (global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B) > nr_lru); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * oom_badness - heuristic function to determine which candidate task to kill | 
|  | * @p: task struct of which task we should calculate | 
|  | * @totalpages: total present RAM allowed for page allocation | 
|  | * | 
|  | * The heuristic for determining which task to kill is made to be as simple and | 
|  | * predictable as possible.  The goal is to return the highest value for the | 
|  | * task consuming the most memory to avoid subsequent oom failures. | 
|  | */ | 
|  | long oom_badness(struct task_struct *p, unsigned long totalpages) | 
|  | { | 
|  | long points; | 
|  | long adj; | 
|  |  | 
|  | if (oom_unkillable_task(p)) | 
|  | return LONG_MIN; | 
|  |  | 
|  | p = find_lock_task_mm(p); | 
|  | if (!p) | 
|  | return LONG_MIN; | 
|  |  | 
|  | /* | 
|  | * Do not even consider tasks which are explicitly marked oom | 
|  | * unkillable or have been already oom reaped or the are in | 
|  | * the middle of vfork | 
|  | */ | 
|  | adj = (long)p->signal->oom_score_adj; | 
|  | if (adj == OOM_SCORE_ADJ_MIN || | 
|  | test_bit(MMF_OOM_SKIP, &p->mm->flags) || | 
|  | in_vfork(p)) { | 
|  | task_unlock(p); | 
|  | return LONG_MIN; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The baseline for the badness score is the proportion of RAM that each | 
|  | * task's rss, pagetable and swap space use. | 
|  | */ | 
|  | points = get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS) + | 
|  | mm_pgtables_bytes(p->mm) / PAGE_SIZE; | 
|  | task_unlock(p); | 
|  |  | 
|  | /* Normalize to oom_score_adj units */ | 
|  | adj *= totalpages / 1000; | 
|  | points += adj; | 
|  |  | 
|  | return points; | 
|  | } | 
|  |  | 
|  | static const char * const oom_constraint_text[] = { | 
|  | [CONSTRAINT_NONE] = "CONSTRAINT_NONE", | 
|  | [CONSTRAINT_CPUSET] = "CONSTRAINT_CPUSET", | 
|  | [CONSTRAINT_MEMORY_POLICY] = "CONSTRAINT_MEMORY_POLICY", | 
|  | [CONSTRAINT_MEMCG] = "CONSTRAINT_MEMCG", | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Determine the type of allocation constraint. | 
|  | */ | 
|  | static enum oom_constraint constrained_alloc(struct oom_control *oc) | 
|  | { | 
|  | struct zone *zone; | 
|  | struct zoneref *z; | 
|  | enum zone_type highest_zoneidx = gfp_zone(oc->gfp_mask); | 
|  | bool cpuset_limited = false; | 
|  | int nid; | 
|  |  | 
|  | if (is_memcg_oom(oc)) { | 
|  | oc->totalpages = mem_cgroup_get_max(oc->memcg) ?: 1; | 
|  | return CONSTRAINT_MEMCG; | 
|  | } | 
|  |  | 
|  | /* Default to all available memory */ | 
|  | oc->totalpages = totalram_pages() + total_swap_pages; | 
|  |  | 
|  | if (!IS_ENABLED(CONFIG_NUMA)) | 
|  | return CONSTRAINT_NONE; | 
|  |  | 
|  | if (!oc->zonelist) | 
|  | return CONSTRAINT_NONE; | 
|  | /* | 
|  | * Reach here only when __GFP_NOFAIL is used. So, we should avoid | 
|  | * to kill current.We have to random task kill in this case. | 
|  | * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now. | 
|  | */ | 
|  | if (oc->gfp_mask & __GFP_THISNODE) | 
|  | return CONSTRAINT_NONE; | 
|  |  | 
|  | /* | 
|  | * This is not a __GFP_THISNODE allocation, so a truncated nodemask in | 
|  | * the page allocator means a mempolicy is in effect.  Cpuset policy | 
|  | * is enforced in get_page_from_freelist(). | 
|  | */ | 
|  | if (oc->nodemask && | 
|  | !nodes_subset(node_states[N_MEMORY], *oc->nodemask)) { | 
|  | oc->totalpages = total_swap_pages; | 
|  | for_each_node_mask(nid, *oc->nodemask) | 
|  | oc->totalpages += node_present_pages(nid); | 
|  | return CONSTRAINT_MEMORY_POLICY; | 
|  | } | 
|  |  | 
|  | /* Check this allocation failure is caused by cpuset's wall function */ | 
|  | for_each_zone_zonelist_nodemask(zone, z, oc->zonelist, | 
|  | highest_zoneidx, oc->nodemask) | 
|  | if (!cpuset_zone_allowed(zone, oc->gfp_mask)) | 
|  | cpuset_limited = true; | 
|  |  | 
|  | if (cpuset_limited) { | 
|  | oc->totalpages = total_swap_pages; | 
|  | for_each_node_mask(nid, cpuset_current_mems_allowed) | 
|  | oc->totalpages += node_present_pages(nid); | 
|  | return CONSTRAINT_CPUSET; | 
|  | } | 
|  | return CONSTRAINT_NONE; | 
|  | } | 
|  |  | 
|  | static int oom_evaluate_task(struct task_struct *task, void *arg) | 
|  | { | 
|  | struct oom_control *oc = arg; | 
|  | long points; | 
|  |  | 
|  | if (oom_unkillable_task(task)) | 
|  | goto next; | 
|  |  | 
|  | /* p may not have freeable memory in nodemask */ | 
|  | if (!is_memcg_oom(oc) && !oom_cpuset_eligible(task, oc)) | 
