| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * NVMe over Fabrics TCP host. |
| * Copyright (c) 2018 Lightbits Labs. All rights reserved. |
| */ |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| #include <linux/module.h> |
| #include <linux/init.h> |
| #include <linux/slab.h> |
| #include <linux/err.h> |
| #include <linux/key.h> |
| #include <linux/nvme-tcp.h> |
| #include <linux/nvme-keyring.h> |
| #include <net/sock.h> |
| #include <net/tcp.h> |
| #include <net/tls.h> |
| #include <net/tls_prot.h> |
| #include <net/handshake.h> |
| #include <linux/blk-mq.h> |
| #include <crypto/hash.h> |
| #include <net/busy_poll.h> |
| #include <trace/events/sock.h> |
| |
| #include "nvme.h" |
| #include "fabrics.h" |
| |
| struct nvme_tcp_queue; |
| |
| /* Define the socket priority to use for connections were it is desirable |
| * that the NIC consider performing optimized packet processing or filtering. |
| * A non-zero value being sufficient to indicate general consideration of any |
| * possible optimization. Making it a module param allows for alternative |
| * values that may be unique for some NIC implementations. |
| */ |
| static int so_priority; |
| module_param(so_priority, int, 0644); |
| MODULE_PARM_DESC(so_priority, "nvme tcp socket optimize priority"); |
| |
| /* |
| * Use the unbound workqueue for nvme_tcp_wq, then we can set the cpu affinity |
| * from sysfs. |
| */ |
| static bool wq_unbound; |
| module_param(wq_unbound, bool, 0644); |
| MODULE_PARM_DESC(wq_unbound, "Use unbound workqueue for nvme-tcp IO context (default false)"); |
| |
| /* |
| * TLS handshake timeout |
| */ |
| static int tls_handshake_timeout = 10; |
| #ifdef CONFIG_NVME_TCP_TLS |
| module_param(tls_handshake_timeout, int, 0644); |
| MODULE_PARM_DESC(tls_handshake_timeout, |
| "nvme TLS handshake timeout in seconds (default 10)"); |
| #endif |
| |
| #ifdef CONFIG_DEBUG_LOCK_ALLOC |
| /* lockdep can detect a circular dependency of the form |
| * sk_lock -> mmap_lock (page fault) -> fs locks -> sk_lock |
| * because dependencies are tracked for both nvme-tcp and user contexts. Using |
| * a separate class prevents lockdep from conflating nvme-tcp socket use with |
| * user-space socket API use. |
| */ |
| static struct lock_class_key nvme_tcp_sk_key[2]; |
| static struct lock_class_key nvme_tcp_slock_key[2]; |
| |
| static void nvme_tcp_reclassify_socket(struct socket *sock) |
| { |
| struct sock *sk = sock->sk; |
| |
| if (WARN_ON_ONCE(!sock_allow_reclassification(sk))) |
| return; |
| |
| switch (sk->sk_family) { |
| case AF_INET: |
| sock_lock_init_class_and_name(sk, "slock-AF_INET-NVME", |
| &nvme_tcp_slock_key[0], |
| "sk_lock-AF_INET-NVME", |
| &nvme_tcp_sk_key[0]); |
| break; |
| case AF_INET6: |
| sock_lock_init_class_and_name(sk, "slock-AF_INET6-NVME", |
| &nvme_tcp_slock_key[1], |
| "sk_lock-AF_INET6-NVME", |
| &nvme_tcp_sk_key[1]); |
| break; |
| default: |
| WARN_ON_ONCE(1); |
| } |
| } |
| #else |
| static void nvme_tcp_reclassify_socket(struct socket *sock) { } |
| #endif |
| |
| enum nvme_tcp_send_state { |
| NVME_TCP_SEND_CMD_PDU = 0, |
| NVME_TCP_SEND_H2C_PDU, |
| NVME_TCP_SEND_DATA, |
| NVME_TCP_SEND_DDGST, |
| }; |
| |
| struct nvme_tcp_request { |
| struct nvme_request req; |
| void *pdu; |
| struct nvme_tcp_queue *queue; |
| u32 data_len; |
| u32 pdu_len; |
| u32 pdu_sent; |
| u32 h2cdata_left; |
| u32 h2cdata_offset; |
| u16 ttag; |
| __le16 status; |
| struct list_head entry; |
| struct llist_node lentry; |
| __le32 ddgst; |
| |
| struct bio *curr_bio; |
| struct iov_iter iter; |
| |
| /* send state */ |
| size_t offset; |
| size_t data_sent; |
| enum nvme_tcp_send_state state; |
| }; |
| |
| enum nvme_tcp_queue_flags { |
| NVME_TCP_Q_ALLOCATED = 0, |
| NVME_TCP_Q_LIVE = 1, |
| NVME_TCP_Q_POLLING = 2, |
| }; |
| |
| enum nvme_tcp_recv_state { |
| NVME_TCP_RECV_PDU = 0, |
| NVME_TCP_RECV_DATA, |
| NVME_TCP_RECV_DDGST, |
| }; |
| |
| struct nvme_tcp_ctrl; |
| struct nvme_tcp_queue { |
| struct socket *sock; |
| struct work_struct io_work; |
| int io_cpu; |
| |
| struct mutex queue_lock; |
| struct mutex send_mutex; |
| struct llist_head req_list; |
| struct list_head send_list; |
| |
| /* recv state */ |
| void *pdu; |
| int pdu_remaining; |
| int pdu_offset; |
| size_t data_remaining; |
| size_t ddgst_remaining; |
| unsigned int nr_cqe; |
| |
| /* send state */ |
