blob: eabfeb59b5e71d3a9588d7be49c25c7fc912a062 [file] [log] [blame] [edit]
// SPDX-License-Identifier: GPL-2.0-only
/*
* A fairly generic DMA-API to IOMMU-API glue layer.
*
* Copyright (C) 2014-2015 ARM Ltd.
*
* based in part on arch/arm/mm/dma-mapping.c:
* Copyright (C) 2000-2004 Russell King
*/
#include <linux/acpi_iort.h>
#include <linux/atomic.h>
#include <linux/crash_dump.h>
#include <linux/device.h>
#include <linux/dma-direct.h>
#include <linux/dma-map-ops.h>
#include <linux/gfp.h>
#include <linux/huge_mm.h>
#include <linux/iommu.h>
#include <linux/iommu-dma.h>
#include <linux/iova.h>
#include <linux/irq.h>
#include <linux/list_sort.h>
#include <linux/memremap.h>
#include <linux/mm.h>
#include <linux/mutex.h>
#include <linux/of_iommu.h>
#include <linux/pci.h>
#include <linux/scatterlist.h>
#include <linux/spinlock.h>
#include <linux/swiotlb.h>
#include <linux/vmalloc.h>
#include <trace/events/swiotlb.h>
#include <trace/hooks/iommu.h>
#include "dma-iommu.h"
#include "iommu-pages.h"
struct iommu_dma_msi_page {
struct list_head list;
dma_addr_t iova;
phys_addr_t phys;
};
enum iommu_dma_cookie_type {
IOMMU_DMA_IOVA_COOKIE,
IOMMU_DMA_MSI_COOKIE,
};
enum iommu_dma_queue_type {
IOMMU_DMA_OPTS_PER_CPU_QUEUE,
IOMMU_DMA_OPTS_SINGLE_QUEUE,
};
struct iommu_dma_options {
enum iommu_dma_queue_type qt;
size_t fq_size;
unsigned int fq_timeout;
};
struct iommu_dma_cookie {
enum iommu_dma_cookie_type type;
union {
/* Full allocator for IOMMU_DMA_IOVA_COOKIE */
struct {
struct iova_domain iovad;
/* Flush queue */
union {
struct iova_fq *single_fq;
struct iova_fq __percpu *percpu_fq;
};
/* Number of TLB flushes that have been started */
atomic64_t fq_flush_start_cnt;
/* Number of TLB flushes that have been finished */
atomic64_t fq_flush_finish_cnt;
/* Timer to regularily empty the flush queues */
struct timer_list fq_timer;
/* 1 when timer is active, 0 when not */
atomic_t fq_timer_on;
};
/* Trivial linear page allocator for IOMMU_DMA_MSI_COOKIE */
dma_addr_t msi_iova;
};
struct list_head msi_page_list;
/* Domain for flush queue callback; NULL if flush queue not in use */
struct iommu_domain *fq_domain;
/* Options for dma-iommu use */
struct iommu_dma_options options;
struct mutex mutex;
};
static DEFINE_STATIC_KEY_FALSE(iommu_deferred_attach_enabled);
bool iommu_dma_forcedac __read_mostly;
static int __init iommu_dma_forcedac_setup(char *str)
{
int ret = kstrtobool(str, &iommu_dma_forcedac);
if (!ret && iommu_dma_forcedac)
pr_info("Forcing DAC for PCI devices\n");
return ret;
}
early_param("iommu.forcedac", iommu_dma_forcedac_setup);
/* Number of entries per flush queue */
#define IOVA_DEFAULT_FQ_SIZE 256
#define IOVA_SINGLE_FQ_SIZE 32768
/* Timeout (in ms) after which entries are flushed from the queue */
#define IOVA_DEFAULT_FQ_TIMEOUT 10
#define IOVA_SINGLE_FQ_TIMEOUT 1000
/* Flush queue entry for deferred flushing */
struct iova_fq_entry {
unsigned long iova_pfn;
unsigned long pages;
struct list_head freelist;
u64 counter; /* Flush counter when this entry was added */
};
/* Per-CPU flush queue structure */
struct iova_fq {
spinlock_t lock;
unsigned int head, tail;
unsigned int mod_mask;
struct iova_fq_entry entries[];
};
#define fq_ring_for_each(i, fq) \
for ((i) = (fq)->head; (i) != (fq)->tail; (i) = ((i) + 1) & (fq)->mod_mask)
static inline bool fq_full(struct iova_fq *fq)
{
assert_spin_locked(&fq->lock);
return (((fq->tail + 1) & fq->mod_mask) == fq->head);
}
static inline unsigned int fq_ring_add(struct iova_fq *fq)
{
unsigned int idx = fq->tail;
assert_spin_locked(&fq->lock);
fq->tail = (idx + 1) & fq->mod_mask;
return idx;
}
static void fq_ring_free_locked(struct iommu_dma_cookie *cookie, struct iova_fq *fq)
{
u64 counter = atomic64_read(&cookie->fq_flush_finish_cnt);
unsigned int idx;
assert_spin_locked(&fq->lock);
fq_ring_for_each(idx, fq) {
if (fq->entries[idx].counter >= counter)
break;
iommu_put_pages_list(&fq->entries[idx].freelist);
free_iova_fast(&cookie->iovad,
fq->entries[idx].iova_pfn,
fq->entries[idx].pages);
fq->head = (fq->head + 1) & fq->mod_mask;
}
}
static void fq_ring_free(struct iommu_dma_cookie *cookie, struct iova_fq *fq)
{
unsigned long flags;
spin_lock_irqsave(&fq->lock, flags);
fq_ring_free_locked(cookie, fq);
spin_unlock_irqrestore(&fq->lock, flags);
}
static void fq_flush_iotlb(struct iommu_dma_cookie *cookie)
{
atomic64_inc(&cookie->fq_flush_start_cnt);
cookie->fq_domain->ops->flush_iotlb_all(cookie->fq_domain);
atomic64_inc(&cookie->fq_flush_finish_cnt);
}
static void fq_flush_timeout(struct timer_list *t)
{
struct iommu_dma_cookie *cookie = from_timer(cookie, t, fq_timer);
int cpu;
atomic_set(&cookie->fq_timer_on, 0);
fq_flush_iotlb(cookie);
if (cookie->options.qt == IOMMU_DMA_OPTS_SINGLE_QUEUE) {
fq_ring_free(cookie, cookie->single_fq);
} else {
for_each_possible_cpu(cpu)
fq_ring_free(cookie, per_cpu_ptr(cookie->percpu_fq, cpu));
}
}
static void queue_iova(struct iommu_dma_cookie *cookie,
unsigned long pfn, unsigned long pages,
struct list_head *freelist)
{
struct iova_fq *fq;
unsigned long flags;
unsigned int idx;
/*
* Order against the IOMMU driver's pagetable update from unmapping
* @pte, to guarantee that fq_flush_iotlb() observes that if called
* from a different CPU before we release the lock below. Full barrier
* so it also pairs with iommu_dma_init_fq() to avoid seeing partially
* written fq state here.
*/
smp_mb();
if (cookie->options.qt == IOMMU_DMA_OPTS_SINGLE_QUEUE)
fq = cookie->single_fq;
else
fq = raw_cpu_ptr(cookie->percpu_fq);
spin_lock_irqsave(&fq->lock, flags);
/*
* First remove all entries from the flush queue that have already been
* flushed out on another CPU. This makes the fq_full() check below less
* likely to be true.
*/
fq_ring_free_locked(cookie, fq);
if (fq_full(fq)) {
fq_flush_iotlb(cookie);
fq_ring_free_locked(cookie, fq);
}
idx = fq_ring_add(fq);
fq->entries[idx].iova_pfn = pfn;
fq->entries[idx].pages = pages;
fq->entries[idx].counter = atomic64_read(&cookie->fq_flush_start_cnt);
list_splice(freelist, &fq->entries[idx].freelist);
spin_unlock_irqrestore(&fq->lock, flags);
/* Avoid false sharing as much as possible. */
if (!atomic_read(&cookie->fq_timer_on) &&
!atomic_xchg(&cookie->fq_timer_on, 1))
mod_timer(&cookie->fq_timer,
jiffies + msecs_to_jiffies(cookie->options.fq_timeout));
}
static void iommu_dma_free_fq_single(struct iova_fq *fq)
{
int idx;
fq_ring_for_each(idx, fq)
iommu_put_pages_list(&fq->entries[idx].freelist);
vfree(fq);
}
static void iommu_dma_free_fq_percpu(struct iova_fq __percpu *percpu_fq)
{
int cpu, idx;
/* The IOVAs will be torn down separately, so just free our queued pages */
for_each_possible_cpu(cpu) {
struct iova_fq *fq = per_cpu_ptr(percpu_fq, cpu);
fq_ring_for_each(idx, fq)
iommu_put_pages_list(&fq->entries[idx].freelist);
}
free_percpu(percpu_fq);
}
static void iommu_dma_free_fq(struct iommu_dma_cookie *cookie)
{
if (!cookie->fq_domain)
return;
del_timer_sync(&cookie->fq_timer);
if (cookie->options.qt == IOMMU_DMA_OPTS_SINGLE_QUEUE)
iommu_dma_free_fq_single(cookie->single_fq);
else
iommu_dma_free_fq_percpu(cookie->percpu_fq);
}
static void iommu_dma_init_one_fq(struct iova_fq *fq, size_t fq_size)
{
int i;
fq->head = 0;
fq->tail = 0;
fq->mod_mask = fq_size - 1;
spin_lock_init(&fq->lock);
for (i = 0; i < fq_size; i++)
INIT_LIST_HEAD(&fq->entries[i].freelist);
}
static int iommu_dma_init_fq_single(struct iommu_dma_cookie *cookie)
{
size_t fq_size = cookie->options.fq_size;
struct iova_fq *queue;
queue = vmalloc(struct_size(queue, entries, fq_size));
if (!queue)
return -ENOMEM;
iommu_dma_init_one_fq(queue, fq_size);
cookie->single_fq = queue;
return 0;
}
static int iommu_dma_init_fq_percpu(struct iommu_dma_cookie *cookie)
{
size_t fq_size = cookie->options.fq_size;
struct iova_fq __percpu *queue;
int cpu;
queue = __alloc_percpu(struct_size(queue, entries, fq_size),
__alignof__(*queue));
if (!queue)
return -ENOMEM;
for_each_possible_cpu(cpu)
iommu_dma_init_one_fq(per_cpu_ptr(queue, cpu), fq_size);
cookie->percpu_fq = queue;
return 0;
}
/* sysfs updates are serialised by the mutex of the group owning @domain */
int iommu_dma_init_fq(struct iommu_domain *domain)
{
struct iommu_dma_cookie *cookie = domain->iova_cookie;
int rc;
if (cookie->fq_domain)
return 0;
atomic64_set(&cookie->fq_flush_start_cnt, 0);
atomic64_set(&cookie->fq_flush_finish_cnt, 0);
if (cookie->options.qt == IOMMU_DMA_OPTS_SINGLE_QUEUE)
rc = iommu_dma_init_fq_single(cookie);
else
rc = iommu_dma_init_fq_percpu(cookie);
if (rc) {
pr_warn("iova flush queue initialization failed\n");
return -ENOMEM;
}
timer_setup(&cookie->fq_timer, fq_flush_timeout, 0);
atomic_set(&cookie->fq_timer_on, 0);
/*
* Prevent incomplete fq state being observable. Pairs with path from
* __iommu_dma_unmap() through iommu_dma_free_iova() to queue_iova()
*/
smp_wmb();
WRITE_ONCE(cookie->fq_domain, domain);
return 0;
}
static inline size_t cookie_msi_granule(struct iommu_dma_cookie *cookie)
{
if (cookie->type == IOMMU_DMA_IOVA_COOKIE)
return cookie->iovad.granule;
return PAGE_SIZE;
}
static struct iommu_dma_cookie *cookie_alloc(enum iommu_dma_cookie_type type)
{
struct iommu_dma_cookie *cookie;
cookie = kzalloc(sizeof(*cookie), GFP_KERNEL);
if (cookie) {
INIT_LIST_HEAD(&cookie->msi_page_list);
cookie->type = type;
}
return cookie;
}
/**
* iommu_get_dma_cookie - Acquire DMA-API resources for a domain
* @domain: IOMMU domain to prepare for DMA-API usage
*/
int iommu_get_dma_cookie(struct iommu_domain *domain)
{
if (domain->iova_cookie)
return -EEXIST;
domain->iova_cookie = cookie_alloc(IOMMU_DMA_IOVA_COOKIE);
if (!domain->iova_cookie)
return -ENOMEM;
mutex_init(&domain->iova_cookie->mutex);
return 0;
}
/**
* iommu_get_msi_cookie - Acquire just MSI remapping resources
* @domain: IOMMU domain to prepare
* @base: Start address of IOVA region for MSI mappings
*
* Users who manage their own IOVA allocation and do not want DMA API support,
* but would still like to take advantage of automatic MSI remapping, can use
* this to initialise their own domain appropriately. Users should reserve a
* contiguous IOVA region, starting at @base, large enough to accommodate the
* number of PAGE_SIZE mappings necessary to cover every MSI doorbell address
* used by the devices attached to @domain.
*/
int iommu_get_msi_cookie(struct iommu_domain *domain, dma_addr_t base)
{
struct iommu_dma_cookie *cookie;
if (domain->type != IOMMU_DOMAIN_UNMANAGED)
return -EINVAL;
if (domain->iova_cookie)
return -EEXIST;
cookie = cookie_alloc(IOMMU_DMA_MSI_COOKIE);
if (!cookie)
return -ENOMEM;
cookie->msi_iova = base;
domain->iova_cookie = cookie;
return 0;
}
EXPORT_SYMBOL(iommu_get_msi_cookie);
/**
* iommu_put_dma_cookie - Release a domain's DMA mapping resources
* @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() or
* iommu_get_msi_cookie()
*/
void iommu_put_dma_cookie(struct iommu_domain *domain)
{
struct iommu_dma_cookie *cookie = domain->iova_cookie;
struct iommu_dma_msi_page *msi, *tmp;
if (!cookie)
return;
if (cookie->type == IOMMU_DMA_IOVA_COOKIE && cookie->iovad.granule) {
iommu_dma_free_fq(cookie);
put_iova_domain(&cookie->iovad);
}
list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) {
list_del(&msi->list);
kfree(msi);
}
kfree(cookie);
domain->iova_cookie = NULL;
}
/**
* iommu_dma_get_resv_regions - Reserved region driver helper
* @dev: Device from iommu_get_resv_regions()
* @list: Reserved region list from iommu_get_resv_regions()
*
* IOMMU drivers can use this to implement their .get_resv_regions callback
* for general non-IOMMU-specific reservations. Currently, this covers GICv3
* ITS region reservation on ACPI based ARM platforms that may require HW MSI
* reservation.
*/
void iommu_dma_get_resv_regions(struct device *dev, struct list_head *list)
{
if (!is_of_node(dev_iommu_fwspec_get(dev)->iommu_fwnode))
iort_iommu_get_resv_regions(dev, list);
if (dev->of_node)
of_iommu_get_resv_regions(dev, list);
}
EXPORT_SYMBOL(iommu_dma_get_resv_regions);
static int cookie_init_hw_msi_region(struct iommu_dma_cookie *cookie,
phys_addr_t start, phys_addr_t end)
{
struct iova_domain *iovad = &cookie->iovad;
struct iommu_dma_msi_page *msi_page;
int i, num_pages;
start -= iova_offset(iovad, start);
num_pages = iova_align(iovad, end - start) >> iova_shift(iovad);
for (i = 0; i < num_pages; i++) {
msi_page = kmalloc(sizeof(*msi_page), GFP_KERNEL);
if (!msi_page)
return -ENOMEM;
msi_page->phys = start;
msi_page->iova = start;
INIT_LIST_HEAD(&msi_page->list);
list_add(&msi_page->list, &cookie->msi_page_list);
start += iovad->granule;
}
return 0;
}
static int iommu_dma_ranges_sort(void *priv, const struct list_head *a,
const struct list_head *b)
{
struct resource_entry *res_a = list_entry(a, typeof(*res_a), node);
struct resource_entry *res_b = list_entry(b, typeof(*res_b), node);
return res_a->res->start > res_b->res->start;
}
static int iova_reserve_pci_windows(struct pci_dev *dev,
struct iova_domain *iovad)
{
struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
struct resource_entry *window;
unsigned long lo, hi;
phys_addr_t start = 0, end;
resource_list_for_each_entry(window, &bridge->windows) {
if (resource_type(window->res) != IORESOURCE_MEM)
continue;
lo = iova_pfn(iovad, window->res->start - window->offset);
hi = iova_pfn(iovad, window->res->end - window->offset);
reserve_iova(iovad, lo, hi);
}
/* Get reserved DMA windows from host bridge */
list_sort(NULL, &bridge->dma_ranges, iommu_dma_ranges_sort);
resource_list_for_each_entry(window, &bridge->dma_ranges) {
end = window->res->start - window->offset;
resv_iova:
if (end > start) {
lo = iova_pfn(iovad, start);
hi = iova_pfn(iovad, end);
reserve_iova(iovad, lo, hi);
} else if (end < start) {
/* DMA ranges should be non-overlapping */
dev_err(&dev->dev,
"Failed to reserve IOVA [%pa-%pa]\n",
&start, &end);
return -EINVAL;
}
start = window->res->end - window->offset + 1;
/* If window is last entry */
if (window->node.next == &bridge->dma_ranges &&
end != ~(phys_addr_t)0) {
end = ~(phys_addr_t)0;
goto resv_iova;
}
}
return 0;
}
static int iova_reserve_iommu_regions(struct device *dev,
struct iommu_domain *domain)
{
struct iommu_dma_cookie *cookie = domain->iova_cookie;
struct iova_domain *iovad = &cookie->iovad;
struct iommu_resv_region *region;
LIST_HEAD(resv_regions);
int ret = 0;
if (dev_is_pci(dev)) {
ret = iova_reserve_pci_windows(to_pci_dev(dev), iovad);
if (ret)
return ret;
}
iommu_get_resv_regions(dev, &resv_regions);
list_for_each_entry(region, &resv_regions, list) {
unsigned long lo, hi;
/* We ARE the software that manages these! */
if (region->type == IOMMU_RESV_SW_MSI)
continue;
lo = iova_pfn(iovad, region->start);
hi = iova_pfn(iovad, region->start + region->length - 1);
reserve_iova(iovad, lo, hi);
if (region->type == IOMMU_RESV_MSI)
ret = cookie_init_hw_msi_region(cookie, region->start,
region->start + region->length);
if (ret)
break;
}
iommu_put_resv_regions(dev, &resv_regions);
return ret;
}
static bool dev_is_untrusted(struct device *dev)
{
return dev_is_pci(dev) && to_pci_dev(dev)->untrusted;
}
static bool dev_use_swiotlb(struct device *dev, size_t size,
enum dma_data_direction dir)
{
return IS_ENABLED(CONFIG_SWIOTLB) &&
(dev_is_untrusted(dev) ||
dma_kmalloc_needs_bounce(dev, size, dir));
}
static bool dev_use_sg_swiotlb(struct device *dev, struct scatterlist *sg,
int nents, enum dma_data_direction dir)
{
struct scatterlist *s;
int i;
if (!IS_ENABLED(CONFIG_SWIOTLB))
return false;
if (dev_is_untrusted(dev))
return true;
/*
* If kmalloc() buffers are not DMA-safe for this device and
* direction, check the individual lengths in the sg list. If any
* element is deemed unsafe, use the swiotlb for bouncing.
*/
if (!dma_kmalloc_safe(dev, dir)) {
for_each_sg(sg, s, nents, i)
if (!dma_kmalloc_size_aligned(s->length))
return true;
}
return false;
}
/**
* iommu_dma_init_options - Initialize dma-iommu options
* @options: The options to be initialized
* @dev: Device the options are set for
*
* This allows tuning dma-iommu specific to device properties
*/
static void iommu_dma_init_options(struct iommu_dma_options *options,
struct device *dev)
{
/* Shadowing IOTLB flushes do better with a single large queue */
if (dev->iommu->shadow_on_flush) {
options->qt = IOMMU_DMA_OPTS_SINGLE_QUEUE;
options->fq_timeout = IOVA_SINGLE_FQ_TIMEOUT;
options->fq_size = IOVA_SINGLE_FQ_SIZE;
} else {
options->qt = IOMMU_DMA_OPTS_PER_CPU_QUEUE;
options->fq_size = IOVA_DEFAULT_FQ_SIZE;
options->fq_timeout = IOVA_DEFAULT_FQ_TIMEOUT;
}
}
/**
* iommu_dma_init_domain - Initialise a DMA mapping domain
* @domain: IOMMU domain previously prepared by iommu_get_dma_cookie()
* @dev: Device the domain is being initialised for
*
* If the geometry and dma_range_map include address 0, we reserve that page
* to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but
* any change which could make prior IOVAs invalid will fail.
*/
static int iommu_dma_init_domain(struct iommu_domain *domain, struct device *dev)
{
struct iommu_dma_cookie *cookie = domain->iova_cookie;
const struct bus_dma_region *map = dev->dma_range_map;
unsigned long order, base_pfn;
struct iova_domain *iovad;
int ret;
if (!cookie || cookie->type != IOMMU_DMA_IOVA_COOKIE)
return -EINVAL;
iovad = &cookie->iovad;
/* Use the smallest supported page size for IOVA granularity */
order = __ffs(domain->pgsize_bitmap);
base_pfn = 1;
/* Check the domain allows at least some access to the device... */
if (map) {
if (dma_range_map_min(map) > domain->geometry.aperture_end ||
dma_range_map_max(map) < domain->geometry.aperture_start) {
pr_warn("specified DMA range outside IOMMU capability\n");
return -EFAULT;
}
}
/* ...then finally give it a kicking to make sure it fits */
base_pfn = max_t(unsigned long, base_pfn,
domain->geometry.aperture_start >> order);
/* start_pfn is always nonzero for an already-initialised domain */
mutex_lock(&cookie->mutex);
if (iovad->start_pfn) {
if (1UL << order != iovad->granule ||
base_pfn != iovad->start_pfn) {
pr_warn("Incompatible range for DMA domain\n");
ret = -EFAULT;
goto done_unlock;
}
ret = 0;
goto done_unlock;
}
init_iova_domain(iovad, 1UL << order, base_pfn);
ret = iova_domain_init_rcaches(iovad);
if (ret)
goto done_unlock;
iommu_dma_init_options(&cookie->options, dev);
/* If the FQ fails we can simply fall back to strict mode */
if (domain->type == IOMMU_DOMAIN_DMA_FQ &&
(!device_iommu_capable(dev, IOMMU_CAP_DEFERRED_FLUSH) || iommu_dma_init_fq(domain)))
domain->type = IOMMU_DOMAIN_DMA;
ret = iova_reserve_iommu_regions(dev, domain);
done_unlock:
mutex_unlock(&cookie->mutex);
return ret;
}
/**
* dma_info_to_prot - Translate DMA API directions and attributes to IOMMU API
* page flags.
* @dir: Direction of DMA transfer
* @coherent: Is the DMA master cache-coherent?
* @attrs: DMA attributes for the mapping
*
* Return: corresponding IOMMU API page protection flags
*/
static int dma_info_to_prot(enum dma_data_direction dir, bool coherent,
unsigned long attrs)
{
int prot = coherent ? IOMMU_CACHE : 0;
if (attrs & DMA_ATTR_PRIVILEGED)
prot |= IOMMU_PRIV;
switch (dir) {
case DMA_BIDIRECTIONAL:
return prot | IOMMU_READ | IOMMU_WRITE;
case DMA_TO_DEVICE:
return prot | IOMMU_READ;
case DMA_FROM_DEVICE:
return prot | IOMMU_WRITE;
default:
return 0;
}
}
static dma_addr_t iommu_dma_alloc_iova(struct iommu_domain *domain,
size_t size, u64 dma_limit, struct device *dev)
{
struct iommu_dma_cookie *cookie = domain->iova_cookie;
struct iova_domain *iovad = &cookie->iovad;
unsigned long shift, iova_len, iova;
if (cookie->type == IOMMU_DMA_MSI_COOKIE) {
cookie->msi_iova += size;
return cookie->msi_iova - size;
}
shift = iova_shift(iovad);
iova_len = size >> shift;
dma_limit = min_not_zero(dma_limit, dev->bus_dma_limit);
if (domain->geometry.force_aperture)
dma_limit = min(dma_limit, (u64)domain->geometry.aperture_end);
/*
* Try to use all the 32-bit PCI addresses first. The original SAC vs.
* DAC reasoning loses relevance with PCIe, but enough hardware and
* firmware bugs are still lurking out there that it's safest not to
* venture into the 64-bit space until necessary.
*
* If your device goes wrong after seeing the notice then likely either
* its driver is not setting DMA masks accurately, the hardware has
* some inherent bug in handling >32-bit addresses, or not all the
* expected address bits are wired up between the device and the IOMMU.
*/
if (dma_limit > DMA_BIT_MASK(32) && dev->iommu->pci_32bit_workaround) {
iova = alloc_iova_fast(iovad, iova_len,
DMA_BIT_MASK(32) >> shift, false);
if (iova)
goto done;
dev->iommu->pci_32bit_workaround = false;
dev_notice(dev, "Using %d-bit DMA addresses\n", bits_per(dma_limit));
}
iova = alloc_iova_fast(iovad, iova_len, dma_limit >> shift, true);
done:
trace_android_vh_iommu_iovad_alloc_iova(dev, iovad, (dma_addr_t)iova << shift, size);
return (dma_addr_t)iova << shift;
}
static void iommu_dma_free_iova(struct iommu_dma_cookie *cookie,
dma_addr_t iova, size_t size, struct iommu_iotlb_gather *gather)
{
struct iova_domain *iovad = &cookie->iovad;
/* The MSI case is only ever cleaning up its most recent allocation */
if (cookie->type == IOMMU_DMA_MSI_COOKIE)
cookie->msi_iova -= size;
else if (gather && gather->queued)
queue_iova(cookie, iova_pfn(iovad, iova),
size >> iova_shift(iovad),
&gather->freelist);
else
free_iova_fast(iovad, iova_pfn(iovad, iova),
size >> iova_shift(iovad));
trace_android_vh_iommu_iovad_free_iova(iovad, iova, size);
}
static void __iommu_dma_unmap(struct device *dev, dma_addr_t dma_addr,
size_t size)
{
struct iommu_domain *domain = iommu_get_dma_domain(dev);
struct iommu_dma_cookie *cookie = domain->iova_cookie;
struct iova_domain *iovad = &cookie->iovad;
size_t iova_off = iova_offset(iovad, dma_addr);
struct iommu_iotlb_gather iotlb_gather;
size_t unmapped;
dma_addr -= iova_off;
size = iova_align(iovad, size + iova_off);
iommu_iotlb_gather_init(&iotlb_gather);
iotlb_gather.queued = READ_ONCE(cookie->fq_domain);
unmapped = iommu_unmap_fast(domain, dma_addr, size, &iotlb_gather);
WARN_ON(unmapped != size);
if (!iotlb_gather.queued)
iommu_iotlb_sync(domain, &iotlb_gather);
iommu_dma_free_iova(cookie, dma_addr, size, &iotlb_gather);
}
static dma_addr_t __iommu_dma_map(struct device *dev, phys_addr_t phys,
size_t size, int prot, u64 dma_mask)
{
struct iommu_domain *domain = iommu_get_dma_domain(dev);
struct iommu_dma_cookie *cookie = domain->iova_cookie;
struct iova_domain *iovad = &cookie->iovad;
size_t iova_off = iova_offset(iovad, phys);
dma_addr_t iova;
if (static_branch_unlikely(&iommu_deferred_attach_enabled) &&
iommu_deferred_attach(dev, domain))
return DMA_MAPPING_ERROR;
/* If anyone ever wants this we'd need support in the IOVA allocator */
if (dev_WARN_ONCE(dev, dma_get_min_align_mask(dev) > iova_mask(iovad),
"Unsupported alignment constraint\n"))
return DMA_MAPPING_ERROR;
size = iova_align(iovad, size + iova_off);
iova = iommu_dma_alloc_iova(domain, size, dma_mask, dev);
if (!iova)
return DMA_MAPPING_ERROR;
if (iommu_map(domain, iova, phys - iova_off, size, prot, GFP_ATOMIC)) {
iommu_dma_free_iova(cookie, iova, size, NULL);
return DMA_MAPPING_ERROR;
}
return iova + iova_off;
}
static void __iommu_dma_free_pages(struct page **pages, int count)
{
while (count--)
__free_page(pages[count]);
kvfree(pages);
}
static struct page **__iommu_dma_alloc_pages(struct device *dev,
unsigned int count, unsigned long order_mask, gfp_t gfp)
{
struct page **pages;
unsigned int i = 0, nid = dev_to_node(dev);
order_mask &= GENMASK(MAX_PAGE_ORDER, 0);
if (!order_mask)
return NULL;
pages = kvcalloc(count, sizeof(*pages), GFP_KERNEL);
if (!pages)
return NULL;
/* IOMMU can map any pages, so himem can also be used here */
gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
while (count) {
struct page *page = NULL;
unsigned int order_size;
/*
* Higher-order allocations are a convenience rather
* than a necessity, hence using __GFP_NORETRY until
* falling back to minimum-order allocations.
*/
for (order_mask &= GENMASK(__fls(count), 0);
order_mask; order_mask &= ~order_size) {
unsigned int order = __fls(order_mask);
gfp_t alloc_flags = gfp;
order_size = 1U << order;
if (order_mask > order_size)
alloc_flags |= __GFP_NORETRY;
page = alloc_pages_node(nid, alloc_flags, order);
if (!page)
continue;
if (order)
split_page(page, order);
break;
}
if (!page) {
__iommu_dma_free_pages(pages, i);
return NULL;
}
count -= order_size;
while (order_size--)
pages[i++] = page++;
}
return pages;
}
/*
* If size is less than PAGE_SIZE, then a full CPU page will be allocated,
* but an IOMMU which supports smaller pages might not map the whole thing.
*/
static struct page **__iommu_dma_alloc_noncontiguous(struct device *dev,
size_t size, struct sg_table *sgt, gfp_t gfp, unsigned long attrs)
{
struct iommu_domain *domain = iommu_get_dma_domain(dev);
struct iommu_dma_cookie *cookie = domain->iova_cookie;
struct iova_domain *iovad = &cookie->iovad;
bool coherent = dev_is_dma_coherent(dev);
int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap;
struct page **pages;
dma_addr_t iova;
ssize_t ret;
if (static_branch_unlikely(&iommu_deferred_attach_enabled) &&
iommu_deferred_attach(dev, domain))
return NULL;
min_size = alloc_sizes & -alloc_sizes;
if (min_size < PAGE_SIZE) {
min_size = PAGE_SIZE;
alloc_sizes |= PAGE_SIZE;
} else {
size = ALIGN(size, min_size);
}
if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
alloc_sizes = min_size;
count = PAGE_ALIGN(size) >> PAGE_SHIFT;
pages = __iommu_dma_alloc_pages(dev, count, alloc_sizes >> PAGE_SHIFT,
gfp);
if (!pages)
return NULL;
size = iova_align(iovad, size);
iova = iommu_dma_alloc_iova(domain, size, dev->coherent_dma_mask, dev);
if (!iova)
goto out_free_pages;
/*
* Remove the zone/policy flags from the GFP - these are applied to the
* __iommu_dma_alloc_pages() but are not used for the supporting
* internal allocations that follow.
*/
gfp &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM | __GFP_COMP);
if (sg_alloc_table_from_pages(sgt, pages, count, 0, size, gfp))
goto out_free_iova;
if (!(ioprot & IOMMU_CACHE)) {
struct scatterlist *sg;
int i;
for_each_sg(sgt->sgl, sg, sgt->orig_nents, i)
arch_dma_prep_coherent(sg_page(sg), sg->length);
}
ret = iommu_map_sg(domain, iova, sgt->sgl, sgt->orig_nents, ioprot,
gfp);
if (ret < 0 || ret < size)
goto out_free_sg;
sgt->sgl->dma_address = iova;
sgt->sgl->dma_length = size;
return pages;
out_free_sg:
sg_free_table(sgt);
out_free_iova:
iommu_dma_free_iova(cookie, iova, size, NULL);
out_free_pages:
__iommu_dma_free_pages(pages, count);
return NULL;
}
static void *iommu_dma_alloc_remap(struct device *dev, size_t size,
dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
{
struct page **pages;
struct sg_table sgt;
void *vaddr;
pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs);
pages = __iommu_dma_alloc_noncontiguous(dev, size, &sgt, gfp, attrs);
if (!pages)
return NULL;
*dma_handle = sgt.sgl->dma_address;
sg_free_table(&sgt);
vaddr = dma_common_pages_remap(pages, size, prot,
__builtin_return_address(0));
if (!vaddr)
goto out_unmap;
return vaddr;
out_unmap:
__iommu_dma_unmap(dev, *dma_handle, size);
__iommu_dma_free_pages(pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
return NULL;
}
/*
* This is the actual return value from the iommu_dma_alloc_noncontiguous.
*
* The users of the DMA API should only care about the sg_table, but to make
* the DMA-API internal vmaping and freeing easier we stash away the page
* array as well (except for the fallback case). This can go away any time,
* e.g. when a vmap-variant that takes a scatterlist comes along.
*/
struct dma_sgt_handle {
struct sg_table sgt;
struct page **pages;
};
#define sgt_handle(sgt) \
container_of((sgt), struct dma_sgt_handle, sgt)
struct sg_table *iommu_dma_alloc_noncontiguous(struct device *dev, size_t size,
enum dma_data_direction dir, gfp_t gfp, unsigned long attrs)
{
struct dma_sgt_handle *sh;
sh = kmalloc(sizeof(*sh), gfp);
if (!sh)
return NULL;
sh->pages = __iommu_dma_alloc_noncontiguous(dev, size, &sh->sgt, gfp, attrs);
if (!sh->pages) {
kfree(sh);
return NULL;
}
return &sh->sgt;
}
void iommu_dma_free_noncontiguous(struct device *dev, size_t size,
struct sg_table *sgt, enum dma_data_direction dir)
{
struct dma_sgt_handle *sh = sgt_handle(sgt);
__iommu_dma_unmap(dev, sgt->sgl->dma_address, size);
__iommu_dma_free_pages(sh->pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
sg_free_table(&sh->sgt);
kfree(sh);
}
void *iommu_dma_vmap_noncontiguous(struct device *dev, size_t size,
struct sg_table *sgt)
{
unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
return vmap(sgt_handle(sgt)->pages, count, VM_MAP, PAGE_KERNEL);
}
int iommu_dma_mmap_noncontiguous(struct device *dev, struct vm_area_struct *vma,
size_t size, struct sg_table *sgt)
{
unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
if (vma->vm_pgoff >= count || vma_pages(vma) > count - vma->vm_pgoff)
return -ENXIO;
return vm_map_pages(vma, sgt_handle(sgt)->pages, count);
}
void iommu_dma_sync_single_for_cpu(struct device *dev, dma_addr_t dma_handle,
size_t size, enum dma_data_direction dir)
{
phys_addr_t phys;
if (dev_is_dma_coherent(dev) && !dev_use_swiotlb(dev, size, dir))
return;
phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle);
if (!dev_is_dma_coherent(dev))
arch_sync_dma_for_cpu(phys, size, dir);
swiotlb_sync_single_for_cpu(dev, phys, size, dir);
}
void iommu_dma_sync_single_for_device(struct device *dev, dma_addr_t dma_handle,
size_t size, enum dma_data_direction dir)
{
phys_addr_t phys;
if (dev_is_dma_coherent(dev) && !dev_use_swiotlb(dev, size, dir))
return;
phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle);
swiotlb_sync_single_for_device(dev, phys, size, dir);
if (!dev_is_dma_coherent(dev))
arch_sync_dma_for_device(phys, size, dir);
}
void iommu_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sgl,
int nelems, enum dma_data_direction dir)
{
struct scatterlist *sg;
int i;
if (sg_dma_is_swiotlb(sgl))
for_each_sg(sgl, sg, nelems, i)
iommu_dma_sync_single_for_cpu(dev, sg_dma_address(sg),
sg->length, dir);
else if (!dev_is_dma_coherent(dev))
for_each_sg(sgl, sg, nelems, i)
arch_sync_dma_for_cpu(sg_phys(sg), sg->length, dir);
}
void iommu_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sgl,
int nelems, enum dma_data_direction dir)
{
struct scatterlist *sg;
int i;
if (sg_dma_is_swiotlb(sgl))
for_each_sg(sgl, sg, nelems, i)
iommu_dma_sync_single_for_device(dev,
sg_dma_address(sg),
sg->length, dir);
else if (!dev_is_dma_coherent(dev))
for_each_sg(sgl, sg, nelems, i)
arch_sync_dma_for_device(sg_phys(sg), sg->length, dir);
}
dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page,
unsigned long offset, size_t size, enum dma_data_direction dir,
unsigned long attrs)
{
phys_addr_t phys = page_to_phys(page) + offset;
bool coherent = dev_is_dma_coherent(dev);
int prot = dma_info_to_prot(dir, coherent, attrs);
struct iommu_domain *domain = iommu_get_dma_domain(dev);
struct iommu_dma_cookie *cookie = domain->iova_cookie;
struct iova_domain *iovad = &cookie->iovad;
dma_addr_t iova, dma_mask = dma_get_mask(dev);
/*
* If both the physical buffer start address and size are
* page aligned, we don't need to use a bounce page.
*/
if (dev_use_swiotlb(dev, size, dir) &&
iova_offset(iovad, phys | size)) {
if (!is_swiotlb_active(dev)) {
dev_warn_once(dev, "DMA bounce buffers are inactive, unable to map unaligned transaction.\n");
return DMA_MAPPING_ERROR;
}
trace_swiotlb_bounced(dev, phys, size);
phys = swiotlb_tbl_map_single(dev, phys, size,
iova_mask(iovad), dir, attrs);
if (phys == DMA_MAPPING_ERROR)
return DMA_MAPPING_ERROR;
/*
* Untrusted devices should not see padding areas with random
* leftover kernel data, so zero the pre- and post-padding.
* swiotlb_tbl_map_single() has initialized the bounce buffer
* proper to the contents of the original memory buffer.
*/
if (dev_is_untrusted(dev)) {
size_t start, virt = (size_t)phys_to_virt(phys);
/* Pre-padding */
start = iova_align_down(iovad, virt);
memset((void *)start, 0, virt - start);
/* Post-padding */
start = virt + size;
memset((void *)start, 0,
iova_align(iovad, start) - start);
}
}
if (!coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
arch_sync_dma_for_device(phys, size, dir);
iova = __iommu_dma_map(dev, phys, size, prot, dma_mask);
if (iova == DMA_MAPPING_ERROR)
swiotlb_tbl_unmap_single(dev, phys, size, dir, attrs);
return iova;
}
void iommu_dma_unmap_page(struct device *dev, dma_addr_t dma_handle,
size_t size, enum dma_data_direction dir, unsigned long attrs)
{
struct iommu_domain *domain = iommu_get_dma_domain(dev);
phys_addr_t phys;
phys = iommu_iova_to_phys(domain, dma_handle);
if (WARN_ON(!phys))
return;
if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) && !dev_is_dma_coherent(dev))
arch_sync_dma_for_cpu(phys, size, dir);
__iommu_dma_unmap(dev, dma_handle, size);
swiotlb_tbl_unmap_single(dev, phys, size, dir, attrs);
}
/*
* Prepare a successfully-mapped scatterlist to give back to the caller.
*
* At this point the segments are already laid out by iommu_dma_map_sg() to
* avoid individually crossing any boundaries, so we merely need to check a
* segment's start address to avoid concatenating across one.
*/
static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents,
dma_addr_t dma_addr)
{
struct scatterlist *s, *cur = sg;
unsigned long seg_mask = dma_get_seg_boundary(dev);
unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev);
int i, count = 0;
for_each_sg(sg, s, nents, i) {
/* Restore this segment's original unaligned fields first */
dma_addr_t s_dma_addr = sg_dma_address(s);
unsigned int s_iova_off = sg_dma_address(s);
unsigned int s_length = sg_dma_len(s);
unsigned int s_iova_len = s->length;
sg_dma_address(s) = DMA_MAPPING_ERROR;
sg_dma_len(s) = 0;
if (sg_dma_is_bus_address(s)) {
if (i > 0)
cur = sg_next(cur);
sg_dma_unmark_bus_address(s);
sg_dma_address(cur) = s_dma_addr;
sg_dma_len(cur) = s_length;
sg_dma_mark_bus_address(cur);
count++;
cur_len = 0;
continue;
}
s->offset += s_iova_off;
s->length = s_length;
/*
* Now fill in the real DMA data. If...
* - there is a valid output segment to append to
* - and this segment starts on an IOVA page boundary
* - but doesn't fall at a segment boundary
* - and wouldn't make the resulting output segment too long
*/
if (cur_len && !s_iova_off && (dma_addr & seg_mask) &&
(max_len - cur_len >= s_length)) {
/* ...then concatenate it with the previous one */
cur_len += s_length;
} else {
/* Otherwise start the next output segment */
if (i > 0)
cur = sg_next(cur);
cur_len = s_length;
count++;
sg_dma_address(cur) = dma_addr + s_iova_off;
}
sg_dma_len(cur) = cur_len;
dma_addr += s_iova_len;
if (s_length + s_iova_off < s_iova_len)
cur_len = 0;
}
return count;
}
/*
* If mapping failed, then just restore the original list,
* but making sure the DMA fields are invalidated.
*/
static void __invalidate_sg(struct scatterlist *sg, int nents)
{
struct scatterlist *s;
int i;
for_each_sg(sg, s, nents, i) {
if (sg_dma_is_bus_address(s)) {
sg_dma_unmark_bus_address(s);
} else {
if (sg_dma_address(s) != DMA_MAPPING_ERROR)
s->offset += sg_dma_address(s);
if (sg_dma_len(s))
s->length = sg_dma_len(s);
}
sg_dma_address(s) = DMA_MAPPING_ERROR;
sg_dma_len(s) = 0;
}
}
static void iommu_dma_unmap_sg_swiotlb(struct device *dev, struct scatterlist *sg,
int nents, enum dma_data_direction dir, unsigned long attrs)
{
struct scatterlist *s;
int i;
for_each_sg(sg, s, nents, i)
iommu_dma_unmap_page(dev, sg_dma_address(s),
sg_dma_len(s), dir, attrs);
}
static int iommu_dma_map_sg_swiotlb(struct device *dev, struct scatterlist *sg,
int nents, enum dma_data_direction dir, unsigned long attrs)
{
struct scatterlist *s;
int i;
sg_dma_mark_swiotlb(sg);
for_each_sg(sg, s, nents, i) {
sg_dma_address(s) = iommu_dma_map_page(dev, sg_page(s),
s->offset, s->length, dir, attrs);
if (sg_dma_address(s) == DMA_MAPPING_ERROR)
goto out_unmap;
sg_dma_len(s) = s->length;
}
return nents;
out_unmap:
iommu_dma_unmap_sg_swiotlb(dev, sg, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
return -EIO;
}
/*
* The DMA API client is passing in a scatterlist which could describe
* any old buffer layout, but the IOMMU API requires everything to be
* aligned to IOMMU pages. Hence the need for this complicated bit of
* impedance-matching, to be able to hand off a suitably-aligned list,
* but still preserve the original offsets and sizes for the caller.
*/
int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
enum dma_data_direction dir, unsigned long attrs)
{
struct iommu_domain *domain = iommu_get_dma_domain(dev);
struct iommu_dma_cookie *cookie = domain->iova_cookie;
struct iova_domain *iovad = &cookie->iovad;
struct scatterlist *s, *prev = NULL;
int prot = dma_info_to_prot(dir, dev_is_dma_coherent(dev), attrs);
struct pci_p2pdma_map_state p2pdma_state = {};
enum pci_p2pdma_map_type map;
dma_addr_t iova;
size_t iova_len = 0;
unsigned long mask = dma_get_seg_boundary(dev);
ssize_t ret;
int i;
if (static_branch_unlikely(&iommu_deferred_attach_enabled)) {
ret = iommu_deferred_attach(dev, domain);
if (ret)
goto out;
}
if (dev_use_sg_swiotlb(dev, sg, nents, dir))
return iommu_dma_map_sg_swiotlb(dev, sg, nents, dir, attrs);
if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
iommu_dma_sync_sg_for_device(dev, sg, nents, dir);
/*
* Work out how much IOVA space we need, and align the segments to
* IOVA granules for the IOMMU driver to handle. With some clever
* trickery we can modify the list in-place, but reversibly, by
* stashing the unaligned parts in the as-yet-unused DMA fields.
*/
for_each_sg(sg, s, nents, i) {
size_t s_iova_off = iova_offset(iovad, s->offset);
size_t s_length = s->length;
size_t pad_len = (mask - iova_len + 1) & mask;
if (is_pci_p2pdma_page(sg_page(s))) {
map = pci_p2pdma_map_segment(&p2pdma_state, dev, s);
switch (map) {
case PCI_P2PDMA_MAP_BUS_ADDR:
/*
* iommu_map_sg() will skip this segment as
* it is marked as a bus address,
* __finalise_sg() will copy the dma address
* into the output segment.
*/
continue;
case PCI_P2PDMA_MAP_THRU_HOST_BRIDGE:
/*
* Mapping through host bridge should be
* mapped with regular IOVAs, thus we
* do nothing here and continue below.
*/
break;
default:
ret = -EREMOTEIO;
goto out_restore_sg;
}
}
sg_dma_address(s) = s_iova_off;
sg_dma_len(s) = s_length;
s->offset -= s_iova_off;
s_length = iova_align(iovad, s_length + s_iova_off);
s->length = s_length;
/*
* Due to the alignment of our single IOVA allocation, we can
* depend on these assumptions about the segment boundary mask:
* - If mask size >= IOVA size, then the IOVA range cannot
* possibly fall across a boundary, so we don't care.
* - If mask size < IOVA size, then the IOVA range must start
* exactly on a boundary, therefore we can lay things out
* based purely on segment lengths without needing to know
* the actual addresses beforehand.
* - The mask must be a power of 2, so pad_len == 0 if
* iova_len == 0, thus we cannot dereference prev the first
* time through here (i.e. before it has a meaningful value).
*/
if (pad_len && pad_len < s_length - 1) {
prev->length += pad_len;
iova_len += pad_len;
}
iova_len += s_length;
prev = s;
}
if (!iova_len)
return __finalise_sg(dev, sg, nents, 0);
iova = iommu_dma_alloc_iova(domain, iova_len, dma_get_mask(dev), dev);
if (!iova) {
ret = -ENOMEM;
goto out_restore_sg;
}
/*
* We'll leave any physical concatenation to the IOMMU driver's
* implementation - it knows better than we do.
*/
ret = iommu_map_sg(domain, iova, sg, nents, prot, GFP_ATOMIC);
if (ret < 0 || ret < iova_len)
goto out_free_iova;
return __finalise_sg(dev, sg, nents, iova);
out_free_iova:
iommu_dma_free_iova(cookie, iova, iova_len, NULL);
out_restore_sg:
__invalidate_sg(sg, nents);
out:
if (ret != -ENOMEM && ret != -EREMOTEIO)
return -EINVAL;
return ret;
}
void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
enum dma_data_direction dir, unsigned long attrs)
{
dma_addr_t end = 0, start;
struct scatterlist *tmp;
int i;
if (sg_dma_is_swiotlb(sg)) {
iommu_dma_unmap_sg_swiotlb(dev, sg, nents, dir, attrs);
return;
}
if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
iommu_dma_sync_sg_for_cpu(dev, sg, nents, dir);
/*
* The scatterlist segments are mapped into a single
* contiguous IOVA allocation, the start and end points
* just have to be determined.
*/
for_each_sg(sg, tmp, nents, i) {
if (sg_dma_is_bus_address(tmp)) {
sg_dma_unmark_bus_address(tmp);
continue;
}
if (sg_dma_len(tmp) == 0)
break;
start = sg_dma_address(tmp);
break;
}
nents -= i;
for_each_sg(tmp, tmp, nents, i) {
if (sg_dma_is_bus_address(tmp)) {
sg_dma_unmark_bus_address(tmp);
continue;
}
if (sg_dma_len(tmp) == 0)
break;
end = sg_dma_address(tmp) + sg_dma_len(tmp);
}
if (end)
__iommu_dma_unmap(dev, start, end - start);
}
dma_addr_t iommu_dma_map_resource(struct device *dev, phys_addr_t phys,
size_t size, enum dma_data_direction dir, unsigned long attrs)
{
return __iommu_dma_map(dev, phys, size,
dma_info_to_prot(dir, false, attrs) | IOMMU_MMIO,
dma_get_mask(dev));
}
void iommu_dma_unmap_resource(struct device *dev, dma_addr_t handle,
size_t size, enum dma_data_direction dir, unsigned long attrs)
{
__iommu_dma_unmap(dev, handle, size);
}
static void __iommu_dma_free(struct device *dev, size_t size, void *cpu_addr)
{
size_t alloc_size = PAGE_ALIGN(size);
int count = alloc_size >> PAGE_SHIFT;
struct page *page = NULL, **pages = NULL;
/* Non-coherent atomic allocation? Easy */
if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
dma_free_from_pool(dev, cpu_addr, alloc_size))
return;
if (is_vmalloc_addr(cpu_addr)) {
/*
* If it the address is remapped, then it's either non-coherent
* or highmem CMA, or an iommu_dma_alloc_remap() construction.
*/
pages = dma_common_find_pages(cpu_addr);
if (!pages)
page = vmalloc_to_page(cpu_addr);
dma_common_free_remap(cpu_addr, alloc_size);
} else {
/* Lowmem means a coherent atomic or CMA allocation */
page = virt_to_page(cpu_addr);
}
if (pages)
__iommu_dma_free_pages(pages, count);
if (page)
dma_free_contiguous(dev, page, alloc_size);
}
void iommu_dma_free(struct device *dev, size_t size, void *cpu_addr,
dma_addr_t handle, unsigned long attrs)
{
__iommu_dma_unmap(dev, handle, size);
__iommu_dma_free(dev, size, cpu_addr);
}
static void *iommu_dma_alloc_pages(struct device *dev, size_t size,
struct page **pagep, gfp_t gfp, unsigned long attrs)
{
bool coherent = dev_is_dma_coherent(dev);
size_t alloc_size = PAGE_ALIGN(size);
int node = dev_to_node(dev);
struct page *page = NULL;
void *cpu_addr;
page = dma_alloc_contiguous(dev, alloc_size, gfp);
if (!page)
page = alloc_pages_node(node, gfp, get_order(alloc_size));
if (!page)
return NULL;
if (!coherent || PageHighMem(page)) {
pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs);
cpu_addr = dma_common_contiguous_remap(page, alloc_size,
prot, __builtin_return_address(0));
if (!cpu_addr)
goto out_free_pages;
if (!coherent)
arch_dma_prep_coherent(page, size);
} else {
cpu_addr = page_address(page);
}
*pagep = page;
memset(cpu_addr, 0, alloc_size);
return cpu_addr;
out_free_pages:
dma_free_contiguous(dev, page, alloc_size);
return NULL;
}
void *iommu_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
gfp_t gfp, unsigned long attrs)
{
bool coherent = dev_is_dma_coherent(dev);
int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
struct page *page = NULL;
void *cpu_addr;
gfp |= __GFP_ZERO;
if (gfpflags_allow_blocking(gfp) &&
!(attrs & DMA_ATTR_FORCE_CONTIGUOUS)) {
return iommu_dma_alloc_remap(dev, size, handle, gfp, attrs);
}
if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
!gfpflags_allow_blocking(gfp) && !coherent)
page = dma_alloc_from_pool(dev, PAGE_ALIGN(size), &cpu_addr,
gfp, NULL);
else
cpu_addr = iommu_dma_alloc_pages(dev, size, &page, gfp, attrs);
if (!cpu_addr)
return NULL;
*handle = __iommu_dma_map(dev, page_to_phys(page), size, ioprot,
dev->coherent_dma_mask);
if (*handle == DMA_MAPPING_ERROR) {
__iommu_dma_free(dev, size, cpu_addr);
return NULL;
}
return cpu_addr;
}
int iommu_dma_mmap(struct device *dev, struct vm_area_struct *vma,
void *cpu_addr, dma_addr_t dma_addr, size_t size,
unsigned long attrs)
{
unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
unsigned long pfn, off = vma->vm_pgoff;
int ret;
vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
return ret;
if (off >= nr_pages || vma_pages(vma) > nr_pages - off)
return -ENXIO;
if (is_vmalloc_addr(cpu_addr)) {
struct page **pages = dma_common_find_pages(cpu_addr);
if (pages)
return vm_map_pages(vma, pages, nr_pages);
pfn = vmalloc_to_pfn(cpu_addr);
} else {
pfn = page_to_pfn(virt_to_page(cpu_addr));
}
return remap_pfn_range(vma, vma->vm_start, pfn + off,
vma->vm_end - vma->vm_start,
vma->vm_page_prot);
}
int iommu_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
void *cpu_addr, dma_addr_t dma_addr, size_t size,
unsigned long attrs)
{
struct page *page;
int ret;
if (is_vmalloc_addr(cpu_addr)) {
struct page **pages = dma_common_find_pages(cpu_addr);
if (pages) {
return sg_alloc_table_from_pages(sgt, pages,
PAGE_ALIGN(size) >> PAGE_SHIFT,
0, size, GFP_KERNEL);
}
page = vmalloc_to_page(cpu_addr);
} else {
page = virt_to_page(cpu_addr);
}
ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
if (!ret)
sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
return ret;
}
unsigned long iommu_dma_get_merge_boundary(struct device *dev)
{
struct iommu_domain *domain = iommu_get_dma_domain(dev);
return (1UL << __ffs(domain->pgsize_bitmap)) - 1;
}
size_t iommu_dma_opt_mapping_size(void)
{
return iova_rcache_range();
}
size_t iommu_dma_max_mapping_size(struct device *dev)
{
if (dev_is_untrusted(dev))
return swiotlb_max_mapping_size(dev);
return SIZE_MAX;
}
void iommu_setup_dma_ops(struct device *dev)
{
struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
if (dev_is_pci(dev))
dev->iommu->pci_32bit_workaround = !iommu_dma_forcedac;
dev->dma_iommu = iommu_is_dma_domain(domain);
if (dev->dma_iommu && iommu_dma_init_domain(domain, dev))
goto out_err;
return;
out_err:
pr_warn("Failed to set up IOMMU for device %s; retaining platform DMA ops\n",
dev_name(dev));
dev->dma_iommu = false;
}
static struct iommu_dma_msi_page *iommu_dma_get_msi_page(struct device *dev,
phys_addr_t msi_addr, struct iommu_domain *domain)
{
struct iommu_dma_cookie *cookie = domain->iova_cookie;
struct iommu_dma_msi_page *msi_page;
dma_addr_t iova;
int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
size_t size = cookie_msi_granule(cookie);
msi_addr &= ~(phys_addr_t)(size - 1);
list_for_each_entry(msi_page, &cookie->msi_page_list, list)
if (msi_page->phys == msi_addr)
return msi_page;
msi_page = kzalloc(sizeof(*msi_page), GFP_KERNEL);
if (!msi_page)
return NULL;
iova = iommu_dma_alloc_iova(domain, size, dma_get_mask(dev), dev);
if (!iova)
goto out_free_page;
if (iommu_map(domain, iova, msi_addr, size, prot, GFP_KERNEL))
goto out_free_iova;
INIT_LIST_HEAD(&msi_page->list);
msi_page->phys = msi_addr;
msi_page->iova = iova;
list_add(&msi_page->list, &cookie->msi_page_list);
return msi_page;
out_free_iova:
iommu_dma_free_iova(cookie, iova, size, NULL);
out_free_page:
kfree(msi_page);
return NULL;
}
/**
* iommu_dma_prepare_msi() - Map the MSI page in the IOMMU domain
* @desc: MSI descriptor, will store the MSI page
* @msi_addr: MSI target address to be mapped
*
* Return: 0 on success or negative error code if the mapping failed.
*/
int iommu_dma_prepare_msi(struct msi_desc *desc, phys_addr_t msi_addr)
{
struct device *dev = msi_desc_to_dev(desc);
struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
struct iommu_dma_msi_page *msi_page;
static DEFINE_MUTEX(msi_prepare_lock); /* see below */
if (!domain || !domain->iova_cookie) {
desc->iommu_cookie = NULL;
return 0;
}
/*
* In fact the whole prepare operation should already be serialised by
* irq_domain_mutex further up the callchain, but that's pretty subtle
* on its own, so consider this locking as failsafe documentation...
*/
mutex_lock(&msi_prepare_lock);
msi_page = iommu_dma_get_msi_page(dev, msi_addr, domain);
mutex_unlock(&msi_prepare_lock);
msi_desc_set_iommu_cookie(desc, msi_page);
if (!msi_page)
return -ENOMEM;
return 0;
}
/**
* iommu_dma_compose_msi_msg() - Apply translation to an MSI message
* @desc: MSI descriptor prepared by iommu_dma_prepare_msi()
* @msg: MSI message containing target physical address
*/
void iommu_dma_compose_msi_msg(struct msi_desc *desc, struct msi_msg *msg)
{
struct device *dev = msi_desc_to_dev(desc);
const struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
const struct iommu_dma_msi_page *msi_page;
msi_page = msi_desc_get_iommu_cookie(desc);
if (!domain || !domain->iova_cookie || WARN_ON(!msi_page))
return;
msg->address_hi = upper_32_bits(msi_page->iova);
msg->address_lo &= cookie_msi_granule(domain->iova_cookie) - 1;
msg->address_lo += lower_32_bits(msi_page->iova);
}
static int iommu_dma_init(void)
{
if (is_kdump_kernel())
static_branch_enable(&iommu_deferred_attach_enabled);
return iova_cache_get();
}
arch_initcall(iommu_dma_init);