|  | // SPDX-License-Identifier: GPL-2.0-only | 
|  | /* | 
|  | * arch/arm/common/mcpm_entry.c -- entry point for multi-cluster PM | 
|  | * | 
|  | * Created by:  Nicolas Pitre, March 2012 | 
|  | * Copyright:   (C) 2012-2013  Linaro Limited | 
|  | */ | 
|  |  | 
|  | #include <linux/export.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/irqflags.h> | 
|  | #include <linux/cpu_pm.h> | 
|  |  | 
|  | #include <asm/mcpm.h> | 
|  | #include <asm/cacheflush.h> | 
|  | #include <asm/idmap.h> | 
|  | #include <asm/cputype.h> | 
|  | #include <asm/suspend.h> | 
|  |  | 
|  | /* | 
|  | * The public API for this code is documented in arch/arm/include/asm/mcpm.h. | 
|  | * For a comprehensive description of the main algorithm used here, please | 
|  | * see Documentation/arch/arm/cluster-pm-race-avoidance.rst. | 
|  | */ | 
|  |  | 
|  | struct sync_struct mcpm_sync; | 
|  |  | 
|  | /* | 
|  | * __mcpm_cpu_going_down: Indicates that the cpu is being torn down. | 
|  | *    This must be called at the point of committing to teardown of a CPU. | 
|  | *    The CPU cache (SCTRL.C bit) is expected to still be active. | 
|  | */ | 
|  | static void __mcpm_cpu_going_down(unsigned int cpu, unsigned int cluster) | 
|  | { | 
|  | mcpm_sync.clusters[cluster].cpus[cpu].cpu = CPU_GOING_DOWN; | 
|  | sync_cache_w(&mcpm_sync.clusters[cluster].cpus[cpu].cpu); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * __mcpm_cpu_down: Indicates that cpu teardown is complete and that the | 
|  | *    cluster can be torn down without disrupting this CPU. | 
|  | *    To avoid deadlocks, this must be called before a CPU is powered down. | 
|  | *    The CPU cache (SCTRL.C bit) is expected to be off. | 
|  | *    However L2 cache might or might not be active. | 
|  | */ | 
|  | static void __mcpm_cpu_down(unsigned int cpu, unsigned int cluster) | 
|  | { | 
|  | dmb(); | 
|  | mcpm_sync.clusters[cluster].cpus[cpu].cpu = CPU_DOWN; | 
|  | sync_cache_w(&mcpm_sync.clusters[cluster].cpus[cpu].cpu); | 
|  | sev(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * __mcpm_outbound_leave_critical: Leave the cluster teardown critical section. | 
|  | * @state: the final state of the cluster: | 
|  | *     CLUSTER_UP: no destructive teardown was done and the cluster has been | 
|  | *         restored to the previous state (CPU cache still active); or | 
|  | *     CLUSTER_DOWN: the cluster has been torn-down, ready for power-off | 
|  | *         (CPU cache disabled, L2 cache either enabled or disabled). | 
|  | */ | 
|  | static void __mcpm_outbound_leave_critical(unsigned int cluster, int state) | 
|  | { | 
|  | dmb(); | 
|  | mcpm_sync.clusters[cluster].cluster = state; | 
|  | sync_cache_w(&mcpm_sync.clusters[cluster].cluster); | 
|  | sev(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * __mcpm_outbound_enter_critical: Enter the cluster teardown critical section. | 
|  | * This function should be called by the last man, after local CPU teardown | 
|  | * is complete.  CPU cache expected to be active. | 
|  | * | 
|  | * Returns: | 
|  | *     false: the critical section was not entered because an inbound CPU was | 
|  | *         observed, or the cluster is already being set up; | 
|  | *     true: the critical section was entered: it is now safe to tear down the | 
