|  | // SPDX-License-Identifier: GPL-2.0+ | 
|  | /* | 
|  | * Device tree based initialization code for reserved memory. | 
|  | * | 
|  | * Copyright (c) 2013, 2015 The Linux Foundation. All Rights Reserved. | 
|  | * Copyright (c) 2013,2014 Samsung Electronics Co., Ltd. | 
|  | *		http://www.samsung.com | 
|  | * Author: Marek Szyprowski <m.szyprowski@samsung.com> | 
|  | * Author: Josh Cartwright <joshc@codeaurora.org> | 
|  | */ | 
|  |  | 
|  | #define pr_fmt(fmt)	"OF: reserved mem: " fmt | 
|  |  | 
|  | #include <linux/err.h> | 
|  | #include <linux/libfdt.h> | 
|  | #include <linux/of.h> | 
|  | #include <linux/of_fdt.h> | 
|  | #include <linux/of_platform.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/sizes.h> | 
|  | #include <linux/of_reserved_mem.h> | 
|  | #include <linux/sort.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/memblock.h> | 
|  | #include <linux/kmemleak.h> | 
|  | #include <linux/cma.h> | 
|  |  | 
|  | #include "of_private.h" | 
|  |  | 
|  | #define MAX_RESERVED_REGIONS	64 | 
|  | static struct reserved_mem reserved_mem[MAX_RESERVED_REGIONS]; | 
|  | static int reserved_mem_count; | 
|  |  | 
|  | static int __init early_init_dt_alloc_reserved_memory_arch(phys_addr_t size, | 
|  | phys_addr_t align, phys_addr_t start, phys_addr_t end, bool nomap, | 
|  | phys_addr_t *res_base) | 
|  | { | 
|  | phys_addr_t base; | 
|  | int err = 0; | 
|  |  | 
|  | end = !end ? MEMBLOCK_ALLOC_ANYWHERE : end; | 
|  | align = !align ? SMP_CACHE_BYTES : align; | 
|  | base = memblock_phys_alloc_range(size, align, start, end); | 
|  | if (!base) | 
|  | return -ENOMEM; | 
|  |  | 
|  | *res_base = base; | 
|  | if (nomap) { | 
|  | err = memblock_mark_nomap(base, size); | 
|  | if (err) | 
|  | memblock_phys_free(base, size); | 
|  | } | 
|  |  | 
|  | kmemleak_ignore_phys(base); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * fdt_reserved_mem_save_node() - save fdt node for second pass initialization | 
|  | */ | 
|  | static void __init fdt_reserved_mem_save_node(unsigned long node, const char *uname, | 
|  | phys_addr_t base, phys_addr_t size) | 
|  | { | 
|  | struct reserved_mem *rmem = &reserved_mem[reserved_mem_count]; | 
|  |  | 
|  | if (reserved_mem_count == ARRAY_SIZE(reserved_mem)) { | 
|  | pr_err("not enough space for all defined regions.\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | rmem->fdt_node = node; | 
|  | rmem->name = uname; | 
|  | rmem->base = base; | 
|  | rmem->size = size; | 
|  |  | 
|  | reserved_mem_count++; | 
|  | return; | 
|  | } | 
|  |  | 
|  | static int __init early_init_dt_reserve_memory(phys_addr_t base, | 
|  | phys_addr_t size, bool nomap) | 
|  | { | 
|  | if (nomap) { | 
|  | /* | 
|  | * If the memory is already reserved (by another region), we | 
|  | * should not allow it to be marked nomap, but don't worry | 
|  | * if the region isn't memory as it won't be mapped. | 
|  | */ | 
|  | if (memblock_overlaps_region(&memblock.memory, base, size) && | 
|  | memblock_is_region_reserved(base, size)) | 
|  | return -EBUSY; | 
|  |  | 
|  | return memblock_mark_nomap(base, size); | 
|  | } | 
|  | return memblock_reserve(base, size); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * __reserved_mem_reserve_reg() - reserve all memory described in 'reg' property | 
|  | */ | 
|  | static int __init __reserved_mem_reserve_reg(unsigned long node, | 
