|  | // SPDX-License-Identifier: GPL-2.0-only | 
|  | /* | 
|  | * Remote Processor Framework ELF loader | 
|  | * | 
|  | * Copyright (C) 2011 Texas Instruments, Inc. | 
|  | * Copyright (C) 2011 Google, Inc. | 
|  | * | 
|  | * Ohad Ben-Cohen <ohad@wizery.com> | 
|  | * Brian Swetland <swetland@google.com> | 
|  | * Mark Grosen <mgrosen@ti.com> | 
|  | * Fernando Guzman Lugo <fernando.lugo@ti.com> | 
|  | * Suman Anna <s-anna@ti.com> | 
|  | * Robert Tivy <rtivy@ti.com> | 
|  | * Armando Uribe De Leon <x0095078@ti.com> | 
|  | * Sjur Brændeland <sjur.brandeland@stericsson.com> | 
|  | */ | 
|  |  | 
|  | #define pr_fmt(fmt)    "%s: " fmt, __func__ | 
|  |  | 
|  | #include <linux/module.h> | 
|  | #include <linux/firmware.h> | 
|  | #include <linux/remoteproc.h> | 
|  | #include <linux/elf.h> | 
|  |  | 
|  | #include "remoteproc_internal.h" | 
|  | #include "remoteproc_elf_helpers.h" | 
|  |  | 
|  | /** | 
|  | * rproc_elf_sanity_check() - Sanity Check for ELF32/ELF64 firmware image | 
|  | * @rproc: the remote processor handle | 
|  | * @fw: the ELF firmware image | 
|  | * | 
|  | * Make sure this fw image is sane (ie a correct ELF32/ELF64 file). | 
|  | * | 
|  | * Return: 0 on success and -EINVAL upon any failure | 
|  | */ | 
|  | int rproc_elf_sanity_check(struct rproc *rproc, const struct firmware *fw) | 
|  | { | 
|  | const char *name = rproc->firmware; | 
|  | struct device *dev = &rproc->dev; | 
|  | /* | 
|  | * ELF files are beginning with the same structure. Thus, to simplify | 
|  | * header parsing, we can use the elf32_hdr one for both elf64 and | 
|  | * elf32. | 
|  | */ | 
|  | struct elf32_hdr *ehdr; | 
|  | u32 elf_shdr_get_size; | 
|  | u64 phoff, shoff; | 
|  | char class; | 
|  | u16 phnum; | 
|  |  | 
|  | if (!fw) { | 
|  | dev_err(dev, "failed to load %s\n", name); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (fw->size < sizeof(struct elf32_hdr)) { | 
|  | dev_err(dev, "Image is too small\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | ehdr = (struct elf32_hdr *)fw->data; | 
|  |  | 
|  | if (memcmp(ehdr->e_ident, ELFMAG, SELFMAG)) { | 
|  | dev_err(dev, "Image is corrupted (bad magic)\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | class = ehdr->e_ident[EI_CLASS]; | 
|  | if (class != ELFCLASS32 && class != ELFCLASS64) { | 
|  | dev_err(dev, "Unsupported class: %d\n", class); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (class == ELFCLASS64 && fw->size < sizeof(struct elf64_hdr)) { | 
|  | dev_err(dev, "elf64 header is too small\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* We assume the firmware has the same endianness as the host */ | 
|  | # ifdef __LITTLE_ENDIAN | 
|  | if (ehdr->e_ident[EI_DATA] != ELFDATA2LSB) { | 
|  | # else /* BIG ENDIAN */ | 
|  | if (ehdr->e_ident[EI_DATA] != ELFDATA2MSB) { | 
|  | # endif | 
|  | dev_err(dev, "Unsupported firmware endianness\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | phoff = elf_hdr_get_e_phoff(class, fw->data); | 
|  | shoff = elf_hdr_get_e_shoff(class, fw->data); | 
|  | phnum =  elf_hdr_get_e_phnum(class, fw->data); | 
|  | elf_shdr_get_size = elf_size_of_shdr(class); | 
|  |  | 
|  | if (fw->size < shoff + elf_shdr_get_size) { | 
|  | dev_err(dev, "Image is too small\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (phnum == 0) { | 
|  | dev_err(dev, "No loadable segments\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (phoff > fw->size) { | 