|  | *         cluster. | 
|  | */ | 
|  | static bool __mcpm_outbound_enter_critical(unsigned int cpu, unsigned int cluster) | 
|  | { | 
|  | unsigned int i; | 
|  | struct mcpm_sync_struct *c = &mcpm_sync.clusters[cluster]; | 
|  |  | 
|  | /* Warn inbound CPUs that the cluster is being torn down: */ | 
|  | c->cluster = CLUSTER_GOING_DOWN; | 
|  | sync_cache_w(&c->cluster); | 
|  |  | 
|  | /* Back out if the inbound cluster is already in the critical region: */ | 
|  | sync_cache_r(&c->inbound); | 
|  | if (c->inbound == INBOUND_COMING_UP) | 
|  | goto abort; | 
|  |  | 
|  | /* | 
|  | * Wait for all CPUs to get out of the GOING_DOWN state, so that local | 
|  | * teardown is complete on each CPU before tearing down the cluster. | 
|  | * | 
|  | * If any CPU has been woken up again from the DOWN state, then we | 
|  | * shouldn't be taking the cluster down at all: abort in that case. | 
|  | */ | 
|  | sync_cache_r(&c->cpus); | 
|  | for (i = 0; i < MAX_CPUS_PER_CLUSTER; i++) { | 
|  | int cpustate; | 
|  |  | 
|  | if (i == cpu) | 
|  | continue; | 
|  |  | 
|  | while (1) { | 
|  | cpustate = c->cpus[i].cpu; | 
|  | if (cpustate != CPU_GOING_DOWN) | 
|  | break; | 
|  |  | 
|  | wfe(); | 
|  | sync_cache_r(&c->cpus[i].cpu); | 
|  | } | 
|  |  | 
|  | switch (cpustate) { | 
|  | case CPU_DOWN: | 
|  | continue; | 
|  |  | 
|  | default: | 
|  | goto abort; | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  |  | 
|  | abort: | 
|  | __mcpm_outbound_leave_critical(cluster, CLUSTER_UP); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static int __mcpm_cluster_state(unsigned int cluster) | 
|  | { | 
|  | sync_cache_r(&mcpm_sync.clusters[cluster].cluster); | 
|  | return mcpm_sync.clusters[cluster].cluster; | 
|  | } | 
|  |  | 
|  | extern unsigned long mcpm_entry_vectors[MAX_NR_CLUSTERS][MAX_CPUS_PER_CLUSTER]; | 
|  |  | 
|  | void mcpm_set_entry_vector(unsigned cpu, unsigned cluster, void *ptr) | 
|  | { | 
|  | unsigned long val = ptr ? __pa_symbol(ptr) : 0; | 
|  | mcpm_entry_vectors[cluster][cpu] = val; | 
|  | sync_cache_w(&mcpm_entry_vectors[cluster][cpu]); | 
|  | } | 
|  |  | 
|  | extern unsigned long mcpm_entry_early_pokes[MAX_NR_CLUSTERS][MAX_CPUS_PER_CLUSTER][2]; | 
|  |  | 
|  | void mcpm_set_early_poke(unsigned cpu, unsigned cluster, | 
|  | unsigned long poke_phys_addr, unsigned long poke_val) | 
|  | { | 
|  | unsigned long *poke = &mcpm_entry_early_pokes[cluster][cpu][0]; | 
|  | poke[0] = poke_phys_addr; | 
|  | poke[1] = poke_val; | 
|  | __sync_cache_range_w(poke, 2 * sizeof(*poke)); | 
|  | } | 
|  |  | 
|  | static const struct mcpm_platform_ops *platform_ops; | 
|  |  | 
|  | int __init mcpm_platform_register(const struct mcpm_platform_ops *ops) | 
|  | { | 
|  | if (platform_ops) | 
|  | return -EBUSY; | 
|  | platform_ops = ops; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | bool mcpm_is_available(void) | 
|  | { | 
|  | return (platform_ops) ? true : false; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(mcpm_is_available); | 
|  |  | 
|  | /* | 
|  | * We can't use regular spinlocks. In the switcher case, it is possible | 
|  | * for an outbound CPU to call power_down() after its inbound counterpart | 
|  | * is already live using the same logical CPU number which trips lockdep | 
