| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Analog Devices LTC2983 Multi-Sensor Digital Temperature Measurement System |
| * driver |
| * |
| * Copyright 2019 Analog Devices Inc. |
| */ |
| #include <linux/bitfield.h> |
| #include <linux/completion.h> |
| #include <linux/device.h> |
| #include <linux/err.h> |
| #include <linux/errno.h> |
| #include <linux/kernel.h> |
| #include <linux/iio/iio.h> |
| #include <linux/interrupt.h> |
| #include <linux/list.h> |
| #include <linux/mod_devicetable.h> |
| #include <linux/module.h> |
| #include <linux/property.h> |
| #include <linux/regmap.h> |
| #include <linux/regulator/consumer.h> |
| #include <linux/spi/spi.h> |
| |
| #include <asm/byteorder.h> |
| #include <linux/unaligned.h> |
| |
| /* register map */ |
| #define LTC2983_STATUS_REG 0x0000 |
| #define LTC2983_TEMP_RES_START_REG 0x0010 |
| #define LTC2983_TEMP_RES_END_REG 0x005F |
| #define LTC2983_EEPROM_KEY_REG 0x00B0 |
| #define LTC2983_EEPROM_READ_STATUS_REG 0x00D0 |
| #define LTC2983_GLOBAL_CONFIG_REG 0x00F0 |
| #define LTC2983_MULT_CHANNEL_START_REG 0x00F4 |
| #define LTC2983_MULT_CHANNEL_END_REG 0x00F7 |
| #define LTC2986_EEPROM_STATUS_REG 0x00F9 |
| #define LTC2983_MUX_CONFIG_REG 0x00FF |
| #define LTC2983_CHAN_ASSIGN_START_REG 0x0200 |
| #define LTC2983_CHAN_ASSIGN_END_REG 0x024F |
| #define LTC2983_CUST_SENS_TBL_START_REG 0x0250 |
| #define LTC2983_CUST_SENS_TBL_END_REG 0x03CF |
| |
| #define LTC2983_DIFFERENTIAL_CHAN_MIN 2 |
| #define LTC2983_MIN_CHANNELS_NR 1 |
| #define LTC2983_SLEEP 0x97 |
| #define LTC2983_CUSTOM_STEINHART_SIZE 24 |
| #define LTC2983_CUSTOM_SENSOR_ENTRY_SZ 6 |
| #define LTC2983_CUSTOM_STEINHART_ENTRY_SZ 4 |
| |
| #define LTC2983_EEPROM_KEY 0xA53C0F5A |
| #define LTC2983_EEPROM_WRITE_CMD 0x15 |
| #define LTC2983_EEPROM_READ_CMD 0x16 |
| #define LTC2983_EEPROM_STATUS_FAILURE_MASK GENMASK(3, 1) |
| #define LTC2983_EEPROM_READ_FAILURE_MASK GENMASK(7, 0) |
| |
| #define LTC2983_EEPROM_WRITE_TIME_MS 2600 |
| #define LTC2983_EEPROM_READ_TIME_MS 20 |
| |
| #define LTC2983_CHAN_START_ADDR(chan) \ |
| (((chan - 1) * 4) + LTC2983_CHAN_ASSIGN_START_REG) |
| #define LTC2983_CHAN_RES_ADDR(chan) \ |
| (((chan - 1) * 4) + LTC2983_TEMP_RES_START_REG) |
| #define LTC2983_THERMOCOUPLE_DIFF_MASK BIT(3) |
| #define LTC2983_THERMOCOUPLE_SGL(x) \ |
| FIELD_PREP(LTC2983_THERMOCOUPLE_DIFF_MASK, x) |
| #define LTC2983_THERMOCOUPLE_OC_CURR_MASK GENMASK(1, 0) |
| #define LTC2983_THERMOCOUPLE_OC_CURR(x) \ |
| FIELD_PREP(LTC2983_THERMOCOUPLE_OC_CURR_MASK, x) |
| #define LTC2983_THERMOCOUPLE_OC_CHECK_MASK BIT(2) |
| #define LTC2983_THERMOCOUPLE_OC_CHECK(x) \ |
| FIELD_PREP(LTC2983_THERMOCOUPLE_OC_CHECK_MASK, x) |
| |
| #define LTC2983_THERMISTOR_DIFF_MASK BIT(2) |
| #define LTC2983_THERMISTOR_SGL(x) \ |
| FIELD_PREP(LTC2983_THERMISTOR_DIFF_MASK, x) |
| #define LTC2983_THERMISTOR_R_SHARE_MASK BIT(1) |
| #define LTC2983_THERMISTOR_R_SHARE(x) \ |
| FIELD_PREP(LTC2983_THERMISTOR_R_SHARE_MASK, x) |
| #define LTC2983_THERMISTOR_C_ROTATE_MASK BIT(0) |
| #define LTC2983_THERMISTOR_C_ROTATE(x) \ |
| FIELD_PREP(LTC2983_THERMISTOR_C_ROTATE_MASK, x) |
| |
| #define LTC2983_DIODE_DIFF_MASK BIT(2) |
| #define LTC2983_DIODE_SGL(x) \ |
| FIELD_PREP(LTC2983_DIODE_DIFF_MASK, x) |
| #define LTC2983_DIODE_3_CONV_CYCLE_MASK BIT(1) |
| #define LTC2983_DIODE_3_CONV_CYCLE(x) \ |
| FIELD_PREP(LTC2983_DIODE_3_CONV_CYCLE_MASK, x) |
| #define LTC2983_DIODE_AVERAGE_ON_MASK BIT(0) |
| #define LTC2983_DIODE_AVERAGE_ON(x) \ |
| FIELD_PREP(LTC2983_DIODE_AVERAGE_ON_MASK, x) |
| |
| #define LTC2983_RTD_4_WIRE_MASK BIT(3) |
| #define LTC2983_RTD_ROTATION_MASK BIT(1) |
| #define LTC2983_RTD_C_ROTATE(x) \ |
| FIELD_PREP(LTC2983_RTD_ROTATION_MASK, x) |
| #define LTC2983_RTD_KELVIN_R_SENSE_MASK GENMASK(3, 2) |
| #define LTC2983_RTD_N_WIRES_MASK GENMASK(3, 2) |
| #define LTC2983_RTD_N_WIRES(x) \ |
| FIELD_PREP(LTC2983_RTD_N_WIRES_MASK, x) |
| #define LTC2983_RTD_R_SHARE_MASK BIT(0) |
| #define LTC2983_RTD_R_SHARE(x) \ |
| FIELD_PREP(LTC2983_RTD_R_SHARE_MASK, 1) |
| |
| #define LTC2983_COMMON_HARD_FAULT_MASK GENMASK(31, 30) |
| #define LTC2983_COMMON_SOFT_FAULT_MASK GENMASK(27, 25) |
| |
| #define LTC2983_STATUS_START_MASK BIT(7) |
| #define LTC2983_STATUS_START(x) FIELD_PREP(LTC2983_STATUS_START_MASK, x) |
| #define LTC2983_STATUS_UP_MASK GENMASK(7, 6) |
| #define LTC2983_STATUS_UP(reg) FIELD_GET(LTC2983_STATUS_UP_MASK, reg) |
| |
| #define LTC2983_STATUS_CHAN_SEL_MASK GENMASK(4, 0) |
| #define LTC2983_STATUS_CHAN_SEL(x) \ |
| FIELD_PREP(LTC2983_STATUS_CHAN_SEL_MASK, x) |
| |
| #define LTC2983_TEMP_UNITS_MASK BIT(2) |
| #define LTC2983_TEMP_UNITS(x) FIELD_PREP(LTC2983_TEMP_UNITS_MASK, x) |
| |
| #define LTC2983_NOTCH_FREQ_MASK GENMASK(1, 0) |
| #define LTC2983_NOTCH_FREQ(x) FIELD_PREP(LTC2983_NOTCH_FREQ_MASK, x) |
| |
| #define LTC2983_RES_VALID_MASK BIT(24) |
| #define LTC2983_DATA_MASK GENMASK(23, 0) |
| #define LTC2983_DATA_SIGN_BIT 23 |
| |
| #define LTC2983_CHAN_TYPE_MASK GENMASK(31, 27) |
| #define LTC2983_CHAN_TYPE(x) FIELD_PREP(LTC2983_CHAN_TYPE_MASK, x) |
| |
| /* cold junction for thermocouples and rsense for rtd's and thermistor's */ |
| #define LTC2983_CHAN_ASSIGN_MASK GENMASK(26, 22) |
| #define LTC2983_CHAN_ASSIGN(x) FIELD_PREP(LTC2983_CHAN_ASSIGN_MASK, x) |
| |
| #define LTC2983_CUSTOM_LEN_MASK GENMASK(5, 0) |
| #define LTC2983_CUSTOM_LEN(x) FIELD_PREP(LTC2983_CUSTOM_LEN_MASK, x) |
| |
| #define LTC2983_CUSTOM_ADDR_MASK GENMASK(11, 6) |
| #define LTC2983_CUSTOM_ADDR(x) FIELD_PREP(LTC2983_CUSTOM_ADDR_MASK, x) |
| |
| #define LTC2983_THERMOCOUPLE_CFG_MASK GENMASK(21, 18) |
| #define LTC2983_THERMOCOUPLE_CFG(x) \ |
| FIELD_PREP(LTC2983_THERMOCOUPLE_CFG_MASK, x) |
| #define LTC2983_THERMOCOUPLE_HARD_FAULT_MASK GENMASK(31, 29) |
| #define LTC2983_THERMOCOUPLE_SOFT_FAULT_MASK GENMASK(28, 25) |
| |
| #define LTC2983_RTD_CFG_MASK GENMASK(21, 18) |
| #define LTC2983_RTD_CFG(x) FIELD_PREP(LTC2983_RTD_CFG_MASK, x) |
| #define LTC2983_RTD_EXC_CURRENT_MASK GENMASK(17, 14) |
| #define LTC2983_RTD_EXC_CURRENT(x) \ |
| FIELD_PREP(LTC2983_RTD_EXC_CURRENT_MASK, x) |
| #define LTC2983_RTD_CURVE_MASK GENMASK(13, 12) |
| #define LTC2983_RTD_CURVE(x) FIELD_PREP(LTC2983_RTD_CURVE_MASK, x) |
| |
| #define LTC2983_THERMISTOR_CFG_MASK GENMASK(21, 19) |
| #define LTC2983_THERMISTOR_CFG(x) \ |
| FIELD_PREP(LTC2983_THERMISTOR_CFG_MASK, x) |
| #define LTC2983_THERMISTOR_EXC_CURRENT_MASK GENMASK(18, 15) |
| #define LTC2983_THERMISTOR_EXC_CURRENT(x) \ |
| FIELD_PREP(LTC2983_THERMISTOR_EXC_CURRENT_MASK, x) |
| |
| #define LTC2983_DIODE_CFG_MASK GENMASK(26, 24) |
| #define LTC2983_DIODE_CFG(x) FIELD_PREP(LTC2983_DIODE_CFG_MASK, x) |
| #define LTC2983_DIODE_EXC_CURRENT_MASK GENMASK(23, 22) |