|  | goto next; | 
|  |  | 
|  | /* | 
|  | * This task already has access to memory reserves and is being killed. | 
|  | * Don't allow any other task to have access to the reserves unless | 
|  | * the task has MMF_OOM_SKIP because chances that it would release | 
|  | * any memory is quite low. | 
|  | */ | 
|  | if (!is_sysrq_oom(oc) && tsk_is_oom_victim(task)) { | 
|  | if (test_bit(MMF_OOM_SKIP, &task->signal->oom_mm->flags)) | 
|  | goto next; | 
|  | goto abort; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If task is allocating a lot of memory and has been marked to be | 
|  | * killed first if it triggers an oom, then select it. | 
|  | */ | 
|  | if (oom_task_origin(task)) { | 
|  | points = LONG_MAX; | 
|  | goto select; | 
|  | } | 
|  |  | 
|  | points = oom_badness(task, oc->totalpages); | 
|  | if (points == LONG_MIN || points < oc->chosen_points) | 
|  | goto next; | 
|  |  | 
|  | select: | 
|  | if (oc->chosen) | 
|  | put_task_struct(oc->chosen); | 
|  | get_task_struct(task); | 
|  | oc->chosen = task; | 
|  | oc->chosen_points = points; | 
|  | next: | 
|  | return 0; | 
|  | abort: | 
|  | if (oc->chosen) | 
|  | put_task_struct(oc->chosen); | 
|  | oc->chosen = (void *)-1UL; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Simple selection loop. We choose the process with the highest number of | 
|  | * 'points'. In case scan was aborted, oc->chosen is set to -1. | 
|  | */ | 
|  | static void select_bad_process(struct oom_control *oc) | 
|  | { | 
|  | oc->chosen_points = LONG_MIN; | 
|  |  | 
|  | if (is_memcg_oom(oc)) | 
|  | mem_cgroup_scan_tasks(oc->memcg, oom_evaluate_task, oc); | 
|  | else { | 
|  | struct task_struct *p; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | for_each_process(p) | 
|  | if (oom_evaluate_task(p, oc)) | 
|  | break; | 
|  | rcu_read_unlock(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int dump_task(struct task_struct *p, void *arg) | 
|  | { | 
|  | struct oom_control *oc = arg; | 
|  | struct task_struct *task; | 
|  |  | 
|  | if (oom_unkillable_task(p)) | 
|  | return 0; | 
|  |  | 
|  | /* p may not have freeable memory in nodemask */ | 
|  | if (!is_memcg_oom(oc) && !oom_cpuset_eligible(p, oc)) | 
|  | return 0; | 
|  |  | 
|  | task = find_lock_task_mm(p); | 
|  | if (!task) { | 
|  | /* | 
|  | * All of p's threads have already detached their mm's. There's | 
|  | * no need to report them; they can't be oom killed anyway. | 
|  | */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | pr_info("[%7d] %5d %5d %8lu %8lu %8lu %8lu %9lu %8ld %8lu         %5hd %s\n", | 
|  | task->pid, from_kuid(&init_user_ns, task_uid(task)), | 
|  | task->tgid, task->mm->total_vm, get_mm_rss(task->mm), | 
|  | get_mm_counter(task->mm, MM_ANONPAGES), get_mm_counter(task->mm, MM_FILEPAGES), | 
|  | get_mm_counter(task->mm, MM_SHMEMPAGES), mm_pgtables_bytes(task->mm), | 
|  | get_mm_counter(task->mm, MM_SWAPENTS), | 
|  | task->signal->oom_score_adj, task->comm); | 
|  | task_unlock(task); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * dump_tasks - dump current memory state of all system tasks | 
|  | * @oc: pointer to struct oom_control | 
|  | * | 
|  | * Dumps the current memory state of all eligible tasks.  Tasks not in the same | 
|  | * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes | 
|  | * are not shown. | 
|  | * State information includes task's pid, uid, tgid, vm size, rss, | 
|  | * pgtables_bytes, swapents, oom_score_adj value, and name. | 
|  | */ | 
|  | void dump_tasks(struct oom_control *oc) | 
|  | { | 
|  | pr_info("Tasks state (memory values in pages):\n"); | 
|  | pr_info("[  pid  ]   uid  tgid total_vm      rss rss_anon rss_file rss_shmem pgtables_bytes swapents oom_score_adj name\n"); | 
|  |  | 
|  | if (is_memcg_oom(oc)) | 
|  | mem_cgroup_scan_tasks(oc->memcg, dump_task, oc); | 
|  | else { | 
|  | struct task_struct *p; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | for_each_process(p) | 
|  | dump_task(p, oc); | 
|  | rcu_read_unlock(); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(dump_tasks); | 
|  |  | 
|  | static void dump_oom_victim(struct oom_control *oc, struct task_struct *victim) | 
|  | { | 
|  | /* one line summary of the oom killer context. */ | 
|  | pr_info("oom-kill:constraint=%s,nodemask=%*pbl", | 
|  | oom_constraint_text[oc->constraint], | 
|  | nodemask_pr_args(oc->nodemask)); | 
|  | cpuset_print_current_mems_allowed(); | 
|  | mem_cgroup_print_oom_context(oc->memcg, victim); | 
|  | pr_cont(",task=%s,pid=%d,uid=%d\n", victim->comm, victim->pid, | 