|  | * debugging. | 
|  | */ | 
|  | static arch_spinlock_t mcpm_lock = __ARCH_SPIN_LOCK_UNLOCKED; | 
|  |  | 
|  | static int mcpm_cpu_use_count[MAX_NR_CLUSTERS][MAX_CPUS_PER_CLUSTER]; | 
|  |  | 
|  | static inline bool mcpm_cluster_unused(unsigned int cluster) | 
|  | { | 
|  | int i, cnt; | 
|  | for (i = 0, cnt = 0; i < MAX_CPUS_PER_CLUSTER; i++) | 
|  | cnt |= mcpm_cpu_use_count[cluster][i]; | 
|  | return !cnt; | 
|  | } | 
|  |  | 
|  | int mcpm_cpu_power_up(unsigned int cpu, unsigned int cluster) | 
|  | { | 
|  | bool cpu_is_down, cluster_is_down; | 
|  | int ret = 0; | 
|  |  | 
|  | pr_debug("%s: cpu %u cluster %u\n", __func__, cpu, cluster); | 
|  | if (!platform_ops) | 
|  | return -EUNATCH; /* try not to shadow power_up errors */ | 
|  | might_sleep(); | 
|  |  | 
|  | /* | 
|  | * Since this is called with IRQs enabled, and no arch_spin_lock_irq | 
|  | * variant exists, we need to disable IRQs manually here. | 
|  | */ | 
|  | local_irq_disable(); | 
|  | arch_spin_lock(&mcpm_lock); | 
|  |  | 
|  | cpu_is_down = !mcpm_cpu_use_count[cluster][cpu]; | 
|  | cluster_is_down = mcpm_cluster_unused(cluster); | 
|  |  | 
|  | mcpm_cpu_use_count[cluster][cpu]++; | 
|  | /* | 
|  | * The only possible values are: | 
|  | * 0 = CPU down | 
|  | * 1 = CPU (still) up | 
|  | * 2 = CPU requested to be up before it had a chance | 
|  | *     to actually make itself down. | 
|  | * Any other value is a bug. | 
|  | */ | 
|  | BUG_ON(mcpm_cpu_use_count[cluster][cpu] != 1 && | 
|  | mcpm_cpu_use_count[cluster][cpu] != 2); | 
|  |  | 
|  | if (cluster_is_down) | 
|  | ret = platform_ops->cluster_powerup(cluster); | 
|  | if (cpu_is_down && !ret) | 
|  | ret = platform_ops->cpu_powerup(cpu, cluster); | 
|  |  | 
|  | arch_spin_unlock(&mcpm_lock); | 
|  | local_irq_enable(); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | typedef typeof(cpu_reset) phys_reset_t; | 
|  |  | 
|  | void mcpm_cpu_power_down(void) | 
|  | { | 
|  | unsigned int mpidr, cpu, cluster; | 
|  | bool cpu_going_down, last_man; | 
|  | phys_reset_t phys_reset; | 
|  |  | 
|  | mpidr = read_cpuid_mpidr(); | 
|  | cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0); | 
|  | cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1); | 
|  | pr_debug("%s: cpu %u cluster %u\n", __func__, cpu, cluster); | 
|  | if (WARN_ON_ONCE(!platform_ops)) | 
|  | return; | 
|  | BUG_ON(!irqs_disabled()); | 
|  |  | 
|  | setup_mm_for_reboot(); | 
|  |  | 
|  | __mcpm_cpu_going_down(cpu, cluster); | 
|  | arch_spin_lock(&mcpm_lock); | 
|  | BUG_ON(__mcpm_cluster_state(cluster) != CLUSTER_UP); | 
|  |  | 
|  | mcpm_cpu_use_count[cluster][cpu]--; | 
|  | BUG_ON(mcpm_cpu_use_count[cluster][cpu] != 0 && | 
|  | mcpm_cpu_use_count[cluster][cpu] != 1); | 
|  | cpu_going_down = !mcpm_cpu_use_count[cluster][cpu]; | 
|  | last_man = mcpm_cluster_unused(cluster); | 
|  |  | 
|  | if (last_man && __mcpm_outbound_enter_critical(cpu, cluster)) { | 
|  | platform_ops->cpu_powerdown_prepare(cpu, cluster); | 
|  | platform_ops->cluster_powerdown_prepare(cluster); | 
|  | arch_spin_unlock(&mcpm_lock); | 
|  | platform_ops->cluster_cache_disable(); | 
|  | __mcpm_outbound_leave_critical(cluster, CLUSTER_DOWN); | 
|  | } else { | 
|  | if (cpu_going_down) | 
