blob: d8eaa7ea380bb0f5086c50ad4e82cb88c0c378a8 [file] [log] [blame] [edit]
// SPDX-License-Identifier: GPL-2.0
/*
* IOMMU API for s390 PCI devices
*
* Copyright IBM Corp. 2015
* Author(s): Gerald Schaefer <gerald.schaefer@de.ibm.com>
*/
#include <linux/pci.h>
#include <linux/iommu.h>
#include <linux/iommu-helper.h>
#include <linux/sizes.h>
#include <linux/rculist.h>
#include <linux/rcupdate.h>
#include <asm/pci_dma.h>
#include "dma-iommu.h"
static const struct iommu_ops s390_iommu_ops;
static struct kmem_cache *dma_region_table_cache;
static struct kmem_cache *dma_page_table_cache;
static u64 s390_iommu_aperture;
static u32 s390_iommu_aperture_factor = 1;
struct s390_domain {
struct iommu_domain domain;
struct list_head devices;
struct zpci_iommu_ctrs ctrs;
unsigned long *dma_table;
spinlock_t list_lock;
struct rcu_head rcu;
};
static inline unsigned int calc_rtx(dma_addr_t ptr)
{
return ((unsigned long)ptr >> ZPCI_RT_SHIFT) & ZPCI_INDEX_MASK;
}
static inline unsigned int calc_sx(dma_addr_t ptr)
{
return ((unsigned long)ptr >> ZPCI_ST_SHIFT) & ZPCI_INDEX_MASK;
}
static inline unsigned int calc_px(dma_addr_t ptr)
{
return ((unsigned long)ptr >> PAGE_SHIFT) & ZPCI_PT_MASK;
}
static inline void set_pt_pfaa(unsigned long *entry, phys_addr_t pfaa)
{
*entry &= ZPCI_PTE_FLAG_MASK;
*entry |= (pfaa & ZPCI_PTE_ADDR_MASK);
}
static inline void set_rt_sto(unsigned long *entry, phys_addr_t sto)
{
*entry &= ZPCI_RTE_FLAG_MASK;
*entry |= (sto & ZPCI_RTE_ADDR_MASK);
*entry |= ZPCI_TABLE_TYPE_RTX;
}
static inline void set_st_pto(unsigned long *entry, phys_addr_t pto)
{
*entry &= ZPCI_STE_FLAG_MASK;
*entry |= (pto & ZPCI_STE_ADDR_MASK);
*entry |= ZPCI_TABLE_TYPE_SX;
}
static inline void validate_rt_entry(unsigned long *entry)
{
*entry &= ~ZPCI_TABLE_VALID_MASK;
*entry &= ~ZPCI_TABLE_OFFSET_MASK;
*entry |= ZPCI_TABLE_VALID;
*entry |= ZPCI_TABLE_LEN_RTX;
}
static inline void validate_st_entry(unsigned long *entry)
{
*entry &= ~ZPCI_TABLE_VALID_MASK;
*entry |= ZPCI_TABLE_VALID;
}
static inline void invalidate_pt_entry(unsigned long *entry)
{
WARN_ON_ONCE((*entry & ZPCI_PTE_VALID_MASK) == ZPCI_PTE_INVALID);
*entry &= ~ZPCI_PTE_VALID_MASK;
*entry |= ZPCI_PTE_INVALID;
}
static inline void validate_pt_entry(unsigned long *entry)
{
WARN_ON_ONCE((*entry & ZPCI_PTE_VALID_MASK) == ZPCI_PTE_VALID);
*entry &= ~ZPCI_PTE_VALID_MASK;
*entry |= ZPCI_PTE_VALID;
}
static inline void entry_set_protected(unsigned long *entry)
{
*entry &= ~ZPCI_TABLE_PROT_MASK;
*entry |= ZPCI_TABLE_PROTECTED;
}
static inline void entry_clr_protected(unsigned long *entry)
{
*entry &= ~ZPCI_TABLE_PROT_MASK;
*entry |= ZPCI_TABLE_UNPROTECTED;
}
static inline int reg_entry_isvalid(unsigned long entry)
{
return (entry & ZPCI_TABLE_VALID_MASK) == ZPCI_TABLE_VALID;
}
static inline int pt_entry_isvalid(unsigned long entry)
{
return (entry & ZPCI_PTE_VALID_MASK) == ZPCI_PTE_VALID;
}
static inline unsigned long *get_rt_sto(unsigned long entry)
{
if ((entry & ZPCI_TABLE_TYPE_MASK) == ZPCI_TABLE_TYPE_RTX)
return phys_to_virt(entry & ZPCI_RTE_ADDR_MASK);
else
return NULL;
}
static inline unsigned long *get_st_pto(unsigned long entry)
{
if ((entry & ZPCI_TABLE_TYPE_MASK) == ZPCI_TABLE_TYPE_SX)
return phys_to_virt(entry & ZPCI_STE_ADDR_MASK);
else
return NULL;
}
static int __init dma_alloc_cpu_table_caches(void)
{
dma_region_table_cache = kmem_cache_create("PCI_DMA_region_tables",
ZPCI_TABLE_SIZE,
ZPCI_TABLE_ALIGN,
0, NULL);
if (!dma_region_table_cache)
return -ENOMEM;
dma_page_table_cache = kmem_cache_create("PCI_DMA_page_tables",
ZPCI_PT_SIZE,
ZPCI_PT_ALIGN,
0, NULL);
if (!dma_page_table_cache) {
kmem_cache_destroy(dma_region_table_cache);
return -ENOMEM;
}
return 0;
}
static unsigned long *dma_alloc_cpu_table(gfp_t gfp)
{
unsigned long *table, *entry;
table = kmem_cache_alloc(dma_region_table_cache, gfp);
if (!table)
return NULL;
for (entry = table; entry < table + ZPCI_TABLE_ENTRIES; entry++)
*entry = ZPCI_TABLE_INVALID;
return table;
}
static void dma_free_cpu_table(void *table)
{
kmem_cache_free(dma_region_table_cache, table);
}
static void dma_free_page_table(void *table)
{
kmem_cache_free(dma_page_table_cache, table);
}
static void dma_free_seg_table(unsigned long entry)
{
unsigned long *sto = get_rt_sto(entry);
int sx;
for (sx = 0; sx < ZPCI_TABLE_ENTRIES; sx++)
if (reg_entry_isvalid(sto[sx]))
dma_free_page_table(get_st_pto(sto[sx]));
dma_free_cpu_table(sto);
}
static void dma_cleanup_tables(unsigned long *table)
{
int rtx;
if (!table)
return;
for (rtx = 0; rtx < ZPCI_TABLE_ENTRIES; rtx++)
if (reg_entry_isvalid(table[rtx]))
dma_free_seg_table(table[rtx]);
dma_free_cpu_table(table);
}
static unsigned long *dma_alloc_page_table(gfp_t gfp)
{
unsigned long *table, *entry;
table = kmem_cache_alloc(dma_page_table_cache, gfp);
if (!table)
return NULL;
for (entry = table; entry < table + ZPCI_PT_ENTRIES; entry++)
*entry = ZPCI_PTE_INVALID;
return table;
}
static unsigned long *dma_get_seg_table_origin(unsigned long *rtep, gfp_t gfp)
{
unsigned long old_rte, rte;
unsigned long *sto;
rte = READ_ONCE(*rtep);
if (reg_entry_isvalid(rte)) {
sto = get_rt_sto(rte);
} else {
sto = dma_alloc_cpu_table(gfp);
if (!sto)
return NULL;
set_rt_sto(&rte, virt_to_phys(sto));
validate_rt_entry(&rte);
entry_clr_protected(&rte);
old_rte = cmpxchg(rtep, ZPCI_TABLE_INVALID, rte);
if (old_rte != ZPCI_TABLE_INVALID) {
/* Somone else was faster, use theirs */
dma_free_cpu_table(sto);
sto = get_rt_sto(old_rte);
}
}
return sto;
}
static unsigned long *dma_get_page_table_origin(unsigned long *step, gfp_t gfp)
{
unsigned long old_ste, ste;
unsigned long *pto;
ste = READ_ONCE(*step);
if (reg_entry_isvalid(ste)) {
pto = get_st_pto(ste);
} else {
pto = dma_alloc_page_table(gfp);
if (!pto)
return NULL;
set_st_pto(&ste, virt_to_phys(pto));
validate_st_entry(&ste);
entry_clr_protected(&ste);
old_ste = cmpxchg(step, ZPCI_TABLE_INVALID, ste);
if (old_ste != ZPCI_TABLE_INVALID) {
/* Somone else was faster, use theirs */
dma_free_page_table(pto);
pto = get_st_pto(old_ste);
}
}
return pto;
}
static unsigned long *dma_walk_cpu_trans(unsigned long *rto, dma_addr_t dma_addr, gfp_t gfp)
{
unsigned long *sto, *pto;
unsigned int rtx, sx, px;
rtx = calc_rtx(dma_addr);
sto = dma_get_seg_table_origin(&rto[rtx], gfp);
if (!sto)
return NULL;
sx = calc_sx(dma_addr);
pto = dma_get_page_table_origin(&sto[sx], gfp);
if (!pto)
return NULL;
px = calc_px(dma_addr);
return &pto[px];
}
static void dma_update_cpu_trans(unsigned long *ptep, phys_addr_t page_addr, int flags)
{
unsigned long pte;
pte = READ_ONCE(*ptep);
if (flags & ZPCI_PTE_INVALID) {
invalidate_pt_entry(&pte);
} else {
set_pt_pfaa(&pte, page_addr);
validate_pt_entry(&pte);
}
if (flags & ZPCI_TABLE_PROTECTED)
entry_set_protected(&pte);
else
entry_clr_protected(&pte);
xchg(ptep, pte);
}
static struct s390_domain *to_s390_domain(struct iommu_domain *dom)
{
return container_of(dom, struct s390_domain, domain);
}
static bool s390_iommu_capable(struct device *dev, enum iommu_cap cap)
{
struct zpci_dev *zdev = to_zpci_dev(dev);
switch (cap) {
case IOMMU_CAP_CACHE_COHERENCY:
return true;
case IOMMU_CAP_DEFERRED_FLUSH:
return zdev->pft != PCI_FUNC_TYPE_ISM;
default:
return false;
}
}
static struct iommu_domain *s390_domain_alloc_paging(struct device *dev)
{
struct s390_domain *s390_domain;
s390_domain = kzalloc(sizeof(*s390_domain), GFP_KERNEL);
if (!s390_domain)
return NULL;
s390_domain->dma_table = dma_alloc_cpu_table(GFP_KERNEL);
if (!s390_domain->dma_table) {
kfree(s390_domain);
return NULL;
}
s390_domain->domain.geometry.force_aperture = true;
s390_domain->domain.geometry.aperture_start = 0;
s390_domain->domain.geometry.aperture_end = ZPCI_TABLE_SIZE_RT - 1;
spin_lock_init(&s390_domain->list_lock);
INIT_LIST_HEAD_RCU(&s390_domain->devices);
return &s390_domain->domain;
}
static void s390_iommu_rcu_free_domain(struct rcu_head *head)
{
struct s390_domain *s390_domain = container_of(head, struct s390_domain, rcu);
dma_cleanup_tables(s390_domain->dma_table);
kfree(s390_domain);
}
static void s390_domain_free(struct iommu_domain *domain)
{
struct s390_domain *s390_domain = to_s390_domain(domain);
rcu_read_lock();
WARN_ON(!list_empty(&s390_domain->devices));
rcu_read_unlock();
call_rcu(&s390_domain->rcu, s390_iommu_rcu_free_domain);
}
static void s390_iommu_detach_device(struct iommu_domain *domain,
struct device *dev)
{
struct s390_domain *s390_domain = to_s390_domain(domain);
struct zpci_dev *zdev = to_zpci_dev(dev);
unsigned long flags;
spin_lock_irqsave(&s390_domain->list_lock, flags);
list_del_rcu(&zdev->iommu_list);
spin_unlock_irqrestore(&s390_domain->list_lock, flags);
zpci_unregister_ioat(zdev, 0);
zdev->s390_domain = NULL;
zdev->dma_table = NULL;
}
static int s390_iommu_attach_device(struct iommu_domain *domain,
struct device *dev)
{
struct s390_domain *s390_domain = to_s390_domain(domain);
struct zpci_dev *zdev = to_zpci_dev(dev);
unsigned long flags;
u8 status;
int cc;
if (!zdev)
return -ENODEV;
if (WARN_ON(domain->geometry.aperture_start > zdev->end_dma ||
domain->geometry.aperture_end < zdev->start_dma))
return -EINVAL;
if (zdev->s390_domain)
s390_iommu_detach_device(&zdev->s390_domain->domain, dev);
cc = zpci_register_ioat(zdev, 0, zdev->start_dma, zdev->end_dma,
virt_to_phys(s390_domain->dma_table), &status);
/*
* If the device is undergoing error recovery the reset code
* will re-establish the new domain.
*/
if (cc && status != ZPCI_PCI_ST_FUNC_NOT_AVAIL)
return -EIO;
zdev->dma_table = s390_domain->dma_table;
zdev->s390_domain = s390_domain;
spin_lock_irqsave(&s390_domain->list_lock, flags);
list_add_rcu(&zdev->iommu_list, &s390_domain->devices);
spin_unlock_irqrestore(&s390_domain->list_lock, flags);
return 0;
}
static void s390_iommu_get_resv_regions(struct device *dev,
struct list_head *list)
{
struct zpci_dev *zdev = to_zpci_dev(dev);
struct iommu_resv_region *region;
if (zdev->start_dma) {
region = iommu_alloc_resv_region(0, zdev->start_dma, 0,
IOMMU_RESV_RESERVED, GFP_KERNEL);
if (!region)
return;
list_add_tail(&region->list, list);
}
if (zdev->end_dma < ZPCI_TABLE_SIZE_RT - 1) {
region = iommu_alloc_resv_region(zdev->end_dma + 1,
ZPCI_TABLE_SIZE_RT - zdev->end_dma - 1,
0, IOMMU_RESV_RESERVED, GFP_KERNEL);
if (!region)
return;
list_add_tail(&region->list, list);
}
}
static struct iommu_device *s390_iommu_probe_device(struct device *dev)
{
struct zpci_dev *zdev;
if (!dev_is_pci(dev))
return ERR_PTR(-ENODEV);
zdev = to_zpci_dev(dev);
if (zdev->start_dma > zdev->end_dma ||
zdev->start_dma > ZPCI_TABLE_SIZE_RT - 1)
return ERR_PTR(-EINVAL);
if (zdev->end_dma > ZPCI_TABLE_SIZE_RT - 1)
zdev->end_dma = ZPCI_TABLE_SIZE_RT - 1;
if (zdev->tlb_refresh)
dev->iommu->shadow_on_flush = 1;
return &zdev->iommu_dev;
}
static void s390_iommu_release_device(struct device *dev)
{
struct zpci_dev *zdev = to_zpci_dev(dev);
/*
* release_device is expected to detach any domain currently attached
* to the device, but keep it attached to other devices in the group.
*/
if (zdev)
s390_iommu_detach_device(&zdev->s390_domain->domain, dev);
}
static int zpci_refresh_all(struct zpci_dev *zdev)
{
return zpci_refresh_trans((u64)zdev->fh << 32, zdev->start_dma,
zdev->end_dma - zdev->start_dma + 1);
}
static void s390_iommu_flush_iotlb_all(struct iommu_domain *domain)
{
struct s390_domain *s390_domain = to_s390_domain(domain);
struct zpci_dev *zdev;
rcu_read_lock();
list_for_each_entry_rcu(zdev, &s390_domain->devices, iommu_list) {
atomic64_inc(&s390_domain->ctrs.global_rpcits);
zpci_refresh_all(zdev);
}
rcu_read_unlock();
}
static void s390_iommu_iotlb_sync(struct iommu_domain *domain,
struct iommu_iotlb_gather *gather)
{
struct s390_domain *s390_domain = to_s390_domain(domain);
size_t size = gather->end - gather->start + 1;
struct zpci_dev *zdev;
/* If gather was never added to there is nothing to flush */
if (!gather->end)
return;
rcu_read_lock();
list_for_each_entry_rcu(zdev, &s390_domain->devices, iommu_list) {
atomic64_inc(&s390_domain->ctrs.sync_rpcits);
zpci_refresh_trans((u64)zdev->fh << 32, gather->start,
size);
}
rcu_read_unlock();
}
static int s390_iommu_iotlb_sync_map(struct iommu_domain *domain,
unsigned long iova, size_t size)
{
struct s390_domain *s390_domain = to_s390_domain(domain);
struct zpci_dev *zdev;
int ret = 0;
rcu_read_lock();
list_for_each_entry_rcu(zdev, &s390_domain->devices, iommu_list) {
if (!zdev->tlb_refresh)
continue;
atomic64_inc(&s390_domain->ctrs.sync_map_rpcits);
ret = zpci_refresh_trans((u64)zdev->fh << 32,
iova, size);
/*
* let the hypervisor discover invalidated entries
* allowing it to free IOVAs and unpin pages
*/
if (ret == -ENOMEM) {
ret = zpci_refresh_all(zdev);
if (ret)
break;
}
}
rcu_read_unlock();
return ret;
}
static int s390_iommu_validate_trans(struct s390_domain *s390_domain,
phys_addr_t pa, dma_addr_t dma_addr,
unsigned long nr_pages, int flags,
gfp_t gfp)
{
phys_addr_t page_addr = pa & PAGE_MASK;
unsigned long *entry;
unsigned long i;
int rc;
for (i = 0; i < nr_pages; i++) {
entry = dma_walk_cpu_trans(s390_domain->dma_table, dma_addr,
gfp);
if (unlikely(!entry)) {
rc = -ENOMEM;
goto undo_cpu_trans;
}
dma_update_cpu_trans(entry, page_addr, flags);
page_addr += PAGE_SIZE;
dma_addr += PAGE_SIZE;
}
return 0;
undo_cpu_trans:
while (i-- > 0) {
dma_addr -= PAGE_SIZE;
entry = dma_walk_cpu_trans(s390_domain->dma_table,
dma_addr, gfp);
if (!entry)
break;
dma_update_cpu_trans(entry, 0, ZPCI_PTE_INVALID);
}
return rc;
}
static int s390_iommu_invalidate_trans(struct s390_domain *s390_domain,
dma_addr_t dma_addr, unsigned long nr_pages)
{
unsigned long *entry;
unsigned long i;
int rc = 0;
for (i = 0; i < nr_pages; i++) {
entry = dma_walk_cpu_trans(s390_domain->dma_table, dma_addr,
GFP_ATOMIC);
if (unlikely(!entry)) {
rc = -EINVAL;
break;
}
dma_update_cpu_trans(entry, 0, ZPCI_PTE_INVALID);
dma_addr += PAGE_SIZE;
}
return rc;
}
static int s390_iommu_map_pages(struct iommu_domain *domain,
unsigned long iova, phys_addr_t paddr,
size_t pgsize, size_t pgcount,
int prot, gfp_t gfp, size_t *mapped)
{
struct s390_domain *s390_domain = to_s390_domain(domain);
size_t size = pgcount << __ffs(pgsize);
int flags = ZPCI_PTE_VALID, rc = 0;
if (pgsize != SZ_4K)
return -EINVAL;
if (iova < s390_domain->domain.geometry.aperture_start ||
(iova + size - 1) > s390_domain->domain.geometry.aperture_end)
return -EINVAL;
if (!IS_ALIGNED(iova | paddr, pgsize))
return -EINVAL;
if (!(prot & IOMMU_WRITE))
flags |= ZPCI_TABLE_PROTECTED;
rc = s390_iommu_validate_trans(s390_domain, paddr, iova,
pgcount, flags, gfp);
if (!rc) {
*mapped = size;
atomic64_add(pgcount, &s390_domain->ctrs.mapped_pages);
}
return rc;
}
static phys_addr_t s390_iommu_iova_to_phys(struct iommu_domain *domain,
dma_addr_t iova)
{
struct s390_domain *s390_domain = to_s390_domain(domain);
unsigned long *rto, *sto, *pto;
unsigned long ste, pte, rte;
unsigned int rtx, sx, px;
phys_addr_t phys = 0;
if (iova < domain->geometry.aperture_start ||
iova > domain->geometry.aperture_end)
return 0;
rtx = calc_rtx(iova);
sx = calc_sx(iova);
px = calc_px(iova);
rto = s390_domain->dma_table;
rte = READ_ONCE(rto[rtx]);
if (reg_entry_isvalid(rte)) {
sto = get_rt_sto(rte);
ste = READ_ONCE(sto[sx]);
if (reg_entry_isvalid(ste)) {
pto = get_st_pto(ste);
pte = READ_ONCE(pto[px]);
if (pt_entry_isvalid(pte))
phys = pte & ZPCI_PTE_ADDR_MASK;
}
}
return phys;
}
static size_t s390_iommu_unmap_pages(struct iommu_domain *domain,
unsigned long iova,
size_t pgsize, size_t pgcount,
struct iommu_iotlb_gather *gather)
{
struct s390_domain *s390_domain = to_s390_domain(domain);
size_t size = pgcount << __ffs(pgsize);
int rc;
if (WARN_ON(iova < s390_domain->domain.geometry.aperture_start ||
(iova + size - 1) > s390_domain->domain.geometry.aperture_end))
return 0;
rc = s390_iommu_invalidate_trans(s390_domain, iova, pgcount);
if (rc)
return 0;
iommu_iotlb_gather_add_range(gather, iova, size);
atomic64_add(pgcount, &s390_domain->ctrs.unmapped_pages);
return size;
}
struct zpci_iommu_ctrs *zpci_get_iommu_ctrs(struct zpci_dev *zdev)
{
if (!zdev || !zdev->s390_domain)
return NULL;
return &zdev->s390_domain->ctrs;
}
int zpci_init_iommu(struct zpci_dev *zdev)
{
u64 aperture_size;
int rc = 0;
rc = iommu_device_sysfs_add(&zdev->iommu_dev, NULL, NULL,
"s390-iommu.%08x", zdev->fid);
if (rc)
goto out_err;
rc = iommu_device_register(&zdev->iommu_dev, &s390_iommu_ops, NULL);
if (rc)
goto out_sysfs;
zdev->start_dma = PAGE_ALIGN(zdev->start_dma);
aperture_size = min3(s390_iommu_aperture,
ZPCI_TABLE_SIZE_RT - zdev->start_dma,
zdev->end_dma - zdev->start_dma + 1);
zdev->end_dma = zdev->start_dma + aperture_size - 1;
return 0;
out_sysfs:
iommu_device_sysfs_remove(&zdev->iommu_dev);
out_err:
return rc;
}
void zpci_destroy_iommu(struct zpci_dev *zdev)
{
iommu_device_unregister(&zdev->iommu_dev);
iommu_device_sysfs_remove(&zdev->iommu_dev);
}
static int __init s390_iommu_setup(char *str)
{
if (!strcmp(str, "strict")) {
pr_warn("s390_iommu=strict deprecated; use iommu.strict=1 instead\n");
iommu_set_dma_strict();
}
return 1;
}
__setup("s390_iommu=", s390_iommu_setup);
static int __init s390_iommu_aperture_setup(char *str)
{
if (kstrtou32(str, 10, &s390_iommu_aperture_factor))
s390_iommu_aperture_factor = 1;
return 1;
}
__setup("s390_iommu_aperture=", s390_iommu_aperture_setup);
static int __init s390_iommu_init(void)
{
int rc;
iommu_dma_forcedac = true;
s390_iommu_aperture = (u64)virt_to_phys(high_memory);
if (!s390_iommu_aperture_factor)
s390_iommu_aperture = ULONG_MAX;
else
s390_iommu_aperture *= s390_iommu_aperture_factor;
rc = dma_alloc_cpu_table_caches();
if (rc)
return rc;
return rc;
}
subsys_initcall(s390_iommu_init);
static const struct iommu_ops s390_iommu_ops = {
.capable = s390_iommu_capable,
.domain_alloc_paging = s390_domain_alloc_paging,
.probe_device = s390_iommu_probe_device,
.release_device = s390_iommu_release_device,
.device_group = generic_device_group,
.pgsize_bitmap = SZ_4K,
.get_resv_regions = s390_iommu_get_resv_regions,
.default_domain_ops = &(const struct iommu_domain_ops) {
.attach_dev = s390_iommu_attach_device,
.map_pages = s390_iommu_map_pages,
.unmap_pages = s390_iommu_unmap_pages,
.flush_iotlb_all = s390_iommu_flush_iotlb_all,
.iotlb_sync = s390_iommu_iotlb_sync,
.iotlb_sync_map = s390_iommu_iotlb_sync_map,
.iova_to_phys = s390_iommu_iova_to_phys,
.free = s390_domain_free,
}
};