|  | from_kuid(&init_user_ns, task_uid(victim))); | 
|  | } | 
|  |  | 
|  | static void dump_header(struct oom_control *oc) | 
|  | { | 
|  | pr_warn("%s invoked oom-killer: gfp_mask=%#x(%pGg), order=%d, oom_score_adj=%hd\n", | 
|  | current->comm, oc->gfp_mask, &oc->gfp_mask, oc->order, | 
|  | current->signal->oom_score_adj); | 
|  | if (!IS_ENABLED(CONFIG_COMPACTION) && oc->order) | 
|  | pr_warn("COMPACTION is disabled!!!\n"); | 
|  |  | 
|  | dump_stack(); | 
|  | if (is_memcg_oom(oc)) | 
|  | mem_cgroup_print_oom_meminfo(oc->memcg); | 
|  | else { | 
|  | __show_mem(SHOW_MEM_FILTER_NODES, oc->nodemask, gfp_zone(oc->gfp_mask)); | 
|  | if (should_dump_unreclaim_slab()) | 
|  | dump_unreclaimable_slab(); | 
|  | } | 
|  | if (sysctl_oom_dump_tasks) | 
|  | dump_tasks(oc); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Number of OOM victims in flight | 
|  | */ | 
|  | static atomic_t oom_victims = ATOMIC_INIT(0); | 
|  | static DECLARE_WAIT_QUEUE_HEAD(oom_victims_wait); | 
|  |  | 
|  | static bool oom_killer_disabled __read_mostly; | 
|  |  | 
|  | /* | 
|  | * task->mm can be NULL if the task is the exited group leader.  So to | 
|  | * determine whether the task is using a particular mm, we examine all the | 
|  | * task's threads: if one of those is using this mm then this task was also | 
|  | * using it. | 
|  | */ | 
|  | bool process_shares_mm(struct task_struct *p, struct mm_struct *mm) | 
|  | { | 
|  | struct task_struct *t; | 
|  |  | 
|  | for_each_thread(p, t) { | 
|  | struct mm_struct *t_mm = READ_ONCE(t->mm); | 
|  | if (t_mm) | 
|  | return t_mm == mm; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_MMU | 
|  | /* | 
|  | * OOM Reaper kernel thread which tries to reap the memory used by the OOM | 
|  | * victim (if that is possible) to help the OOM killer to move on. | 
|  | */ | 
|  | static struct task_struct *oom_reaper_th; | 
|  | static DECLARE_WAIT_QUEUE_HEAD(oom_reaper_wait); | 
|  | static struct task_struct *oom_reaper_list; | 
|  | static DEFINE_SPINLOCK(oom_reaper_lock); | 
|  |  | 
|  | static bool __oom_reap_task_mm(struct mm_struct *mm) | 
|  | { | 
|  | struct vm_area_struct *vma; | 
|  | bool ret = true; | 
|  | VMA_ITERATOR(vmi, mm, 0); | 
|  |  | 
|  | /* | 
|  | * Tell all users of get_user/copy_from_user etc... that the content | 
|  | * is no longer stable. No barriers really needed because unmapping | 
|  | * should imply barriers already and the reader would hit a page fault | 
|  | * if it stumbled over a reaped memory. | 
|  | */ | 
|  | set_bit(MMF_UNSTABLE, &mm->flags); | 
|  |  | 
|  | for_each_vma(vmi, vma) { | 
|  | if (vma->vm_flags & (VM_HUGETLB|VM_PFNMAP)) | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * Only anonymous pages have a good chance to be dropped | 
|  | * without additional steps which we cannot afford as we | 
|  | * are OOM already. | 
|  | * | 
|  | * We do not even care about fs backed pages because all | 
|  | * which are reclaimable have already been reclaimed and | 
|  | * we do not want to block exit_mmap by keeping mm ref | 
|  | * count elevated without a good reason. | 
|  | */ | 
|  | if (vma_is_anonymous(vma) || !(vma->vm_flags & VM_SHARED)) { | 
|  | struct mmu_notifier_range range; | 
|  | struct mmu_gather tlb; | 
|  |  | 
|  | mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, | 
|  | mm, vma->vm_start, | 
|  | vma->vm_end); | 
|  | tlb_gather_mmu(&tlb, mm); | 
|  | if (mmu_notifier_invalidate_range_start_nonblock(&range)) { | 
|  | tlb_finish_mmu(&tlb); | 
|  | ret = false; | 
|  | continue; | 
|  | } | 
|  | unmap_page_range(&tlb, vma, range.start, range.end, NULL); | 
|  | mmu_notifier_invalidate_range_end(&range); | 
|  | tlb_finish_mmu(&tlb); | 
|  | } | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Reaps the address space of the give task. | 
|  | * | 
|  | * Returns true on success and false if none or part of the address space | 
|  | * has been reclaimed and the caller should retry later. | 
|  | */ | 
|  | static bool oom_reap_task_mm(struct task_struct *tsk, struct mm_struct *mm) | 
|  | { | 
|  | bool ret = true; | 
|  |  | 
|  | if (!mmap_read_trylock(mm)) { | 
|  | trace_skip_task_reaping(tsk->pid); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * MMF_OOM_SKIP is set by exit_mmap when the OOM reaper can't | 
|  | * work on the mm anymore. The check for MMF_OOM_SKIP must run | 
|  | * under mmap_lock for reading because it serializes against the | 
|  | * mmap_write_lock();mmap_write_unlock() cycle in exit_mmap(). | 
|  | */ | 