|  | platform_ops->cpu_powerdown_prepare(cpu, cluster); | 
|  | arch_spin_unlock(&mcpm_lock); | 
|  | /* | 
|  | * If cpu_going_down is false here, that means a power_up | 
|  | * request raced ahead of us.  Even if we do not want to | 
|  | * shut this CPU down, the caller still expects execution | 
|  | * to return through the system resume entry path, like | 
|  | * when the WFI is aborted due to a new IRQ or the like.. | 
|  | * So let's continue with cache cleaning in all cases. | 
|  | */ | 
|  | platform_ops->cpu_cache_disable(); | 
|  | } | 
|  |  | 
|  | __mcpm_cpu_down(cpu, cluster); | 
|  |  | 
|  | /* Now we are prepared for power-down, do it: */ | 
|  | if (cpu_going_down) | 
|  | wfi(); | 
|  |  | 
|  | /* | 
|  | * It is possible for a power_up request to happen concurrently | 
|  | * with a power_down request for the same CPU. In this case the | 
|  | * CPU might not be able to actually enter a powered down state | 
|  | * with the WFI instruction if the power_up request has removed | 
|  | * the required reset condition.  We must perform a re-entry in | 
|  | * the kernel as if the power_up method just had deasserted reset | 
|  | * on the CPU. | 
|  | */ | 
|  | phys_reset = (phys_reset_t)(unsigned long)__pa_symbol(cpu_reset); | 
|  | phys_reset(__pa_symbol(mcpm_entry_point), false); | 
|  |  | 
|  | /* should never get here */ | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | int mcpm_wait_for_cpu_powerdown(unsigned int cpu, unsigned int cluster) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | if (WARN_ON_ONCE(!platform_ops || !platform_ops->wait_for_powerdown)) | 
|  | return -EUNATCH; | 
|  |  | 
|  | ret = platform_ops->wait_for_powerdown(cpu, cluster); | 
|  | if (ret) | 
|  | pr_warn("%s: cpu %u, cluster %u failed to power down (%d)\n", | 
|  | __func__, cpu, cluster, ret); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void mcpm_cpu_suspend(void) | 
|  | { | 
|  | if (WARN_ON_ONCE(!platform_ops)) | 
|  | return; | 
|  |  | 
|  | /* Some platforms might have to enable special resume modes, etc. */ | 
|  | if (platform_ops->cpu_suspend_prepare) { | 
|  | unsigned int mpidr = read_cpuid_mpidr(); | 
|  | unsigned int cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0); | 
|  | unsigned int cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1); | 
|  | arch_spin_lock(&mcpm_lock); | 
|  | platform_ops->cpu_suspend_prepare(cpu, cluster); | 
|  | arch_spin_unlock(&mcpm_lock); | 
|  | } | 
|  | mcpm_cpu_power_down(); | 
|  | } | 
|  |  | 
|  | int mcpm_cpu_powered_up(void) | 
|  | { | 
|  | unsigned int mpidr, cpu, cluster; | 
|  | bool cpu_was_down, first_man; | 
|  | unsigned long flags; | 
|  |  | 
|  | if (!platform_ops) | 
|  | return -EUNATCH; | 
|  |  | 
|  | mpidr = read_cpuid_mpidr(); | 
|  | cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0); | 
|  | cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1); | 
|  | local_irq_save(flags); | 
|  | arch_spin_lock(&mcpm_lock); | 
|  |  | 
|  | cpu_was_down = !mcpm_cpu_use_count[cluster][cpu]; | 
|  | first_man = mcpm_cluster_unused(cluster); | 
|  |  | 
|  | if (first_man && platform_ops->cluster_is_up) | 
|  | platform_ops->cluster_is_up(cluster); | 
|  | if (cpu_was_down) | 
|  | mcpm_cpu_use_count[cluster][cpu] = 1; | 
