| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * IOMMU API for Renesas VMSA-compatible IPMMU |
| * Author: Laurent Pinchart <laurent.pinchart@ideasonboard.com> |
| * |
| * Copyright (C) 2014-2020 Renesas Electronics Corporation |
| */ |
| |
| #include <linux/bitmap.h> |
| #include <linux/delay.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/err.h> |
| #include <linux/export.h> |
| #include <linux/init.h> |
| #include <linux/interrupt.h> |
| #include <linux/io.h> |
| #include <linux/iopoll.h> |
| #include <linux/io-pgtable.h> |
| #include <linux/iommu.h> |
| #include <linux/of.h> |
| #include <linux/of_platform.h> |
| #include <linux/pci.h> |
| #include <linux/platform_device.h> |
| #include <linux/sizes.h> |
| #include <linux/slab.h> |
| #include <linux/sys_soc.h> |
| |
| #if defined(CONFIG_ARM) && !defined(CONFIG_IOMMU_DMA) |
| #include <asm/dma-iommu.h> |
| #else |
| #define arm_iommu_create_mapping(...) NULL |
| #define arm_iommu_attach_device(...) -ENODEV |
| #define arm_iommu_release_mapping(...) do {} while (0) |
| #endif |
| |
| #define IPMMU_CTX_MAX 16U |
| #define IPMMU_CTX_INVALID -1 |
| |
| #define IPMMU_UTLB_MAX 64U |
| |
| struct ipmmu_features { |
| bool use_ns_alias_offset; |
| bool has_cache_leaf_nodes; |
| unsigned int number_of_contexts; |
| unsigned int num_utlbs; |
| bool setup_imbuscr; |
| bool twobit_imttbcr_sl0; |
| bool reserved_context; |
| bool cache_snoop; |
| unsigned int ctx_offset_base; |
| unsigned int ctx_offset_stride; |
| unsigned int utlb_offset_base; |
| }; |
| |
| struct ipmmu_vmsa_device { |
| struct device *dev; |
| void __iomem *base; |
| struct iommu_device iommu; |
| struct ipmmu_vmsa_device *root; |
| const struct ipmmu_features *features; |
| unsigned int num_ctx; |
| spinlock_t lock; /* Protects ctx and domains[] */ |
| DECLARE_BITMAP(ctx, IPMMU_CTX_MAX); |
| struct ipmmu_vmsa_domain *domains[IPMMU_CTX_MAX]; |
| s8 utlb_ctx[IPMMU_UTLB_MAX]; |
| |
| struct dma_iommu_mapping *mapping; |
| }; |
| |
| struct ipmmu_vmsa_domain { |
| struct ipmmu_vmsa_device *mmu; |
| struct iommu_domain io_domain; |
| |
| struct io_pgtable_cfg cfg; |
| struct io_pgtable_ops *iop; |
| |
| unsigned int context_id; |
| struct mutex mutex; /* Protects mappings */ |
| }; |
| |
| static struct ipmmu_vmsa_domain *to_vmsa_domain(struct iommu_domain *dom) |
| { |
| return container_of(dom, struct ipmmu_vmsa_domain, io_domain); |
| } |
| |
| static struct ipmmu_vmsa_device *to_ipmmu(struct device *dev) |
| { |
| return dev_iommu_priv_get(dev); |
| } |
| |
| #define TLB_LOOP_TIMEOUT 100 /* 100us */ |
| |
| /* ----------------------------------------------------------------------------- |
| * Registers Definition |
| */ |
| |
| #define IM_NS_ALIAS_OFFSET 0x800 |
| |
| /* MMU "context" registers */ |
| #define IMCTR 0x0000 /* R-Car Gen2/3 */ |
| #define IMCTR_INTEN (1 << 2) /* R-Car Gen2/3 */ |
| #define IMCTR_FLUSH (1 << 1) /* R-Car Gen2/3 */ |
| #define IMCTR_MMUEN (1 << 0) /* R-Car Gen2/3 */ |
| |
| #define IMTTBCR 0x0008 /* R-Car Gen2/3 */ |
| #define IMTTBCR_EAE (1 << 31) /* R-Car Gen2/3 */ |
| #define IMTTBCR_SH0_INNER_SHAREABLE (3 << 12) /* R-Car Gen2 only */ |
| #define IMTTBCR_ORGN0_WB_WA (1 << 10) /* R-Car Gen2 only */ |
| #define IMTTBCR_IRGN0_WB_WA (1 << 8) /* R-Car Gen2 only */ |
| #define IMTTBCR_SL0_TWOBIT_LVL_1 (2 << 6) /* R-Car Gen3 only */ |
| #define IMTTBCR_SL0_LVL_1 (1 << 4) /* R-Car Gen2 only */ |
| |
| #define IMBUSCR 0x000c /* R-Car Gen2 only */ |
| #define IMBUSCR_DVM (1 << 2) /* R-Car Gen2 only */ |
| #define IMBUSCR_BUSSEL_MASK (3 << 0) /* R-Car Gen2 only */ |
| |
| #define IMTTLBR0 0x0010 /* R-Car Gen2/3 */ |
| #define IMTTUBR0 0x0014 /* R-Car Gen2/3 */ |
| |
| #define IMSTR 0x0020 /* R-Car Gen2/3 */ |
| #define IMSTR_MHIT (1 << 4) /* R-Car Gen2/3 */ |
| #define IMSTR_ABORT (1 << 2) /* R-Car Gen2/3 */ |
| #define IMSTR_PF (1 << 1) /* R-Car Gen2/3 */ |
| #define IMSTR_TF (1 << 0) /* R-Car Gen2/3 */ |
| |
| #define IMMAIR0 0x0028 /* R-Car Gen2/3 */ |
| |
| #define IMELAR 0x0030 /* R-Car Gen2/3, IMEAR on R-Car Gen2 */ |
| #define IMEUAR 0x0034 /* R-Car Gen3 only */ |
| |
| /* uTLB registers */ |
| #define IMUCTR(n) ((n) < 32 ? IMUCTR0(n) : IMUCTR32(n)) |
| #define IMUCTR0(n) (0x0300 + ((n) * 16)) /* R-Car Gen2/3 */ |
| #define IMUCTR32(n) (0x0600 + (((n) - 32) * 16)) /* R-Car Gen3 only */ |
| #define IMUCTR_TTSEL_MMU(n) ((n) << 4) /* R-Car Gen2/3 */ |
| #define IMUCTR_FLUSH (1 << 1) /* R-Car Gen2/3 */ |
| #define IMUCTR_MMUEN (1 << 0) /* R-Car Gen2/3 */ |
| |
| #define IMUASID(n) ((n) < 32 ? IMUASID0(n) : IMUASID32(n)) |
| #define IMUASID0(n) (0x0308 + ((n) * 16)) /* R-Car Gen2/3 */ |
| #define IMUASID32(n) (0x0608 + (((n) - 32) * 16)) /* R-Car Gen3 only */ |
| |
| /* ----------------------------------------------------------------------------- |
| * Root device handling |
| */ |
| |
| static struct platform_driver ipmmu_driver; |
| |
| static bool ipmmu_is_root(struct ipmmu_vmsa_device *mmu) |
| { |
| return mmu->root == mmu; |
| } |
| |
| static int __ipmmu_check_device(struct device *dev, void *data) |
| { |
| struct ipmmu_vmsa_device *mmu = dev_get_drvdata(dev); |
| struct ipmmu_vmsa_device **rootp = data; |
| |
| if (ipmmu_is_root(mmu)) |
| *rootp = mmu; |
| |
| return 0; |
| } |
| |
| static struct ipmmu_vmsa_device *ipmmu_find_root(void) |
| { |
| struct ipmmu_vmsa_device *root = NULL; |
| |
| return driver_for_each_device(&ipmmu_driver.driver, NULL, &root, |
| __ipmmu_check_device) == 0 ? root : NULL; |
| } |
| |
| /* ----------------------------------------------------------------------------- |
| * Read/Write Access |
| */ |
| |
| static u32 ipmmu_read(struct ipmmu_vmsa_device *mmu, unsigned int offset) |
| { |
| return ioread32(mmu->base + offset); |
| } |
| |
| static void ipmmu_write(struct ipmmu_vmsa_device *mmu, unsigned int offset, |
| u32 data) |
| { |
| iowrite32(data, mmu->base + offset); |
| } |
| |
| static unsigned int ipmmu_ctx_reg(struct ipmmu_vmsa_device *mmu, |
| unsigned int context_id, unsigned int reg) |
| { |
| unsigned int base = mmu->features->ctx_offset_base; |
| |
| if (context_id > 7) |
| base += 0x800 - 8 * 0x40; |
| |
| return base + context_id * mmu->features->ctx_offset_stride + reg; |
| } |
| |
| static u32 ipmmu_ctx_read(struct ipmmu_vmsa_device *mmu, |
| unsigned int context_id, unsigned int reg) |
| { |
| return ipmmu_read(mmu, ipmmu_ctx_reg(mmu, context_id, reg)); |
| } |
| |
| static void ipmmu_ctx_write(struct ipmmu_vmsa_device *mmu, |
| unsigned int context_id, unsigned int reg, u32 data) |
| { |
| ipmmu_write(mmu, ipmmu_ctx_reg(mmu, context_id, reg), data); |
| } |
| |
| static u32 ipmmu_ctx_read_root(struct ipmmu_vmsa_domain *domain, |
| unsigned int reg) |
| { |
| return ipmmu_ctx_read(domain->mmu->root, domain->context_id, reg); |
| } |
| |
| static void ipmmu_ctx_write_root(struct ipmmu_vmsa_domain *domain, |
| unsigned int reg, u32 data) |
| { |
| ipmmu_ctx_write(domain->mmu->root, domain->context_id, reg, data); |
| } |
| |
| static void ipmmu_ctx_write_all(struct ipmmu_vmsa_domain *domain, |
| unsigned int reg, u32 data) |
| { |
| if (domain->mmu != domain->mmu->root) |
| ipmmu_ctx_write(domain->mmu, domain->context_id, reg, data); |
| |
| ipmmu_ctx_write(domain->mmu->root, domain->context_id, reg, data); |
| } |
| |
| static u32 ipmmu_utlb_reg(struct ipmmu_vmsa_device *mmu, unsigned int reg) |
| { |
| return mmu->features->utlb_offset_base + reg; |
| } |
| |
| static void ipmmu_imuasid_write(struct ipmmu_vmsa_device *mmu, |
| unsigned int utlb, u32 data) |
| { |
| ipmmu_write(mmu, ipmmu_utlb_reg(mmu, IMUASID(utlb)), data); |
| } |
| |
| static void ipmmu_imuctr_write(struct ipmmu_vmsa_device *mmu, |
| unsigned int utlb, u32 data) |
| { |
| ipmmu_write(mmu, ipmmu_utlb_reg(mmu, IMUCTR(utlb)), data); |
| } |
| |
| /* ----------------------------------------------------------------------------- |
| * TLB and microTLB Management |
| */ |
| |
| /* Wait for any pending TLB invalidations to complete */ |
| static void ipmmu_tlb_sync(struct ipmmu_vmsa_domain *domain) |
| { |
| u32 val; |
| |
| if (read_poll_timeout_atomic(ipmmu_ctx_read_root, val, |
| !(val & IMCTR_FLUSH), 1, TLB_LOOP_TIMEOUT, |
| false, domain, IMCTR)) |
| dev_err_ratelimited(domain->mmu->dev, |
| "TLB sync timed out -- MMU may be deadlocked\n"); |
| } |
| |
| static void ipmmu_tlb_invalidate(struct ipmmu_vmsa_domain *domain) |
| { |
| u32 reg; |
| |
| reg = ipmmu_ctx_read_root(domain, IMCTR); |
| reg |= IMCTR_FLUSH; |
| ipmmu_ctx_write_all(domain, IMCTR, reg); |
| |
| ipmmu_tlb_sync(domain); |
| } |
| |
| /* |
| * Enable MMU translation for the microTLB. |
| */ |
| static void ipmmu_utlb_enable(struct ipmmu_vmsa_domain *domain, |
| unsigned int utlb) |
| { |
| struct ipmmu_vmsa_device *mmu = domain->mmu; |
| |
| /* |
| * TODO: Reference-count the microTLB as several bus masters can be |
| * connected to the same microTLB. |
| */ |
| |
| /* TODO: What should we set the ASID to ? */ |
| ipmmu_imuasid_write(mmu, utlb, 0); |
| /* TODO: Do we need to flush the microTLB ? */ |
| ipmmu_imuctr_write(mmu, utlb, IMUCTR_TTSEL_MMU(domain->context_id) | |
| IMUCTR_FLUSH | IMUCTR_MMUEN); |
| mmu->utlb_ctx[utlb] = domain->context_id; |
| } |
| |
| /* |
| * Disable MMU translation for the microTLB. |
| */ |
| static void ipmmu_utlb_disable(struct ipmmu_vmsa_domain *domain, |
| unsigned int utlb) |
| { |
| struct ipmmu_vmsa_device *mmu = domain->mmu; |
| |
| ipmmu_imuctr_write(mmu, utlb, 0); |
| mmu->utlb_ctx[utlb] = IPMMU_CTX_INVALID; |
| } |
| |
| static void ipmmu_tlb_flush_all(void *cookie) |
| { |
| struct ipmmu_vmsa_domain *domain = cookie; |
| |
| ipmmu_tlb_invalidate(domain); |
| } |
| |
| static void ipmmu_tlb_flush(unsigned long iova, size_t size, |
| size_t granule, void *cookie) |
| { |
| ipmmu_tlb_flush_all(cookie); |
| } |
| |
| static const struct iommu_flush_ops ipmmu_flush_ops = { |
| .tlb_flush_all = ipmmu_tlb_flush_all, |
| .tlb_flush_walk = ipmmu_tlb_flush, |
| }; |
| |
| /* ----------------------------------------------------------------------------- |
| * Domain/Context Management |
| */ |
| |
| static int ipmmu_domain_allocate_context(struct ipmmu_vmsa_device *mmu, |
| struct ipmmu_vmsa_domain *domain) |
| { |
| unsigned long flags; |
| int ret; |
| |
| spin_lock_irqsave(&mmu->lock, flags); |
| |
| ret = find_first_zero_bit(mmu->ctx, mmu->num_ctx); |
| if (ret != mmu->num_ctx) { |
| mmu->domains[ret] = domain; |
| set_bit(ret, mmu->ctx); |
| } else |
| ret = -EBUSY; |
| |
| spin_unlock_irqrestore(&mmu->lock, flags); |
| |
| return ret; |
| } |
| |
| static void ipmmu_domain_free_context(struct ipmmu_vmsa_device *mmu, |
| unsigned int context_id) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&mmu->lock, flags); |
| |
| clear_bit(context_id, mmu->ctx); |
| mmu->domains[context_id] = NULL; |
| |
| spin_unlock_irqrestore(&mmu->lock, flags); |
| } |
| |
| static void ipmmu_domain_setup_context(struct ipmmu_vmsa_domain *domain) |
| { |
| u64 ttbr; |
| u32 tmp; |
| |
| /* TTBR0 */ |
| ttbr = domain->cfg.arm_lpae_s1_cfg.ttbr; |
| ipmmu_ctx_write_root(domain, IMTTLBR0, ttbr); |
| ipmmu_ctx_write_root(domain, IMTTUBR0, ttbr >> 32); |
| |
| /* |
| * TTBCR |
| * We use long descriptors and allocate the whole 32-bit VA space to |
| * TTBR0. |
| */ |
| if (domain->mmu->features->twobit_imttbcr_sl0) |
| tmp = IMTTBCR_SL0_TWOBIT_LVL_1; |
| else |
| tmp = IMTTBCR_SL0_LVL_1; |
| |
| if (domain->mmu->features->cache_snoop) |
| tmp |= IMTTBCR_SH0_INNER_SHAREABLE | IMTTBCR_ORGN0_WB_WA | |
| IMTTBCR_IRGN0_WB_WA; |
| |
| ipmmu_ctx_write_root(domain, IMTTBCR, IMTTBCR_EAE | tmp); |
| |
| /* MAIR0 */ |
| ipmmu_ctx_write_root(domain, IMMAIR0, |
| domain->cfg.arm_lpae_s1_cfg.mair); |
| |
| /* IMBUSCR */ |
| if (domain->mmu->features->setup_imbuscr) |
| ipmmu_ctx_write_root(domain, IMBUSCR, |
| ipmmu_ctx_read_root(domain, IMBUSCR) & |
| ~(IMBUSCR_DVM | IMBUSCR_BUSSEL_MASK)); |
| |
| /* |
| * IMSTR |
| * Clear all interrupt flags. |
| */ |
| ipmmu_ctx_write_root(domain, IMSTR, ipmmu_ctx_read_root(domain, IMSTR)); |
| |
| /* |
| * IMCTR |
| * Enable the MMU and interrupt generation. The long-descriptor |
| * translation table format doesn't use TEX remapping. Don't enable AF |
| * software management as we have no use for it. Flush the TLB as |
| * required when modifying the context registers. |
| */ |
| ipmmu_ctx_write_all(domain, IMCTR, |
| IMCTR_INTEN | IMCTR_FLUSH | IMCTR_MMUEN); |
| } |
| |
| static int ipmmu_domain_init_context(struct ipmmu_vmsa_domain *domain) |
| { |
| int ret; |
| |
| /* |
| * Allocate the page table operations. |
| * |
| * VMSA states in section B3.6.3 "Control of Secure or Non-secure memory |
| * access, Long-descriptor format" that the NStable bit being set in a |
| * table descriptor will result in the NStable and NS bits of all child |
| * entries being ignored and considered as being set. The IPMMU seems |
| * not to comply with this, as it generates a secure access page fault |
| * if any of the NStable and NS bits isn't set when running in |
| * non-secure mode. |
| */ |
| domain->cfg.quirks = IO_PGTABLE_QUIRK_ARM_NS; |
| domain->cfg.pgsize_bitmap = SZ_1G | SZ_2M | SZ_4K; |
| domain->cfg.ias = 32; |
| domain->cfg.oas = 40; |
| domain->cfg.tlb = &ipmmu_flush_ops; |
| domain->io_domain.geometry.aperture_end = DMA_BIT_MASK(32); |
| domain->io_domain.geometry.force_aperture = true; |
| /* |
| * TODO: Add support for coherent walk through CCI with DVM and remove |
| * cache handling. For now, delegate it to the io-pgtable code. |
| */ |
| domain->cfg.coherent_walk = false; |
| domain->cfg.iommu_dev = domain->mmu->root->dev; |
| |
| /* |
| * Find an unused context. |
| */ |
| ret = ipmmu_domain_allocate_context(domain->mmu->root, domain); |
| if (ret < 0) |
| return ret; |
| |
| domain->context_id = ret; |
| |
| domain->iop = alloc_io_pgtable_ops(ARM_32_LPAE_S1, &domain->cfg, |
| domain); |
| if (!domain->iop) { |
| ipmmu_domain_free_context(domain->mmu->root, |
| domain->context_id); |
| return -EINVAL; |
| } |
| |
| ipmmu_domain_setup_context(domain); |
| return 0; |
| } |
| |
| static void ipmmu_domain_destroy_context(struct ipmmu_vmsa_domain *domain) |
| { |
| if (!domain->mmu) |
| return; |
| |
| /* |
| * Disable the context. Flush the TLB as required when modifying the |
| * context registers. |
| * |
| * TODO: Is TLB flush really needed ? |
| */ |
| ipmmu_ctx_write_all(domain, IMCTR, IMCTR_FLUSH); |
| ipmmu_tlb_sync(domain); |
| ipmmu_domain_free_context(domain->mmu->root, domain->context_id); |
| } |
| |
| /* ----------------------------------------------------------------------------- |
| * Fault Handling |
| */ |
| |
| static irqreturn_t ipmmu_domain_irq(struct ipmmu_vmsa_domain *domain) |
| { |
| const u32 err_mask = IMSTR_MHIT | IMSTR_ABORT | IMSTR_PF | IMSTR_TF; |
| struct ipmmu_vmsa_device *mmu = domain->mmu; |
| unsigned long iova; |
| u32 status; |
| |
| status = ipmmu_ctx_read_root(domain, IMSTR); |
| if (!(status & err_mask)) |
| return IRQ_NONE; |
| |
| iova = ipmmu_ctx_read_root(domain, IMELAR); |
| if (IS_ENABLED(CONFIG_64BIT)) |
| iova |= (u64)ipmmu_ctx_read_root(domain, IMEUAR) << 32; |
| |
| /* |
| * Clear the error status flags. Unlike traditional interrupt flag |
| * registers that must be cleared by writing 1, this status register |
| * seems to require 0. The error address register must be read before, |
| * otherwise its value will be 0. |
| */ |
| ipmmu_ctx_write_root(domain, IMSTR, 0); |
| |
| /* Log fatal errors. */ |
| if (status & IMSTR_MHIT) |
| dev_err_ratelimited(mmu->dev, "Multiple TLB hits @0x%lx\n", |
| iova); |
| if (status & IMSTR_ABORT) |
| dev_err_ratelimited(mmu->dev, "Page Table Walk Abort @0x%lx\n", |
| iova); |
| |
| if (!(status & (IMSTR_PF | IMSTR_TF))) |
| return IRQ_NONE; |
| |
| /* |
| * Try to handle page faults and translation faults. |
| * |
| * TODO: We need to look up the faulty device based on the I/O VA. Use |
| * the IOMMU device for now. |
| */ |
| if (!report_iommu_fault(&domain->io_domain, mmu->dev, iova, 0)) |
| return IRQ_HANDLED; |
| |
| dev_err_ratelimited(mmu->dev, |
| "Unhandled fault: status 0x%08x iova 0x%lx\n", |
| status, iova); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static irqreturn_t ipmmu_irq(int irq, void *dev) |
| { |
| struct ipmmu_vmsa_device *mmu = dev; |
| irqreturn_t status = IRQ_NONE; |
| unsigned int i; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&mmu->lock, flags); |
| |
| /* |
| * Check interrupts for all active contexts. |
| */ |
| for (i = 0; i < mmu->num_ctx; i++) { |
| if (!mmu->domains[i]) |
| continue; |
| if (ipmmu_domain_irq(mmu->domains[i]) == IRQ_HANDLED) |
| status = IRQ_HANDLED; |
| } |
| |
| spin_unlock_irqrestore(&mmu->lock, flags); |
| |
| return status; |
| } |
| |
| /* ----------------------------------------------------------------------------- |
| * IOMMU Operations |
| */ |
| |
| static struct iommu_domain *ipmmu_domain_alloc_paging(struct device *dev) |
| { |
| struct ipmmu_vmsa_domain *domain; |
| |
| domain = kzalloc(sizeof(*domain), GFP_KERNEL); |
| if (!domain) |
| return NULL; |
| |
| mutex_init(&domain->mutex); |
| |
| return &domain->io_domain; |
| } |
| |
| static void ipmmu_domain_free(struct iommu_domain *io_domain) |
| { |
| struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain); |
| |
| /* |
| * Free the domain resources. We assume that all devices have already |
| * been detached. |
| */ |
| ipmmu_domain_destroy_context(domain); |
| free_io_pgtable_ops(domain->iop); |
| kfree(domain); |
| } |
| |
| static int ipmmu_attach_device(struct iommu_domain *io_domain, |
| struct device *dev) |
| { |
| struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); |
| struct ipmmu_vmsa_device *mmu = to_ipmmu(dev); |
| struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain); |
| unsigned int i; |
| int ret = 0; |
| |
| if (!mmu) { |
| dev_err(dev, "Cannot attach to IPMMU\n"); |
| return -ENXIO; |
| } |
| |
| mutex_lock(&domain->mutex); |
| |
| if (!domain->mmu) { |
| /* The domain hasn't been used yet, initialize it. */ |
| domain->mmu = mmu; |
| ret = ipmmu_domain_init_context(domain); |
| if (ret < 0) { |
| dev_err(dev, "Unable to initialize IPMMU context\n"); |
| domain->mmu = NULL; |
| } else { |
| dev_info(dev, "Using IPMMU context %u\n", |
| domain->context_id); |
| } |
| } else if (domain->mmu != mmu) { |
| /* |
| * Something is wrong, we can't attach two devices using |
| * different IOMMUs to the same domain. |
| */ |
| ret = -EINVAL; |
| } else |
| dev_info(dev, "Reusing IPMMU context %u\n", domain->context_id); |
| |
| mutex_unlock(&domain->mutex); |
| |
| if (ret < 0) |
| return ret; |
| |
| for (i = 0; i < fwspec->num_ids; ++i) |
| ipmmu_utlb_enable(domain, fwspec->ids[i]); |
| |
| return 0; |
| } |
| |
| static int ipmmu_iommu_identity_attach(struct iommu_domain *identity_domain, |
| struct device *dev) |
| { |
| struct iommu_domain *io_domain = iommu_get_domain_for_dev(dev); |
| struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); |
| struct ipmmu_vmsa_domain *domain; |
| unsigned int i; |
| |
| if (io_domain == identity_domain || !io_domain) |
| return 0; |
| |
| domain = to_vmsa_domain(io_domain); |
| for (i = 0; i < fwspec->num_ids; ++i) |
| ipmmu_utlb_disable(domain, fwspec->ids[i]); |
| |
| /* |
| * TODO: Optimize by disabling the context when no device is attached. |
| */ |
| return 0; |
| } |
| |
| static struct iommu_domain_ops ipmmu_iommu_identity_ops = { |
| .attach_dev = ipmmu_iommu_identity_attach, |
| }; |
| |
| static struct iommu_domain ipmmu_iommu_identity_domain = { |
| .type = IOMMU_DOMAIN_IDENTITY, |
| .ops = &ipmmu_iommu_identity_ops, |
| }; |
| |
| static int ipmmu_map(struct iommu_domain *io_domain, unsigned long iova, |
| phys_addr_t paddr, size_t pgsize, size_t pgcount, |
| int prot, gfp_t gfp, size_t *mapped) |
| { |
| struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain); |
| |
| return domain->iop->map_pages(domain->iop, iova, paddr, pgsize, pgcount, |
| prot, gfp, mapped); |
| } |
| |
| static size_t ipmmu_unmap(struct iommu_domain *io_domain, unsigned long iova, |
| size_t pgsize, size_t pgcount, |
| struct iommu_iotlb_gather *gather) |
| { |
| struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain); |
| |
| return domain->iop->unmap_pages(domain->iop, iova, pgsize, pgcount, gather); |
| } |
| |
| static void ipmmu_flush_iotlb_all(struct iommu_domain *io_domain) |
| { |
| struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain); |
| |
| if (domain->mmu) |
| ipmmu_tlb_flush_all(domain); |
| } |
| |
| static void ipmmu_iotlb_sync(struct iommu_domain *io_domain, |
| struct iommu_iotlb_gather *gather) |
| { |
| ipmmu_flush_iotlb_all(io_domain); |
| } |
| |
| static phys_addr_t ipmmu_iova_to_phys(struct iommu_domain *io_domain, |
| dma_addr_t iova) |
| { |
| struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain); |
| |
| /* TODO: Is locking needed ? */ |
| |
| return domain->iop->iova_to_phys(domain->iop, iova); |
| } |
| |
| static int ipmmu_init_platform_device(struct device *dev, |
| const struct of_phandle_args *args) |
| { |
| struct platform_device *ipmmu_pdev; |
| |
| ipmmu_pdev = of_find_device_by_node(args->np); |
| if (!ipmmu_pdev) |
| return -ENODEV; |
| |
| dev_iommu_priv_set(dev, platform_get_drvdata(ipmmu_pdev)); |
| |
| return 0; |
| } |
| |
| static const struct soc_device_attribute soc_needs_opt_in[] = { |
| { .family = "R-Car Gen3", }, |
| { .family = "R-Car Gen4", }, |
| { .family = "RZ/G2", }, |
| { /* sentinel */ } |
| }; |
| |
| static const struct soc_device_attribute soc_denylist[] = { |
| { .soc_id = "r8a774a1", }, |
| { .soc_id = "r8a7795", .revision = "ES2.*" }, |
| { .soc_id = "r8a7796", }, |
| { /* sentinel */ } |
| }; |
| |
| static const char * const devices_allowlist[] = { |
| "ee100000.mmc", |
| "ee120000.mmc", |
| "ee140000.mmc", |
| "ee160000.mmc" |
| }; |
| |
| static bool ipmmu_device_is_allowed(struct device *dev) |
| { |
| unsigned int i; |
| |
| /* |
| * R-Car Gen3/4 and RZ/G2 use the allow list to opt-in devices. |
| * For Other SoCs, this returns true anyway. |
| */ |
| if (!soc_device_match(soc_needs_opt_in)) |
| return true; |
| |
| /* Check whether this SoC can use the IPMMU correctly or not */ |
| if (soc_device_match(soc_denylist)) |
| return false; |
| |
| /* Check whether this device is a PCI device */ |
| if (dev_is_pci(dev)) |
| return true; |
| |
| /* Check whether this device can work with the IPMMU */ |
| for (i = 0; i < ARRAY_SIZE(devices_allowlist); i++) { |
| if (!strcmp(dev_name(dev), devices_allowlist[i])) |
| return true; |
| } |
| |
| /* Otherwise, do not allow use of IPMMU */ |
| return false; |
| } |
| |
| static int ipmmu_of_xlate(struct device *dev, |
| const struct of_phandle_args *spec) |
| { |
| if (!ipmmu_device_is_allowed(dev)) |
| return -ENODEV; |
| |
| iommu_fwspec_add_ids(dev, spec->args, 1); |
| |
| /* Initialize once - xlate() will call multiple times */ |
| if (to_ipmmu(dev)) |
| return 0; |
| |
| return ipmmu_init_platform_device(dev, spec); |
| } |
| |
| static int ipmmu_init_arm_mapping(struct device *dev) |
| { |
| struct ipmmu_vmsa_device *mmu = to_ipmmu(dev); |
| int ret; |
| |
| /* |
| * Create the ARM mapping, used by the ARM DMA mapping core to allocate |
| * VAs. This will allocate a corresponding IOMMU domain. |
| * |
| * TODO: |
| * - Create one mapping per context (TLB). |
| * - Make the mapping size configurable ? We currently use a 2GB mapping |
| * at a 1GB offset to ensure that NULL VAs will fault. |
| */ |
| if (!mmu->mapping) { |
| struct dma_iommu_mapping *mapping; |
| |
| mapping = arm_iommu_create_mapping(dev, SZ_1G, SZ_2G); |
| if (IS_ERR(mapping)) { |
| dev_err(mmu->dev, "failed to create ARM IOMMU mapping\n"); |
| ret = PTR_ERR(mapping); |
| goto error; |
| } |
| |
| mmu->mapping = mapping; |
| } |
| |
| /* Attach the ARM VA mapping to the device. */ |
| ret = arm_iommu_attach_device(dev, mmu->mapping); |
| if (ret < 0) { |
| dev_err(dev, "Failed to attach device to VA mapping\n"); |
| goto error; |
| } |
| |
| return 0; |
| |
| error: |
| if (mmu->mapping) |
| arm_iommu_release_mapping(mmu->mapping); |
| |
| return ret; |
| } |
| |
| static struct iommu_device *ipmmu_probe_device(struct device *dev) |
| { |
| struct ipmmu_vmsa_device *mmu = to_ipmmu(dev); |
| |
| /* |
| * Only let through devices that have been verified in xlate() |
| */ |
| if (!mmu) |
| return ERR_PTR(-ENODEV); |
| |
| return &mmu->iommu; |
| } |
| |
| static void ipmmu_probe_finalize(struct device *dev) |
| { |
| int ret = 0; |
| |
| if (IS_ENABLED(CONFIG_ARM) && !IS_ENABLED(CONFIG_IOMMU_DMA)) |
| ret = ipmmu_init_arm_mapping(dev); |
| |
| if (ret) |
| dev_err(dev, "Can't create IOMMU mapping - DMA-OPS will not work\n"); |
| } |
| |
| static void ipmmu_release_device(struct device *dev) |
| { |
| struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); |
| struct ipmmu_vmsa_device *mmu = to_ipmmu(dev); |
| unsigned int i; |
| |
| for (i = 0; i < fwspec->num_ids; ++i) { |
| unsigned int utlb = fwspec->ids[i]; |
| |
| ipmmu_imuctr_write(mmu, utlb, 0); |
| mmu->utlb_ctx[utlb] = IPMMU_CTX_INVALID; |
| } |
| |
| arm_iommu_release_mapping(mmu->mapping); |
| } |
| |
| static const struct iommu_ops ipmmu_ops = { |
| .identity_domain = &ipmmu_iommu_identity_domain, |
| .domain_alloc_paging = ipmmu_domain_alloc_paging, |
| .probe_device = ipmmu_probe_device, |
| .release_device = ipmmu_release_device, |
| .probe_finalize = ipmmu_probe_finalize, |
| /* |
| * FIXME: The device grouping is a fixed property of the hardware's |
| * ability to isolate and control DMA, it should not depend on kconfig. |
| */ |
| .device_group = IS_ENABLED(CONFIG_ARM) && !IS_ENABLED(CONFIG_IOMMU_DMA) |
| ? generic_device_group : generic_single_device_group, |
| .pgsize_bitmap = SZ_1G | SZ_2M | SZ_4K, |
| .of_xlate = ipmmu_of_xlate, |
| .default_domain_ops = &(const struct iommu_domain_ops) { |
| .attach_dev = ipmmu_attach_device, |
| .map_pages = ipmmu_map, |
| .unmap_pages = ipmmu_unmap, |
| .flush_iotlb_all = ipmmu_flush_iotlb_all, |
| .iotlb_sync = ipmmu_iotlb_sync, |
| .iova_to_phys = ipmmu_iova_to_phys, |
| .free = ipmmu_domain_free, |
| } |
| }; |
| |
| /* ----------------------------------------------------------------------------- |
| * Probe/remove and init |
| */ |
| |
| static void ipmmu_device_reset(struct ipmmu_vmsa_device *mmu) |
| { |
| unsigned int i; |
| |
| /* Disable all contexts. */ |
| for (i = 0; i < mmu->num_ctx; ++i) |
| ipmmu_ctx_write(mmu, i, IMCTR, 0); |
| } |
| |
| static const struct ipmmu_features ipmmu_features_default = { |
| .use_ns_alias_offset = true, |
| .has_cache_leaf_nodes = false, |
| .number_of_contexts = 1, /* software only tested with one context */ |
| .num_utlbs = 32, |
| .setup_imbuscr = true, |
| .twobit_imttbcr_sl0 = false, |
| .reserved_context = false, |
| .cache_snoop = true, |
| .ctx_offset_base = 0, |
| .ctx_offset_stride = 0x40, |
| .utlb_offset_base = 0, |
| }; |
| |
| static const struct ipmmu_features ipmmu_features_rcar_gen3 = { |
| .use_ns_alias_offset = false, |
| .has_cache_leaf_nodes = true, |
| .number_of_contexts = 8, |
| .num_utlbs = 48, |
| .setup_imbuscr = false, |
| .twobit_imttbcr_sl0 = true, |
| .reserved_context = true, |
| .cache_snoop = false, |
| .ctx_offset_base = 0, |
| .ctx_offset_stride = 0x40, |
| .utlb_offset_base = 0, |
| }; |
| |
| static const struct ipmmu_features ipmmu_features_rcar_gen4 = { |
| .use_ns_alias_offset = false, |
| .has_cache_leaf_nodes = true, |
| .number_of_contexts = 16, |
| .num_utlbs = 64, |
| .setup_imbuscr = false, |
| .twobit_imttbcr_sl0 = true, |
| .reserved_context = true, |
| .cache_snoop = false, |
| .ctx_offset_base = 0x10000, |
| .ctx_offset_stride = 0x1040, |
| .utlb_offset_base = 0x3000, |
| }; |
| |
| static const struct of_device_id ipmmu_of_ids[] = { |
| { |
| .compatible = "renesas,ipmmu-vmsa", |
| .data = &ipmmu_features_default, |
| }, { |
| .compatible = "renesas,ipmmu-r8a774a1", |
| .data = &ipmmu_features_rcar_gen3, |
| }, { |
| .compatible = "renesas,ipmmu-r8a774b1", |
| .data = &ipmmu_features_rcar_gen3, |
| }, { |
| .compatible = "renesas,ipmmu-r8a774c0", |
| .data = &ipmmu_features_rcar_gen3, |
| }, { |
| .compatible = "renesas,ipmmu-r8a774e1", |
| .data = &ipmmu_features_rcar_gen3, |
| }, { |
| .compatible = "renesas,ipmmu-r8a7795", |
| .data = &ipmmu_features_rcar_gen3, |
| }, { |
| .compatible = "renesas,ipmmu-r8a7796", |
| .data = &ipmmu_features_rcar_gen3, |
| }, { |
| .compatible = "renesas,ipmmu-r8a77961", |
| .data = &ipmmu_features_rcar_gen3, |
| }, { |
| .compatible = "renesas,ipmmu-r8a77965", |
| .data = &ipmmu_features_rcar_gen3, |
| }, { |
| .compatible = "renesas,ipmmu-r8a77970", |
| .data = &ipmmu_features_rcar_gen3, |
| }, { |
| .compatible = "renesas,ipmmu-r8a77980", |
| .data = &ipmmu_features_rcar_gen3, |
| }, { |
| .compatible = "renesas,ipmmu-r8a77990", |
| .data = &ipmmu_features_rcar_gen3, |
| }, { |
| .compatible = "renesas,ipmmu-r8a77995", |
| .data = &ipmmu_features_rcar_gen3, |
| }, { |
| .compatible = "renesas,ipmmu-r8a779a0", |
| .data = &ipmmu_features_rcar_gen4, |
| }, { |
| .compatible = "renesas,rcar-gen4-ipmmu-vmsa", |
| .data = &ipmmu_features_rcar_gen4, |
| }, { |
| /* Terminator */ |
| }, |
| }; |
| |
| static int ipmmu_probe(struct platform_device *pdev) |
| { |
| struct ipmmu_vmsa_device *mmu; |
| int irq; |
| int ret; |
| |
| mmu = devm_kzalloc(&pdev->dev, sizeof(*mmu), GFP_KERNEL); |
| if (!mmu) { |
| dev_err(&pdev->dev, "cannot allocate device data\n"); |
| return -ENOMEM; |
| } |
| |
| mmu->dev = &pdev->dev; |
| spin_lock_init(&mmu->lock); |
| bitmap_zero(mmu->ctx, IPMMU_CTX_MAX); |
| mmu->features = of_device_get_match_data(&pdev->dev); |
| memset(mmu->utlb_ctx, IPMMU_CTX_INVALID, mmu->features->num_utlbs); |
| ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(40)); |
| if (ret) |
| return ret; |
| |
| /* Map I/O memory and request IRQ. */ |
| mmu->base = devm_platform_ioremap_resource(pdev, 0); |
| if (IS_ERR(mmu->base)) |
| return PTR_ERR(mmu->base); |
| |
| /* |
| * The IPMMU has two register banks, for secure and non-secure modes. |
| * The bank mapped at the beginning of the IPMMU address space |
| * corresponds to the running mode of the CPU. When running in secure |
| * mode the non-secure register bank is also available at an offset. |
| * |
| * Secure mode operation isn't clearly documented and is thus currently |
| * not implemented in the driver. Furthermore, preliminary tests of |
| * non-secure operation with the main register bank were not successful. |
| * Offset the registers base unconditionally to point to the non-secure |
| * alias space for now. |
| */ |
| if (mmu->features->use_ns_alias_offset) |
| mmu->base += IM_NS_ALIAS_OFFSET; |
| |
| mmu->num_ctx = min(IPMMU_CTX_MAX, mmu->features->number_of_contexts); |
| |
| /* |
| * Determine if this IPMMU instance is a root device by checking for |
| * the lack of has_cache_leaf_nodes flag or renesas,ipmmu-main property. |
| */ |
| if (!mmu->features->has_cache_leaf_nodes || |
| !of_property_present(pdev->dev.of_node, "renesas,ipmmu-main")) |
| mmu->root = mmu; |
| else |
| mmu->root = ipmmu_find_root(); |
| |
| /* |
| * Wait until the root device has been registered for sure. |
| */ |
| if (!mmu->root) |
| return -EPROBE_DEFER; |
| |
| /* Root devices have mandatory IRQs */ |
| if (ipmmu_is_root(mmu)) { |
| irq = platform_get_irq(pdev, 0); |
| if (irq < 0) |
| return irq; |
| |
| ret = devm_request_irq(&pdev->dev, irq, ipmmu_irq, 0, |
| dev_name(&pdev->dev), mmu); |
| if (ret < 0) { |
| dev_err(&pdev->dev, "failed to request IRQ %d\n", irq); |
| return ret; |
| } |
| |
| ipmmu_device_reset(mmu); |
| |
| if (mmu->features->reserved_context) { |
| dev_info(&pdev->dev, "IPMMU context 0 is reserved\n"); |
| set_bit(0, mmu->ctx); |
| } |
| } |
| |
| /* |
| * Register the IPMMU to the IOMMU subsystem in the following cases: |
| * - R-Car Gen2 IPMMU (all devices registered) |
| * - R-Car Gen3 IPMMU (leaf devices only - skip root IPMMU-MM device) |
| */ |
| if (!mmu->features->has_cache_leaf_nodes || !ipmmu_is_root(mmu)) { |
| ret = iommu_device_sysfs_add(&mmu->iommu, &pdev->dev, NULL, |
| dev_name(&pdev->dev)); |
| if (ret) |
| return ret; |
| |
| ret = iommu_device_register(&mmu->iommu, &ipmmu_ops, &pdev->dev); |
| if (ret) |
| return ret; |
| } |
| |
| /* |
| * We can't create the ARM mapping here as it requires the bus to have |
| * an IOMMU, which only happens when bus_set_iommu() is called in |
| * ipmmu_init() after the probe function returns. |
| */ |
| |
| platform_set_drvdata(pdev, mmu); |
| |
| return 0; |
| } |
| |
| static void ipmmu_remove(struct platform_device *pdev) |
| { |
| struct ipmmu_vmsa_device *mmu = platform_get_drvdata(pdev); |
| |
| iommu_device_sysfs_remove(&mmu->iommu); |
| iommu_device_unregister(&mmu->iommu); |
| |
| arm_iommu_release_mapping(mmu->mapping); |
| |
| ipmmu_device_reset(mmu); |
| } |
| |
| static int ipmmu_resume_noirq(struct device *dev) |
| { |
| struct ipmmu_vmsa_device *mmu = dev_get_drvdata(dev); |
| unsigned int i; |
| |
| /* Reset root MMU and restore contexts */ |
| if (ipmmu_is_root(mmu)) { |
| ipmmu_device_reset(mmu); |
| |
| for (i = 0; i < mmu->num_ctx; i++) { |
| if (!mmu->domains[i]) |
| continue; |
| |
| ipmmu_domain_setup_context(mmu->domains[i]); |
| } |
| } |
| |
| /* Re-enable active micro-TLBs */ |
| for (i = 0; i < mmu->features->num_utlbs; i++) { |
| if (mmu->utlb_ctx[i] == IPMMU_CTX_INVALID) |
| continue; |
| |
| ipmmu_utlb_enable(mmu->root->domains[mmu->utlb_ctx[i]], i); |
| } |
| |
| return 0; |
| } |
| |
| static const struct dev_pm_ops ipmmu_pm = { |
| NOIRQ_SYSTEM_SLEEP_PM_OPS(NULL, ipmmu_resume_noirq) |
| }; |
| |
| static struct platform_driver ipmmu_driver = { |
| .driver = { |
| .name = "ipmmu-vmsa", |
| .of_match_table = ipmmu_of_ids, |
| .pm = pm_sleep_ptr(&ipmmu_pm), |
| }, |
| .probe = ipmmu_probe, |
| .remove_new = ipmmu_remove, |
| }; |
| builtin_platform_driver(ipmmu_driver); |