blob: 2e0170be077aef9aa194fab51afbb33aec02e513 [file] [log] [blame] [edit]
// SPDX-License-Identifier: GPL-2.0+
/*
* adux1020.c - Support for Analog Devices ADUX1020 photometric sensor
*
* Copyright (C) 2019 Linaro Ltd.
* Author: Manivannan Sadhasivam <manivannan.sadhasivam@linaro.org>
*
* TODO: Triggered buffer support
*/
#include <linux/bitfield.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/i2c.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/regmap.h>
#include <linux/iio/iio.h>
#include <linux/iio/sysfs.h>
#include <linux/iio/events.h>
#define ADUX1020_REGMAP_NAME "adux1020_regmap"
#define ADUX1020_DRV_NAME "adux1020"
/* System registers */
#define ADUX1020_REG_CHIP_ID 0x08
#define ADUX1020_REG_SLAVE_ADDRESS 0x09
#define ADUX1020_REG_SW_RESET 0x0f
#define ADUX1020_REG_INT_ENABLE 0x1c
#define ADUX1020_REG_INT_POLARITY 0x1d
#define ADUX1020_REG_PROX_TH_ON1 0x2a
#define ADUX1020_REG_PROX_TH_OFF1 0x2b
#define ADUX1020_REG_PROX_TYPE 0x2f
#define ADUX1020_REG_TEST_MODES_3 0x32
#define ADUX1020_REG_FORCE_MODE 0x33
#define ADUX1020_REG_FREQUENCY 0x40
#define ADUX1020_REG_LED_CURRENT 0x41
#define ADUX1020_REG_OP_MODE 0x45
#define ADUX1020_REG_INT_MASK 0x48
#define ADUX1020_REG_INT_STATUS 0x49
#define ADUX1020_REG_DATA_BUFFER 0x60
/* Chip ID bits */
#define ADUX1020_CHIP_ID_MASK GENMASK(11, 0)
#define ADUX1020_CHIP_ID 0x03fc
#define ADUX1020_SW_RESET BIT(1)
#define ADUX1020_FIFO_FLUSH BIT(15)
#define ADUX1020_OP_MODE_MASK GENMASK(3, 0)
#define ADUX1020_DATA_OUT_MODE_MASK GENMASK(7, 4)
#define ADUX1020_DATA_OUT_PROX_I FIELD_PREP(ADUX1020_DATA_OUT_MODE_MASK, 1)
#define ADUX1020_MODE_INT_MASK GENMASK(7, 0)
#define ADUX1020_INT_ENABLE 0x2094
#define ADUX1020_INT_DISABLE 0x2090
#define ADUX1020_PROX_INT_ENABLE 0x00f0
#define ADUX1020_PROX_ON1_INT BIT(0)
#define ADUX1020_PROX_OFF1_INT BIT(1)
#define ADUX1020_FIFO_INT_ENABLE 0x7f
#define ADUX1020_MODE_INT_DISABLE 0xff
#define ADUX1020_MODE_INT_STATUS_MASK GENMASK(7, 0)
#define ADUX1020_FIFO_STATUS_MASK GENMASK(15, 8)
#define ADUX1020_INT_CLEAR 0xff
#define ADUX1020_PROX_TYPE BIT(15)
#define ADUX1020_INT_PROX_ON1 BIT(0)
#define ADUX1020_INT_PROX_OFF1 BIT(1)
#define ADUX1020_FORCE_CLOCK_ON 0x0f4f
#define ADUX1020_FORCE_CLOCK_RESET 0x0040
#define ADUX1020_ACTIVE_4_STATE 0x0008
#define ADUX1020_PROX_FREQ_MASK GENMASK(7, 4)
#define ADUX1020_PROX_FREQ(x) FIELD_PREP(ADUX1020_PROX_FREQ_MASK, x)
#define ADUX1020_LED_CURRENT_MASK GENMASK(3, 0)
#define ADUX1020_LED_PIREF_EN BIT(12)
/* Operating modes */
enum adux1020_op_modes {
ADUX1020_MODE_STANDBY,
ADUX1020_MODE_PROX_I,
ADUX1020_MODE_PROX_XY,
ADUX1020_MODE_GEST,
ADUX1020_MODE_SAMPLE,
ADUX1020_MODE_FORCE = 0x0e,
ADUX1020_MODE_IDLE = 0x0f,
};
struct adux1020_data {
struct i2c_client *client;
struct iio_dev *indio_dev;
struct mutex lock;
struct regmap *regmap;
};
struct adux1020_mode_data {
u8 bytes;
u8 buf_len;
u16 int_en;
};
static const struct adux1020_mode_data adux1020_modes[] = {
[ADUX1020_MODE_PROX_I] = {
.bytes = 2,
.buf_len = 1,