| struct nvme_tcp_request *request; |
| |
| u32 maxh2cdata; |
| size_t cmnd_capsule_len; |
| struct nvme_tcp_ctrl *ctrl; |
| unsigned long flags; |
| bool rd_enabled; |
| |
| bool hdr_digest; |
| bool data_digest; |
| bool tls_enabled; |
| struct ahash_request *rcv_hash; |
| struct ahash_request *snd_hash; |
| __le32 exp_ddgst; |
| __le32 recv_ddgst; |
| struct completion tls_complete; |
| int tls_err; |
| struct page_frag_cache pf_cache; |
| |
| void (*state_change)(struct sock *); |
| void (*data_ready)(struct sock *); |
| void (*write_space)(struct sock *); |
| }; |
| |
| struct nvme_tcp_ctrl { |
| /* read only in the hot path */ |
| struct nvme_tcp_queue *queues; |
| struct blk_mq_tag_set tag_set; |
| |
| /* other member variables */ |
| struct list_head list; |
| struct blk_mq_tag_set admin_tag_set; |
| struct sockaddr_storage addr; |
| struct sockaddr_storage src_addr; |
| struct nvme_ctrl ctrl; |
| |
| struct work_struct err_work; |
| struct delayed_work connect_work; |
| struct nvme_tcp_request async_req; |
| u32 io_queues[HCTX_MAX_TYPES]; |
| }; |
| |
| static LIST_HEAD(nvme_tcp_ctrl_list); |
| static DEFINE_MUTEX(nvme_tcp_ctrl_mutex); |
| static struct workqueue_struct *nvme_tcp_wq; |
| static const struct blk_mq_ops nvme_tcp_mq_ops; |
| static const struct blk_mq_ops nvme_tcp_admin_mq_ops; |
| static int nvme_tcp_try_send(struct nvme_tcp_queue *queue); |
| |
| static inline struct nvme_tcp_ctrl *to_tcp_ctrl(struct nvme_ctrl *ctrl) |
| { |
| return container_of(ctrl, struct nvme_tcp_ctrl, ctrl); |
| } |
| |
| static inline int nvme_tcp_queue_id(struct nvme_tcp_queue *queue) |
| { |
| return queue - queue->ctrl->queues; |
| } |
| |
| /* |
| * Check if the queue is TLS encrypted |
| */ |
| static inline bool nvme_tcp_queue_tls(struct nvme_tcp_queue *queue) |
| { |
| if (!IS_ENABLED(CONFIG_NVME_TCP_TLS)) |
| return 0; |
| |
| return queue->tls_enabled; |
| } |
| |
| /* |
| * Check if TLS is configured for the controller. |
| */ |
| static inline bool nvme_tcp_tls_configured(struct nvme_ctrl *ctrl) |
| { |
| if (!IS_ENABLED(CONFIG_NVME_TCP_TLS)) |
| return 0; |
| |
| return ctrl->opts->tls; |
| } |
| |
| static inline struct blk_mq_tags *nvme_tcp_tagset(struct nvme_tcp_queue *queue) |
| { |
| u32 queue_idx = nvme_tcp_queue_id(queue); |
| |
| if (queue_idx == 0) |
| return queue->ctrl->admin_tag_set.tags[queue_idx]; |
| return queue->ctrl->tag_set.tags[queue_idx - 1]; |
| } |
| |
| static inline u8 nvme_tcp_hdgst_len(struct nvme_tcp_queue *queue) |
| { |
| return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0; |
| } |
| |
| static inline u8 nvme_tcp_ddgst_len(struct nvme_tcp_queue *queue) |
| { |
| return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0; |
| } |
| |
| static inline void *nvme_tcp_req_cmd_pdu(struct nvme_tcp_request *req) |
| { |
| return req->pdu; |
| } |
| |
| static inline void *nvme_tcp_req_data_pdu(struct nvme_tcp_request *req) |
| { |
| /* use the pdu space in the back for the data pdu */ |
| return req->pdu + sizeof(struct nvme_tcp_cmd_pdu) - |
| sizeof(struct nvme_tcp_data_pdu); |
| } |
| |
| static inline size_t nvme_tcp_inline_data_size(struct nvme_tcp_request *req) |
| { |
| if (nvme_is_fabrics(req->req.cmd)) |
| return NVME_TCP_ADMIN_CCSZ; |
| return req->queue->cmnd_capsule_len - sizeof(struct nvme_command); |
| } |
| |
| static inline bool nvme_tcp_async_req(struct nvme_tcp_request *req) |
| { |
| return req == &req->queue->ctrl->async_req; |
| } |
| |
| static inline bool nvme_tcp_has_inline_data(struct nvme_tcp_request *req) |
| { |
| struct request *rq; |
| |
| if (unlikely(nvme_tcp_async_req(req))) |
| return false; /* async events don't have a request */ |
| |
| rq = blk_mq_rq_from_pdu(req); |
| |
| return rq_data_dir(rq) == WRITE && req->data_len && |
| req->data_len <= nvme_tcp_inline_data_size(req); |
| } |
| |
| static inline struct page *nvme_tcp_req_cur_page(struct nvme_tcp_request *req) |
| { |
| return req->iter.bvec->bv_page; |
| } |
| |
| static inline size_t nvme_tcp_req_cur_offset(struct nvme_tcp_request *req) |
| { |
| return req->iter.bvec->bv_offset + req->iter.iov_offset; |
| } |
| |
| static inline size_t nvme_tcp_req_cur_length(struct nvme_tcp_request *req) |
| { |
| return min_t(size_t, iov_iter_single_seg_count(&req->iter), |
| req->pdu_len - req->pdu_sent); |
| } |
| |
| static inline size_t nvme_tcp_pdu_data_left(struct nvme_tcp_request *req) |