|  | if (test_bit(MMF_OOM_SKIP, &mm->flags)) { | 
|  | trace_skip_task_reaping(tsk->pid); | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | trace_start_task_reaping(tsk->pid); | 
|  |  | 
|  | /* failed to reap part of the address space. Try again later */ | 
|  | ret = __oom_reap_task_mm(mm); | 
|  | if (!ret) | 
|  | goto out_finish; | 
|  |  | 
|  | pr_info("oom_reaper: reaped process %d (%s), now anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n", | 
|  | task_pid_nr(tsk), tsk->comm, | 
|  | K(get_mm_counter(mm, MM_ANONPAGES)), | 
|  | K(get_mm_counter(mm, MM_FILEPAGES)), | 
|  | K(get_mm_counter(mm, MM_SHMEMPAGES))); | 
|  | out_finish: | 
|  | trace_finish_task_reaping(tsk->pid); | 
|  | out_unlock: | 
|  | mmap_read_unlock(mm); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #define MAX_OOM_REAP_RETRIES 10 | 
|  | static void oom_reap_task(struct task_struct *tsk) | 
|  | { | 
|  | int attempts = 0; | 
|  | struct mm_struct *mm = tsk->signal->oom_mm; | 
|  |  | 
|  | /* Retry the mmap_read_trylock(mm) a few times */ | 
|  | while (attempts++ < MAX_OOM_REAP_RETRIES && !oom_reap_task_mm(tsk, mm)) | 
|  | schedule_timeout_idle(HZ/10); | 
|  |  | 
|  | if (attempts <= MAX_OOM_REAP_RETRIES || | 
|  | test_bit(MMF_OOM_SKIP, &mm->flags)) | 
|  | goto done; | 
|  |  | 
|  | pr_info("oom_reaper: unable to reap pid:%d (%s)\n", | 
|  | task_pid_nr(tsk), tsk->comm); | 
|  | sched_show_task(tsk); | 
|  | debug_show_all_locks(); | 
|  |  | 
|  | done: | 
|  | tsk->oom_reaper_list = NULL; | 
|  |  | 
|  | /* | 
|  | * Hide this mm from OOM killer because it has been either reaped or | 
|  | * somebody can't call mmap_write_unlock(mm). | 
|  | */ | 
|  | set_bit(MMF_OOM_SKIP, &mm->flags); | 
|  |  | 
|  | /* Drop a reference taken by queue_oom_reaper */ | 
|  | put_task_struct(tsk); | 
|  | } | 
|  |  | 
|  | static int oom_reaper(void *unused) | 
|  | { | 
|  | set_freezable(); | 
|  |  | 
|  | while (true) { | 
|  | struct task_struct *tsk = NULL; | 
|  |  | 
|  | wait_event_freezable(oom_reaper_wait, oom_reaper_list != NULL); | 
|  | spin_lock_irq(&oom_reaper_lock); | 
|  | if (oom_reaper_list != NULL) { | 
|  | tsk = oom_reaper_list; | 
|  | oom_reaper_list = tsk->oom_reaper_list; | 
|  | } | 
|  | spin_unlock_irq(&oom_reaper_lock); | 
|  |  | 
|  | if (tsk) | 
|  | oom_reap_task(tsk); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void wake_oom_reaper(struct timer_list *timer) | 
|  | { | 
|  | struct task_struct *tsk = container_of(timer, struct task_struct, | 
|  | oom_reaper_timer); | 
|  | struct mm_struct *mm = tsk->signal->oom_mm; | 
|  | unsigned long flags; | 
|  |  | 
|  | /* The victim managed to terminate on its own - see exit_mmap */ | 
|  | if (test_bit(MMF_OOM_SKIP, &mm->flags)) { | 
|  | put_task_struct(tsk); | 
|  | return; | 
|  | } | 
|  |  | 
|  | spin_lock_irqsave(&oom_reaper_lock, flags); | 
|  | tsk->oom_reaper_list = oom_reaper_list; | 
|  | oom_reaper_list = tsk; | 
|  | spin_unlock_irqrestore(&oom_reaper_lock, flags); | 
|  | trace_wake_reaper(tsk->pid); | 
|  | wake_up(&oom_reaper_wait); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Give the OOM victim time to exit naturally before invoking the oom_reaping. | 
|  | * The timers timeout is arbitrary... the longer it is, the longer the worst | 
|  | * case scenario for the OOM can take. If it is too small, the oom_reaper can | 
|  | * get in the way and release resources needed by the process exit path. | 
|  | * e.g. The futex robust list can sit in Anon|Private memory that gets reaped | 
|  | * before the exit path is able to wake the futex waiters. | 
|  | */ | 
|  | #define OOM_REAPER_DELAY (2*HZ) | 
|  | static void queue_oom_reaper(struct task_struct *tsk) | 
|  | { | 
|  | /* mm is already queued? */ | 
|  | if (test_and_set_bit(MMF_OOM_REAP_QUEUED, &tsk->signal->oom_mm->flags)) | 
|  | return; | 
|  |  | 
|  | get_task_struct(tsk); | 
|  | timer_setup(&tsk->oom_reaper_timer, wake_oom_reaper, 0); | 
|  | tsk->oom_reaper_timer.expires = jiffies + OOM_REAPER_DELAY; | 
|  | add_timer(&tsk->oom_reaper_timer); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SYSCTL | 
|  | static struct ctl_table vm_oom_kill_table[] = { | 
|  | { | 
|  | .procname	= "panic_on_oom", | 
|  | .data		= &sysctl_panic_on_oom, | 
|  | .maxlen		= sizeof(sysctl_panic_on_oom), | 
|  | .mode		= 0644, | 
|  | .proc_handler	= proc_dointvec_minmax, | 
|  | .extra1		= SYSCTL_ZERO, | 
|  | .extra2		= SYSCTL_TWO, | 
|  | }, | 
|  | { | 
|  | .procname	= "oom_kill_allocating_task", | 
|  | .data		= &sysctl_oom_kill_allocating_task, | 