.int_en = ADUX1020_PROX_INT_ENABLE,
},
};
static const struct regmap_config adux1020_regmap_config = {
.name = ADUX1020_REGMAP_NAME,
.reg_bits = 8,
.val_bits = 16,
.max_register = 0x6F,
.cache_type = REGCACHE_NONE,
};
static const struct reg_sequence adux1020_def_conf[] = {
{ 0x000c, 0x000f },
{ 0x0010, 0x1010 },
{ 0x0011, 0x004c },
{ 0x0012, 0x5f0c },
{ 0x0013, 0xada5 },
{ 0x0014, 0x0080 },
{ 0x0015, 0x0000 },
{ 0x0016, 0x0600 },
{ 0x0017, 0x0000 },
{ 0x0018, 0x2693 },
{ 0x0019, 0x0004 },
{ 0x001a, 0x4280 },
{ 0x001b, 0x0060 },
{ 0x001c, 0x2094 },
{ 0x001d, 0x0020 },
{ 0x001e, 0x0001 },
{ 0x001f, 0x0100 },
{ 0x0020, 0x0320 },
{ 0x0021, 0x0A13 },
{ 0x0022, 0x0320 },
{ 0x0023, 0x0113 },
{ 0x0024, 0x0000 },
{ 0x0025, 0x2412 },
{ 0x0026, 0x2412 },
{ 0x0027, 0x0022 },
{ 0x0028, 0x0000 },
{ 0x0029, 0x0300 },
{ 0x002a, 0x0700 },
{ 0x002b, 0x0600 },
{ 0x002c, 0x6000 },
{ 0x002d, 0x4000 },
{ 0x002e, 0x0000 },
{ 0x002f, 0x0000 },
{ 0x0030, 0x0000 },
{ 0x0031, 0x0000 },
{ 0x0032, 0x0040 },
{ 0x0033, 0x0008 },
{ 0x0034, 0xE400 },
{ 0x0038, 0x8080 },
{ 0x0039, 0x8080 },
{ 0x003a, 0x2000 },
{ 0x003b, 0x1f00 },
{ 0x003c, 0x2000 },
{ 0x003d, 0x2000 },
{ 0x003e, 0x0000 },
{ 0x0040, 0x8069 },
{ 0x0041, 0x1f2f },
{ 0x0042, 0x4000 },
{ 0x0043, 0x0000 },
{ 0x0044, 0x0008 },
{ 0x0046, 0x0000 },
{ 0x0048, 0x00ef },
{ 0x0049, 0x0000 },
{ 0x0045, 0x0000 },
};
static const int adux1020_rates[][2] = {
{ 0, 100000 },
{ 0, 200000 },
{ 0, 500000 },
{ 1, 0 },
{ 2, 0 },
{ 5, 0 },
{ 10, 0 },
{ 20, 0 },
{ 50, 0 },
{ 100, 0 },
{ 190, 0 },
{ 450, 0 },
{ 820, 0 },
{ 1400, 0 },
};
static const int adux1020_led_currents[][2] = {
{ 0, 25000 },
{ 0, 40000 },
{ 0, 55000 },
{ 0, 70000 },
{ 0, 85000 },
{ 0, 100000 },
{ 0, 115000 },
{ 0, 130000 },
{ 0, 145000 },
{ 0, 160000 },
{ 0, 175000 },
{ 0, 190000 },
{ 0, 205000 },
{ 0, 220000 },
{ 0, 235000 },
{ 0, 250000 },
};
static int adux1020_flush_fifo(struct adux1020_data *data)
{
int ret;
/* Force Idle mode */
ret = regmap_write(data->regmap, ADUX1020_REG_FORCE_MODE,
ADUX1020_ACTIVE_4_STATE);
if (ret < 0)
return ret;
ret = regmap_update_bits(data->regmap, ADUX1020_REG_OP_MODE,
ADUX1020_OP_MODE_MASK, ADUX1020_MODE_FORCE);
if (ret < 0)
return ret;
ret = regmap_update_bits(data->regmap, ADUX1020_REG_OP_MODE,
ADUX1020_OP_MODE_MASK, ADUX1020_MODE_IDLE);
if (ret < 0)
return ret;
/* Flush FIFO */
ret = regmap_write(data->regmap, ADUX1020_REG_TEST_MODES_3,
ADUX1020_FORCE_CLOCK_ON);
if (ret < 0)
return ret;
ret = regmap_write(data->regmap, ADUX1020_REG_INT_STATUS,
ADUX1020_FIFO_FLUSH);
if (ret < 0)
return ret;
return regmap_write(data->regmap, ADUX1020_REG_TEST_MODES_3,
ADUX1020_FORCE_CLOCK_RESET);
}
static int adux1020_read_fifo(struct adux1020_data *data, u16 *buf, u8 buf_len)
{
unsigned int regval;
int i, ret;
/* Enable 32MHz clock */
ret = regmap_write(data->regmap, ADUX1020_REG_TEST_MODES_3,
ADUX1020_FORCE_CLOCK_ON);
if (ret < 0)
return ret;
for (i = 0; i < buf_len; i++) {
ret = regmap_read(data->regmap, ADUX1020_REG_DATA_BUFFER,
&regval);