| { |
| return rq_data_dir(blk_mq_rq_from_pdu(req)) == WRITE ? |
| req->pdu_len - req->pdu_sent : 0; |
| } |
| |
| static inline size_t nvme_tcp_pdu_last_send(struct nvme_tcp_request *req, |
| int len) |
| { |
| return nvme_tcp_pdu_data_left(req) <= len; |
| } |
| |
| static void nvme_tcp_init_iter(struct nvme_tcp_request *req, |
| unsigned int dir) |
| { |
| struct request *rq = blk_mq_rq_from_pdu(req); |
| struct bio_vec *vec; |
| unsigned int size; |
| int nr_bvec; |
| size_t offset; |
| |
| if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) { |
| vec = &rq->special_vec; |
| nr_bvec = 1; |
| size = blk_rq_payload_bytes(rq); |
| offset = 0; |
| } else { |
| struct bio *bio = req->curr_bio; |
| struct bvec_iter bi; |
| struct bio_vec bv; |
| |
| vec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter); |
| nr_bvec = 0; |
| bio_for_each_bvec(bv, bio, bi) { |
| nr_bvec++; |
| } |
| size = bio->bi_iter.bi_size; |
| offset = bio->bi_iter.bi_bvec_done; |
| } |
| |
| iov_iter_bvec(&req->iter, dir, vec, nr_bvec, size); |
| req->iter.iov_offset = offset; |
| } |
| |
| static inline void nvme_tcp_advance_req(struct nvme_tcp_request *req, |
| int len) |
| { |
| req->data_sent += len; |
| req->pdu_sent += len; |
| iov_iter_advance(&req->iter, len); |
| if (!iov_iter_count(&req->iter) && |
| req->data_sent < req->data_len) { |
| req->curr_bio = req->curr_bio->bi_next; |
| nvme_tcp_init_iter(req, ITER_SOURCE); |
| } |
| } |
| |
| static inline void nvme_tcp_send_all(struct nvme_tcp_queue *queue) |
| { |
| int ret; |
| |
| /* drain the send queue as much as we can... */ |
| do { |
| ret = nvme_tcp_try_send(queue); |
| } while (ret > 0); |
| } |
| |
| static inline bool nvme_tcp_queue_has_pending(struct nvme_tcp_queue *queue) |
| { |
| return !list_empty(&queue->send_list) || |
| !llist_empty(&queue->req_list); |
| } |
| |
| static inline bool nvme_tcp_queue_more(struct nvme_tcp_queue *queue) |
| { |
| return !nvme_tcp_queue_tls(queue) && |
| nvme_tcp_queue_has_pending(queue); |
| } |
| |
| static inline void nvme_tcp_queue_request(struct nvme_tcp_request *req, |
| bool sync, bool last) |
| { |
| struct nvme_tcp_queue *queue = req->queue; |
| bool empty; |
| |
| empty = llist_add(&req->lentry, &queue->req_list) && |
| list_empty(&queue->send_list) && !queue->request; |
| |
| /* |
| * if we're the first on the send_list and we can try to send |
| * directly, otherwise queue io_work. Also, only do that if we |
| * are on the same cpu, so we don't introduce contention. |
| */ |
| if (queue->io_cpu == raw_smp_processor_id() && |
| sync && empty && mutex_trylock(&queue->send_mutex)) { |
| nvme_tcp_send_all(queue); |
| mutex_unlock(&queue->send_mutex); |
| } |
| |
| if (last && nvme_tcp_queue_has_pending(queue)) |
| queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); |
| } |
| |
| static void nvme_tcp_process_req_list(struct nvme_tcp_queue *queue) |
| { |
| struct nvme_tcp_request *req; |
| struct llist_node *node; |
| |
| for (node = llist_del_all(&queue->req_list); node; node = node->next) { |
| req = llist_entry(node, struct nvme_tcp_request, lentry); |
| list_add(&req->entry, &queue->send_list); |
| } |
| } |
| |
| static inline struct nvme_tcp_request * |
| nvme_tcp_fetch_request(struct nvme_tcp_queue *queue) |
| { |
| struct nvme_tcp_request *req; |
| |
| req = list_first_entry_or_null(&queue->send_list, |
| struct nvme_tcp_request, entry); |
| if (!req) { |
| nvme_tcp_process_req_list(queue); |
| req = list_first_entry_or_null(&queue->send_list, |
| struct nvme_tcp_request, entry); |
| if (unlikely(!req)) |
| return NULL; |
| } |
| |
| list_del(&req->entry); |
| return req; |
| } |
| |
| static inline void nvme_tcp_ddgst_final(struct ahash_request *hash, |
| __le32 *dgst) |
| { |
| ahash_request_set_crypt(hash, NULL, (u8 *)dgst, 0); |
| crypto_ahash_final(hash); |
| } |
| |
| static inline void nvme_tcp_ddgst_update(struct ahash_request *hash, |
| struct page *page, off_t off, size_t len) |
| { |
| struct scatterlist sg; |
| |
| sg_init_table(&sg, 1); |
| sg_set_page(&sg, page, len, off); |
| ahash_request_set_crypt(hash, &sg, NULL, len); |
| crypto_ahash_update(hash); |
| } |
| |
| static inline void nvme_tcp_hdgst(struct ahash_request *hash, |
| void *pdu, size_t len) |
| { |
| struct scatterlist sg; |
| |
| sg_init_one(&sg, pdu, len); |
| ahash_request_set_crypt(hash, &sg, pdu + len, len); |