|  | const char *uname) | 
|  | { | 
|  | int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32); | 
|  | phys_addr_t base, size; | 
|  | int len; | 
|  | const __be32 *prop; | 
|  | int first = 1; | 
|  | bool nomap; | 
|  |  | 
|  | prop = of_get_flat_dt_prop(node, "reg", &len); | 
|  | if (!prop) | 
|  | return -ENOENT; | 
|  |  | 
|  | if (len && len % t_len != 0) { | 
|  | pr_err("Reserved memory: invalid reg property in '%s', skipping node.\n", | 
|  | uname); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL; | 
|  |  | 
|  | while (len >= t_len) { | 
|  | base = dt_mem_next_cell(dt_root_addr_cells, &prop); | 
|  | size = dt_mem_next_cell(dt_root_size_cells, &prop); | 
|  |  | 
|  | if (size && | 
|  | early_init_dt_reserve_memory(base, size, nomap) == 0) | 
|  | pr_debug("Reserved memory: reserved region for node '%s': base %pa, size %lu MiB\n", | 
|  | uname, &base, (unsigned long)(size / SZ_1M)); | 
|  | else | 
|  | pr_err("Reserved memory: failed to reserve memory for node '%s': base %pa, size %lu MiB\n", | 
|  | uname, &base, (unsigned long)(size / SZ_1M)); | 
|  |  | 
|  | len -= t_len; | 
|  | if (first) { | 
|  | fdt_reserved_mem_save_node(node, uname, base, size); | 
|  | first = 0; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * __reserved_mem_check_root() - check if #size-cells, #address-cells provided | 
|  | * in /reserved-memory matches the values supported by the current implementation, | 
|  | * also check if ranges property has been provided | 
|  | */ | 
|  | static int __init __reserved_mem_check_root(unsigned long node) | 
|  | { | 
|  | const __be32 *prop; | 
|  |  | 
|  | prop = of_get_flat_dt_prop(node, "#size-cells", NULL); | 
|  | if (!prop || be32_to_cpup(prop) != dt_root_size_cells) | 
|  | return -EINVAL; | 
|  |  | 
|  | prop = of_get_flat_dt_prop(node, "#address-cells", NULL); | 
|  | if (!prop || be32_to_cpup(prop) != dt_root_addr_cells) | 
|  | return -EINVAL; | 
|  |  | 
|  | prop = of_get_flat_dt_prop(node, "ranges", NULL); | 
|  | if (!prop) | 
|  | return -EINVAL; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * fdt_scan_reserved_mem() - scan a single FDT node for reserved memory | 
|  | */ | 
|  | int __init fdt_scan_reserved_mem(void) | 
|  | { | 
|  | int node, child; | 
|  | const void *fdt = initial_boot_params; | 
|  |  | 
|  | node = fdt_path_offset(fdt, "/reserved-memory"); | 
|  | if (node < 0) | 
|  | return -ENODEV; | 
|  |  | 
|  | if (__reserved_mem_check_root(node) != 0) { | 
|  | pr_err("Reserved memory: unsupported node format, ignoring\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | fdt_for_each_subnode(child, fdt, node) { | 
|  | const char *uname; | 
|  | int err; | 
|  |  | 
|  | if (!of_fdt_device_is_available(fdt, child)) | 
|  | continue; | 
|  |  | 
|  | uname = fdt_get_name(fdt, child, NULL); | 
|  |  | 
|  | err = __reserved_mem_reserve_reg(child, uname); | 
|  | if (err == -ENOENT && of_get_flat_dt_prop(child, "size", NULL)) | 
|  | fdt_reserved_mem_save_node(child, uname, 0, 0); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * __reserved_mem_alloc_in_range() - allocate reserved memory described with | 
|  | *	'alloc-ranges'. Choose bottom-up/top-down depending on nearby existing | 
|  | *	reserved regions to keep the reserved memory contiguous if possible. | 
|  | */ | 
|  | static int __init __reserved_mem_alloc_in_range(phys_addr_t size, | 