if (ret < 0)
return ret;
buf[i] = regval;
}
/* Set 32MHz clock to be controlled by internal state machine */
return regmap_write(data->regmap, ADUX1020_REG_TEST_MODES_3,
ADUX1020_FORCE_CLOCK_RESET);
}
static int adux1020_set_mode(struct adux1020_data *data,
enum adux1020_op_modes mode)
{
int ret;
/* Switch to standby mode before changing the mode */
ret = regmap_write(data->regmap, ADUX1020_REG_OP_MODE,
ADUX1020_MODE_STANDBY);
if (ret < 0)
return ret;
/* Set data out and switch to the desired mode */
switch (mode) {
case ADUX1020_MODE_PROX_I:
ret = regmap_update_bits(data->regmap, ADUX1020_REG_OP_MODE,
ADUX1020_DATA_OUT_MODE_MASK,
ADUX1020_DATA_OUT_PROX_I);
if (ret < 0)
return ret;
ret = regmap_update_bits(data->regmap, ADUX1020_REG_OP_MODE,
ADUX1020_OP_MODE_MASK,
ADUX1020_MODE_PROX_I);
if (ret < 0)
return ret;
break;
default:
return -EINVAL;
}
return 0;
}
static int adux1020_measure(struct adux1020_data *data,
enum adux1020_op_modes mode,
u16 *val)
{
unsigned int status;
int ret, tries = 50;
/* Disable INT pin as polling is going to be used */
ret = regmap_write(data->regmap, ADUX1020_REG_INT_ENABLE,
ADUX1020_INT_DISABLE);
if (ret < 0)
return ret;
/* Enable mode interrupt */
ret = regmap_update_bits(data->regmap, ADUX1020_REG_INT_MASK,
ADUX1020_MODE_INT_MASK,
adux1020_modes[mode].int_en);
if (ret < 0)
return ret;
while (tries--) {
ret = regmap_read(data->regmap, ADUX1020_REG_INT_STATUS,
&status);
if (ret < 0)
return ret;
status &= ADUX1020_FIFO_STATUS_MASK;
if (status >= adux1020_modes[mode].bytes)
break;
msleep(20);
}
if (tries < 0)
return -EIO;
ret = adux1020_read_fifo(data, val, adux1020_modes[mode].buf_len);
if (ret < 0)
return ret;
/* Clear mode interrupt */
ret = regmap_write(data->regmap, ADUX1020_REG_INT_STATUS,
(~adux1020_modes[mode].int_en));
if (ret < 0)
return ret;
/* Disable mode interrupts */
return regmap_update_bits(data->regmap, ADUX1020_REG_INT_MASK,
ADUX1020_MODE_INT_MASK,
ADUX1020_MODE_INT_DISABLE);
}
static int adux1020_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int *val, int *val2, long mask)
{
struct adux1020_data *data = iio_priv(indio_dev);
u16 buf[3];
int ret = -EINVAL;
unsigned int regval;
mutex_lock(&data->lock);
switch (mask) {
case IIO_CHAN_INFO_RAW:
switch (chan->type) {
case IIO_PROXIMITY:
ret = adux1020_set_mode(data, ADUX1020_MODE_PROX_I);
if (ret < 0)
goto fail;
ret = adux1020_measure(data, ADUX1020_MODE_PROX_I, buf);
if (ret < 0)
goto fail;
*val = buf[0];
ret = IIO_VAL_INT;
break;
default:
break;
}
break;
case IIO_CHAN_INFO_PROCESSED:
switch (chan->type) {
case IIO_CURRENT:
ret = regmap_read(data->regmap,
ADUX1020_REG_LED_CURRENT, &regval);
if (ret < 0)
goto fail;
regval = regval & ADUX1020_LED_CURRENT_MASK;
*val = adux1020_led_currents[regval][0];
*val2 = adux1020_led_currents[regval][1];
ret = IIO_VAL_INT_PLUS_MICRO;
break;
default:
break;
}
break;
case IIO_CHAN_INFO_SAMP_FREQ:
switch (chan->type) {
case IIO_PROXIMITY:
ret = regmap_read(data->regmap, ADUX1020_REG_FREQUENCY,
&regval);
if (ret < 0)