|  | .maxlen		= sizeof(sysctl_oom_kill_allocating_task), | 
|  | .mode		= 0644, | 
|  | .proc_handler	= proc_dointvec, | 
|  | }, | 
|  | { | 
|  | .procname	= "oom_dump_tasks", | 
|  | .data		= &sysctl_oom_dump_tasks, | 
|  | .maxlen		= sizeof(sysctl_oom_dump_tasks), | 
|  | .mode		= 0644, | 
|  | .proc_handler	= proc_dointvec, | 
|  | }, | 
|  | }; | 
|  | #endif | 
|  |  | 
|  | static int __init oom_init(void) | 
|  | { | 
|  | oom_reaper_th = kthread_run(oom_reaper, NULL, "oom_reaper"); | 
|  | #ifdef CONFIG_SYSCTL | 
|  | register_sysctl_init("vm", vm_oom_kill_table); | 
|  | #endif | 
|  | return 0; | 
|  | } | 
|  | subsys_initcall(oom_init) | 
|  | #else | 
|  | static inline void queue_oom_reaper(struct task_struct *tsk) | 
|  | { | 
|  | } | 
|  | #endif /* CONFIG_MMU */ | 
|  |  | 
|  | /** | 
|  | * mark_oom_victim - mark the given task as OOM victim | 
|  | * @tsk: task to mark | 
|  | * | 
|  | * Has to be called with oom_lock held and never after | 
|  | * oom has been disabled already. | 
|  | * | 
|  | * tsk->mm has to be non NULL and caller has to guarantee it is stable (either | 
|  | * under task_lock or operate on the current). | 
|  | */ | 
|  | static void mark_oom_victim(struct task_struct *tsk) | 
|  | { | 
|  | const struct cred *cred; | 
|  | struct mm_struct *mm = tsk->mm; | 
|  |  | 
|  | WARN_ON(oom_killer_disabled); | 
|  | /* OOM killer might race with memcg OOM */ | 
|  | if (test_and_set_tsk_thread_flag(tsk, TIF_MEMDIE)) | 
|  | return; | 
|  |  | 
|  | /* oom_mm is bound to the signal struct life time. */ | 
|  | if (!cmpxchg(&tsk->signal->oom_mm, NULL, mm)) | 
|  | mmgrab(tsk->signal->oom_mm); | 
|  |  | 
|  | /* | 
|  | * Make sure that the task is woken up from uninterruptible sleep | 
|  | * if it is frozen because OOM killer wouldn't be able to free | 
|  | * any memory and livelock. freezing_slow_path will tell the freezer | 
|  | * that TIF_MEMDIE tasks should be ignored. | 
|  | */ | 
|  | __thaw_task(tsk); | 
|  | atomic_inc(&oom_victims); | 
|  | cred = get_task_cred(tsk); | 
|  | trace_mark_victim(tsk, cred->uid.val); | 
|  | put_cred(cred); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * exit_oom_victim - note the exit of an OOM victim | 
|  | */ | 
|  | void exit_oom_victim(void) | 
|  | { | 
|  | clear_thread_flag(TIF_MEMDIE); | 
|  |  | 
|  | if (!atomic_dec_return(&oom_victims)) | 
|  | wake_up_all(&oom_victims_wait); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * oom_killer_enable - enable OOM killer | 
|  | */ | 
|  | void oom_killer_enable(void) | 
|  | { | 
|  | oom_killer_disabled = false; | 
|  | pr_info("OOM killer enabled.\n"); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * oom_killer_disable - disable OOM killer | 
|  | * @timeout: maximum timeout to wait for oom victims in jiffies | 
|  | * | 
|  | * Forces all page allocations to fail rather than trigger OOM killer. | 
|  | * Will block and wait until all OOM victims are killed or the given | 
|  | * timeout expires. | 
|  | * | 
|  | * The function cannot be called when there are runnable user tasks because | 
|  | * the userspace would see unexpected allocation failures as a result. Any | 
|  | * new usage of this function should be consulted with MM people. | 
|  | * | 
|  | * Returns true if successful and false if the OOM killer cannot be | 
|  | * disabled. | 
|  | */ | 
|  | bool oom_killer_disable(signed long timeout) | 
|  | { | 
|  | signed long ret; | 
|  |  | 
|  | /* | 
|  | * Make sure to not race with an ongoing OOM killer. Check that the | 
|  | * current is not killed (possibly due to sharing the victim's memory). | 
|  | */ | 
|  | if (mutex_lock_killable(&oom_lock)) | 
|  | return false; | 
|  | oom_killer_disabled = true; | 
|  | mutex_unlock(&oom_lock); | 
|  |  | 
|  | ret = wait_event_interruptible_timeout(oom_victims_wait, | 
|  | !atomic_read(&oom_victims), timeout); | 
|  | if (ret <= 0) { | 
|  | oom_killer_enable(); | 
|  | return false; | 
|  | } | 
|  | pr_info("OOM killer disabled.\n"); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static inline bool __task_will_free_mem(struct task_struct *task) | 
|  | { | 
|  | struct signal_struct *sig = task->signal; | 
|  |  | 
|  | /* | 
|  | * A coredumping process may sleep for an extended period in | 
|  | * coredump_task_exit(), so the oom killer cannot assume that | 
|  | * the process will promptly exit and release memory. | 
|  | */ | 
|  | if (sig->core_state) | 
|  | return false; | 
|  |  | 
|  | if (sig->flags & SIGNAL_GROUP_EXIT) | 