|  | phys_addr_t align, phys_addr_t start, phys_addr_t end, bool nomap, | 
|  | phys_addr_t *res_base) | 
|  | { | 
|  | bool prev_bottom_up = memblock_bottom_up(); | 
|  | bool bottom_up = false, top_down = false; | 
|  | int ret, i; | 
|  |  | 
|  | for (i = 0; i < reserved_mem_count; i++) { | 
|  | struct reserved_mem *rmem = &reserved_mem[i]; | 
|  |  | 
|  | /* Skip regions that were not reserved yet */ | 
|  | if (rmem->size == 0) | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * If range starts next to an existing reservation, use bottom-up: | 
|  | *	|....RRRR................RRRRRRRR..............| | 
|  | *	       --RRRR------ | 
|  | */ | 
|  | if (start >= rmem->base && start <= (rmem->base + rmem->size)) | 
|  | bottom_up = true; | 
|  |  | 
|  | /* | 
|  | * If range ends next to an existing reservation, use top-down: | 
|  | *	|....RRRR................RRRRRRRR..............| | 
|  | *	              -------RRRR----- | 
|  | */ | 
|  | if (end >= rmem->base && end <= (rmem->base + rmem->size)) | 
|  | top_down = true; | 
|  | } | 
|  |  | 
|  | /* Change setting only if either bottom-up or top-down was selected */ | 
|  | if (bottom_up != top_down) | 
|  | memblock_set_bottom_up(bottom_up); | 
|  |  | 
|  | ret = early_init_dt_alloc_reserved_memory_arch(size, align, | 
|  | start, end, nomap, res_base); | 
|  |  | 
|  | /* Restore old setting if needed */ | 
|  | if (bottom_up != top_down) | 
|  | memblock_set_bottom_up(prev_bottom_up); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * __reserved_mem_alloc_size() - allocate reserved memory described by | 
|  | *	'size', 'alignment'  and 'alloc-ranges' properties. | 
|  | */ | 
|  | static int __init __reserved_mem_alloc_size(unsigned long node, | 
|  | const char *uname, phys_addr_t *res_base, phys_addr_t *res_size) | 
|  | { | 
|  | int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32); | 
|  | phys_addr_t start = 0, end = 0; | 
|  | phys_addr_t base = 0, align = 0, size; | 
|  | int len; | 
|  | const __be32 *prop; | 
|  | bool nomap; | 
|  | int ret; | 
|  |  | 
|  | prop = of_get_flat_dt_prop(node, "size", &len); | 
|  | if (!prop) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (len != dt_root_size_cells * sizeof(__be32)) { | 
|  | pr_err("invalid size property in '%s' node.\n", uname); | 
|  | return -EINVAL; | 
|  | } | 
|  | size = dt_mem_next_cell(dt_root_size_cells, &prop); | 
|  |  | 
|  | prop = of_get_flat_dt_prop(node, "alignment", &len); | 
|  | if (prop) { | 
|  | if (len != dt_root_addr_cells * sizeof(__be32)) { | 
|  | pr_err("invalid alignment property in '%s' node.\n", | 
|  | uname); | 
|  | return -EINVAL; | 
|  | } | 
|  | align = dt_mem_next_cell(dt_root_addr_cells, &prop); | 
|  | } | 
|  |  | 
|  | nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL; | 
|  |  | 
|  | /* Need adjust the alignment to satisfy the CMA requirement */ | 
|  | if (IS_ENABLED(CONFIG_CMA) | 
|  | && of_flat_dt_is_compatible(node, "shared-dma-pool") | 
|  | && of_get_flat_dt_prop(node, "reusable", NULL) | 
|  | && !nomap) | 
|  | align = max_t(phys_addr_t, align, CMA_MIN_ALIGNMENT_BYTES); | 
|  |  | 
|  | prop = of_get_flat_dt_prop(node, "alloc-ranges", &len); | 
|  | if (prop) { | 
|  |  | 
|  | if (len % t_len != 0) { | 
|  | pr_err("invalid alloc-ranges property in '%s', skipping node.\n", | 