goto fail;
regval = FIELD_GET(ADUX1020_PROX_FREQ_MASK, regval);
*val = adux1020_rates[regval][0];
*val2 = adux1020_rates[regval][1];
ret = IIO_VAL_INT_PLUS_MICRO;
break;
default:
break;
}
break;
default:
break;
}
fail:
mutex_unlock(&data->lock);
return ret;
};
static inline int adux1020_find_index(const int array[][2], int count, int val,
int val2)
{
int i;
for (i = 0; i < count; i++)
if (val == array[i][0] && val2 == array[i][1])
return i;
return -EINVAL;
}
static int adux1020_write_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int val, int val2, long mask)
{
struct adux1020_data *data = iio_priv(indio_dev);
int i, ret = -EINVAL;
mutex_lock(&data->lock);
switch (mask) {
case IIO_CHAN_INFO_SAMP_FREQ:
if (chan->type == IIO_PROXIMITY) {
i = adux1020_find_index(adux1020_rates,
ARRAY_SIZE(adux1020_rates),
val, val2);
if (i < 0) {
ret = i;
goto fail;
}
ret = regmap_update_bits(data->regmap,
ADUX1020_REG_FREQUENCY,
ADUX1020_PROX_FREQ_MASK,
ADUX1020_PROX_FREQ(i));
}
break;
case IIO_CHAN_INFO_PROCESSED:
if (chan->type == IIO_CURRENT) {
i = adux1020_find_index(adux1020_led_currents,
ARRAY_SIZE(adux1020_led_currents),
val, val2);
if (i < 0) {
ret = i;
goto fail;
}
ret = regmap_update_bits(data->regmap,
ADUX1020_REG_LED_CURRENT,
ADUX1020_LED_CURRENT_MASK, i);
}
break;
default:
break;
}
fail:
mutex_unlock(&data->lock);
return ret;
}
static int adux1020_write_event_config(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan,
enum iio_event_type type,
enum iio_event_direction dir, int state)
{
struct adux1020_data *data = iio_priv(indio_dev);
int ret, mask;
mutex_lock(&data->lock);
ret = regmap_write(data->regmap, ADUX1020_REG_INT_ENABLE,
ADUX1020_INT_ENABLE);
if (ret < 0)
goto fail;
ret = regmap_write(data->regmap, ADUX1020_REG_INT_POLARITY, 0);
if (ret < 0)
goto fail;
switch (chan->type) {
case IIO_PROXIMITY:
if (dir == IIO_EV_DIR_RISING)
mask = ADUX1020_PROX_ON1_INT;
else
mask = ADUX1020_PROX_OFF1_INT;
if (state)
state = 0;
else
state = mask;
ret = regmap_update_bits(data->regmap, ADUX1020_REG_INT_MASK,
mask, state);
if (ret < 0)
goto fail;
/*
* Trigger proximity interrupt when the intensity is above
* or below threshold
*/
ret = regmap_set_bits(data->regmap, ADUX1020_REG_PROX_TYPE,
ADUX1020_PROX_TYPE);
if (ret < 0)
goto fail;
/* Set proximity mode */
ret = adux1020_set_mode(data, ADUX1020_MODE_PROX_I);
break;
default:
ret = -EINVAL;
break;
}
fail:
mutex_unlock(&data->lock);
return ret;
}
static int adux1020_read_event_config(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan,
enum iio_event_type type,
enum iio_event_direction dir)
{
struct adux1020_data *data = iio_priv(indio_dev);
int ret, mask;
unsigned int regval;
switch (chan->type) {
case IIO_PROXIMITY:
if (dir == IIO_EV_DIR_RISING)
mask = ADUX1020_PROX_ON1_INT;
else
mask = ADUX1020_PROX_OFF1_INT;
break;
default:
return -EINVAL;
}
ret = regmap_read(data->regmap, ADUX1020_REG_INT_MASK, &regval);
if (ret < 0)
return ret;
return !(regval & mask);
}