|  | return true; | 
|  |  | 
|  | if (thread_group_empty(task) && (task->flags & PF_EXITING)) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Checks whether the given task is dying or exiting and likely to | 
|  | * release its address space. This means that all threads and processes | 
|  | * sharing the same mm have to be killed or exiting. | 
|  | * Caller has to make sure that task->mm is stable (hold task_lock or | 
|  | * it operates on the current). | 
|  | */ | 
|  | static bool task_will_free_mem(struct task_struct *task) | 
|  | { | 
|  | struct mm_struct *mm = task->mm; | 
|  | struct task_struct *p; | 
|  | bool ret = true; | 
|  |  | 
|  | /* | 
|  | * Skip tasks without mm because it might have passed its exit_mm and | 
|  | * exit_oom_victim. oom_reaper could have rescued that but do not rely | 
|  | * on that for now. We can consider find_lock_task_mm in future. | 
|  | */ | 
|  | if (!mm) | 
|  | return false; | 
|  |  | 
|  | if (!__task_will_free_mem(task)) | 
|  | return false; | 
|  |  | 
|  | /* | 
|  | * This task has already been drained by the oom reaper so there are | 
|  | * only small chances it will free some more | 
|  | */ | 
|  | if (test_bit(MMF_OOM_SKIP, &mm->flags)) | 
|  | return false; | 
|  |  | 
|  | if (atomic_read(&mm->mm_users) <= 1) | 
|  | return true; | 
|  |  | 
|  | /* | 
|  | * Make sure that all tasks which share the mm with the given tasks | 
|  | * are dying as well to make sure that a) nobody pins its mm and | 
|  | * b) the task is also reapable by the oom reaper. | 
|  | */ | 
|  | rcu_read_lock(); | 
|  | for_each_process(p) { | 
|  | if (!process_shares_mm(p, mm)) | 
|  | continue; | 
|  | if (same_thread_group(task, p)) | 
|  | continue; | 
|  | ret = __task_will_free_mem(p); | 
|  | if (!ret) | 
|  | break; | 
|  | } | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void __oom_kill_process(struct task_struct *victim, const char *message) | 
|  | { | 
|  | struct task_struct *p; | 
|  | struct mm_struct *mm; | 
|  | bool can_oom_reap = true; | 
|  |  | 
|  | p = find_lock_task_mm(victim); | 
|  | if (!p) { | 
|  | pr_info("%s: OOM victim %d (%s) is already exiting. Skip killing the task\n", | 
|  | message, task_pid_nr(victim), victim->comm); | 
|  | put_task_struct(victim); | 
|  | return; | 
|  | } else if (victim != p) { | 
|  | get_task_struct(p); | 
|  | put_task_struct(victim); | 
|  | victim = p; | 
|  | } | 
|  |  | 
|  | /* Get a reference to safely compare mm after task_unlock(victim) */ | 
|  | mm = victim->mm; | 
|  | mmgrab(mm); | 
|  |  | 
|  | /* Raise event before sending signal: task reaper must see this */ | 
|  | count_vm_event(OOM_KILL); | 
|  | memcg_memory_event_mm(mm, MEMCG_OOM_KILL); | 
|  |  | 
|  | /* | 
|  | * We should send SIGKILL before granting access to memory reserves | 
|  | * in order to prevent the OOM victim from depleting the memory | 
|  | * reserves from the user space under its control. | 
|  | */ | 
|  | do_send_sig_info(SIGKILL, SEND_SIG_PRIV, victim, PIDTYPE_TGID); | 
|  | mark_oom_victim(victim); | 
|  | pr_err("%s: Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB, UID:%u pgtables:%lukB oom_score_adj:%hd\n", | 
|  | message, task_pid_nr(victim), victim->comm, K(mm->total_vm), | 
|  | K(get_mm_counter(mm, MM_ANONPAGES)), | 
|  | K(get_mm_counter(mm, MM_FILEPAGES)), | 
|  | K(get_mm_counter(mm, MM_SHMEMPAGES)), | 
|  | from_kuid(&init_user_ns, task_uid(victim)), | 
|  | mm_pgtables_bytes(mm) >> 10, victim->signal->oom_score_adj); | 
|  | task_unlock(victim); | 
|  |  | 
|  | /* | 
|  | * Kill all user processes sharing victim->mm in other thread groups, if | 
|  | * any.  They don't get access to memory reserves, though, to avoid | 
|  | * depletion of all memory.  This prevents mm->mmap_lock livelock when an | 
|  | * oom killed thread cannot exit because it requires the semaphore and | 
|  | * its contended by another thread trying to allocate memory itself. | 
|  | * That thread will now get access to memory reserves since it has a | 
|  | * pending fatal signal. | 
|  | */ | 
|  | rcu_read_lock(); | 
|  | for_each_process(p) { | 
|  | if (!process_shares_mm(p, mm)) | 
|  | continue; | 
|  | if (same_thread_group(p, victim)) | 
|  | continue; | 
|  | if (is_global_init(p)) { | 
|  | can_oom_reap = false; | 
|  | set_bit(MMF_OOM_SKIP, &mm->flags); | 
|  | pr_info("oom killer %d (%s) has mm pinned by %d (%s)\n", | 
|  | task_pid_nr(victim), victim->comm, | 
|  | task_pid_nr(p), p->comm); | 
|  | continue; | 
|  | } | 
|  | /* | 
|  | * No kthread_use_mm() user needs to read from the userspace so | 
|  | * we are ok to reap it. | 
|  | */ | 
|  | if (unlikely(p->flags & PF_KTHREAD)) | 
|  | continue; | 
|  | do_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_TGID); | 
|  | } | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | if (can_oom_reap) | 
|  | queue_oom_reaper(victim); | 
|  |  | 
|  | mmdrop(mm); | 
|  | put_task_struct(victim); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Kill provided task unless it's secured by setting | 
|  | * oom_score_adj to OOM_SCORE_ADJ_MIN. | 
|  | */ | 
|  | static int oom_kill_memcg_member(struct task_struct *task, void *message) | 
|  | { | 
|  | if (task->signal->oom_score_adj != OOM_SCORE_ADJ_MIN && | 
|  | !is_global_init(task)) { | 
|  | get_task_struct(task); | 
|  | __oom_kill_process(task, message); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void oom_kill_process(struct oom_control *oc, const char *message) | 
|  | { | 
|  | struct task_struct *victim = oc->chosen; | 
|  | struct mem_cgroup *oom_group; | 
|  | static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL, | 
|  | DEFAULT_RATELIMIT_BURST); | 
|  |  | 
|  | /* | 
|  | * If the task is already exiting, don't alarm the sysadmin or kill | 
|  | * its children or threads, just give it access to memory reserves | 
|  | * so it can die quickly | 
|  | */ | 
|  | task_lock(victim); | 
|  | if (task_will_free_mem(victim)) { | 
|  | mark_oom_victim(victim); | 
|  | queue_oom_reaper(victim); | 
|  | task_unlock(victim); | 
|  | put_task_struct(victim); | 
|  | return; | 
|  | } | 
|  | task_unlock(victim); | 
|  |  | 
|  | if (__ratelimit(&oom_rs)) { | 
|  | dump_header(oc); | 
|  | dump_oom_victim(oc, victim); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Do we need to kill the entire memory cgroup? | 
|  | * Or even one of the ancestor memory cgroups? | 
|  | * Check this out before killing the victim task. | 
|  | */ | 
|  | oom_group = mem_cgroup_get_oom_group(victim, oc->memcg); | 
|  |  | 
|  | __oom_kill_process(victim, message); | 
|  |  | 
|  | /* | 
|  | * If necessary, kill all tasks in the selected memory cgroup. | 
|  | */ | 
|  | if (oom_group) { | 
|  | memcg_memory_event(oom_group, MEMCG_OOM_GROUP_KILL); | 
|  | mem_cgroup_print_oom_group(oom_group); | 
|  | mem_cgroup_scan_tasks(oom_group, oom_kill_memcg_member, | 
|  | (void *)message); | 
|  | mem_cgroup_put(oom_group); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Determines whether the kernel must panic because of the panic_on_oom sysctl. | 
|  | */ | 
|  | static void check_panic_on_oom(struct oom_control *oc) | 
|  | { | 
|  | if (likely(!sysctl_panic_on_oom)) | 
|  | return; | 
|  | if (sysctl_panic_on_oom != 2) { | 
|  | /* | 
|  | * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel | 
|  | * does not panic for cpuset, mempolicy, or memcg allocation | 
|  | * failures. | 
|  | */ | 
|  | if (oc->constraint != CONSTRAINT_NONE) | 
|  | return; | 
|  | } | 
|  | /* Do not panic for oom kills triggered by sysrq */ | 
|  | if (is_sysrq_oom(oc)) | 
|  | return; | 
|  | dump_header(oc); | 
|  | panic("Out of memory: %s panic_on_oom is enabled\n", | 
|  | sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide"); | 
|  | } | 
|  |  | 
|  | static BLOCKING_NOTIFIER_HEAD(oom_notify_list); | 
|  |  | 
|  | int register_oom_notifier(struct notifier_block *nb) | 
|  | { | 
|  | return blocking_notifier_chain_register(&oom_notify_list, nb); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(register_oom_notifier); | 
|  |  | 
|  | int unregister_oom_notifier(struct notifier_block *nb) | 
|  | { | 
|  | return blocking_notifier_chain_unregister(&oom_notify_list, nb); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(unregister_oom_notifier); | 
|  |  | 
|  | /** | 
|  | * out_of_memory - kill the "best" process when we run out of memory | 
|  | * @oc: pointer to struct oom_control | 
|  | * | 
|  | * If we run out of memory, we have the choice between either | 
|  | * killing a random task (bad), letting the system crash (worse) | 
|  | * OR try to be smart about which process to kill. Note that we | 
|  | * don't have to be perfect here, we just have to be good. | 
|  | */ | 
|  | bool out_of_memory(struct oom_control *oc) | 
|  | { | 
|  | unsigned long freed = 0; | 
|  |  | 
|  | if (oom_killer_disabled) | 
|  | return false; | 
|  |  | 
|  | if (!is_memcg_oom(oc)) { | 
|  | blocking_notifier_call_chain(&oom_notify_list, 0, &freed); | 
|  | if (freed > 0 && !is_sysrq_oom(oc)) | 