|  | uname); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | base = 0; | 
|  |  | 
|  | while (len > 0) { | 
|  | start = dt_mem_next_cell(dt_root_addr_cells, &prop); | 
|  | end = start + dt_mem_next_cell(dt_root_size_cells, | 
|  | &prop); | 
|  |  | 
|  | ret = __reserved_mem_alloc_in_range(size, align, | 
|  | start, end, nomap, &base); | 
|  | if (ret == 0) { | 
|  | pr_debug("allocated memory for '%s' node: base %pa, size %lu MiB\n", | 
|  | uname, &base, | 
|  | (unsigned long)(size / SZ_1M)); | 
|  | break; | 
|  | } | 
|  | len -= t_len; | 
|  | } | 
|  |  | 
|  | } else { | 
|  | ret = early_init_dt_alloc_reserved_memory_arch(size, align, | 
|  | 0, 0, nomap, &base); | 
|  | if (ret == 0) | 
|  | pr_debug("allocated memory for '%s' node: base %pa, size %lu MiB\n", | 
|  | uname, &base, (unsigned long)(size / SZ_1M)); | 
|  | } | 
|  |  | 
|  | if (base == 0) { | 
|  | pr_err("failed to allocate memory for node '%s': size %lu MiB\n", | 
|  | uname, (unsigned long)(size / SZ_1M)); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | *res_base = base; | 
|  | *res_size = size; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const struct of_device_id __rmem_of_table_sentinel | 
|  | __used __section("__reservedmem_of_table_end"); | 
|  |  | 
|  | /* | 
|  | * __reserved_mem_init_node() - call region specific reserved memory init code | 
|  | */ | 
|  | static int __init __reserved_mem_init_node(struct reserved_mem *rmem) | 
|  | { | 
|  | extern const struct of_device_id __reservedmem_of_table[]; | 
|  | const struct of_device_id *i; | 
|  | int ret = -ENOENT; | 
|  |  | 
|  | for (i = __reservedmem_of_table; i < &__rmem_of_table_sentinel; i++) { | 
|  | reservedmem_of_init_fn initfn = i->data; | 
|  | const char *compat = i->compatible; | 
|  |  | 
|  | if (!of_flat_dt_is_compatible(rmem->fdt_node, compat)) | 
|  | continue; | 
|  |  | 
|  | ret = initfn(rmem); | 
|  | if (ret == 0) { | 
|  | pr_info("initialized node %s, compatible id %s\n", | 
|  | rmem->name, compat); | 
|  | break; | 
|  | } | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int __init __rmem_cmp(const void *a, const void *b) | 
|  | { | 
|  | const struct reserved_mem *ra = a, *rb = b; | 
|  |  | 
|  | if (ra->base < rb->base) | 
|  | return -1; | 
|  |  | 
|  | if (ra->base > rb->base) | 
|  | return 1; | 
|  |  | 
|  | /* | 
|  | * Put the dynamic allocations (address == 0, size == 0) before static | 
|  | * allocations at address 0x0 so that overlap detection works | 
|  | * correctly. | 
|  | */ | 
|  | if (ra->size < rb->size) | 
|  | return -1; | 
|  | if (ra->size > rb->size) | 
|  | return 1; | 
|  |  | 
|  | if (ra->fdt_node < rb->fdt_node) | 
|  | return -1; | 
|  | if (ra->fdt_node > rb->fdt_node) | 
|  | return 1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void __init __rmem_check_for_overlap(void) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | if (reserved_mem_count < 2) | 
|  | return; | 
|  |  | 
|  | sort(reserved_mem, reserved_mem_count, sizeof(reserved_mem[0]), | 
|  | __rmem_cmp, NULL); | 
|  | for (i = 0; i < reserved_mem_count - 1; i++) { | 
|  | struct reserved_mem *this, *next; | 
|  |  | 
|  | this = &reserved_mem[i]; | 
|  | next = &reserved_mem[i + 1]; | 
|  |  | 
|  | if (this->base + this->size > next->base) { | 
|  | phys_addr_t this_end, next_end; | 
|  |  | 
|  | this_end = this->base + this->size; | 