| #define LTC2983_DIODE_EXC_CURRENT(x) \ |
| FIELD_PREP(LTC2983_DIODE_EXC_CURRENT_MASK, x) |
| #define LTC2983_DIODE_IDEAL_FACTOR_MASK GENMASK(21, 0) |
| #define LTC2983_DIODE_IDEAL_FACTOR(x) \ |
| FIELD_PREP(LTC2983_DIODE_IDEAL_FACTOR_MASK, x) |
| |
| #define LTC2983_R_SENSE_VAL_MASK GENMASK(26, 0) |
| #define LTC2983_R_SENSE_VAL(x) FIELD_PREP(LTC2983_R_SENSE_VAL_MASK, x) |
| |
| #define LTC2983_ADC_SINGLE_ENDED_MASK BIT(26) |
| #define LTC2983_ADC_SINGLE_ENDED(x) \ |
| FIELD_PREP(LTC2983_ADC_SINGLE_ENDED_MASK, x) |
| |
| enum { |
| LTC2983_SENSOR_THERMOCOUPLE = 1, |
| LTC2983_SENSOR_THERMOCOUPLE_CUSTOM = 9, |
| LTC2983_SENSOR_RTD = 10, |
| LTC2983_SENSOR_RTD_CUSTOM = 18, |
| LTC2983_SENSOR_THERMISTOR = 19, |
| LTC2983_SENSOR_THERMISTOR_STEINHART = 26, |
| LTC2983_SENSOR_THERMISTOR_CUSTOM = 27, |
| LTC2983_SENSOR_DIODE = 28, |
| LTC2983_SENSOR_SENSE_RESISTOR = 29, |
| LTC2983_SENSOR_DIRECT_ADC = 30, |
| LTC2983_SENSOR_ACTIVE_TEMP = 31, |
| }; |
| |
| #define to_thermocouple(_sensor) \ |
| container_of(_sensor, struct ltc2983_thermocouple, sensor) |
| |
| #define to_rtd(_sensor) \ |
| container_of(_sensor, struct ltc2983_rtd, sensor) |
| |
| #define to_thermistor(_sensor) \ |
| container_of(_sensor, struct ltc2983_thermistor, sensor) |
| |
| #define to_diode(_sensor) \ |
| container_of(_sensor, struct ltc2983_diode, sensor) |
| |
| #define to_rsense(_sensor) \ |
| container_of(_sensor, struct ltc2983_rsense, sensor) |
| |
| #define to_adc(_sensor) \ |
| container_of(_sensor, struct ltc2983_adc, sensor) |
| |
| #define to_temp(_sensor) \ |
| container_of(_sensor, struct ltc2983_temp, sensor) |
| |
| struct ltc2983_chip_info { |
| const char *name; |
| unsigned int max_channels_nr; |
| bool has_temp; |
| bool has_eeprom; |
| }; |
| |
| struct ltc2983_data { |
| const struct ltc2983_chip_info *info; |
| struct regmap *regmap; |
| struct spi_device *spi; |
| struct mutex lock; |
| struct completion completion; |
| struct iio_chan_spec *iio_chan; |
| struct ltc2983_sensor **sensors; |
| u32 mux_delay_config; |
| u32 filter_notch_freq; |
| u16 custom_table_size; |
| u8 num_channels; |
| u8 iio_channels; |
| /* |
| * DMA (thus cache coherency maintenance) may require the |
| * transfer buffers to live in their own cache lines. |
| * Holds the converted temperature |
| */ |
| __be32 temp __aligned(IIO_DMA_MINALIGN); |
| __be32 chan_val; |
| __be32 eeprom_key; |
| }; |
| |
| struct ltc2983_sensor { |
| int (*fault_handler)(const struct ltc2983_data *st, const u32 result); |
| int (*assign_chan)(struct ltc2983_data *st, |
| const struct ltc2983_sensor *sensor); |
| /* specifies the sensor channel */ |
| u32 chan; |
| /* sensor type */ |
| u32 type; |
| }; |
| |
| struct ltc2983_custom_sensor { |
| /* raw table sensor data */ |
| void *table; |
| size_t size; |
| /* address offset */ |
| s8 offset; |
| bool is_steinhart; |
| }; |
| |
| struct ltc2983_thermocouple { |
| struct ltc2983_sensor sensor; |
| struct ltc2983_custom_sensor *custom; |
| u32 sensor_config; |
| u32 cold_junction_chan; |
| }; |
| |
| struct ltc2983_rtd { |
| struct ltc2983_sensor sensor; |
| struct ltc2983_custom_sensor *custom; |
| u32 sensor_config; |
| u32 r_sense_chan; |
| u32 excitation_current; |
| u32 rtd_curve; |
| }; |
| |
| struct ltc2983_thermistor { |
| struct ltc2983_sensor sensor; |
| struct ltc2983_custom_sensor *custom; |
| u32 sensor_config; |
| u32 r_sense_chan; |
| u32 excitation_current; |
| }; |
| |
| struct ltc2983_diode { |
| struct ltc2983_sensor sensor; |
| u32 sensor_config; |
| u32 excitation_current; |
| u32 ideal_factor_value; |
| }; |
| |
| struct ltc2983_rsense { |
| struct ltc2983_sensor sensor; |
| u32 r_sense_val; |
| }; |
| |
| struct ltc2983_adc { |
| struct ltc2983_sensor sensor; |
| bool single_ended; |
| }; |
| |
| struct ltc2983_temp { |
| struct ltc2983_sensor sensor; |
| struct ltc2983_custom_sensor *custom; |
| bool single_ended; |
| }; |
| |
| /* |
| * Convert to Q format numbers. These number's are integers where |
| * the number of integer and fractional bits are specified. The resolution |
| * is given by 1/@resolution and tell us the number of fractional bits. For |
| * instance a resolution of 2^-10 means we have 10 fractional bits. |
| */ |
| static u32 __convert_to_raw(const u64 val, const u32 resolution) |
| { |
| u64 __res = val * resolution; |
| |
| /* all values are multiplied by 1000000 to remove the fraction */ |
| do_div(__res, 1000000); |
| |
| return __res; |
| } |
| |
| static u32 __convert_to_raw_sign(const u64 val, const u32 resolution) |
| { |
| s64 __res = -(s32)val; |
| |
| __res = __convert_to_raw(__res, resolution); |
| |
| return (u32)-__res; |
| } |
| |
| static int __ltc2983_fault_handler(const struct ltc2983_data *st, |
| const u32 result, const u32 hard_mask, |
| const u32 soft_mask) |
| { |
| const struct device *dev = &st->spi->dev; |
| |
| if (result & hard_mask) { |
| dev_err(dev, "Invalid conversion: Sensor HARD fault\n"); |
| return -EIO; |
| } else if (result & soft_mask) { |
| /* just print a warning */ |
| dev_warn(dev, "Suspicious conversion: Sensor SOFT fault\n"); |
| } |
| |
| return 0; |
| } |
| |
| static int __ltc2983_chan_assign_common(struct ltc2983_data *st, |
| const struct ltc2983_sensor *sensor, |
| u32 chan_val) |
| { |
| u32 reg = LTC2983_CHAN_START_ADDR(sensor->chan); |
| |
| chan_val |= LTC2983_CHAN_TYPE(sensor->type); |
| dev_dbg(&st->spi->dev, "Assign reg:0x%04X, val:0x%08X\n", reg, |
| chan_val); |
| st->chan_val = cpu_to_be32(chan_val); |
| return regmap_bulk_write(st->regmap, reg, &st->chan_val, |
| sizeof(st->chan_val)); |
| } |
| |
| static int __ltc2983_chan_custom_sensor_assign(struct ltc2983_data *st, |
| struct ltc2983_custom_sensor *custom, |
| u32 *chan_val) |
| { |
| u32 reg; |
| u8 mult = custom->is_steinhart ? LTC2983_CUSTOM_STEINHART_ENTRY_SZ : |
| LTC2983_CUSTOM_SENSOR_ENTRY_SZ; |
| const struct device *dev = &st->spi->dev; |
| /* |
| * custom->size holds the raw size of the table. However, when |
| * configuring the sensor channel, we must write the number of |
| * entries of the table minus 1. For steinhart sensors 0 is written |
| * since the size is constant! |
| */ |
| const u8 len = custom->is_steinhart ? 0 : |
| (custom->size / LTC2983_CUSTOM_SENSOR_ENTRY_SZ) - 1; |
| /* |
| * Check if the offset was assigned already. It should be for steinhart |
| * sensors. When coming from sleep, it should be assigned for all. |
| */ |
| if (custom->offset < 0) { |
| /* |
| * This needs to be done again here because, from the moment |
| * when this test was done (successfully) for this custom |
| * sensor, a steinhart sensor might have been added changing |
| * custom_table_size... |
| */ |
| if (st->custom_table_size + custom->size > |
| (LTC2983_CUST_SENS_TBL_END_REG - |
| LTC2983_CUST_SENS_TBL_START_REG) + 1) { |
| dev_err(dev, |
| "Not space left(%d) for new custom sensor(%zu)", |
| st->custom_table_size, |
| custom->size); |
| return -EINVAL; |
| } |
| |
| custom->offset = st->custom_table_size / |
| LTC2983_CUSTOM_SENSOR_ENTRY_SZ; |
| st->custom_table_size += custom->size; |
| } |
| |
| reg = (custom->offset * mult) + LTC2983_CUST_SENS_TBL_START_REG; |
| |
| *chan_val |= LTC2983_CUSTOM_LEN(len); |
| *chan_val |= LTC2983_CUSTOM_ADDR(custom->offset); |
| dev_dbg(dev, "Assign custom sensor, reg:0x%04X, off:%d, sz:%zu", |
| reg, custom->offset, |
| custom->size); |
| /* write custom sensor table */ |
| return regmap_bulk_write(st->regmap, reg, custom->table, custom->size); |
| } |
| |
| static struct ltc2983_custom_sensor * |
| __ltc2983_custom_sensor_new(struct ltc2983_data *st, const struct fwnode_handle *fn, |
| const char *propname, const bool is_steinhart, |
| const u32 resolution, const bool has_signed) |
| { |
| struct ltc2983_custom_sensor *new_custom; |
| struct device *dev = &st->spi->dev; |
| /* |
| * For custom steinhart, the full u32 is taken. For all the others |
| * the MSB is discarded. |
| */ |
| const u8 n_size = is_steinhart ? 4 : 3; |
| u8 index, n_entries; |
| int ret; |
| |
| if (is_steinhart) |
| n_entries = fwnode_property_count_u32(fn, propname); |
| else |
| n_entries = fwnode_property_count_u64(fn, propname); |
| /* n_entries must be an even number */ |
| if (!n_entries || (n_entries % 2) != 0) |
| return dev_err_ptr_probe(dev, -EINVAL, |
| "Number of entries either 0 or not even\n"); |
| |
| new_custom = devm_kzalloc(dev, sizeof(*new_custom), GFP_KERNEL); |
| if (!new_custom) |
| return ERR_PTR(-ENOMEM); |
| |
| new_custom->size = n_entries * n_size; |
| /* check Steinhart size */ |
| if (is_steinhart && new_custom->size != LTC2983_CUSTOM_STEINHART_SIZE) |
| return dev_err_ptr_probe(dev, -EINVAL, |
| "Steinhart sensors size(%zu) must be %u\n", |
| new_custom->size, LTC2983_CUSTOM_STEINHART_SIZE); |
| |
| /* Check space on the table. */ |
| if (st->custom_table_size + new_custom->size > |
| (LTC2983_CUST_SENS_TBL_END_REG - LTC2983_CUST_SENS_TBL_START_REG) + 1) |
| return dev_err_ptr_probe(dev, -EINVAL, |
| "No space left(%d) for new custom sensor(%zu)\n", |
| st->custom_table_size, new_custom->size); |
| |
| /* allocate the table */ |
| if (is_steinhart) |
| new_custom->table = devm_kcalloc(dev, n_entries, sizeof(u32), GFP_KERNEL); |
| else |
| new_custom->table = devm_kcalloc(dev, n_entries, sizeof(u64), GFP_KERNEL); |
| if (!new_custom->table) |
| return ERR_PTR(-ENOMEM); |
| |
| /* |
| * Steinhart sensors are configured with raw values in the firmware |
| * node. For the other sensors we must convert the value to raw. |
| * The odd index's correspond to temperatures and always have 1/1024 |
| * of resolution. Temperatures also come in Kelvin, so signed values |
| * are not possible. |
| */ |
| if (is_steinhart) { |
| ret = fwnode_property_read_u32_array(fn, propname, new_custom->table, n_entries); |
| if (ret < 0) |
| return ERR_PTR(ret); |
| |
| cpu_to_be32_array(new_custom->table, new_custom->table, n_entries); |
| } else { |
| ret = fwnode_property_read_u64_array(fn, propname, new_custom->table, n_entries); |
| if (ret < 0) |
| return ERR_PTR(ret); |
| |
| for (index = 0; index < n_entries; index++) { |
| u64 temp = ((u64 *)new_custom->table)[index]; |
| |
| if ((index % 2) != 0) |
| temp = __convert_to_raw(temp, 1024); |
| else if (has_signed && (s64)temp < 0) |
| temp = __convert_to_raw_sign(temp, resolution); |
| else |
| temp = __convert_to_raw(temp, resolution); |
| |
| put_unaligned_be24(temp, new_custom->table + index * 3); |
| } |
| } |
| |
| new_custom->is_steinhart = is_steinhart; |
| /* |
| * This is done to first add all the steinhart sensors to the table, |
| * in order to maximize the table usage. If we mix adding steinhart |
| * with the other sensors, we might have to do some roundup to make |
| * sure that sensor_addr - 0x250(start address) is a multiple of 4 |
| * (for steinhart), and a multiple of 6 for all the other sensors. |
| * Since we have const 24 bytes for steinhart sensors and 24 is |
| * also a multiple of 6, we guarantee that the first non-steinhart |
| * sensor will sit in a correct address without the need of filling |
| * addresses. |
| */ |
| if (is_steinhart) { |
| new_custom->offset = st->custom_table_size / |
| LTC2983_CUSTOM_STEINHART_ENTRY_SZ; |
| st->custom_table_size += new_custom->size; |
| } else { |
| /* mark as unset. This is checked later on the assign phase */ |
| new_custom->offset = -1; |
| } |
| |
| return new_custom; |
| } |
| |
| static int ltc2983_thermocouple_fault_handler(const struct ltc2983_data *st, |
| const u32 result) |
| { |
| return __ltc2983_fault_handler(st, result, |
| LTC2983_THERMOCOUPLE_HARD_FAULT_MASK, |
| LTC2983_THERMOCOUPLE_SOFT_FAULT_MASK); |
| } |
| |
| static int ltc2983_common_fault_handler(const struct ltc2983_data *st, |
| const u32 result) |
| { |
| return __ltc2983_fault_handler(st, result, |
| LTC2983_COMMON_HARD_FAULT_MASK, |
| LTC2983_COMMON_SOFT_FAULT_MASK); |
| } |
| |
| static int ltc2983_thermocouple_assign_chan(struct ltc2983_data *st, |
| const struct ltc2983_sensor *sensor) |
| { |
| struct ltc2983_thermocouple *thermo = to_thermocouple(sensor); |
| u32 chan_val; |
| |
| chan_val = LTC2983_CHAN_ASSIGN(thermo->cold_junction_chan); |
| chan_val |= LTC2983_THERMOCOUPLE_CFG(thermo->sensor_config); |
| |
| if (thermo->custom) { |
| int ret; |
| |
| ret = __ltc2983_chan_custom_sensor_assign(st, thermo->custom, |
| &chan_val); |
| if (ret) |
| return ret; |
| } |
| return __ltc2983_chan_assign_common(st, sensor, chan_val); |
| } |
| |
| static int ltc2983_rtd_assign_chan(struct ltc2983_data *st, |
| const struct ltc2983_sensor *sensor) |
| { |
| struct ltc2983_rtd *rtd = to_rtd(sensor); |
| u32 chan_val; |
| |
| chan_val = LTC2983_CHAN_ASSIGN(rtd->r_sense_chan); |
| chan_val |= LTC2983_RTD_CFG(rtd->sensor_config); |
| chan_val |= LTC2983_RTD_EXC_CURRENT(rtd->excitation_current); |
| chan_val |= LTC2983_RTD_CURVE(rtd->rtd_curve); |
| |
| if (rtd->custom) { |
| int ret; |
| |
| ret = __ltc2983_chan_custom_sensor_assign(st, rtd->custom, |
| &chan_val); |
| if (ret) |
| return ret; |
| } |
| return __ltc2983_chan_assign_common(st, sensor, chan_val); |
| } |
| |
| static int ltc2983_thermistor_assign_chan(struct ltc2983_data *st, |
| const struct ltc2983_sensor *sensor) |
| { |
| struct ltc2983_thermistor *thermistor = to_thermistor(sensor); |
| u32 chan_val; |
| |
| chan_val = LTC2983_CHAN_ASSIGN(thermistor->r_sense_chan); |
| chan_val |= LTC2983_THERMISTOR_CFG(thermistor->sensor_config); |
| chan_val |= |
| LTC2983_THERMISTOR_EXC_CURRENT(thermistor->excitation_current); |
| |
| if (thermistor->custom) { |
| int ret; |
| |
| ret = __ltc2983_chan_custom_sensor_assign(st, |
| thermistor->custom, |
| &chan_val); |
| if (ret) |
| return ret; |
| } |
| return __ltc2983_chan_assign_common(st, sensor, chan_val); |
| } |
| |
| static int ltc2983_diode_assign_chan(struct ltc2983_data *st, |
| const struct ltc2983_sensor *sensor) |
| { |
| struct ltc2983_diode *diode = to_diode(sensor); |
| u32 chan_val; |
| |
| chan_val = LTC2983_DIODE_CFG(diode->sensor_config); |
| chan_val |= LTC2983_DIODE_EXC_CURRENT(diode->excitation_current); |
| chan_val |= LTC2983_DIODE_IDEAL_FACTOR(diode->ideal_factor_value); |
| |
| return __ltc2983_chan_assign_common(st, sensor, chan_val); |
| } |
| |
| static int ltc2983_r_sense_assign_chan(struct ltc2983_data *st, |
| const struct ltc2983_sensor *sensor) |
| { |
| struct ltc2983_rsense *rsense = to_rsense(sensor); |
| u32 chan_val; |
| |
| chan_val = LTC2983_R_SENSE_VAL(rsense->r_sense_val); |
| |
| return __ltc2983_chan_assign_common(st, sensor, chan_val); |
| } |
| |
| static int ltc2983_adc_assign_chan(struct ltc2983_data *st, |
| const struct ltc2983_sensor *sensor) |
| { |
| struct ltc2983_adc *adc = to_adc(sensor); |
| u32 chan_val; |
| |
| chan_val = LTC2983_ADC_SINGLE_ENDED(adc->single_ended); |
| |
| return __ltc2983_chan_assign_common(st, sensor, chan_val); |
| } |
| |
| static int ltc2983_temp_assign_chan(struct ltc2983_data *st, |
| const struct ltc2983_sensor *sensor) |
| { |
| struct ltc2983_temp *temp = to_temp(sensor); |
| u32 chan_val; |
| int ret; |
| |
| chan_val = LTC2983_ADC_SINGLE_ENDED(temp->single_ended); |
| |
| ret = __ltc2983_chan_custom_sensor_assign(st, temp->custom, &chan_val); |
| if (ret) |
| return ret; |
| |
| return __ltc2983_chan_assign_common(st, sensor, chan_val); |
| } |
| |
| static struct ltc2983_sensor * |
| ltc2983_thermocouple_new(const struct fwnode_handle *child, struct ltc2983_data *st, |
| const struct ltc2983_sensor *sensor) |
| { |
| struct ltc2983_thermocouple *thermo; |
| u32 oc_current; |
| int ret; |
| |
| thermo = devm_kzalloc(&st->spi->dev, sizeof(*thermo), GFP_KERNEL); |
| if (!thermo) |
| return ERR_PTR(-ENOMEM); |
| |
| if (fwnode_property_read_bool(child, "adi,single-ended")) |
| thermo->sensor_config = LTC2983_THERMOCOUPLE_SGL(1); |
| |
| ret = fwnode_property_read_u32(child, "adi,sensor-oc-current-microamp", &oc_current); |
| if (!ret) { |
| switch (oc_current) { |
| case 10: |
| thermo->sensor_config |= |
| LTC2983_THERMOCOUPLE_OC_CURR(0); |
| break; |
| case 100: |
| thermo->sensor_config |= |
| LTC2983_THERMOCOUPLE_OC_CURR(1); |
| break; |
| case 500: |
| thermo->sensor_config |= |
| LTC2983_THERMOCOUPLE_OC_CURR(2); |
| break; |
| case 1000: |
| thermo->sensor_config |= |
| LTC2983_THERMOCOUPLE_OC_CURR(3); |
| break; |
| default: |
| return dev_err_ptr_probe(&st->spi->dev, -EINVAL, |
| "Invalid open circuit current:%u\n", |
| oc_current); |
| } |
| |
| thermo->sensor_config |= LTC2983_THERMOCOUPLE_OC_CHECK(1); |
| } |
| /* validate channel index */ |
| if (!(thermo->sensor_config & LTC2983_THERMOCOUPLE_DIFF_MASK) && |
| sensor->chan < LTC2983_DIFFERENTIAL_CHAN_MIN) |
| return dev_err_ptr_probe(&st->spi->dev, -EINVAL, |
| "Invalid chann:%d for differential thermocouple\n", |
| sensor->chan); |
| |
| struct fwnode_handle *ref __free(fwnode_handle) = |
| fwnode_find_reference(child, "adi,cold-junction-handle", 0); |
| if (IS_ERR(ref)) { |
| ref = NULL; |
| } else { |
| ret = fwnode_property_read_u32(ref, "reg", &thermo->cold_junction_chan); |
| if (ret) |
| /* |
| * This would be catched later but we can just return |
| * the error right away. |
| */ |
| return dev_err_ptr_probe(&st->spi->dev, ret, |
| "Property reg must be given\n"); |
| } |
| |
| /* check custom sensor */ |
| if (sensor->type == LTC2983_SENSOR_THERMOCOUPLE_CUSTOM) { |
| const char *propname = "adi,custom-thermocouple"; |
| |
| thermo->custom = __ltc2983_custom_sensor_new(st, child, |
| propname, false, |
| 16384, true); |
| if (IS_ERR(thermo->custom)) |
| return ERR_CAST(thermo->custom); |
| } |
| |
| /* set common parameters */ |
| thermo->sensor.fault_handler = ltc2983_thermocouple_fault_handler; |
| thermo->sensor.assign_chan = ltc2983_thermocouple_assign_chan; |
| |
| return &thermo->sensor; |
| } |
| |
| static struct ltc2983_sensor * |
| ltc2983_rtd_new(const struct fwnode_handle *child, struct ltc2983_data *st, |
| const struct ltc2983_sensor *sensor) |
| { |
| struct ltc2983_rtd *rtd; |
| int ret = 0; |
| struct device *dev = &st->spi->dev; |
| u32 excitation_current = 0, n_wires = 0; |
| |
| rtd = devm_kzalloc(dev, sizeof(*rtd), GFP_KERNEL); |
| if (!rtd) |
| return ERR_PTR(-ENOMEM); |
| |
| struct fwnode_handle *ref __free(fwnode_handle) = |
| fwnode_find_reference(child, "adi,rsense-handle", 0); |
| if (IS_ERR(ref)) |
| return dev_err_cast_probe(dev, ref, |
| "Property adi,rsense-handle missing or invalid\n"); |
| |
| ret = fwnode_property_read_u32(ref, "reg", &rtd->r_sense_chan); |
| if (ret) |
| return dev_err_ptr_probe(dev, ret, |
| "Property reg must be given\n"); |
| |
| ret = fwnode_property_read_u32(child, "adi,number-of-wires", &n_wires); |
| if (!ret) { |
| switch (n_wires) { |
| case 2: |
| rtd->sensor_config = LTC2983_RTD_N_WIRES(0); |
| break; |
| case 3: |
| rtd->sensor_config = LTC2983_RTD_N_WIRES(1); |
| break; |
| case 4: |
| rtd->sensor_config = LTC2983_RTD_N_WIRES(2); |
| break; |
| case 5: |
| /* 4 wires, Kelvin Rsense */ |
| rtd->sensor_config = LTC2983_RTD_N_WIRES(3); |
| break; |
| default: |
| return dev_err_ptr_probe(dev, -EINVAL, |
| "Invalid number of wires:%u\n", |
| n_wires); |
| } |
| } |
| |
| if (fwnode_property_read_bool(child, "adi,rsense-share")) { |
| /* Current rotation is only available with rsense sharing */ |
| if (fwnode_property_read_bool(child, "adi,current-rotate")) { |
| if (n_wires == 2 || n_wires == 3) |
| return dev_err_ptr_probe(dev, -EINVAL, |
| "Rotation not allowed for 2/3 Wire RTDs\n"); |
| |
| rtd->sensor_config |= LTC2983_RTD_C_ROTATE(1); |
| } else { |
| rtd->sensor_config |= LTC2983_RTD_R_SHARE(1); |
| } |
| } |
| /* |
| * rtd channel indexes are a bit more complicated to validate. |
| * For 4wire RTD with rotation, the channel selection cannot be |
| * >=19 since the chann + 1 is used in this configuration. |
| * For 4wire RTDs with kelvin rsense, the rsense channel cannot be |
| * <=1 since chanel - 1 and channel - 2 are used. |
| */ |
| if (rtd->sensor_config & LTC2983_RTD_4_WIRE_MASK) { |
| /* 4-wire */ |
| u8 min = LTC2983_DIFFERENTIAL_CHAN_MIN, |
| max = st->info->max_channels_nr; |
| |
| if (rtd->sensor_config & LTC2983_RTD_ROTATION_MASK) |
| max = st->info->max_channels_nr - 1; |
| |
| if (((rtd->sensor_config & LTC2983_RTD_KELVIN_R_SENSE_MASK) |
| == LTC2983_RTD_KELVIN_R_SENSE_MASK) && |
| (rtd->r_sense_chan <= min)) |
| /* kelvin rsense*/ |
| return dev_err_ptr_probe(dev, -EINVAL, |
| "Invalid rsense chann:%d to use in kelvin rsense\n", |
| rtd->r_sense_chan); |
| |
| if (sensor->chan < min || sensor->chan > max) |
| return dev_err_ptr_probe(dev, -EINVAL, |
| "Invalid chann:%d for the rtd config\n", |
| sensor->chan); |
| } else { |
| /* same as differential case */ |
| if (sensor->chan < LTC2983_DIFFERENTIAL_CHAN_MIN) |
| return dev_err_ptr_probe(&st->spi->dev, -EINVAL, |
| "Invalid chann:%d for RTD\n", |
| sensor->chan); |
| } |
| |
| /* check custom sensor */ |
| if (sensor->type == LTC2983_SENSOR_RTD_CUSTOM) { |
| rtd->custom = __ltc2983_custom_sensor_new(st, child, |
| "adi,custom-rtd", |
| false, 2048, false); |
| if (IS_ERR(rtd->custom)) |
| return ERR_CAST(rtd->custom); |
| } |
| |
| /* set common parameters */ |
| rtd->sensor.fault_handler = ltc2983_common_fault_handler; |
| rtd->sensor.assign_chan = ltc2983_rtd_assign_chan; |
| |
| ret = fwnode_property_read_u32(child, "adi,excitation-current-microamp", |
| &excitation_current); |
| if (ret) { |
| /* default to 5uA */ |
| rtd->excitation_current = 1; |
| } else { |
| switch (excitation_current) { |
| case 5: |
| rtd->excitation_current = 0x01; |
| break; |
| case 10: |
| rtd->excitation_current = 0x02; |
| break; |
| case 25: |
| rtd->excitation_current = 0x03; |
| break; |
| case 50: |
| rtd->excitation_current = 0x04; |
| break; |
| case 100: |
| rtd->excitation_current = 0x05; |
| break; |
| case 250: |
| rtd->excitation_current = 0x06; |
| break; |
| case 500: |
| rtd->excitation_current = 0x07; |
| break; |
| case 1000: |
| rtd->excitation_current = 0x08; |
| break; |
| default: |
| return dev_err_ptr_probe(&st->spi->dev, -EINVAL, |
| "Invalid value for excitation current(%u)\n", |
| excitation_current); |
| } |
| } |
| |
| fwnode_property_read_u32(child, "adi,rtd-curve", &rtd->rtd_curve); |
| |
| return &rtd->sensor; |
| } |
| |
| static struct ltc2983_sensor * |
| ltc2983_thermistor_new(const struct fwnode_handle *child, struct ltc2983_data *st, |
| const struct ltc2983_sensor *sensor) |
| { |
| struct ltc2983_thermistor *thermistor; |
| struct device *dev = &st->spi->dev; |
| u32 excitation_current = 0; |
| int ret = 0; |
| |
| thermistor = devm_kzalloc(dev, sizeof(*thermistor), GFP_KERNEL); |
| if (!thermistor) |
| return ERR_PTR(-ENOMEM); |
| |
| struct fwnode_handle *ref __free(fwnode_handle) = |
| fwnode_find_reference(child, "adi,rsense-handle", 0); |
| if (IS_ERR(ref)) |
| return dev_err_cast_probe(dev, ref, |
| "Property adi,rsense-handle missing or invalid\n"); |
| |
| ret = fwnode_property_read_u32(ref, "reg", &thermistor->r_sense_chan); |
| if (ret) |
| return dev_err_ptr_probe(dev, ret, |
| "rsense channel must be configured...\n"); |
| |
| if (fwnode_property_read_bool(child, "adi,single-ended")) { |
| thermistor->sensor_config = LTC2983_THERMISTOR_SGL(1); |
| } else if (fwnode_property_read_bool(child, "adi,rsense-share")) { |
| /* rotation is only possible if sharing rsense */ |
| if (fwnode_property_read_bool(child, "adi,current-rotate")) |
| thermistor->sensor_config = |
| LTC2983_THERMISTOR_C_ROTATE(1); |
| else |
| thermistor->sensor_config = |
| LTC2983_THERMISTOR_R_SHARE(1); |
| } |
| /* validate channel index */ |
| if (!(thermistor->sensor_config & LTC2983_THERMISTOR_DIFF_MASK) && |
| sensor->chan < LTC2983_DIFFERENTIAL_CHAN_MIN) |
| return dev_err_ptr_probe(&st->spi->dev, -EINVAL, |
| "Invalid chann:%d for differential thermistor\n", |
| sensor->chan); |
| |
| /* check custom sensor */ |
| if (sensor->type >= LTC2983_SENSOR_THERMISTOR_STEINHART) { |
| bool steinhart = false; |
| const char *propname; |
| |
| if (sensor->type == LTC2983_SENSOR_THERMISTOR_STEINHART) { |
| steinhart = true; |
| propname = "adi,custom-steinhart"; |
| } else { |
| propname = "adi,custom-thermistor"; |
| } |
| |
| thermistor->custom = __ltc2983_custom_sensor_new(st, child, |
| propname, |
| steinhart, |
| 64, false); |
| if (IS_ERR(thermistor->custom)) |
| return ERR_CAST(thermistor->custom); |
| } |
| /* set common parameters */ |
| thermistor->sensor.fault_handler = ltc2983_common_fault_handler; |
| thermistor->sensor.assign_chan = ltc2983_thermistor_assign_chan; |
| |
| ret = fwnode_property_read_u32(child, "adi,excitation-current-nanoamp", |
| &excitation_current); |
| if (ret) { |
| /* Auto range is not allowed for custom sensors */ |
| if (sensor->type >= LTC2983_SENSOR_THERMISTOR_STEINHART) |
| /* default to 1uA */ |
| thermistor->excitation_current = 0x03; |
| else |
| /* default to auto-range */ |
| thermistor->excitation_current = 0x0c; |
| } else { |
| switch (excitation_current) { |
| case 0: |
| /* auto range */ |
| if (sensor->type >= LTC2983_SENSOR_THERMISTOR_STEINHART) |
| return dev_err_ptr_probe(&st->spi->dev, -EINVAL, |
| "Auto Range not allowed for custom sensors\n"); |
| |
| thermistor->excitation_current = 0x0c; |
| break; |
| case 250: |
| thermistor->excitation_current = 0x01; |
| break; |
| case 500: |
| thermistor->excitation_current = 0x02; |
| break; |
| case 1000: |
| thermistor->excitation_current = 0x03; |
| break; |
| case 5000: |
| thermistor->excitation_current = 0x04; |
| break; |
| case 10000: |
| thermistor->excitation_current = 0x05; |
| break; |
| case 25000: |
| thermistor->excitation_current = 0x06; |
| break; |
| case 50000: |
| thermistor->excitation_current = 0x07; |
| break; |
| case 100000: |
| thermistor->excitation_current = 0x08; |
| break; |
| case 250000: |
| thermistor->excitation_current = 0x09; |
| break; |
| case 500000: |
| thermistor->excitation_current = 0x0a; |
| break; |
| case 1000000: |
| thermistor->excitation_current = 0x0b; |
| break; |
| default: |
| return dev_err_ptr_probe(&st->spi->dev, -EINVAL, |
| "Invalid value for excitation current(%u)\n", |
| excitation_current); |
| } |
| } |
| |
| return &thermistor->sensor; |
| } |
| |
| static struct ltc2983_sensor * |
| ltc2983_diode_new(const struct fwnode_handle *child, const struct ltc2983_data *st, |
| const struct ltc2983_sensor *sensor) |
| { |
| struct ltc2983_diode *diode; |
| u32 temp = 0, excitation_current = 0; |
| int ret; |
| |
| diode = devm_kzalloc(&st->spi->dev, sizeof(*diode), GFP_KERNEL); |
| if (!diode) |
| return ERR_PTR(-ENOMEM); |
| |
| if (fwnode_property_read_bool(child, "adi,single-ended")) |
| diode->sensor_config = LTC2983_DIODE_SGL(1); |
| |
| if (fwnode_property_read_bool(child, "adi,three-conversion-cycles")) |
| diode->sensor_config |= LTC2983_DIODE_3_CONV_CYCLE(1); |
| |
| if (fwnode_property_read_bool(child, "adi,average-on")) |
| diode->sensor_config |= LTC2983_DIODE_AVERAGE_ON(1); |
| |
| /* validate channel index */ |
| if (!(diode->sensor_config & LTC2983_DIODE_DIFF_MASK) && |
| sensor->chan < LTC2983_DIFFERENTIAL_CHAN_MIN) |
| return dev_err_ptr_probe(&st->spi->dev, -EINVAL, |
| "Invalid chann:%d for differential thermistor\n", |
| sensor->chan); |
| |
| /* set common parameters */ |
| diode->sensor.fault_handler = ltc2983_common_fault_handler; |
| diode->sensor.assign_chan = ltc2983_diode_assign_chan; |
| |
| ret = fwnode_property_read_u32(child, "adi,excitation-current-microamp", |
| &excitation_current); |
| if (!ret) { |
| switch (excitation_current) { |
| case 10: |
| diode->excitation_current = 0x00; |
| break; |
| case 20: |
| diode->excitation_current = 0x01; |
| break; |
| case 40: |
| diode->excitation_current = 0x02; |
| break; |
| case 80: |
| diode->excitation_current = 0x03; |
| break; |
| default: |
| return dev_err_ptr_probe(&st->spi->dev, -EINVAL, |
| "Invalid value for excitation current(%u)\n", |
| excitation_current); |
| } |
| } |
| |
| fwnode_property_read_u32(child, "adi,ideal-factor-value", &temp); |
| |
| /* 2^20 resolution */ |
| diode->ideal_factor_value = __convert_to_raw(temp, 1048576); |
| |
| return &diode->sensor; |
| } |
| |
| static struct ltc2983_sensor *ltc2983_r_sense_new(struct fwnode_handle *child, |
| struct ltc2983_data *st, |
| const struct ltc2983_sensor *sensor) |
| { |
| struct ltc2983_rsense *rsense; |
| int ret; |
| u32 temp; |
| |
| rsense = devm_kzalloc(&st->spi->dev, sizeof(*rsense), GFP_KERNEL); |
| if (!rsense) |
| return ERR_PTR(-ENOMEM); |
| |
| /* validate channel index */ |
| if (sensor->chan < LTC2983_DIFFERENTIAL_CHAN_MIN) |
| return dev_err_ptr_probe(&st->spi->dev, -EINVAL, |
| "Invalid chann:%d for r_sense\n", |
| sensor->chan); |
| |
| ret = fwnode_property_read_u32(child, "adi,rsense-val-milli-ohms", &temp); |
| if (ret) |
| return dev_err_ptr_probe(&st->spi->dev, -EINVAL, |
| "Property adi,rsense-val-milli-ohms missing\n"); |
| /* |
| * Times 1000 because we have milli-ohms and __convert_to_raw |
| * expects scales of 1000000 which are used for all other |
| * properties. |
| * 2^10 resolution |
| */ |
| rsense->r_sense_val = __convert_to_raw((u64)temp * 1000, 1024); |
| |
| /* set common parameters */ |
| rsense->sensor.assign_chan = ltc2983_r_sense_assign_chan; |
| |
| return &rsense->sensor; |
| } |
| |
| static struct ltc2983_sensor *ltc2983_adc_new(struct fwnode_handle *child, |
| struct ltc2983_data *st, |
| const struct ltc2983_sensor *sensor) |
| { |
| struct ltc2983_adc *adc; |
| |
| adc = devm_kzalloc(&st->spi->dev, sizeof(*adc), GFP_KERNEL); |
| if (!adc) |
| return ERR_PTR(-ENOMEM); |
| |
| if (fwnode_property_read_bool(child, "adi,single-ended")) |
| adc->single_ended = true; |
| |
| if (!adc->single_ended && sensor->chan < LTC2983_DIFFERENTIAL_CHAN_MIN) |
| return dev_err_ptr_probe(&st->spi->dev, -EINVAL, |
| "Invalid chan:%d for differential adc\n", |
| sensor->chan); |
| |
| /* set common parameters */ |
| adc->sensor.assign_chan = ltc2983_adc_assign_chan; |
| adc->sensor.fault_handler = ltc2983_common_fault_handler; |
| |
| return &adc->sensor; |
| } |
| |
| static struct ltc2983_sensor *ltc2983_temp_new(struct fwnode_handle *child, |
| struct ltc2983_data *st, |
| const struct ltc2983_sensor *sensor) |
| { |
| struct ltc2983_temp *temp; |
| |
| temp = devm_kzalloc(&st->spi->dev, sizeof(*temp), GFP_KERNEL); |
| if (!temp) |
| return ERR_PTR(-ENOMEM); |
| |
| if (fwnode_property_read_bool(child, "adi,single-ended")) |
| temp->single_ended = true; |
| |
| if (!temp->single_ended && sensor->chan < LTC2983_DIFFERENTIAL_CHAN_MIN) |
| return dev_err_ptr_probe(&st->spi->dev, -EINVAL, |
| "Invalid chan:%d for differential temp\n", |
| sensor->chan); |
| |
| temp->custom = __ltc2983_custom_sensor_new(st, child, "adi,custom-temp", |
| false, 4096, true); |
| if (IS_ERR(temp->custom)) |
| return ERR_CAST(temp->custom); |
| |
| /* set common parameters */ |
| temp->sensor.assign_chan = ltc2983_temp_assign_chan; |
| temp->sensor.fault_handler = ltc2983_common_fault_handler; |
| |
| return &temp->sensor; |
| } |
| |
| static int ltc2983_chan_read(struct ltc2983_data *st, |
| const struct ltc2983_sensor *sensor, int *val) |
| { |
| u32 start_conversion = 0; |
| int ret; |
| unsigned long time; |
| |
| start_conversion = LTC2983_STATUS_START(true); |
| start_conversion |= LTC2983_STATUS_CHAN_SEL(sensor->chan); |
| dev_dbg(&st->spi->dev, "Start conversion on chan:%d, status:%02X\n", |
| sensor->chan, start_conversion); |
| /* start conversion */ |
| ret = regmap_write(st->regmap, LTC2983_STATUS_REG, start_conversion); |
| if (ret) |
| return ret; |
| |
| reinit_completion(&st->completion); |
| /* |
| * wait for conversion to complete. |
| * 300 ms should be more than enough to complete the conversion. |
| * Depending on the sensor configuration, there are 2/3 conversions |
| * cycles of 82ms. |
| */ |
| time = wait_for_completion_timeout(&st->completion, |
| msecs_to_jiffies(300)); |
| if (!time) { |
| dev_warn(&st->spi->dev, "Conversion timed out\n"); |
| return -ETIMEDOUT; |
| } |
| |
| /* read the converted data */ |
| ret = regmap_bulk_read(st->regmap, LTC2983_CHAN_RES_ADDR(sensor->chan), |
| &st->temp, sizeof(st->temp)); |
| if (ret) |
| return ret; |
| |
| *val = __be32_to_cpu(st->temp); |
| |
| if (!(LTC2983_RES_VALID_MASK & *val)) { |
| dev_err(&st->spi->dev, "Invalid conversion detected\n"); |
| return -EIO; |
| } |
| |
| ret = sensor->fault_handler(st, *val); |
| if (ret) |
| return ret; |
| |
| *val = sign_extend32((*val) & LTC2983_DATA_MASK, LTC2983_DATA_SIGN_BIT); |
| return 0; |
| } |
| |
| static int ltc2983_read_raw(struct iio_dev *indio_dev, |
| struct iio_chan_spec const *chan, |
| int *val, int *val2, long mask) |
| { |
| struct ltc2983_data *st = iio_priv(indio_dev); |
| int ret; |
| |
| /* sanity check */ |
| if (chan->address >= st->num_channels) { |
| dev_err(&st->spi->dev, "Invalid chan address:%ld", |
| chan->address); |
| return -EINVAL; |
| } |
| |
| switch (mask) { |
| case IIO_CHAN_INFO_RAW: |
| mutex_lock(&st->lock); |
| ret = ltc2983_chan_read(st, st->sensors[chan->address], val); |
| mutex_unlock(&st->lock); |
| return ret ?: IIO_VAL_INT; |
| case IIO_CHAN_INFO_SCALE: |
| switch (chan->type) { |
| case IIO_TEMP: |
| /* value in milli degrees */ |
| *val = 1000; |
| /* 2^10 */ |
| *val2 = 1024; |
| return IIO_VAL_FRACTIONAL; |
| case IIO_VOLTAGE: |
| /* value in millivolt */ |
| *val = 1000; |
| /* 2^21 */ |
| *val2 = 2097152; |
| return IIO_VAL_FRACTIONAL; |
| default: |
| return -EINVAL; |
| } |
| } |
| |
| return -EINVAL; |
| } |
| |
| static int ltc2983_reg_access(struct iio_dev *indio_dev, |
| unsigned int reg, |
| unsigned int writeval, |
| unsigned int *readval) |
| { |
| struct ltc2983_data *st = iio_priv(indio_dev); |
| |
| if (readval) |
| return regmap_read(st->regmap, reg, readval); |
| |
| return regmap_write(st->regmap, reg, writeval); |
| } |
| |
| static irqreturn_t ltc2983_irq_handler(int irq, void *data) |
| { |
| struct ltc2983_data *st = data; |
| |
| complete(&st->completion); |
| return IRQ_HANDLED; |
| } |
| |
| #define LTC2983_CHAN(__type, index, __address) ({ \ |
| struct iio_chan_spec __chan = { \ |
| .type = __type, \ |
| .indexed = 1, \ |
| .channel = index, \ |
| .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \ |
| .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE), \ |
| .address = __address, \ |
| }; \ |
| __chan; \ |
| }) |
| |
| static int ltc2983_parse_fw(struct ltc2983_data *st) |
| { |
| struct device *dev = &st->spi->dev; |
| int ret, chan = 0, channel_avail_mask = 0; |
| |
| device_property_read_u32(dev, "adi,mux-delay-config-us", &st->mux_delay_config); |
| |
| device_property_read_u32(dev, "adi,filter-notch-freq", &st->filter_notch_freq); |
| |
| st->num_channels = device_get_child_node_count(dev); |
| if (!st->num_channels) |
| return dev_err_probe(&st->spi->dev, -EINVAL, |
| "At least one channel must be given!\n"); |
| |
| st->sensors = devm_kcalloc(dev, st->num_channels, sizeof(*st->sensors), |
| GFP_KERNEL); |
| if (!st->sensors) |
| return -ENOMEM; |
| |
| st->iio_channels = st->num_channels; |
| device_for_each_child_node_scoped(dev, child) { |
| struct ltc2983_sensor sensor; |
| |
| ret = fwnode_property_read_u32(child, "reg", &sensor.chan); |
| if (ret) |
| return dev_err_probe(dev, ret, |
| "reg property must given for child nodes\n"); |
| |
| /* check if we have a valid channel */ |
| if (sensor.chan < LTC2983_MIN_CHANNELS_NR || |
| sensor.chan > st->info->max_channels_nr) |
| return dev_err_probe(dev, -EINVAL, |
| "chan:%d must be from %u to %u\n", |
| sensor.chan, |
| LTC2983_MIN_CHANNELS_NR, |
| st->info->max_channels_nr); |
| |
| if (channel_avail_mask & BIT(sensor.chan)) |
| return dev_err_probe(dev, -EINVAL, |
| "chan:%d already in use\n", |
| sensor.chan); |
| |
| ret = fwnode_property_read_u32(child, "adi,sensor-type", &sensor.type); |
| if (ret) |
| return dev_err_probe(dev, ret, |
| "adi,sensor-type property must given for child nodes\n"); |
| |
| dev_dbg(dev, "Create new sensor, type %u, chann %u", |
| sensor.type, sensor.chan); |
| |
| if (sensor.type >= LTC2983_SENSOR_THERMOCOUPLE && |
| sensor.type <= LTC2983_SENSOR_THERMOCOUPLE_CUSTOM) { |
| st->sensors[chan] = ltc2983_thermocouple_new(child, st, |
| &sensor); |
| } else if (sensor.type >= LTC2983_SENSOR_RTD && |
| sensor.type <= LTC2983_SENSOR_RTD_CUSTOM) { |
| st->sensors[chan] = ltc2983_rtd_new(child, st, &sensor); |
| } else if (sensor.type >= LTC2983_SENSOR_THERMISTOR && |
| sensor.type <= LTC2983_SENSOR_THERMISTOR_CUSTOM) { |
| st->sensors[chan] = ltc2983_thermistor_new(child, st, |
| &sensor); |
| } else if (sensor.type == LTC2983_SENSOR_DIODE) { |
| st->sensors[chan] = ltc2983_diode_new(child, st, |
| &sensor); |
| } else if (sensor.type == LTC2983_SENSOR_SENSE_RESISTOR) { |
| st->sensors[chan] = ltc2983_r_sense_new(child, st, |
| &sensor); |
| /* don't add rsense to iio */ |
| st->iio_channels--; |
| } else if (sensor.type == LTC2983_SENSOR_DIRECT_ADC) { |
| st->sensors[chan] = ltc2983_adc_new(child, st, &sensor); |
| } else if (st->info->has_temp && |
| sensor.type == LTC2983_SENSOR_ACTIVE_TEMP) { |
| st->sensors[chan] = ltc2983_temp_new(child, st, &sensor); |
| } else { |
| return dev_err_probe(dev, -EINVAL, |
| "Unknown sensor type %d\n", |
| sensor.type); |
| } |
| |
| if (IS_ERR(st->sensors[chan])) |
| return dev_err_probe(dev, PTR_ERR(st->sensors[chan]), |
| "Failed to create sensor\n"); |
| |
| /* set generic sensor parameters */ |
| st->sensors[chan]->chan = sensor.chan; |
| st->sensors[chan]->type = sensor.type; |
| |
| channel_avail_mask |= BIT(sensor.chan); |
| chan++; |
| } |
| |
| return 0; |
| } |
| |
| static int ltc2983_eeprom_cmd(struct ltc2983_data *st, unsigned int cmd, |
| unsigned int wait_time, unsigned int status_reg, |
| unsigned long status_fail_mask) |
| { |
| unsigned long time; |
| unsigned int val; |
| int ret; |
| |
| ret = regmap_bulk_write(st->regmap, LTC2983_EEPROM_KEY_REG, |
| &st->eeprom_key, sizeof(st->eeprom_key)); |
| if (ret) |
| return ret; |
| |
| reinit_completion(&st->completion); |
| |
| ret = regmap_write(st->regmap, LTC2983_STATUS_REG, |
| LTC2983_STATUS_START(true) | cmd); |
| if (ret) |
| return ret; |
| |
| time = wait_for_completion_timeout(&st->completion, |
| msecs_to_jiffies(wait_time)); |
| if (!time) |
| return dev_err_probe(&st->spi->dev, -ETIMEDOUT, |
| "EEPROM command timed out\n"); |
| |
| ret = regmap_read(st->regmap, status_reg, &val); |
| if (ret) |
| return ret; |
| |
| if (val & status_fail_mask) |
| return dev_err_probe(&st->spi->dev, -EINVAL, |
| "EEPROM command failed: 0x%02X\n", val); |
| |
| return 0; |
| } |
| |
| static int ltc2983_setup(struct ltc2983_data *st, bool assign_iio) |
| { |
| u32 iio_chan_t = 0, iio_chan_v = 0, chan, iio_idx = 0, status; |
| int ret; |
| |
| /* make sure the device is up: start bit (7) is 0 and done bit (6) is 1 */ |
| ret = regmap_read_poll_timeout(st->regmap, LTC2983_STATUS_REG, status, |
| LTC2983_STATUS_UP(status) == 1, 25000, |
| 25000 * 10); |
| if (ret) |
| return dev_err_probe(&st->spi->dev, ret, |
| "Device startup timed out\n"); |
| |
| ret = regmap_update_bits(st->regmap, LTC2983_GLOBAL_CONFIG_REG, |
| LTC2983_NOTCH_FREQ_MASK, |
| LTC2983_NOTCH_FREQ(st->filter_notch_freq)); |
| if (ret) |
| return ret; |
| |
| ret = regmap_write(st->regmap, LTC2983_MUX_CONFIG_REG, |
| st->mux_delay_config); |
| if (ret) |
| return ret; |
| |
| if (st->info->has_eeprom && !assign_iio) { |
| ret = ltc2983_eeprom_cmd(st, LTC2983_EEPROM_READ_CMD, |
| LTC2983_EEPROM_READ_TIME_MS, |
| LTC2983_EEPROM_READ_STATUS_REG, |
| LTC2983_EEPROM_READ_FAILURE_MASK); |
| if (!ret) |
| return 0; |
| } |
| |
| for (chan = 0; chan < st->num_channels; chan++) { |
| u32 chan_type = 0, *iio_chan; |
| |
| ret = st->sensors[chan]->assign_chan(st, st->sensors[chan]); |
| if (ret) |
| return ret; |
| /* |
| * The assign_iio flag is necessary for when the device is |
| * coming out of sleep. In that case, we just need to |
| * re-configure the device channels. |
| * We also don't assign iio channels for rsense. |
| */ |
| if (st->sensors[chan]->type == LTC2983_SENSOR_SENSE_RESISTOR || |
| !assign_iio) |
| continue; |
| |
| /* assign iio channel */ |
| if (st->sensors[chan]->type != LTC2983_SENSOR_DIRECT_ADC) { |
| chan_type = IIO_TEMP; |
| iio_chan = &iio_chan_t; |
| } else { |
| chan_type = IIO_VOLTAGE; |
| iio_chan = &iio_chan_v; |
| } |
| |
| /* |
| * add chan as the iio .address so that, we can directly |
| * reference the sensor given the iio_chan_spec |
| */ |
| st->iio_chan[iio_idx++] = LTC2983_CHAN(chan_type, (*iio_chan)++, |
| chan); |
| } |
| |
| return 0; |
| } |
| |
| static const struct regmap_range ltc2983_reg_ranges[] = { |
| regmap_reg_range(LTC2983_STATUS_REG, LTC2983_STATUS_REG), |
| regmap_reg_range(LTC2983_TEMP_RES_START_REG, LTC2983_TEMP_RES_END_REG), |
| regmap_reg_range(LTC2983_EEPROM_KEY_REG, LTC2983_EEPROM_KEY_REG), |
| regmap_reg_range(LTC2983_EEPROM_READ_STATUS_REG, |
| LTC2983_EEPROM_READ_STATUS_REG), |
| regmap_reg_range(LTC2983_GLOBAL_CONFIG_REG, LTC2983_GLOBAL_CONFIG_REG), |
| regmap_reg_range(LTC2983_MULT_CHANNEL_START_REG, |
| LTC2983_MULT_CHANNEL_END_REG), |
| regmap_reg_range(LTC2986_EEPROM_STATUS_REG, LTC2986_EEPROM_STATUS_REG), |
| regmap_reg_range(LTC2983_MUX_CONFIG_REG, LTC2983_MUX_CONFIG_REG), |
| regmap_reg_range(LTC2983_CHAN_ASSIGN_START_REG, |
| LTC2983_CHAN_ASSIGN_END_REG), |
| regmap_reg_range(LTC2983_CUST_SENS_TBL_START_REG, |
| LTC2983_CUST_SENS_TBL_END_REG), |
| }; |
| |
| static const struct regmap_access_table ltc2983_reg_table = { |
| .yes_ranges = ltc2983_reg_ranges, |
| .n_yes_ranges = ARRAY_SIZE(ltc2983_reg_ranges), |
| }; |
| |
| /* |
| * The reg_bits are actually 12 but the device needs the first *complete* |
| * byte for the command (R/W). |
| */ |
| static const struct regmap_config ltc2983_regmap_config = { |
| .reg_bits = 24, |
| .val_bits = 8, |
| .wr_table = <c2983_reg_table, |
| .rd_table = <c2983_reg_table, |
| .read_flag_mask = GENMASK(1, 0), |
| .write_flag_mask = BIT(1), |
| }; |
| |
| static const struct iio_info ltc2983_iio_info = { |
| .read_raw = ltc2983_read_raw, |
| .debugfs_reg_access = ltc2983_reg_access, |
| }; |
| |
| static int ltc2983_probe(struct spi_device *spi) |
| { |
| struct ltc2983_data *st; |
| struct iio_dev *indio_dev; |
| struct gpio_desc *gpio; |
| int ret; |
| |
| indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*st)); |
| if (!indio_dev) |
| return -ENOMEM; |
| |
| st = iio_priv(indio_dev); |
| |
| st->info = spi_get_device_match_data(spi); |
| if (!st->info) |
| return -ENODEV; |
| |
| st->regmap = devm_regmap_init_spi(spi, <c2983_regmap_config); |
| if (IS_ERR(st->regmap)) |
| return dev_err_probe(&spi->dev, PTR_ERR(st->regmap), |
| "Failed to initialize regmap\n"); |
| |
| mutex_init(&st->lock); |
| init_completion(&st->completion); |
| st->spi = spi; |
| st->eeprom_key = cpu_to_be32(LTC2983_EEPROM_KEY); |
| spi_set_drvdata(spi, st); |
| |
| ret = ltc2983_parse_fw(st); |
| if (ret) |
| return ret; |
| |
| ret = devm_regulator_get_enable(&spi->dev, "vdd"); |
| if (ret) |
| return ret; |
| |
| gpio = devm_gpiod_get_optional(&st->spi->dev, "reset", GPIOD_OUT_HIGH); |
| if (IS_ERR(gpio)) |
| return PTR_ERR(gpio); |
| |
| if (gpio) { |
| /* bring the device out of reset */ |
| usleep_range(1000, 1200); |
| gpiod_set_value_cansleep(gpio, 0); |
| } |
| |
| st->iio_chan = devm_kzalloc(&spi->dev, |
| st->iio_channels * sizeof(*st->iio_chan), |
| GFP_KERNEL); |
| if (!st->iio_chan) |
| return -ENOMEM; |
| |
| ret = ltc2983_setup(st, true); |
| if (ret) |
| return ret; |
| |
| ret = devm_request_irq(&spi->dev, spi->irq, ltc2983_irq_handler, |
| IRQF_TRIGGER_RISING, st->info->name, st); |
| if (ret) |
| return dev_err_probe(&spi->dev, ret, |
| "failed to request an irq\n"); |
| |
| if (st->info->has_eeprom) { |
| ret = ltc2983_eeprom_cmd(st, LTC2983_EEPROM_WRITE_CMD, |
| LTC2983_EEPROM_WRITE_TIME_MS, |
| LTC2986_EEPROM_STATUS_REG, |
| LTC2983_EEPROM_STATUS_FAILURE_MASK); |
| if (ret) |
| return ret; |
| } |
| |
| indio_dev->name = st->info->name; |
| indio_dev->num_channels = st->iio_channels; |
| indio_dev->channels = st->iio_chan; |
| indio_dev->modes = INDIO_DIRECT_MODE; |
| indio_dev->info = <c2983_iio_info; |
| |
| return devm_iio_device_register(&spi->dev, indio_dev); |
| } |
| |
| static int ltc2983_resume(struct device *dev) |
| { |
| struct ltc2983_data *st = spi_get_drvdata(to_spi_device(dev)); |
| int dummy; |
| |
| /* dummy read to bring the device out of sleep */ |
| regmap_read(st->regmap, LTC2983_STATUS_REG, &dummy); |
| /* we need to re-assign the channels */ |
| return ltc2983_setup(st, false); |
| } |
| |
| static int ltc2983_suspend(struct device *dev) |
| { |
| struct ltc2983_data *st = spi_get_drvdata(to_spi_device(dev)); |
| |
| return regmap_write(st->regmap, LTC2983_STATUS_REG, LTC2983_SLEEP); |
| } |
| |
| static DEFINE_SIMPLE_DEV_PM_OPS(ltc2983_pm_ops, ltc2983_suspend, |
| ltc2983_resume); |
| |
| static const struct ltc2983_chip_info ltc2983_chip_info_data = { |
| .name = "ltc2983", |
| .max_channels_nr = 20, |
| }; |
| |
| static const struct ltc2983_chip_info ltc2984_chip_info_data = { |
| .name = "ltc2984", |
| .max_channels_nr = 20, |
| .has_eeprom = true, |
| }; |
| |
| static const struct ltc2983_chip_info ltc2986_chip_info_data = { |
| .name = "ltc2986", |
| .max_channels_nr = 10, |
| .has_temp = true, |
| .has_eeprom = true, |
| }; |
| |
| static const struct ltc2983_chip_info ltm2985_chip_info_data = { |
| .name = "ltm2985", |
| .max_channels_nr = 10, |
| .has_temp = true, |
| .has_eeprom = true, |
| }; |
| |
| static const struct spi_device_id ltc2983_id_table[] = { |
| { "ltc2983", (kernel_ulong_t)<c2983_chip_info_data }, |
| { "ltc2984", (kernel_ulong_t)<c2984_chip_info_data }, |
| { "ltc2986", (kernel_ulong_t)<c2986_chip_info_data }, |
| { "ltm2985", (kernel_ulong_t)<m2985_chip_info_data }, |
| {}, |
| }; |
| MODULE_DEVICE_TABLE(spi, ltc2983_id_table); |
| |
| static const struct of_device_id ltc2983_of_match[] = { |
| { .compatible = "adi,ltc2983", .data = <c2983_chip_info_data }, |
| { .compatible = "adi,ltc2984", .data = <c2984_chip_info_data }, |
| { .compatible = "adi,ltc2986", .data = <c2986_chip_info_data }, |
| { .compatible = "adi,ltm2985", .data = <m2985_chip_info_data }, |
| {}, |
| }; |
| MODULE_DEVICE_TABLE(of, ltc2983_of_match); |
| |
| static struct spi_driver ltc2983_driver = { |
| .driver = { |
| .name = "ltc2983", |
| .of_match_table = ltc2983_of_match, |
| .pm = pm_sleep_ptr(<c2983_pm_ops), |
| }, |
| .probe = ltc2983_probe, |
| .id_table = ltc2983_id_table, |
| }; |
| |
| module_spi_driver(ltc2983_driver); |
| |
| MODULE_AUTHOR("Nuno Sa <nuno.sa@analog.com>"); |
| MODULE_DESCRIPTION("Analog Devices LTC2983 SPI Temperature sensors"); |
| MODULE_LICENSE("GPL"); |