|  | /* Got some memory back in the last second. */ | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If current has a pending SIGKILL or is exiting, then automatically | 
|  | * select it.  The goal is to allow it to allocate so that it may | 
|  | * quickly exit and free its memory. | 
|  | */ | 
|  | if (task_will_free_mem(current)) { | 
|  | mark_oom_victim(current); | 
|  | queue_oom_reaper(current); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The OOM killer does not compensate for IO-less reclaim. | 
|  | * But mem_cgroup_oom() has to invoke the OOM killer even | 
|  | * if it is a GFP_NOFS allocation. | 
|  | */ | 
|  | if (!(oc->gfp_mask & __GFP_FS) && !is_memcg_oom(oc)) | 
|  | return true; | 
|  |  | 
|  | /* | 
|  | * Check if there were limitations on the allocation (only relevant for | 
|  | * NUMA and memcg) that may require different handling. | 
|  | */ | 
|  | oc->constraint = constrained_alloc(oc); | 
|  | if (oc->constraint != CONSTRAINT_MEMORY_POLICY) | 
|  | oc->nodemask = NULL; | 
|  | check_panic_on_oom(oc); | 
|  |  | 
|  | if (!is_memcg_oom(oc) && sysctl_oom_kill_allocating_task && | 
|  | current->mm && !oom_unkillable_task(current) && | 
|  | oom_cpuset_eligible(current, oc) && | 
|  | current->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) { | 
|  | get_task_struct(current); | 
|  | oc->chosen = current; | 
|  | oom_kill_process(oc, "Out of memory (oom_kill_allocating_task)"); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | select_bad_process(oc); | 
|  | /* Found nothing?!?! */ | 
|  | if (!oc->chosen) { | 
|  | dump_header(oc); | 
|  | pr_warn("Out of memory and no killable processes...\n"); | 
|  | /* | 
|  | * If we got here due to an actual allocation at the | 
|  | * system level, we cannot survive this and will enter | 
|  | * an endless loop in the allocator. Bail out now. | 
|  | */ | 
|  | if (!is_sysrq_oom(oc) && !is_memcg_oom(oc)) | 
|  | panic("System is deadlocked on memory\n"); | 
|  | } | 
|  | if (oc->chosen && oc->chosen != (void *)-1UL) | 
|  | oom_kill_process(oc, !is_memcg_oom(oc) ? "Out of memory" : | 
|  | "Memory cgroup out of memory"); | 
|  | return !!oc->chosen; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The pagefault handler calls here because some allocation has failed. We have | 
|  | * to take care of the memcg OOM here because this is the only safe context without | 
|  | * any locks held but let the oom killer triggered from the allocation context care | 
|  | * about the global OOM. | 
|  | */ | 
|  | void pagefault_out_of_memory(void) | 
|  | { | 
|  | static DEFINE_RATELIMIT_STATE(pfoom_rs, DEFAULT_RATELIMIT_INTERVAL, | 
|  | DEFAULT_RATELIMIT_BURST); | 
|  |  | 
|  | if (mem_cgroup_oom_synchronize(true)) | 
|  | return; | 
|  |  | 
|  | if (fatal_signal_pending(current)) | 
|  | return; | 
|  |  | 
|  | if (__ratelimit(&pfoom_rs)) | 
|  | pr_warn("Huh VM_FAULT_OOM leaked out to the #PF handler. Retrying PF\n"); | 
|  | } | 
|  |  | 
|  | SYSCALL_DEFINE2(process_mrelease, int, pidfd, unsigned int, flags) | 
|  | { | 
|  | #ifdef CONFIG_MMU | 
|  | struct mm_struct *mm = NULL; | 
|  | struct task_struct *task; | 
|  | struct task_struct *p; | 
|  | unsigned int f_flags; | 
|  | bool reap = false; | 
|  | long ret = 0; | 
|  |  | 
|  | if (flags) | 
|  | return -EINVAL; | 
|  |  | 
|  | task = pidfd_get_task(pidfd, &f_flags); | 
|  | if (IS_ERR(task)) | 
|  | return PTR_ERR(task); | 
|  |  | 
|  | /* | 
|  | * Make sure to choose a thread which still has a reference to mm | 
|  | * during the group exit | 
|  | */ | 
|  | p = find_lock_task_mm(task); | 
|  | if (!p) { | 
|  | ret = -ESRCH; | 
|  | goto put_task; | 
|  | } | 
|  |  | 
|  | mm = p->mm; | 
|  | mmgrab(mm); | 
|  |  | 
|  | if (task_will_free_mem(p)) | 
|  | reap = true; | 
|  | else { | 
|  | /* Error only if the work has not been done already */ | 
|  | if (!test_bit(MMF_OOM_SKIP, &mm->flags)) | 
|  | ret = -EINVAL; | 
|  | } | 
|  | task_unlock(p); | 
|  |  | 
|  | if (!reap) | 
|  | goto drop_mm; | 
|  |  | 
|  | if (mmap_read_lock_killable(mm)) { | 
|  | ret = -EINTR; | 
|  | goto drop_mm; | 
|  | } | 
|  | /* | 
|  | * Check MMF_OOM_SKIP again under mmap_read_lock protection to ensure | 
|  | * possible change in exit_mmap is seen | 
|  | */ | 
|  | if (!test_bit(MMF_OOM_SKIP, &mm->flags) && !__oom_reap_task_mm(mm)) | 
|  | ret = -EAGAIN; | 
|  | mmap_read_unlock(mm); | 
|  |  | 
|  | drop_mm: | 
|  | mmdrop(mm); | 
|  | put_task: | 
|  | put_task_struct(task); | 
|  | return ret; | 
|  | #else | 
|  | return -ENOSYS; | 
|  | #endif /* CONFIG_MMU */ | 
|  | } |