| crypto_ahash_digest(hash); |
| } |
| |
| static int nvme_tcp_verify_hdgst(struct nvme_tcp_queue *queue, |
| void *pdu, size_t pdu_len) |
| { |
| struct nvme_tcp_hdr *hdr = pdu; |
| __le32 recv_digest; |
| __le32 exp_digest; |
| |
| if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) { |
| dev_err(queue->ctrl->ctrl.device, |
| "queue %d: header digest flag is cleared\n", |
| nvme_tcp_queue_id(queue)); |
| return -EPROTO; |
| } |
| |
| recv_digest = *(__le32 *)(pdu + hdr->hlen); |
| nvme_tcp_hdgst(queue->rcv_hash, pdu, pdu_len); |
| exp_digest = *(__le32 *)(pdu + hdr->hlen); |
| if (recv_digest != exp_digest) { |
| dev_err(queue->ctrl->ctrl.device, |
| "header digest error: recv %#x expected %#x\n", |
| le32_to_cpu(recv_digest), le32_to_cpu(exp_digest)); |
| return -EIO; |
| } |
| |
| return 0; |
| } |
| |
| static int nvme_tcp_check_ddgst(struct nvme_tcp_queue *queue, void *pdu) |
| { |
| struct nvme_tcp_hdr *hdr = pdu; |
| u8 digest_len = nvme_tcp_hdgst_len(queue); |
| u32 len; |
| |
| len = le32_to_cpu(hdr->plen) - hdr->hlen - |
| ((hdr->flags & NVME_TCP_F_HDGST) ? digest_len : 0); |
| |
| if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) { |
| dev_err(queue->ctrl->ctrl.device, |
| "queue %d: data digest flag is cleared\n", |
| nvme_tcp_queue_id(queue)); |
| return -EPROTO; |
| } |
| crypto_ahash_init(queue->rcv_hash); |
| |
| return 0; |
| } |
| |
| static void nvme_tcp_exit_request(struct blk_mq_tag_set *set, |
| struct request *rq, unsigned int hctx_idx) |
| { |
| struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); |
| |
| page_frag_free(req->pdu); |
| } |
| |
| static int nvme_tcp_init_request(struct blk_mq_tag_set *set, |
| struct request *rq, unsigned int hctx_idx, |
| unsigned int numa_node) |
| { |
| struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(set->driver_data); |
| struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); |
| struct nvme_tcp_cmd_pdu *pdu; |
| int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0; |
| struct nvme_tcp_queue *queue = &ctrl->queues[queue_idx]; |
| u8 hdgst = nvme_tcp_hdgst_len(queue); |
| |
| req->pdu = page_frag_alloc(&queue->pf_cache, |
| sizeof(struct nvme_tcp_cmd_pdu) + hdgst, |
| GFP_KERNEL | __GFP_ZERO); |
| if (!req->pdu) |
| return -ENOMEM; |
| |
| pdu = req->pdu; |
| req->queue = queue; |
| nvme_req(rq)->ctrl = &ctrl->ctrl; |
| nvme_req(rq)->cmd = &pdu->cmd; |
| |
| return 0; |
| } |
| |
| static int nvme_tcp_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, |
| unsigned int hctx_idx) |
| { |
| struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(data); |
| struct nvme_tcp_queue *queue = &ctrl->queues[hctx_idx + 1]; |
| |
| hctx->driver_data = queue; |
| return 0; |
| } |
| |
| static int nvme_tcp_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data, |
| unsigned int hctx_idx) |
| { |
| struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(data); |
| struct nvme_tcp_queue *queue = &ctrl->queues[0]; |
| |
| hctx->driver_data = queue; |
| return 0; |
| } |
| |
| static enum nvme_tcp_recv_state |
| nvme_tcp_recv_state(struct nvme_tcp_queue *queue) |
| { |
| return (queue->pdu_remaining) ? NVME_TCP_RECV_PDU : |
| (queue->ddgst_remaining) ? NVME_TCP_RECV_DDGST : |
| NVME_TCP_RECV_DATA; |
| } |
| |
| static void nvme_tcp_init_recv_ctx(struct nvme_tcp_queue *queue) |
| { |
| queue->pdu_remaining = sizeof(struct nvme_tcp_rsp_pdu) + |
| nvme_tcp_hdgst_len(queue); |
| queue->pdu_offset = 0; |
| queue->data_remaining = -1; |
| queue->ddgst_remaining = 0; |
| } |
| |
| static void nvme_tcp_error_recovery(struct nvme_ctrl *ctrl) |
| { |
| if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) |
| return; |
| |
| dev_warn(ctrl->device, "starting error recovery\n"); |
| queue_work(nvme_reset_wq, &to_tcp_ctrl(ctrl)->err_work); |
| } |
| |
| static int nvme_tcp_process_nvme_cqe(struct nvme_tcp_queue *queue, |
| struct nvme_completion *cqe) |
| { |
| struct nvme_tcp_request *req; |
| struct request *rq; |
| |
| rq = nvme_find_rq(nvme_tcp_tagset(queue), cqe->command_id); |
| if (!rq) { |
| dev_err(queue->ctrl->ctrl.device, |
| "got bad cqe.command_id %#x on queue %d\n", |
| cqe->command_id, nvme_tcp_queue_id(queue)); |
| nvme_tcp_error_recovery(&queue->ctrl->ctrl); |
| return -EINVAL; |
| } |
| |
| req = blk_mq_rq_to_pdu(rq); |
| if (req->status == cpu_to_le16(NVME_SC_SUCCESS)) |