|  | next_end = next->base + next->size; | 
|  | pr_err("OVERLAP DETECTED!\n%s (%pa--%pa) overlaps with %s (%pa--%pa)\n", | 
|  | this->name, &this->base, &this_end, | 
|  | next->name, &next->base, &next_end); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * fdt_init_reserved_mem() - allocate and init all saved reserved memory regions | 
|  | */ | 
|  | void __init fdt_init_reserved_mem(void) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | /* check for overlapping reserved regions */ | 
|  | __rmem_check_for_overlap(); | 
|  |  | 
|  | for (i = 0; i < reserved_mem_count; i++) { | 
|  | struct reserved_mem *rmem = &reserved_mem[i]; | 
|  | unsigned long node = rmem->fdt_node; | 
|  | int err = 0; | 
|  | bool nomap; | 
|  |  | 
|  | nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL; | 
|  |  | 
|  | if (rmem->size == 0) | 
|  | err = __reserved_mem_alloc_size(node, rmem->name, | 
|  | &rmem->base, &rmem->size); | 
|  | if (err == 0) { | 
|  | err = __reserved_mem_init_node(rmem); | 
|  | if (err != 0 && err != -ENOENT) { | 
|  | pr_info("node %s compatible matching fail\n", | 
|  | rmem->name); | 
|  | if (nomap) | 
|  | memblock_clear_nomap(rmem->base, rmem->size); | 
|  | else | 
|  | memblock_phys_free(rmem->base, | 
|  | rmem->size); | 
|  | } else { | 
|  | phys_addr_t end = rmem->base + rmem->size - 1; | 
|  | bool reusable = | 
|  | (of_get_flat_dt_prop(node, "reusable", NULL)) != NULL; | 
|  |  | 
|  | pr_info("%pa..%pa (%lu KiB) %s %s %s\n", | 
|  | &rmem->base, &end, (unsigned long)(rmem->size / SZ_1K), | 
|  | nomap ? "nomap" : "map", | 
|  | reusable ? "reusable" : "non-reusable", | 
|  | rmem->name ? rmem->name : "unknown"); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | struct rmem_assigned_device { | 
|  | struct device *dev; | 
|  | struct reserved_mem *rmem; | 
|  | struct list_head list; | 
|  | }; | 
|  |  | 
|  | static LIST_HEAD(of_rmem_assigned_device_list); | 
|  | static DEFINE_MUTEX(of_rmem_assigned_device_mutex); | 
|  |  | 
|  | /** | 
|  | * of_reserved_mem_device_init_by_idx() - assign reserved memory region to | 
|  | *					  given device | 
|  | * @dev:	Pointer to the device to configure | 
|  | * @np:		Pointer to the device_node with 'reserved-memory' property | 
|  | * @idx:	Index of selected region | 
|  | * | 
|  | * This function assigns respective DMA-mapping operations based on reserved | 
|  | * memory region specified by 'memory-region' property in @np node to the @dev | 
|  | * device. When driver needs to use more than one reserved memory region, it | 
|  | * should allocate child devices and initialize regions by name for each of | 
|  | * child device. | 
|  | * | 
|  | * Returns error code or zero on success. | 
|  | */ | 
|  | int of_reserved_mem_device_init_by_idx(struct device *dev, | 
|  | struct device_node *np, int idx) | 
|  | { | 
|  | struct rmem_assigned_device *rd; | 
|  | struct device_node *target; | 
|  | struct reserved_mem *rmem; | 
|  | int ret; | 
|  |  | 
|  | if (!np || !dev) | 
|  | return -EINVAL; | 
|  |  | 
|  | target = of_parse_phandle(np, "memory-region", idx); | 
|  | if (!target) | 
|  | return -ENODEV; | 
|  |  | 
|  | if (!of_device_is_available(target)) { | 
|  | of_node_put(target); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | rmem = of_reserved_mem_lookup(target); | 
|  | of_node_put(target); | 
|  |  | 