|  | dev_err(dev, "Firmware size is too small\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | dev_dbg(dev, "Firmware is an elf%d file\n", | 
|  | class == ELFCLASS32 ? 32 : 64); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL(rproc_elf_sanity_check); | 
|  |  | 
|  | /** | 
|  | * rproc_elf_get_boot_addr() - Get rproc's boot address. | 
|  | * @rproc: the remote processor handle | 
|  | * @fw: the ELF firmware image | 
|  | * | 
|  | * Note that the boot address is not a configurable property of all remote | 
|  | * processors. Some will always boot at a specific hard-coded address. | 
|  | * | 
|  | * Return: entry point address of the ELF image | 
|  | * | 
|  | */ | 
|  | u64 rproc_elf_get_boot_addr(struct rproc *rproc, const struct firmware *fw) | 
|  | { | 
|  | return elf_hdr_get_e_entry(fw_elf_get_class(fw), fw->data); | 
|  | } | 
|  | EXPORT_SYMBOL(rproc_elf_get_boot_addr); | 
|  |  | 
|  | /** | 
|  | * rproc_elf_load_segments() - load firmware segments to memory | 
|  | * @rproc: remote processor which will be booted using these fw segments | 
|  | * @fw: the ELF firmware image | 
|  | * | 
|  | * This function loads the firmware segments to memory, where the remote | 
|  | * processor expects them. | 
|  | * | 
|  | * Some remote processors will expect their code and data to be placed | 
|  | * in specific device addresses, and can't have them dynamically assigned. | 
|  | * | 
|  | * We currently support only those kind of remote processors, and expect | 
|  | * the program header's paddr member to contain those addresses. We then go | 
|  | * through the physically contiguous "carveout" memory regions which we | 
|  | * allocated (and mapped) earlier on behalf of the remote processor, | 
|  | * and "translate" device address to kernel addresses, so we can copy the | 
|  | * segments where they are expected. | 
|  | * | 
|  | * Currently we only support remote processors that required carveout | 
|  | * allocations and got them mapped onto their iommus. Some processors | 
|  | * might be different: they might not have iommus, and would prefer to | 
|  | * directly allocate memory for every segment/resource. This is not yet | 
|  | * supported, though. | 
|  | * | 
|  | * Return: 0 on success and an appropriate error code otherwise | 
|  | */ | 
|  | int rproc_elf_load_segments(struct rproc *rproc, const struct firmware *fw) | 
|  | { | 
|  | struct device *dev = &rproc->dev; | 
|  | const void *ehdr, *phdr; | 
|  | int i, ret = 0; | 
|  | u16 phnum; | 
|  | const u8 *elf_data = fw->data; | 
|  | u8 class = fw_elf_get_class(fw); | 
|  | u32 elf_phdr_get_size = elf_size_of_phdr(class); | 
|  |  | 
|  | ehdr = elf_data; | 
|  | phnum = elf_hdr_get_e_phnum(class, ehdr); | 
|  | phdr = elf_data + elf_hdr_get_e_phoff(class, ehdr); | 
|  |  | 
|  | /* go through the available ELF segments */ | 
|  | for (i = 0; i < phnum; i++, phdr += elf_phdr_get_size) { | 
|  | u64 da = elf_phdr_get_p_paddr(class, phdr); | 
|  | u64 memsz = elf_phdr_get_p_memsz(class, phdr); | 
|  | u64 filesz = elf_phdr_get_p_filesz(class, phdr); | 
|  | u64 offset = elf_phdr_get_p_offset(class, phdr); | 
|  | u32 type = elf_phdr_get_p_type(class, phdr); | 
|  | bool is_iomem = false; | 
|  | void *ptr; | 
|  |  | 
|  | if (type != PT_LOAD || !memsz) | 
|  | continue; | 
|  |  | 
|  | dev_dbg(dev, "phdr: type %d da 0x%llx memsz 0x%llx filesz 0x%llx\n", | 
|  | type, da, memsz, filesz); | 
|  |  | 
|  | if (filesz > memsz) { | 
|  | dev_err(dev, "bad phdr filesz 0x%llx memsz 0x%llx\n", | 
|  | filesz, memsz); | 