| req->status = cqe->status; |
| |
| if (!nvme_try_complete_req(rq, req->status, cqe->result)) |
| nvme_complete_rq(rq); |
| queue->nr_cqe++; |
| |
| return 0; |
| } |
| |
| static int nvme_tcp_handle_c2h_data(struct nvme_tcp_queue *queue, |
| struct nvme_tcp_data_pdu *pdu) |
| { |
| struct request *rq; |
| |
| rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id); |
| if (!rq) { |
| dev_err(queue->ctrl->ctrl.device, |
| "got bad c2hdata.command_id %#x on queue %d\n", |
| pdu->command_id, nvme_tcp_queue_id(queue)); |
| return -ENOENT; |
| } |
| |
| if (!blk_rq_payload_bytes(rq)) { |
| dev_err(queue->ctrl->ctrl.device, |
| "queue %d tag %#x unexpected data\n", |
| nvme_tcp_queue_id(queue), rq->tag); |
| return -EIO; |
| } |
| |
| queue->data_remaining = le32_to_cpu(pdu->data_length); |
| |
| if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS && |
| unlikely(!(pdu->hdr.flags & NVME_TCP_F_DATA_LAST))) { |
| dev_err(queue->ctrl->ctrl.device, |
| "queue %d tag %#x SUCCESS set but not last PDU\n", |
| nvme_tcp_queue_id(queue), rq->tag); |
| nvme_tcp_error_recovery(&queue->ctrl->ctrl); |
| return -EPROTO; |
| } |
| |
| return 0; |
| } |
| |
| static int nvme_tcp_handle_comp(struct nvme_tcp_queue *queue, |
| struct nvme_tcp_rsp_pdu *pdu) |
| { |
| struct nvme_completion *cqe = &pdu->cqe; |
| int ret = 0; |
| |
| /* |
| * AEN requests are special as they don't time out and can |
| * survive any kind of queue freeze and often don't respond to |
| * aborts. We don't even bother to allocate a struct request |
| * for them but rather special case them here. |
| */ |
| if (unlikely(nvme_is_aen_req(nvme_tcp_queue_id(queue), |
| cqe->command_id))) |
| nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status, |
| &cqe->result); |
| else |
| ret = nvme_tcp_process_nvme_cqe(queue, cqe); |
| |
| return ret; |
| } |
| |
| static void nvme_tcp_setup_h2c_data_pdu(struct nvme_tcp_request *req) |
| { |
| struct nvme_tcp_data_pdu *data = nvme_tcp_req_data_pdu(req); |
| struct nvme_tcp_queue *queue = req->queue; |
| struct request *rq = blk_mq_rq_from_pdu(req); |
| u32 h2cdata_sent = req->pdu_len; |
| u8 hdgst = nvme_tcp_hdgst_len(queue); |
| u8 ddgst = nvme_tcp_ddgst_len(queue); |
| |
| req->state = NVME_TCP_SEND_H2C_PDU; |
| req->offset = 0; |
| req->pdu_len = min(req->h2cdata_left, queue->maxh2cdata); |
| req->pdu_sent = 0; |
| req->h2cdata_left -= req->pdu_len; |
| req->h2cdata_offset += h2cdata_sent; |
| |
| memset(data, 0, sizeof(*data)); |
| data->hdr.type = nvme_tcp_h2c_data; |
| if (!req->h2cdata_left) |
| data->hdr.flags = NVME_TCP_F_DATA_LAST; |
| if (queue->hdr_digest) |
| data->hdr.flags |= NVME_TCP_F_HDGST; |
| if (queue->data_digest) |
| data->hdr.flags |= NVME_TCP_F_DDGST; |
| data->hdr.hlen = sizeof(*data); |
| data->hdr.pdo = data->hdr.hlen + hdgst; |
| data->hdr.plen = |
| cpu_to_le32(data->hdr.hlen + hdgst + req->pdu_len + ddgst); |
| data->ttag = req->ttag; |
| data->command_id = nvme_cid(rq); |
| data->data_offset = cpu_to_le32(req->h2cdata_offset); |
| data->data_length = cpu_to_le32(req->pdu_len); |
| } |
| |
| static int nvme_tcp_handle_r2t(struct nvme_tcp_queue *queue, |
| struct nvme_tcp_r2t_pdu *pdu) |
| { |
| struct nvme_tcp_request *req; |
| struct request *rq; |
| u32 r2t_length = le32_to_cpu(pdu->r2t_length); |
| u32 r2t_offset = le32_to_cpu(pdu->r2t_offset); |
| |
| rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id); |
| if (!rq) { |
| dev_err(queue->ctrl->ctrl.device, |
| "got bad r2t.command_id %#x on queue %d\n", |
| pdu->command_id, nvme_tcp_queue_id(queue)); |
| return -ENOENT; |
| } |
| req = blk_mq_rq_to_pdu(rq); |
| |
| if (unlikely(!r2t_length)) { |
| dev_err(queue->ctrl->ctrl.device, |
| "req %d r2t len is %u, probably a bug...\n", |
| rq->tag, r2t_length); |
| return -EPROTO; |
| } |
| |
| if (unlikely(req->data_sent + r2t_length > req->data_len)) { |
| dev_err(queue->ctrl->ctrl.device, |
| "req %d r2t len %u exceeded data len %u (%zu sent)\n", |
| rq->tag, r2t_length, req->data_len, req->data_sent); |
| return -EPROTO; |
| } |
| |
| if (unlikely(r2t_offset < req->data_sent)) { |
| dev_err(queue->ctrl->ctrl.device, |
| "req %d unexpected r2t offset %u (expected %zu)\n", |
| rq->tag, r2t_offset, req->data_sent); |
| return -EPROTO; |
| } |
| |
| req->pdu_len = 0; |
| req->h2cdata_left = r2t_length; |
| req->h2cdata_offset = r2t_offset; |