static int adux1020_read_thresh(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan,
enum iio_event_type type,
enum iio_event_direction dir,
enum iio_event_info info, int *val, int *val2)
{
struct adux1020_data *data = iio_priv(indio_dev);
u8 reg;
int ret;
unsigned int regval;
switch (chan->type) {
case IIO_PROXIMITY:
if (dir == IIO_EV_DIR_RISING)
reg = ADUX1020_REG_PROX_TH_ON1;
else
reg = ADUX1020_REG_PROX_TH_OFF1;
break;
default:
return -EINVAL;
}
ret = regmap_read(data->regmap, reg, &regval);
if (ret < 0)
return ret;
*val = regval;
return IIO_VAL_INT;
}
static int adux1020_write_thresh(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan,
enum iio_event_type type,
enum iio_event_direction dir,
enum iio_event_info info, int val, int val2)
{
struct adux1020_data *data = iio_priv(indio_dev);
u8 reg;
switch (chan->type) {
case IIO_PROXIMITY:
if (dir == IIO_EV_DIR_RISING)
reg = ADUX1020_REG_PROX_TH_ON1;
else
reg = ADUX1020_REG_PROX_TH_OFF1;
break;
default:
return -EINVAL;
}
/* Full scale threshold value is 0-65535 */
if (val < 0 || val > 65535)
return -EINVAL;
return regmap_write(data->regmap, reg, val);
}
static const struct iio_event_spec adux1020_proximity_event[] = {
{
.type = IIO_EV_TYPE_THRESH,
.dir = IIO_EV_DIR_RISING,
.mask_separate = BIT(IIO_EV_INFO_VALUE) |
BIT(IIO_EV_INFO_ENABLE),
},
{
.type = IIO_EV_TYPE_THRESH,
.dir = IIO_EV_DIR_FALLING,
.mask_separate = BIT(IIO_EV_INFO_VALUE) |
BIT(IIO_EV_INFO_ENABLE),
},
};
static const struct iio_chan_spec adux1020_channels[] = {
{
.type = IIO_PROXIMITY,
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
BIT(IIO_CHAN_INFO_SAMP_FREQ),
.event_spec = adux1020_proximity_event,
.num_event_specs = ARRAY_SIZE(adux1020_proximity_event),
},
{
.type = IIO_CURRENT,
.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED),
.extend_name = "led",
.output = 1,
},
};
static IIO_CONST_ATTR_SAMP_FREQ_AVAIL(
"0.1 0.2 0.5 1 2 5 10 20 50 100 190 450 820 1400");
static struct attribute *adux1020_attributes[] = {
&iio_const_attr_sampling_frequency_available.dev_attr.attr,
NULL
};
static const struct attribute_group adux1020_attribute_group = {
.attrs = adux1020_attributes,
};
static const struct iio_info adux1020_info = {
.attrs = &adux1020_attribute_group,
.read_raw = adux1020_read_raw,
.write_raw = adux1020_write_raw,
.read_event_config = adux1020_read_event_config,
.write_event_config = adux1020_write_event_config,
.read_event_value = adux1020_read_thresh,
.write_event_value = adux1020_write_thresh,
};
static irqreturn_t adux1020_interrupt_handler(int irq, void *private)
{
struct iio_dev *indio_dev = private;
struct adux1020_data *data = iio_priv(indio_dev);
int ret, status;
ret = regmap_read(data->regmap, ADUX1020_REG_INT_STATUS, &status);
if (ret < 0)
return IRQ_HANDLED;
status &= ADUX1020_MODE_INT_STATUS_MASK;
if (status & ADUX1020_INT_PROX_ON1) {
iio_push_event(indio_dev,
IIO_UNMOD_EVENT_CODE(IIO_PROXIMITY, 0,
IIO_EV_TYPE_THRESH,
IIO_EV_DIR_RISING),
iio_get_time_ns(indio_dev));
}
if (status & ADUX1020_INT_PROX_OFF1) {
iio_push_event(indio_dev,
IIO_UNMOD_EVENT_CODE(IIO_PROXIMITY, 0,
IIO_EV_TYPE_THRESH,
IIO_EV_DIR_FALLING),
iio_get_time_ns(indio_dev));
}
regmap_update_bits(data->regmap, ADUX1020_REG_INT_STATUS,
ADUX1020_MODE_INT_MASK, ADUX1020_INT_CLEAR);
return IRQ_HANDLED;
}
static int adux1020_chip_init(struct adux1020_data *data)
{
struct i2c_client *client = data->client;
int ret;
unsigned int val;
ret = regmap_read(data->regmap, ADUX1020_REG_CHIP_ID, &val);
if (ret < 0)
return ret;
if ((val & ADUX1020_CHIP_ID_MASK) != ADUX1020_CHIP_ID) {
dev_err(&client->dev, "invalid chip id 0x%04x\n", val);
return -ENODEV;
}
dev_dbg(&client->dev, "Detected ADUX1020 with chip id: 0x%04x\n", val);
ret = regmap_set_bits(data->regmap, ADUX1020_REG_SW_RESET,
ADUX1020_SW_RESET);
if (ret < 0)
return ret;
/* Load default configuration */
ret = regmap_multi_reg_write(data->regmap, adux1020_def_conf,
ARRAY_SIZE(adux1020_def_conf));
if (ret < 0)
return ret;
ret = adux1020_flush_fifo(data);
if (ret < 0)
return ret;
/* Use LED_IREF for proximity mode */
ret = regmap_clear_bits(data->regmap, ADUX1020_REG_LED_CURRENT,
ADUX1020_LED_PIREF_EN);
if (ret < 0)
return ret;
/* Mask all interrupts */
return regmap_update_bits(data->regmap, ADUX1020_REG_INT_MASK,
ADUX1020_MODE_INT_MASK, ADUX1020_MODE_INT_DISABLE);
}
static int adux1020_probe(struct i2c_client *client)
{
struct adux1020_data *data;
struct iio_dev *indio_dev;
int ret;
indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data));
if (!indio_dev)
return -ENOMEM;
indio_dev->info = &adux1020_info;
indio_dev->name = ADUX1020_DRV_NAME;
indio_dev->channels = adux1020_channels;
indio_dev->num_channels = ARRAY_SIZE(adux1020_channels);
indio_dev->modes = INDIO_DIRECT_MODE;
data = iio_priv(indio_dev);
data->regmap = devm_regmap_init_i2c(client, &adux1020_regmap_config);
if (IS_ERR(data->regmap)) {
dev_err(&client->dev, "regmap initialization failed.\n");
return PTR_ERR(data->regmap);
}
data->client = client;
data->indio_dev = indio_dev;
mutex_init(&data->lock);
ret = adux1020_chip_init(data);
if (ret)
return ret;
if (client->irq) {
ret = devm_request_threaded_irq(&client->dev, client->irq,
NULL, adux1020_interrupt_handler,
IRQF_TRIGGER_HIGH | IRQF_ONESHOT,
ADUX1020_DRV_NAME, indio_dev);
if (ret) {
dev_err(&client->dev, "irq request error %d\n", -ret);
return ret;
}
}
return devm_iio_device_register(&client->dev, indio_dev);
}
static const struct i2c_device_id adux1020_id[] = {
{ "adux1020" },
{}
};
MODULE_DEVICE_TABLE(i2c, adux1020_id);
static const struct of_device_id adux1020_of_match[] = {
{ .compatible = "adi,adux1020" },
{ }
};
MODULE_DEVICE_TABLE(of, adux1020_of_match);
static struct i2c_driver adux1020_driver = {
.driver = {
.name = ADUX1020_DRV_NAME,
.of_match_table = adux1020_of_match,
},
.probe = adux1020_probe,
.id_table = adux1020_id,
};
module_i2c_driver(adux1020_driver);
MODULE_AUTHOR("Manivannan Sadhasivam <manivannan.sadhasivam@linaro.org>");
MODULE_DESCRIPTION("ADUX1020 photometric sensor");
MODULE_LICENSE("GPL");