|  | ret = -EINVAL; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (offset + filesz > fw->size) { | 
|  | dev_err(dev, "truncated fw: need 0x%llx avail 0x%zx\n", | 
|  | offset + filesz, fw->size); | 
|  | ret = -EINVAL; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (!rproc_u64_fit_in_size_t(memsz)) { | 
|  | dev_err(dev, "size (%llx) does not fit in size_t type\n", | 
|  | memsz); | 
|  | ret = -EOVERFLOW; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* grab the kernel address for this device address */ | 
|  | ptr = rproc_da_to_va(rproc, da, memsz, &is_iomem); | 
|  | if (!ptr) { | 
|  | dev_err(dev, "bad phdr da 0x%llx mem 0x%llx\n", da, | 
|  | memsz); | 
|  | ret = -EINVAL; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* put the segment where the remote processor expects it */ | 
|  | if (filesz) { | 
|  | if (is_iomem) | 
|  | memcpy_toio((void __iomem *)ptr, elf_data + offset, filesz); | 
|  | else | 
|  | memcpy(ptr, elf_data + offset, filesz); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Zero out remaining memory for this segment. | 
|  | * | 
|  | * This isn't strictly required since dma_alloc_coherent already | 
|  | * did this for us. albeit harmless, we may consider removing | 
|  | * this. | 
|  | */ | 
|  | if (memsz > filesz) { | 
|  | if (is_iomem) | 
|  | memset_io((void __iomem *)(ptr + filesz), 0, memsz - filesz); | 
|  | else | 
|  | memset(ptr + filesz, 0, memsz - filesz); | 
|  | } | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(rproc_elf_load_segments); | 
|  |  | 
|  | static const void * | 
|  | find_table(struct device *dev, const struct firmware *fw) | 
|  | { | 
|  | const void *shdr, *name_table_shdr; | 
|  | int i; | 
|  | const char *name_table; | 
|  | struct resource_table *table = NULL; | 
|  | const u8 *elf_data = (void *)fw->data; | 
|  | u8 class = fw_elf_get_class(fw); | 
|  | size_t fw_size = fw->size; | 
|  | const void *ehdr = elf_data; | 
|  | u16 shnum = elf_hdr_get_e_shnum(class, ehdr); | 
|  | u32 elf_shdr_get_size = elf_size_of_shdr(class); | 
|  | u16 shstrndx = elf_hdr_get_e_shstrndx(class, ehdr); | 
|  |  | 
|  | /* look for the resource table and handle it */ | 
|  | /* First, get the section header according to the elf class */ | 
|  | shdr = elf_data + elf_hdr_get_e_shoff(class, ehdr); | 
|  | /* Compute name table section header entry in shdr array */ | 
|  | name_table_shdr = shdr + (shstrndx * elf_shdr_get_size); | 
|  | /* Finally, compute the name table section address in elf */ | 
|  | name_table = elf_data + elf_shdr_get_sh_offset(class, name_table_shdr); | 
|  |  | 
|  | for (i = 0; i < shnum; i++, shdr += elf_shdr_get_size) { | 
|  | u64 size = elf_shdr_get_sh_size(class, shdr); | 
|  | u64 offset = elf_shdr_get_sh_offset(class, shdr); | 
|  | u32 name = elf_shdr_get_sh_name(class, shdr); | 
|  |  | 
|  | if (strcmp(name_table + name, ".resource_table")) | 
|  | continue; | 
|  |  | 
|  | table = (struct resource_table *)(elf_data + offset); | 
|  |  | 
|  | /* make sure we have the entire table */ | 
|  | if (offset + size > fw_size || offset + size < size) { | 
|  | dev_err(dev, "resource table truncated\n"); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* make sure table has at least the header */ | 
|  | if (sizeof(struct resource_table) > size) { | 
|  | dev_err(dev, "header-less resource table\n"); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* we don't support any version beyond the first */ | 
|  | if (table->ver != 1) { | 
|  | dev_err(dev, "unsupported fw ver: %d\n", table->ver); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* make sure reserved bytes are zeroes */ | 
|  | if (table->reserved[0] || table->reserved[1]) { | 
|  | dev_err(dev, "non zero reserved bytes\n"); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* make sure the offsets array isn't truncated */ | 
|  | if (struct_size(table, offset, table->num) > size) { | 
|  | dev_err(dev, "resource table incomplete\n"); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | return shdr; | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * rproc_elf_load_rsc_table() - load the resource table | 
|  | * @rproc: the rproc handle | 
|  | * @fw: the ELF firmware image | 
|  | * | 
|  | * This function finds the resource table inside the remote processor's | 
|  | * firmware, load it into the @cached_table and update @table_ptr. | 
|  | * | 
|  | * Return: 0 on success, negative errno on failure. | 
|  | */ | 
|  | int rproc_elf_load_rsc_table(struct rproc *rproc, const struct firmware *fw) | 
|  | { | 
|  | const void *shdr; | 
|  | struct device *dev = &rproc->dev; | 
|  | struct resource_table *table = NULL; | 
|  | const u8 *elf_data = fw->data; | 
|  | size_t tablesz; | 
|  | u8 class = fw_elf_get_class(fw); | 
|  | u64 sh_offset; | 
|  |  | 
|  | shdr = find_table(dev, fw); | 
|  | if (!shdr) | 
|  | return -EINVAL; | 
|  |  | 
|  | sh_offset = elf_shdr_get_sh_offset(class, shdr); | 
|  | table = (struct resource_table *)(elf_data + sh_offset); | 
|  | tablesz = elf_shdr_get_sh_size(class, shdr); | 
|  |  | 
|  | /* | 
|  | * Create a copy of the resource table. When a virtio device starts | 
|  | * and calls vring_new_virtqueue() the address of the allocated vring | 
|  | * will be stored in the cached_table. Before the device is started, | 
|  | * cached_table will be copied into device memory. | 
|  | */ | 
|  | rproc->cached_table = kmemdup(table, tablesz, GFP_KERNEL); | 
|  | if (!rproc->cached_table) | 
|  | return -ENOMEM; | 
|  |  | 
|  | rproc->table_ptr = rproc->cached_table; | 
|  | rproc->table_sz = tablesz; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL(rproc_elf_load_rsc_table); | 
|  |  | 
|  | /** | 
|  | * rproc_elf_find_loaded_rsc_table() - find the loaded resource table | 
|  | * @rproc: the rproc handle | 
|  | * @fw: the ELF firmware image | 
|  | * | 
|  | * This function finds the location of the loaded resource table. Don't | 
|  | * call this function if the table wasn't loaded yet - it's a bug if you do. | 
|  | * | 
|  | * Return: pointer to the resource table if it is found or NULL otherwise. | 
|  | * If the table wasn't loaded yet the result is unspecified. | 
|  | */ | 
|  | struct resource_table *rproc_elf_find_loaded_rsc_table(struct rproc *rproc, | 
|  | const struct firmware *fw) | 
|  | { | 
|  | const void *shdr; | 
|  | u64 sh_addr, sh_size; | 
|  | u8 class = fw_elf_get_class(fw); | 
|  | struct device *dev = &rproc->dev; | 
|  |  | 
|  | shdr = find_table(&rproc->dev, fw); | 
|  | if (!shdr) | 
|  | return NULL; | 
|  |  | 
|  | sh_addr = elf_shdr_get_sh_addr(class, shdr); | 
|  | sh_size = elf_shdr_get_sh_size(class, shdr); | 
|  |  | 
|  | if (!rproc_u64_fit_in_size_t(sh_size)) { | 
|  | dev_err(dev, "size (%llx) does not fit in size_t type\n", | 
|  | sh_size); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | return rproc_da_to_va(rproc, sh_addr, sh_size, NULL); | 
|  | } | 
|  | EXPORT_SYMBOL(rproc_elf_find_loaded_rsc_table); |