| req->ttag = pdu->ttag; |
| |
| nvme_tcp_setup_h2c_data_pdu(req); |
| nvme_tcp_queue_request(req, false, true); |
| |
| return 0; |
| } |
| |
| static int nvme_tcp_recv_pdu(struct nvme_tcp_queue *queue, struct sk_buff *skb, |
| unsigned int *offset, size_t *len) |
| { |
| struct nvme_tcp_hdr *hdr; |
| char *pdu = queue->pdu; |
| size_t rcv_len = min_t(size_t, *len, queue->pdu_remaining); |
| int ret; |
| |
| ret = skb_copy_bits(skb, *offset, |
| &pdu[queue->pdu_offset], rcv_len); |
| if (unlikely(ret)) |
| return ret; |
| |
| queue->pdu_remaining -= rcv_len; |
| queue->pdu_offset += rcv_len; |
| *offset += rcv_len; |
| *len -= rcv_len; |
| if (queue->pdu_remaining) |
| return 0; |
| |
| hdr = queue->pdu; |
| if (queue->hdr_digest) { |
| ret = nvme_tcp_verify_hdgst(queue, queue->pdu, hdr->hlen); |
| if (unlikely(ret)) |
| return ret; |
| } |
| |
| |
| if (queue->data_digest) { |
| ret = nvme_tcp_check_ddgst(queue, queue->pdu); |
| if (unlikely(ret)) |
| return ret; |
| } |
| |
| switch (hdr->type) { |
| case nvme_tcp_c2h_data: |
| return nvme_tcp_handle_c2h_data(queue, (void *)queue->pdu); |
| case nvme_tcp_rsp: |
| nvme_tcp_init_recv_ctx(queue); |
| return nvme_tcp_handle_comp(queue, (void *)queue->pdu); |
| case nvme_tcp_r2t: |
| nvme_tcp_init_recv_ctx(queue); |
| return nvme_tcp_handle_r2t(queue, (void *)queue->pdu); |
| default: |
| dev_err(queue->ctrl->ctrl.device, |
| "unsupported pdu type (%d)\n", hdr->type); |
| return -EINVAL; |
| } |
| } |
| |
| static inline void nvme_tcp_end_request(struct request *rq, u16 status) |
| { |
| union nvme_result res = {}; |
| |
| if (!nvme_try_complete_req(rq, cpu_to_le16(status << 1), res)) |
| nvme_complete_rq(rq); |
| } |
| |
| static int nvme_tcp_recv_data(struct nvme_tcp_queue *queue, struct sk_buff *skb, |
| unsigned int *offset, size_t *len) |
| { |
| struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu; |
| struct request *rq = |
| nvme_cid_to_rq(nvme_tcp_tagset(queue), pdu->command_id); |
| struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); |
| |
| while (true) { |
| int recv_len, ret; |
| |
| recv_len = min_t(size_t, *len, queue->data_remaining); |
| if (!recv_len) |
| break; |
| |
| if (!iov_iter_count(&req->iter)) { |
| req->curr_bio = req->curr_bio->bi_next; |
| |
| /* |
| * If we don`t have any bios it means that controller |
| * sent more data than we requested, hence error |
| */ |
| if (!req->curr_bio) { |
| dev_err(queue->ctrl->ctrl.device, |
| "queue %d no space in request %#x", |
| nvme_tcp_queue_id(queue), rq->tag); |
| nvme_tcp_init_recv_ctx(queue); |
| return -EIO; |
| } |
| nvme_tcp_init_iter(req, ITER_DEST); |
| } |
| |
| /* we can read only from what is left in this bio */ |
| recv_len = min_t(size_t, recv_len, |
| iov_iter_count(&req->iter)); |
| |
| if (queue->data_digest) |
| ret = skb_copy_and_hash_datagram_iter(skb, *offset, |
| &req->iter, recv_len, queue->rcv_hash); |
| else |
| ret = skb_copy_datagram_iter(skb, *offset, |
| &req->iter, recv_len); |
| if (ret) { |
| dev_err(queue->ctrl->ctrl.device, |
| "queue %d failed to copy request %#x data", |
| nvme_tcp_queue_id(queue), rq->tag); |
| return ret; |
| } |
| |
| *len -= recv_len; |
| *offset += recv_len; |
| queue->data_remaining -= recv_len; |
| } |
| |
| if (!queue->data_remaining) { |
| if (queue->data_digest) { |
| nvme_tcp_ddgst_final(queue->rcv_hash, &queue->exp_ddgst); |
| queue->ddgst_remaining = NVME_TCP_DIGEST_LENGTH; |
| } else { |
| if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) { |
| nvme_tcp_end_request(rq, |
| le16_to_cpu(req->status)); |
| queue->nr_cqe++; |
| } |
| nvme_tcp_init_recv_ctx(queue); |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int nvme_tcp_recv_ddgst(struct nvme_tcp_queue *queue, |
| struct sk_buff *skb, unsigned int *offset, size_t *len) |
| { |
| struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu; |
| char *ddgst = (char *)&queue->recv_ddgst; |
| size_t recv_len = min_t(size_t, *len, queue->ddgst_remaining); |
| off_t off = NVME_TCP_DIGEST_LENGTH - queue->ddgst_remaining; |
| int ret; |
| |
| ret = skb_copy_bits(skb, *offset, &ddgst[off], recv_len); |
| if (unlikely(ret)) |
| return ret; |
| |
| queue->ddgst_remaining -= recv_len; |
| *offset += recv_len; |
| *len -= recv_len; |
| if (queue->ddgst_remaining) |
| return 0; |
| |
| if (queue->recv_ddgst != queue->exp_ddgst) { |
| struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue), |
| pdu->command_id); |
| struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); |
| |
| req->status = cpu_to_le16(NVME_SC_DATA_XFER_ERROR); |
| |
| dev_err(queue->ctrl->ctrl.device, |
| "data digest error: recv %#x expected %#x\n", |
| le32_to_cpu(queue->recv_ddgst), |
| le32_to_cpu(queue->exp_ddgst)); |
| } |
| |
| if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) { |
| struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue), |
| pdu->command_id); |
| struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); |
| |
| nvme_tcp_end_request(rq, le16_to_cpu(req->status)); |
| queue->nr_cqe++; |
| } |
| |
| nvme_tcp_init_recv_ctx(queue); |
| return 0; |
| } |
| |
| static int nvme_tcp_recv_skb(read_descriptor_t *desc, struct sk_buff *skb, |
| unsigned int offset, size_t len) |
| { |
| struct nvme_tcp_queue *queue = desc->arg.data; |
| size_t consumed = len; |
| int result; |
| |
| if (unlikely(!queue->rd_enabled)) |
| return -EFAULT; |
| |
| while (len) { |
| switch (nvme_tcp_recv_state(queue)) { |
| case NVME_TCP_RECV_PDU: |
| result = nvme_tcp_recv_pdu(queue, skb, &offset, &len); |
| break; |
| case NVME_TCP_RECV_DATA: |
| result = nvme_tcp_recv_data(queue, skb, &offset, &len); |
| break; |
| case NVME_TCP_RECV_DDGST: |
| result = nvme_tcp_recv_ddgst(queue, skb, &offset, &len); |
| break; |
| default: |
| result = -EFAULT; |
| } |
| if (result) { |
| dev_err(queue->ctrl->ctrl.device, |
| "receive failed: %d\n", result); |
| queue->rd_enabled = false; |
| nvme_tcp_error_recovery(&queue->ctrl->ctrl); |
| return result; |
| } |
| } |
| |
| return consumed; |
| } |
| |
| static void nvme_tcp_data_ready(struct sock *sk) |
| { |
| struct nvme_tcp_queue *queue; |
| |
| trace_sk_data_ready(sk); |
| |
| read_lock_bh(&sk->sk_callback_lock); |
| queue = sk->sk_user_data; |
| if (likely(queue && queue->rd_enabled) && |
| !test_bit(NVME_TCP_Q_POLLING, &queue->flags)) |
| queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); |
| read_unlock_bh(&sk->sk_callback_lock); |
| } |
| |
| static void nvme_tcp_write_space(struct sock *sk) |
| { |
| struct nvme_tcp_queue *queue; |
| |
| read_lock_bh(&sk->sk_callback_lock); |
| queue = sk->sk_user_data; |
| if (likely(queue && sk_stream_is_writeable(sk))) { |
| clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags); |
| queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); |
| } |
| read_unlock_bh(&sk->sk_callback_lock); |
| } |
| |
| static void nvme_tcp_state_change(struct sock *sk) |
| { |
| struct nvme_tcp_queue *queue; |
| |
| read_lock_bh(&sk->sk_callback_lock); |
| queue = sk->sk_user_data; |
| if (!queue) |
| goto done; |
| |
| switch (sk->sk_state) { |
| case TCP_CLOSE: |
| case TCP_CLOSE_WAIT: |
| case TCP_LAST_ACK: |
| case TCP_FIN_WAIT1: |
| case TCP_FIN_WAIT2: |
| nvme_tcp_error_recovery(&queue->ctrl->ctrl); |
| break; |
| default: |
| dev_info(queue->ctrl->ctrl.device, |
| "queue %d socket state %d\n", |
| nvme_tcp_queue_id(queue), sk->sk_state); |
| } |
| |
| queue->state_change(sk); |
| done: |
| read_unlock_bh(&sk->sk_callback_lock); |
| } |
| |
| static inline void nvme_tcp_done_send_req(struct nvme_tcp_queue *queue) |
| { |
| queue->request = NULL; |
| } |
| |
| static void nvme_tcp_fail_request(struct nvme_tcp_request *req) |
| { |
| if (nvme_tcp_async_req(req)) { |
| union nvme_result res = {}; |
| |
| nvme_complete_async_event(&req->queue->ctrl->ctrl, |
| cpu_to_le16(NVME_SC_HOST_PATH_ERROR), &res); |
| } else { |
| nvme_tcp_end_request(blk_mq_rq_from_pdu(req), |
| NVME_SC_HOST_PATH_ERROR); |
| } |
| } |
| |
| static int nvme_tcp_try_send_data(struct nvme_tcp_request *req) |
| { |
| struct nvme_tcp_queue *queue = req->queue; |
| int req_data_len = req->data_len; |
| u32 h2cdata_left = req->h2cdata_left; |
| |
| while (true) { |
| struct bio_vec bvec; |
| struct msghdr msg = { |
| .msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES, |
| }; |
| struct page *page = nvme_tcp_req_cur_page(req); |
| size_t offset = nvme_tcp_req_cur_offset(req); |
| size_t len = nvme_tcp_req_cur_length(req); |
| bool last = nvme_tcp_pdu_last_send(req, len); |
| int req_data_sent = req->data_sent; |
| int ret; |
| |
| if (last && !queue->data_digest && !nvme_tcp_queue_more(queue)) |
| msg.msg_flags |= MSG_EOR; |
| else |
| msg.msg_flags |= MSG_MORE; |
| |
| if (!sendpages_ok(page, len, offset)) |