|  | if (platform_ops->cpu_is_up) | 
|  | platform_ops->cpu_is_up(cpu, cluster); | 
|  |  | 
|  | arch_spin_unlock(&mcpm_lock); | 
|  | local_irq_restore(flags); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_ARM_CPU_SUSPEND | 
|  |  | 
|  | static int __init nocache_trampoline(unsigned long _arg) | 
|  | { | 
|  | void (*cache_disable)(void) = (void *)_arg; | 
|  | unsigned int mpidr = read_cpuid_mpidr(); | 
|  | unsigned int cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0); | 
|  | unsigned int cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1); | 
|  | phys_reset_t phys_reset; | 
|  |  | 
|  | mcpm_set_entry_vector(cpu, cluster, cpu_resume_no_hyp); | 
|  | setup_mm_for_reboot(); | 
|  |  | 
|  | __mcpm_cpu_going_down(cpu, cluster); | 
|  | BUG_ON(!__mcpm_outbound_enter_critical(cpu, cluster)); | 
|  | cache_disable(); | 
|  | __mcpm_outbound_leave_critical(cluster, CLUSTER_DOWN); | 
|  | __mcpm_cpu_down(cpu, cluster); | 
|  |  | 
|  | phys_reset = (phys_reset_t)(unsigned long)__pa_symbol(cpu_reset); | 
|  | phys_reset(__pa_symbol(mcpm_entry_point), false); | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | int __init mcpm_loopback(void (*cache_disable)(void)) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | /* | 
|  | * We're going to soft-restart the current CPU through the | 
|  | * low-level MCPM code by leveraging the suspend/resume | 
|  | * infrastructure. Let's play it safe by using cpu_pm_enter() | 
|  | * in case the CPU init code path resets the VFP or similar. | 
|  | */ | 
|  | local_irq_disable(); | 
|  | local_fiq_disable(); | 
|  | ret = cpu_pm_enter(); | 
|  | if (!ret) { | 
|  | ret = cpu_suspend((unsigned long)cache_disable, nocache_trampoline); | 
|  | cpu_pm_exit(); | 
|  | } | 
|  | local_fiq_enable(); | 
|  | local_irq_enable(); | 
|  | if (ret) | 
|  | pr_err("%s returned %d\n", __func__, ret); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | extern unsigned long mcpm_power_up_setup_phys; | 
|  |  | 
|  | int __init mcpm_sync_init( | 
|  | void (*power_up_setup)(unsigned int affinity_level)) | 
|  | { | 
|  | unsigned int i, j, mpidr, this_cluster; | 
|  |  | 
|  | BUILD_BUG_ON(MCPM_SYNC_CLUSTER_SIZE * MAX_NR_CLUSTERS != sizeof mcpm_sync); | 
|  | BUG_ON((unsigned long)&mcpm_sync & (__CACHE_WRITEBACK_GRANULE - 1)); | 
|  |  | 
|  | /* | 
|  | * Set initial CPU and cluster states. | 
|  | * Only one cluster is assumed to be active at this point. | 
|  | */ | 
|  | for (i = 0; i < MAX_NR_CLUSTERS; i++) { | 
|  | mcpm_sync.clusters[i].cluster = CLUSTER_DOWN; | 
|  | mcpm_sync.clusters[i].inbound = INBOUND_NOT_COMING_UP; | 
|  | for (j = 0; j < MAX_CPUS_PER_CLUSTER; j++) | 
|  | mcpm_sync.clusters[i].cpus[j].cpu = CPU_DOWN; | 
|  | } | 
|  | mpidr = read_cpuid_mpidr(); | 
|  | this_cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1); | 
|  | for_each_online_cpu(i) { | 
|  | mcpm_cpu_use_count[this_cluster][i] = 1; | 
|  | mcpm_sync.clusters[this_cluster].cpus[i].cpu = CPU_UP; | 
|  | } | 
|  | mcpm_sync.clusters[this_cluster].cluster = CLUSTER_UP; | 
|  | sync_cache_w(&mcpm_sync); | 
|  |  | 
|  | if (power_up_setup) { | 
|  | mcpm_power_up_setup_phys = __pa_symbol(power_up_setup); | 
|  | sync_cache_w(&mcpm_power_up_setup_phys); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } |