|  | // SPDX-License-Identifier: GPL-2.0-or-later | 
|  | /* | 
|  | * Copyright (C) 2012 - 2014 Allwinner Tech | 
|  | * Pan Nan <pannan@allwinnertech.com> | 
|  | * | 
|  | * Copyright (C) 2014 Maxime Ripard | 
|  | * Maxime Ripard <maxime.ripard@free-electrons.com> | 
|  | */ | 
|  |  | 
|  | #include <linux/bitfield.h> | 
|  | #include <linux/clk.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/device.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/io.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/of.h> | 
|  | #include <linux/platform_device.h> | 
|  | #include <linux/pm_runtime.h> | 
|  | #include <linux/reset.h> | 
|  | #include <linux/dmaengine.h> | 
|  |  | 
|  | #include <linux/spi/spi.h> | 
|  |  | 
|  | #define SUN6I_AUTOSUSPEND_TIMEOUT	2000 | 
|  |  | 
|  | #define SUN6I_FIFO_DEPTH		128 | 
|  | #define SUN8I_FIFO_DEPTH		64 | 
|  |  | 
|  | #define SUN6I_GBL_CTL_REG		0x04 | 
|  | #define SUN6I_GBL_CTL_BUS_ENABLE		BIT(0) | 
|  | #define SUN6I_GBL_CTL_MASTER			BIT(1) | 
|  | #define SUN6I_GBL_CTL_TP			BIT(7) | 
|  | #define SUN6I_GBL_CTL_RST			BIT(31) | 
|  |  | 
|  | #define SUN6I_TFR_CTL_REG		0x08 | 
|  | #define SUN6I_TFR_CTL_CPHA			BIT(0) | 
|  | #define SUN6I_TFR_CTL_CPOL			BIT(1) | 
|  | #define SUN6I_TFR_CTL_SPOL			BIT(2) | 
|  | #define SUN6I_TFR_CTL_CS_MASK			0x30 | 
|  | #define SUN6I_TFR_CTL_CS(cs)			(((cs) << 4) & SUN6I_TFR_CTL_CS_MASK) | 
|  | #define SUN6I_TFR_CTL_CS_MANUAL			BIT(6) | 
|  | #define SUN6I_TFR_CTL_CS_LEVEL			BIT(7) | 
|  | #define SUN6I_TFR_CTL_DHB			BIT(8) | 
|  | #define SUN6I_TFR_CTL_SDC			BIT(11) | 
|  | #define SUN6I_TFR_CTL_FBS			BIT(12) | 
|  | #define SUN6I_TFR_CTL_SDM			BIT(13) | 
|  | #define SUN6I_TFR_CTL_XCH			BIT(31) | 
|  |  | 
|  | #define SUN6I_INT_CTL_REG		0x10 | 
|  | #define SUN6I_INT_CTL_RF_RDY			BIT(0) | 
|  | #define SUN6I_INT_CTL_TF_ERQ			BIT(4) | 
|  | #define SUN6I_INT_CTL_RF_OVF			BIT(8) | 
|  | #define SUN6I_INT_CTL_TC			BIT(12) | 
|  |  | 
|  | #define SUN6I_INT_STA_REG		0x14 | 
|  |  | 
|  | #define SUN6I_FIFO_CTL_REG		0x18 | 
|  | #define SUN6I_FIFO_CTL_RF_RDY_TRIG_LEVEL_MASK	0xff | 
|  | #define SUN6I_FIFO_CTL_RF_DRQ_EN		BIT(8) | 
|  | #define SUN6I_FIFO_CTL_RF_RDY_TRIG_LEVEL_BITS	0 | 
|  | #define SUN6I_FIFO_CTL_RF_RST			BIT(15) | 
|  | #define SUN6I_FIFO_CTL_TF_ERQ_TRIG_LEVEL_MASK	0xff | 
|  | #define SUN6I_FIFO_CTL_TF_ERQ_TRIG_LEVEL_BITS	16 | 
|  | #define SUN6I_FIFO_CTL_TF_DRQ_EN		BIT(24) | 
|  | #define SUN6I_FIFO_CTL_TF_RST			BIT(31) | 
|  |  | 
|  | #define SUN6I_FIFO_STA_REG		0x1c | 
|  | #define SUN6I_FIFO_STA_RF_CNT_MASK		GENMASK(7, 0) | 
|  | #define SUN6I_FIFO_STA_TF_CNT_MASK		GENMASK(23, 16) | 
|  |  | 
|  | #define SUN6I_CLK_CTL_REG		0x24 | 
|  | #define SUN6I_CLK_CTL_CDR2_MASK			0xff | 
|  | #define SUN6I_CLK_CTL_CDR2(div)			(((div) & SUN6I_CLK_CTL_CDR2_MASK) << 0) | 
|  | #define SUN6I_CLK_CTL_CDR1_MASK			0xf | 
|  | #define SUN6I_CLK_CTL_CDR1(div)			(((div) & SUN6I_CLK_CTL_CDR1_MASK) << 8) | 
|  | #define SUN6I_CLK_CTL_DRS			BIT(12) | 
|  |  | 
|  | #define SUN6I_MAX_XFER_SIZE		0xffffff | 
|  |  | 
|  | #define SUN6I_BURST_CNT_REG		0x30 | 
|  |  | 
|  | #define SUN6I_XMIT_CNT_REG		0x34 | 
|  |  | 
|  | #define SUN6I_BURST_CTL_CNT_REG		0x38 | 
|  | #define SUN6I_BURST_CTL_CNT_STC_MASK		GENMASK(23, 0) | 
|  | #define SUN6I_BURST_CTL_CNT_DRM			BIT(28) | 
|  | #define SUN6I_BURST_CTL_CNT_QUAD_EN		BIT(29) | 
|  |  | 
|  | #define SUN6I_TXDATA_REG		0x200 | 
|  | #define SUN6I_RXDATA_REG		0x300 | 
|  |  | 
|  | struct sun6i_spi_cfg { | 
|  | unsigned long		fifo_depth; | 
|  | bool			has_clk_ctl; | 
|  | u32			mode_bits; | 
|  | }; | 
|  |  | 
|  | struct sun6i_spi { | 
|  | struct spi_controller	*host; | 
|  | void __iomem		*base_addr; | 
|  | dma_addr_t		dma_addr_rx; | 
|  | dma_addr_t		dma_addr_tx; | 
|  | struct clk		*hclk; | 
|  | struct clk		*mclk; | 
|  | struct reset_control	*rstc; | 
|  |  | 
|  | struct completion	done; | 
|  | struct completion	dma_rx_done; | 
|  |  | 
|  | const u8		*tx_buf; | 
|  | u8			*rx_buf; | 
|  | int			len; | 
|  | const struct sun6i_spi_cfg *cfg; | 
|  | }; | 
|  |  | 
|  | static inline u32 sun6i_spi_read(struct sun6i_spi *sspi, u32 reg) | 
|  | { | 
|  | return readl(sspi->base_addr + reg); | 
|  | } | 
|  |  | 
|  | static inline void sun6i_spi_write(struct sun6i_spi *sspi, u32 reg, u32 value) | 
|  | { | 
|  | writel(value, sspi->base_addr + reg); | 
|  | } | 
|  |  | 
|  | static inline u32 sun6i_spi_get_rx_fifo_count(struct sun6i_spi *sspi) | 
|  | { | 
|  | u32 reg = sun6i_spi_read(sspi, SUN6I_FIFO_STA_REG); | 
|  |  | 
|  | return FIELD_GET(SUN6I_FIFO_STA_RF_CNT_MASK, reg); | 
|  | } | 
|  |  | 
|  | static inline u32 sun6i_spi_get_tx_fifo_count(struct sun6i_spi *sspi) | 
|  | { | 
|  | u32 reg = sun6i_spi_read(sspi, SUN6I_FIFO_STA_REG); | 
|  |  | 
|  | return FIELD_GET(SUN6I_FIFO_STA_TF_CNT_MASK, reg); | 
|  | } | 
|  |  | 
|  | static inline void sun6i_spi_disable_interrupt(struct sun6i_spi *sspi, u32 mask) | 
|  | { | 
|  | u32 reg = sun6i_spi_read(sspi, SUN6I_INT_CTL_REG); | 
|  |  | 
|  | reg &= ~mask; | 
|  | sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, reg); | 
|  | } | 
|  |  | 
|  | static inline void sun6i_spi_drain_fifo(struct sun6i_spi *sspi) | 
|  | { | 
|  | u32 len; | 
|  | u8 byte; | 
|  |  | 
|  | /* See how much data is available */ | 
|  | len = sun6i_spi_get_rx_fifo_count(sspi); | 
|  |  | 
|  | while (len--) { | 
|  | byte = readb(sspi->base_addr + SUN6I_RXDATA_REG); | 
|  | if (sspi->rx_buf) | 
|  | *sspi->rx_buf++ = byte; | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline void sun6i_spi_fill_fifo(struct sun6i_spi *sspi) | 
|  | { | 
|  | u32 cnt; | 
|  | int len; | 
|  | u8 byte; | 
|  |  | 
|  | /* See how much data we can fit */ | 
|  | cnt = sspi->cfg->fifo_depth - sun6i_spi_get_tx_fifo_count(sspi); | 
|  |  | 
|  | len = min((int)cnt, sspi->len); | 
|  |  | 
|  | while (len--) { | 
|  | byte = sspi->tx_buf ? *sspi->tx_buf++ : 0; | 
|  | writeb(byte, sspi->base_addr + SUN6I_TXDATA_REG); | 
|  | sspi->len--; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void sun6i_spi_set_cs(struct spi_device *spi, bool enable) | 
|  | { | 
|  | struct sun6i_spi *sspi = spi_controller_get_devdata(spi->controller); | 
|  | u32 reg; | 
|  |  | 
|  | reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG); | 
|  | reg &= ~SUN6I_TFR_CTL_CS_MASK; | 
|  | reg |= SUN6I_TFR_CTL_CS(spi_get_chipselect(spi, 0)); | 
|  |  | 
|  | if (enable) | 
|  | reg |= SUN6I_TFR_CTL_CS_LEVEL; | 
|  | else | 
|  | reg &= ~SUN6I_TFR_CTL_CS_LEVEL; | 
|  |  | 
|  | sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg); | 
|  | } | 
|  |  | 
|  | static size_t sun6i_spi_max_transfer_size(struct spi_device *spi) | 
|  | { | 
|  | return SUN6I_MAX_XFER_SIZE - 1; | 
|  | } | 
|  |  | 
|  | static void sun6i_spi_dma_rx_cb(void *param) | 
|  | { | 
|  | struct sun6i_spi *sspi = param; | 
|  |  | 
|  | complete(&sspi->dma_rx_done); | 
|  | } | 
|  |  | 
|  | static int sun6i_spi_prepare_dma(struct sun6i_spi *sspi, | 
|  | struct spi_transfer *tfr) | 
|  | { | 
|  | struct dma_async_tx_descriptor *rxdesc, *txdesc; | 
|  | struct spi_controller *host = sspi->host; | 
|  |  | 
|  | rxdesc = NULL; | 
|  | if (tfr->rx_buf) { | 
|  | struct dma_slave_config rxconf = { | 
|  | .direction = DMA_DEV_TO_MEM, | 
|  | .src_addr = sspi->dma_addr_rx, | 
|  | .src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE, | 
|  | .src_maxburst = 8, | 
|  | }; | 
|  |  | 
|  | dmaengine_slave_config(host->dma_rx, &rxconf); | 
|  |  | 
|  | rxdesc = dmaengine_prep_slave_sg(host->dma_rx, | 
|  | tfr->rx_sg.sgl, | 
|  | tfr->rx_sg.nents, | 
|  | DMA_DEV_TO_MEM, | 
|  | DMA_PREP_INTERRUPT); | 
|  | if (!rxdesc) | 
|  | return -EINVAL; | 
|  | rxdesc->callback_param = sspi; | 
|  | rxdesc->callback = sun6i_spi_dma_rx_cb; | 
|  | } | 
|  |  | 
|  | txdesc = NULL; | 
|  | if (tfr->tx_buf) { | 
|  | struct dma_slave_config txconf = { | 
|  | .direction = DMA_MEM_TO_DEV, | 
|  | .dst_addr = sspi->dma_addr_tx, | 
|  | .dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES, | 
|  | .dst_maxburst = 8, | 
|  | }; | 
|  |  | 
|  | dmaengine_slave_config(host->dma_tx, &txconf); | 
|  |  | 
|  | txdesc = dmaengine_prep_slave_sg(host->dma_tx, | 
|  | tfr->tx_sg.sgl, | 
|  | tfr->tx_sg.nents, | 
|  | DMA_MEM_TO_DEV, | 
|  | DMA_PREP_INTERRUPT); | 
|  | if (!txdesc) { | 
|  | if (rxdesc) | 
|  | dmaengine_terminate_sync(host->dma_rx); | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (tfr->rx_buf) { | 
|  | dmaengine_submit(rxdesc); | 
|  | dma_async_issue_pending(host->dma_rx); | 
|  | } | 
|  |  | 
|  | if (tfr->tx_buf) { | 
|  | dmaengine_submit(txdesc); | 
|  | dma_async_issue_pending(host->dma_tx); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int sun6i_spi_transfer_one(struct spi_controller *host, | 
|  | struct spi_device *spi, | 
|  | struct spi_transfer *tfr) | 
|  | { | 
|  | struct sun6i_spi *sspi = spi_controller_get_devdata(host); | 
|  | unsigned int div, div_cdr1, div_cdr2; | 
|  | unsigned long time_left; | 
|  | unsigned int start, end, tx_time; | 
|  | unsigned int trig_level; | 
|  | unsigned int tx_len = 0, rx_len = 0, nbits = 0; | 
|  | bool use_dma; | 
|  | int ret = 0; | 
|  | u32 reg; | 
|  |  | 
|  | if (tfr->len > SUN6I_MAX_XFER_SIZE) | 
|  | return -EINVAL; | 
|  |  | 
|  | reinit_completion(&sspi->done); | 
|  | reinit_completion(&sspi->dma_rx_done); | 
|  | sspi->tx_buf = tfr->tx_buf; | 
|  | sspi->rx_buf = tfr->rx_buf; | 
|  | sspi->len = tfr->len; | 
|  | use_dma = host->can_dma ? host->can_dma(host, spi, tfr) : false; | 
|  |  | 
|  | /* Clear pending interrupts */ | 
|  | sun6i_spi_write(sspi, SUN6I_INT_STA_REG, ~0); | 
|  |  | 
|  | /* Reset FIFO */ | 
|  | sun6i_spi_write(sspi, SUN6I_FIFO_CTL_REG, | 
|  | SUN6I_FIFO_CTL_RF_RST | SUN6I_FIFO_CTL_TF_RST); | 
|  |  | 
|  | reg = 0; | 
|  |  | 
|  | if (!use_dma) { | 
|  | /* | 
|  | * Setup FIFO interrupt trigger level | 
|  | * Here we choose 3/4 of the full fifo depth, as it's | 
|  | * the hardcoded value used in old generation of Allwinner | 
|  | * SPI controller. (See spi-sun4i.c) | 
|  | */ | 
|  | trig_level = sspi->cfg->fifo_depth / 4 * 3; | 
|  | } else { | 
|  | /* | 
|  | * Setup FIFO DMA request trigger level | 
|  | * We choose 1/2 of the full fifo depth, that value will | 
|  | * be used as DMA burst length. | 
|  | */ | 
|  | trig_level = sspi->cfg->fifo_depth / 2; | 
|  |  | 
|  | if (tfr->tx_buf) | 
|  | reg |= SUN6I_FIFO_CTL_TF_DRQ_EN; | 
|  | if (tfr->rx_buf) | 
|  | reg |= SUN6I_FIFO_CTL_RF_DRQ_EN; | 
|  | } | 
|  |  | 
|  | reg |= (trig_level << SUN6I_FIFO_CTL_RF_RDY_TRIG_LEVEL_BITS) | | 
|  | (trig_level << SUN6I_FIFO_CTL_TF_ERQ_TRIG_LEVEL_BITS); | 
|  |  | 
|  | sun6i_spi_write(sspi, SUN6I_FIFO_CTL_REG, reg); | 
|  |  | 
|  | /* | 
|  | * Setup the transfer control register: Chip Select, | 
|  | * polarities, etc. | 
|  | */ | 
|  | reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG); | 
|  |  | 
|  | if (spi->mode & SPI_CPOL) | 
|  | reg |= SUN6I_TFR_CTL_CPOL; | 
|  | else | 
|  | reg &= ~SUN6I_TFR_CTL_CPOL; | 
|  |  | 
|  | if (spi->mode & SPI_CPHA) | 
|  | reg |= SUN6I_TFR_CTL_CPHA; | 
|  | else | 
|  | reg &= ~SUN6I_TFR_CTL_CPHA; | 
|  |  | 
|  | if (spi->mode & SPI_LSB_FIRST) | 
|  | reg |= SUN6I_TFR_CTL_FBS; | 
|  | else | 
|  | reg &= ~SUN6I_TFR_CTL_FBS; | 
|  |  | 
|  | /* | 
|  | * If it's a TX only transfer, we don't want to fill the RX | 
|  | * FIFO with bogus data | 
|  | */ | 
|  | if (sspi->rx_buf) { | 
|  | reg &= ~SUN6I_TFR_CTL_DHB; | 
|  | rx_len = tfr->len; | 
|  | } else { | 
|  | reg |= SUN6I_TFR_CTL_DHB; | 
|  | } | 
|  |  | 
|  | /* We want to control the chip select manually */ | 
|  | reg |= SUN6I_TFR_CTL_CS_MANUAL; | 
|  |  | 
|  | sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg); | 
|  |  | 
|  | if (sspi->cfg->has_clk_ctl) { | 
|  | unsigned int mclk_rate = clk_get_rate(sspi->mclk); | 
|  |  | 
|  | /* Ensure that we have a parent clock fast enough */ | 
|  | if (mclk_rate < (2 * tfr->speed_hz)) { | 
|  | clk_set_rate(sspi->mclk, 2 * tfr->speed_hz); | 
|  | mclk_rate = clk_get_rate(sspi->mclk); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Setup clock divider. | 
|  | * | 
|  | * We have two choices there. Either we can use the clock | 
|  | * divide rate 1, which is calculated thanks to this formula: | 
|  | * SPI_CLK = MOD_CLK / (2 ^ cdr) | 
|  | * Or we can use CDR2, which is calculated with the formula: | 
|  | * SPI_CLK = MOD_CLK / (2 * (cdr + 1)) | 
|  | * Wether we use the former or the latter is set through the | 
|  | * DRS bit. | 
|  | * | 
|  | * First try CDR2, and if we can't reach the expected | 
|  | * frequency, fall back to CDR1. | 
|  | */ | 
|  | div_cdr1 = DIV_ROUND_UP(mclk_rate, tfr->speed_hz); | 
|  | div_cdr2 = DIV_ROUND_UP(div_cdr1, 2); | 
|  | if (div_cdr2 <= (SUN6I_CLK_CTL_CDR2_MASK + 1)) { | 
|  | reg = SUN6I_CLK_CTL_CDR2(div_cdr2 - 1) | SUN6I_CLK_CTL_DRS; | 
|  | tfr->effective_speed_hz = mclk_rate / (2 * div_cdr2); | 
|  | } else { | 
|  | div = min(SUN6I_CLK_CTL_CDR1_MASK, order_base_2(div_cdr1)); | 
|  | reg = SUN6I_CLK_CTL_CDR1(div); | 
|  | tfr->effective_speed_hz = mclk_rate / (1 << div); | 
|  | } | 
|  |  | 
|  | sun6i_spi_write(sspi, SUN6I_CLK_CTL_REG, reg); | 
|  | } else { | 
|  | clk_set_rate(sspi->mclk, tfr->speed_hz); | 
|  | tfr->effective_speed_hz = clk_get_rate(sspi->mclk); | 
|  |  | 
|  | /* | 
|  | * Configure work mode. | 
|  | * | 
|  | * There are three work modes depending on the controller clock | 
|  | * frequency: | 
|  | * - normal sample mode           : CLK <= 24MHz SDM=1 SDC=0 | 
|  | * - delay half-cycle sample mode : CLK <= 40MHz SDM=0 SDC=0 | 
|  | * - delay one-cycle sample mode  : CLK >= 80MHz SDM=0 SDC=1 | 
|  | */ | 
|  | reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG); | 
|  | reg &= ~(SUN6I_TFR_CTL_SDM | SUN6I_TFR_CTL_SDC); | 
|  |  | 
|  | if (tfr->effective_speed_hz <= 24000000) | 
|  | reg |= SUN6I_TFR_CTL_SDM; | 
|  | else if (tfr->effective_speed_hz >= 80000000) | 
|  | reg |= SUN6I_TFR_CTL_SDC; | 
|  |  | 
|  | sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg); | 
|  | } | 
|  |  | 
|  | /* Finally enable the bus - doing so before might raise SCK to HIGH */ | 
|  | reg = sun6i_spi_read(sspi, SUN6I_GBL_CTL_REG); | 
|  | reg |= SUN6I_GBL_CTL_BUS_ENABLE; | 
|  | sun6i_spi_write(sspi, SUN6I_GBL_CTL_REG, reg); | 
|  |  | 
|  | /* Setup the transfer now... */ | 
|  | if (sspi->tx_buf) { | 
|  | tx_len = tfr->len; | 
|  | nbits = tfr->tx_nbits; | 
|  | } else if (tfr->rx_buf) { | 
|  | nbits = tfr->rx_nbits; | 
|  | } | 
|  |  | 
|  | switch (nbits) { | 
|  | case SPI_NBITS_DUAL: | 
|  | reg = SUN6I_BURST_CTL_CNT_DRM; | 
|  | break; | 
|  | case SPI_NBITS_QUAD: | 
|  | reg = SUN6I_BURST_CTL_CNT_QUAD_EN; | 
|  | break; | 
|  | case SPI_NBITS_SINGLE: | 
|  | default: | 
|  | reg = FIELD_PREP(SUN6I_BURST_CTL_CNT_STC_MASK, tx_len); | 
|  | } | 
|  |  | 
|  | /* Setup the counters */ | 
|  | sun6i_spi_write(sspi, SUN6I_BURST_CTL_CNT_REG, reg); | 
|  | sun6i_spi_write(sspi, SUN6I_BURST_CNT_REG, tfr->len); | 
|  | sun6i_spi_write(sspi, SUN6I_XMIT_CNT_REG, tx_len); | 
|  |  | 
|  | if (!use_dma) { | 
|  | /* Fill the TX FIFO */ | 
|  | sun6i_spi_fill_fifo(sspi); | 
|  | } else { | 
|  | ret = sun6i_spi_prepare_dma(sspi, tfr); | 
|  | if (ret) { | 
|  | dev_warn(&host->dev, | 
|  | "%s: prepare DMA failed, ret=%d", | 
|  | dev_name(&spi->dev), ret); | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Enable the interrupts */ | 
|  | reg = SUN6I_INT_CTL_TC; | 
|  |  | 
|  | if (!use_dma) { | 
|  | if (rx_len > sspi->cfg->fifo_depth) | 
|  | reg |= SUN6I_INT_CTL_RF_RDY; | 
|  | if (tx_len > sspi->cfg->fifo_depth) | 
|  | reg |= SUN6I_INT_CTL_TF_ERQ; | 
|  | } | 
|  |  | 
|  | sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, reg); | 
|  |  | 
|  | /* Start the transfer */ | 
|  | reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG); | 
|  | sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg | SUN6I_TFR_CTL_XCH); | 
|  |  | 
|  | tx_time = spi_controller_xfer_timeout(host, tfr); | 
|  | start = jiffies; | 
|  | time_left = wait_for_completion_timeout(&sspi->done, | 
|  | msecs_to_jiffies(tx_time)); | 
|  |  | 
|  | if (!use_dma) { | 
|  | sun6i_spi_drain_fifo(sspi); | 
|  | } else { | 
|  | if (time_left && rx_len) { | 
|  | /* | 
|  | * Even though RX on the peripheral side has finished | 
|  | * RX DMA might still be in flight | 
|  | */ | 
|  | time_left = wait_for_completion_timeout(&sspi->dma_rx_done, | 
|  | time_left); | 
|  | if (!time_left) | 
|  | dev_warn(&host->dev, "RX DMA timeout\n"); | 
|  | } | 
|  | } | 
|  |  | 
|  | end = jiffies; | 
|  | if (!time_left) { | 
|  | dev_warn(&host->dev, | 
|  | "%s: timeout transferring %u bytes@%iHz for %i(%i)ms", | 
|  | dev_name(&spi->dev), tfr->len, tfr->speed_hz, | 
|  | jiffies_to_msecs(end - start), tx_time); | 
|  | ret = -ETIMEDOUT; | 
|  | } | 
|  |  | 
|  | sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, 0); | 
|  |  | 
|  | if (ret && use_dma) { | 
|  | dmaengine_terminate_sync(host->dma_rx); | 
|  | dmaengine_terminate_sync(host->dma_tx); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static irqreturn_t sun6i_spi_handler(int irq, void *dev_id) | 
|  | { | 
|  | struct sun6i_spi *sspi = dev_id; | 
|  | u32 status = sun6i_spi_read(sspi, SUN6I_INT_STA_REG); | 
|  |  | 
|  | /* Transfer complete */ | 
|  | if (status & SUN6I_INT_CTL_TC) { | 
|  | sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_TC); | 
|  | complete(&sspi->done); | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | /* Receive FIFO 3/4 full */ | 
|  | if (status & SUN6I_INT_CTL_RF_RDY) { | 
|  | sun6i_spi_drain_fifo(sspi); | 
|  | /* Only clear the interrupt _after_ draining the FIFO */ | 
|  | sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_RF_RDY); | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | /* Transmit FIFO 3/4 empty */ | 
|  | if (status & SUN6I_INT_CTL_TF_ERQ) { | 
|  | sun6i_spi_fill_fifo(sspi); | 
|  |  | 
|  | if (!sspi->len) | 
|  | /* nothing left to transmit */ | 
|  | sun6i_spi_disable_interrupt(sspi, SUN6I_INT_CTL_TF_ERQ); | 
|  |  | 
|  | /* Only clear the interrupt _after_ re-seeding the FIFO */ | 
|  | sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_TF_ERQ); | 
|  |  | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | return IRQ_NONE; | 
|  | } | 
|  |  | 
|  | static int sun6i_spi_runtime_resume(struct device *dev) | 
|  | { | 
|  | struct spi_controller *host = dev_get_drvdata(dev); | 
|  | struct sun6i_spi *sspi = spi_controller_get_devdata(host); | 
|  | int ret; | 
|  |  | 
|  | ret = clk_prepare_enable(sspi->hclk); | 
|  | if (ret) { | 
|  | dev_err(dev, "Couldn't enable AHB clock\n"); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ret = clk_prepare_enable(sspi->mclk); | 
|  | if (ret) { | 
|  | dev_err(dev, "Couldn't enable module clock\n"); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | ret = reset_control_deassert(sspi->rstc); | 
|  | if (ret) { | 
|  | dev_err(dev, "Couldn't deassert the device from reset\n"); | 
|  | goto err2; | 
|  | } | 
|  |  | 
|  | sun6i_spi_write(sspi, SUN6I_GBL_CTL_REG, | 
|  | SUN6I_GBL_CTL_MASTER | SUN6I_GBL_CTL_TP); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | err2: | 
|  | clk_disable_unprepare(sspi->mclk); | 
|  | err: | 
|  | clk_disable_unprepare(sspi->hclk); | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int sun6i_spi_runtime_suspend(struct device *dev) | 
|  | { | 
|  | struct spi_controller *host = dev_get_drvdata(dev); | 
|  | struct sun6i_spi *sspi = spi_controller_get_devdata(host); | 
|  |  | 
|  | reset_control_assert(sspi->rstc); | 
|  | clk_disable_unprepare(sspi->mclk); | 
|  | clk_disable_unprepare(sspi->hclk); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static bool sun6i_spi_can_dma(struct spi_controller *host, | 
|  | struct spi_device *spi, | 
|  | struct spi_transfer *xfer) | 
|  | { | 
|  | struct sun6i_spi *sspi = spi_controller_get_devdata(host); | 
|  |  | 
|  | /* | 
|  | * If the number of spi words to transfer is less or equal than | 
|  | * the fifo length we can just fill the fifo and wait for a single | 
|  | * irq, so don't bother setting up dma | 
|  | */ | 
|  | return xfer->len > sspi->cfg->fifo_depth; | 
|  | } | 
|  |  | 
|  | static int sun6i_spi_probe(struct platform_device *pdev) | 
|  | { | 
|  | struct spi_controller *host; | 
|  | struct sun6i_spi *sspi; | 
|  | struct resource *mem; | 
|  | int ret = 0, irq; | 
|  |  | 
|  | host = spi_alloc_host(&pdev->dev, sizeof(struct sun6i_spi)); | 
|  | if (!host) { | 
|  | dev_err(&pdev->dev, "Unable to allocate SPI Host\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | platform_set_drvdata(pdev, host); | 
|  | sspi = spi_controller_get_devdata(host); | 
|  |  | 
|  | sspi->base_addr = devm_platform_get_and_ioremap_resource(pdev, 0, &mem); | 
|  | if (IS_ERR(sspi->base_addr)) { | 
|  | ret = PTR_ERR(sspi->base_addr); | 
|  | goto err_free_host; | 
|  | } | 
|  |  | 
|  | irq = platform_get_irq(pdev, 0); | 
|  | if (irq < 0) { | 
|  | ret = -ENXIO; | 
|  | goto err_free_host; | 
|  | } | 
|  |  | 
|  | ret = devm_request_irq(&pdev->dev, irq, sun6i_spi_handler, | 
|  | 0, "sun6i-spi", sspi); | 
|  | if (ret) { | 
|  | dev_err(&pdev->dev, "Cannot request IRQ\n"); | 
|  | goto err_free_host; | 
|  | } | 
|  |  | 
|  | sspi->host = host; | 
|  | sspi->cfg = of_device_get_match_data(&pdev->dev); | 
|  |  | 
|  | host->max_speed_hz = 100 * 1000 * 1000; | 
|  | host->min_speed_hz = 3 * 1000; | 
|  | host->use_gpio_descriptors = true; | 
|  | host->set_cs = sun6i_spi_set_cs; | 
|  | host->transfer_one = sun6i_spi_transfer_one; | 
|  | host->num_chipselect = 4; | 
|  | host->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LSB_FIRST | | 
|  | sspi->cfg->mode_bits; | 
|  | host->bits_per_word_mask = SPI_BPW_MASK(8); | 
|  | host->dev.of_node = pdev->dev.of_node; | 
|  | host->auto_runtime_pm = true; | 
|  | host->max_transfer_size = sun6i_spi_max_transfer_size; | 
|  |  | 
|  | sspi->hclk = devm_clk_get(&pdev->dev, "ahb"); | 
|  | if (IS_ERR(sspi->hclk)) { | 
|  | dev_err(&pdev->dev, "Unable to acquire AHB clock\n"); | 
|  | ret = PTR_ERR(sspi->hclk); | 
|  | goto err_free_host; | 
|  | } | 
|  |  | 
|  | sspi->mclk = devm_clk_get(&pdev->dev, "mod"); | 
|  | if (IS_ERR(sspi->mclk)) { | 
|  | dev_err(&pdev->dev, "Unable to acquire module clock\n"); | 
|  | ret = PTR_ERR(sspi->mclk); | 
|  | goto err_free_host; | 
|  | } | 
|  |  | 
|  | init_completion(&sspi->done); | 
|  | init_completion(&sspi->dma_rx_done); | 
|  |  | 
|  | sspi->rstc = devm_reset_control_get_exclusive(&pdev->dev, NULL); | 
|  | if (IS_ERR(sspi->rstc)) { | 
|  | dev_err(&pdev->dev, "Couldn't get reset controller\n"); | 
|  | ret = PTR_ERR(sspi->rstc); | 
|  | goto err_free_host; | 
|  | } | 
|  |  | 
|  | host->dma_tx = dma_request_chan(&pdev->dev, "tx"); | 
|  | if (IS_ERR(host->dma_tx)) { | 
|  | /* Check tx to see if we need defer probing driver */ | 
|  | if (PTR_ERR(host->dma_tx) == -EPROBE_DEFER) { | 
|  | ret = -EPROBE_DEFER; | 
|  | goto err_free_host; | 
|  | } | 
|  | dev_warn(&pdev->dev, "Failed to request TX DMA channel\n"); | 
|  | host->dma_tx = NULL; | 
|  | } | 
|  |  | 
|  | host->dma_rx = dma_request_chan(&pdev->dev, "rx"); | 
|  | if (IS_ERR(host->dma_rx)) { | 
|  | if (PTR_ERR(host->dma_rx) == -EPROBE_DEFER) { | 
|  | ret = -EPROBE_DEFER; | 
|  | goto err_free_dma_tx; | 
|  | } | 
|  | dev_warn(&pdev->dev, "Failed to request RX DMA channel\n"); | 
|  | host->dma_rx = NULL; | 
|  | } | 
|  |  | 
|  | if (host->dma_tx && host->dma_rx) { | 
|  | sspi->dma_addr_tx = mem->start + SUN6I_TXDATA_REG; | 
|  | sspi->dma_addr_rx = mem->start + SUN6I_RXDATA_REG; | 
|  | host->can_dma = sun6i_spi_can_dma; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This wake-up/shutdown pattern is to be able to have the | 
|  | * device woken up, even if runtime_pm is disabled | 
|  | */ | 
|  | ret = sun6i_spi_runtime_resume(&pdev->dev); | 
|  | if (ret) { | 
|  | dev_err(&pdev->dev, "Couldn't resume the device\n"); | 
|  | goto err_free_dma_rx; | 
|  | } | 
|  |  | 
|  | pm_runtime_set_autosuspend_delay(&pdev->dev, SUN6I_AUTOSUSPEND_TIMEOUT); | 
|  | pm_runtime_use_autosuspend(&pdev->dev); | 
|  | pm_runtime_set_active(&pdev->dev); | 
|  | pm_runtime_enable(&pdev->dev); | 
|  |  | 
|  | ret = devm_spi_register_controller(&pdev->dev, host); | 
|  | if (ret) { | 
|  | dev_err(&pdev->dev, "cannot register SPI host\n"); | 
|  | goto err_pm_disable; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | err_pm_disable: | 
|  | pm_runtime_disable(&pdev->dev); | 
|  | sun6i_spi_runtime_suspend(&pdev->dev); | 
|  | err_free_dma_rx: | 
|  | if (host->dma_rx) | 
|  | dma_release_channel(host->dma_rx); | 
|  | err_free_dma_tx: | 
|  | if (host->dma_tx) | 
|  | dma_release_channel(host->dma_tx); | 
|  | err_free_host: | 
|  | spi_controller_put(host); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void sun6i_spi_remove(struct platform_device *pdev) | 
|  | { | 
|  | struct spi_controller *host = platform_get_drvdata(pdev); | 
|  |  | 
|  | pm_runtime_force_suspend(&pdev->dev); | 
|  |  | 
|  | if (host->dma_tx) | 
|  | dma_release_channel(host->dma_tx); | 
|  | if (host->dma_rx) | 
|  | dma_release_channel(host->dma_rx); | 
|  | } | 
|  |  | 
|  | static const struct sun6i_spi_cfg sun6i_a31_spi_cfg = { | 
|  | .fifo_depth	= SUN6I_FIFO_DEPTH, | 
|  | .has_clk_ctl	= true, | 
|  | }; | 
|  |  | 
|  | static const struct sun6i_spi_cfg sun8i_h3_spi_cfg = { | 
|  | .fifo_depth	= SUN8I_FIFO_DEPTH, | 
|  | .has_clk_ctl	= true, | 
|  | }; | 
|  |  | 
|  | static const struct sun6i_spi_cfg sun50i_r329_spi_cfg = { | 
|  | .fifo_depth	= SUN8I_FIFO_DEPTH, | 
|  | .mode_bits	= SPI_RX_DUAL | SPI_TX_DUAL | SPI_RX_QUAD | SPI_TX_QUAD, | 
|  | }; | 
|  |  | 
|  | static const struct of_device_id sun6i_spi_match[] = { | 
|  | { .compatible = "allwinner,sun6i-a31-spi", .data = &sun6i_a31_spi_cfg }, | 
|  | { .compatible = "allwinner,sun8i-h3-spi",  .data = &sun8i_h3_spi_cfg }, | 
|  | { | 
|  | .compatible = "allwinner,sun50i-r329-spi", | 
|  | .data = &sun50i_r329_spi_cfg | 
|  | }, | 
|  | {} | 
|  | }; | 
|  | MODULE_DEVICE_TABLE(of, sun6i_spi_match); | 
|  |  | 
|  | static const struct dev_pm_ops sun6i_spi_pm_ops = { | 
|  | .runtime_resume		= sun6i_spi_runtime_resume, | 
|  | .runtime_suspend	= sun6i_spi_runtime_suspend, | 
|  | }; | 
|  |  | 
|  | static struct platform_driver sun6i_spi_driver = { | 
|  | .probe	= sun6i_spi_probe, | 
|  | .remove_new = sun6i_spi_remove, | 
|  | .driver	= { | 
|  | .name		= "sun6i-spi", | 
|  | .of_match_table	= sun6i_spi_match, | 
|  | .pm		= &sun6i_spi_pm_ops, | 
|  | }, | 
|  | }; | 
|  | module_platform_driver(sun6i_spi_driver); | 
|  |  | 
|  | MODULE_AUTHOR("Pan Nan <pannan@allwinnertech.com>"); | 
|  | MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com>"); | 
|  | MODULE_DESCRIPTION("Allwinner A31 SPI controller driver"); | 
|  | MODULE_LICENSE("GPL"); |