|  | if (!rmem || !rmem->ops || !rmem->ops->device_init) | 
|  | return -EINVAL; | 
|  |  | 
|  | rd = kmalloc(sizeof(struct rmem_assigned_device), GFP_KERNEL); | 
|  | if (!rd) | 
|  | return -ENOMEM; | 
|  |  | 
|  | ret = rmem->ops->device_init(rmem, dev); | 
|  | if (ret == 0) { | 
|  | rd->dev = dev; | 
|  | rd->rmem = rmem; | 
|  |  | 
|  | mutex_lock(&of_rmem_assigned_device_mutex); | 
|  | list_add(&rd->list, &of_rmem_assigned_device_list); | 
|  | mutex_unlock(&of_rmem_assigned_device_mutex); | 
|  |  | 
|  | dev_info(dev, "assigned reserved memory node %s\n", rmem->name); | 
|  | } else { | 
|  | kfree(rd); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(of_reserved_mem_device_init_by_idx); | 
|  |  | 
|  | /** | 
|  | * of_reserved_mem_device_init_by_name() - assign named reserved memory region | 
|  | *					   to given device | 
|  | * @dev: pointer to the device to configure | 
|  | * @np: pointer to the device node with 'memory-region' property | 
|  | * @name: name of the selected memory region | 
|  | * | 
|  | * Returns: 0 on success or a negative error-code on failure. | 
|  | */ | 
|  | int of_reserved_mem_device_init_by_name(struct device *dev, | 
|  | struct device_node *np, | 
|  | const char *name) | 
|  | { | 
|  | int idx = of_property_match_string(np, "memory-region-names", name); | 
|  |  | 
|  | return of_reserved_mem_device_init_by_idx(dev, np, idx); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(of_reserved_mem_device_init_by_name); | 
|  |  | 
|  | /** | 
|  | * of_reserved_mem_device_release() - release reserved memory device structures | 
|  | * @dev:	Pointer to the device to deconfigure | 
|  | * | 
|  | * This function releases structures allocated for memory region handling for | 
|  | * the given device. | 
|  | */ | 
|  | void of_reserved_mem_device_release(struct device *dev) | 
|  | { | 
|  | struct rmem_assigned_device *rd, *tmp; | 
|  | LIST_HEAD(release_list); | 
|  |  | 
|  | mutex_lock(&of_rmem_assigned_device_mutex); | 
|  | list_for_each_entry_safe(rd, tmp, &of_rmem_assigned_device_list, list) { | 
|  | if (rd->dev == dev) | 
|  | list_move_tail(&rd->list, &release_list); | 
|  | } | 
|  | mutex_unlock(&of_rmem_assigned_device_mutex); | 
|  |  | 
|  | list_for_each_entry_safe(rd, tmp, &release_list, list) { | 
|  | if (rd->rmem && rd->rmem->ops && rd->rmem->ops->device_release) | 
|  | rd->rmem->ops->device_release(rd->rmem, dev); | 
|  |  | 
|  | kfree(rd); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(of_reserved_mem_device_release); | 
|  |  | 
|  | /** | 
|  | * of_reserved_mem_lookup() - acquire reserved_mem from a device node | 
|  | * @np:		node pointer of the desired reserved-memory region | 
|  | * | 
|  | * This function allows drivers to acquire a reference to the reserved_mem | 
|  | * struct based on a device node handle. | 
|  | * | 
|  | * Returns a reserved_mem reference, or NULL on error. | 
|  | */ | 
|  | struct reserved_mem *of_reserved_mem_lookup(struct device_node *np) | 
|  | { | 
|  | const char *name; | 
|  | int i; | 
|  |  | 
|  | if (!np->full_name) | 
|  | return NULL; | 
|  |  | 
|  | name = kbasename(np->full_name); | 
|  | for (i = 0; i < reserved_mem_count; i++) | 
|  | if (!strcmp(reserved_mem[i].name, name)) | 
|  | return &reserved_mem[i]; | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(of_reserved_mem_lookup); |