| msg.msg_flags &= ~MSG_SPLICE_PAGES; |
| |
| bvec_set_page(&bvec, page, len, offset); |
| iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len); |
| ret = sock_sendmsg(queue->sock, &msg); |
| if (ret <= 0) |
| return ret; |
| |
| if (queue->data_digest) |
| nvme_tcp_ddgst_update(queue->snd_hash, page, |
| offset, ret); |
| |
| /* |
| * update the request iterator except for the last payload send |
| * in the request where we don't want to modify it as we may |
| * compete with the RX path completing the request. |
| */ |
| if (req_data_sent + ret < req_data_len) |
| nvme_tcp_advance_req(req, ret); |
| |
| /* fully successful last send in current PDU */ |
| if (last && ret == len) { |
| if (queue->data_digest) { |
| nvme_tcp_ddgst_final(queue->snd_hash, |
| &req->ddgst); |
| req->state = NVME_TCP_SEND_DDGST; |
| req->offset = 0; |
| } else { |
| if (h2cdata_left) |
| nvme_tcp_setup_h2c_data_pdu(req); |
| else |
| nvme_tcp_done_send_req(queue); |
| } |
| return 1; |
| } |
| } |
| return -EAGAIN; |
| } |
| |
| static int nvme_tcp_try_send_cmd_pdu(struct nvme_tcp_request *req) |
| { |
| struct nvme_tcp_queue *queue = req->queue; |
| struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req); |
| struct bio_vec bvec; |
| struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES, }; |
| bool inline_data = nvme_tcp_has_inline_data(req); |
| u8 hdgst = nvme_tcp_hdgst_len(queue); |
| int len = sizeof(*pdu) + hdgst - req->offset; |
| int ret; |
| |
| if (inline_data || nvme_tcp_queue_more(queue)) |
| msg.msg_flags |= MSG_MORE; |
| else |
| msg.msg_flags |= MSG_EOR; |
| |
| if (queue->hdr_digest && !req->offset) |
| nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu)); |
| |
| bvec_set_virt(&bvec, (void *)pdu + req->offset, len); |
| iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len); |
| ret = sock_sendmsg(queue->sock, &msg); |
| if (unlikely(ret <= 0)) |
| return ret; |
| |
| len -= ret; |
| if (!len) { |
| if (inline_data) { |
| req->state = NVME_TCP_SEND_DATA; |
| if (queue->data_digest) |
| crypto_ahash_init(queue->snd_hash); |
| } else { |
| nvme_tcp_done_send_req(queue); |
| } |
| return 1; |
| } |
| req->offset += ret; |
| |
| return -EAGAIN; |
| } |
| |
| static int nvme_tcp_try_send_data_pdu(struct nvme_tcp_request *req) |
| { |
| struct nvme_tcp_queue *queue = req->queue; |
| struct nvme_tcp_data_pdu *pdu = nvme_tcp_req_data_pdu(req); |
| struct bio_vec bvec; |
| struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_MORE, }; |
| u8 hdgst = nvme_tcp_hdgst_len(queue); |
| int len = sizeof(*pdu) - req->offset + hdgst; |
| int ret; |
| |
| if (queue->hdr_digest && !req->offset) |
| nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu)); |
| |
| if (!req->h2cdata_left) |
| msg.msg_flags |= MSG_SPLICE_PAGES; |
| |
| bvec_set_virt(&bvec, (void *)pdu + req->offset, len); |
| iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len); |
| ret = sock_sendmsg(queue->sock, &msg); |
| if (unlikely(ret <= 0)) |
| return ret; |
| |
| len -= ret; |
| if (!len) { |
| req->state = NVME_TCP_SEND_DATA; |
| if (queue->data_digest) |
| crypto_ahash_init(queue->snd_hash); |
| return 1; |
| } |
| req->offset += ret; |
| |
| return -EAGAIN; |
| } |
| |
| static int nvme_tcp_try_send_ddgst(struct nvme_tcp_request *req) |
| { |
| struct nvme_tcp_queue *queue = req->queue; |
| size_t offset = req->offset; |
| u32 h2cdata_left = req->h2cdata_left; |
| int ret; |
| struct msghdr msg = { .msg_flags = MSG_DONTWAIT }; |
| struct kvec iov = { |
| .iov_base = (u8 *)&req->ddgst + req->offset, |
| .iov_len = NVME_TCP_DIGEST_LENGTH - req->offset |
| }; |
| |
| if (nvme_tcp_queue_more(queue)) |
| msg.msg_flags |= MSG_MORE; |
| else |
| msg.msg_flags |= MSG_EOR; |
| |
| ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len); |
| if (unlikely(ret <= 0)) |
| return ret; |
| |
| if (offset + ret == NVME_TCP_DIGEST_LENGTH) { |
| if (h2cdata_left) |
| nvme_tcp_setup_h2c_data_pdu(req); |
| else |
| nvme_tcp_done_send_req(queue); |
| return 1; |
| } |
| |
| req->offset += ret; |
| return -EAGAIN; |
| } |
| |
| static int nvme_tcp_try_send(struct nvme_tcp_queue *queue) |
| { |
| struct nvme_tcp_request *req; |
| unsigned int noreclaim_flag; |
| int ret = 1; |
| |
| if (!queue->request) { |
| queue->request = nvme_tcp_fetch_request(queue); |
| if (!queue->request) |
| return 0; |
| } |
| req = queue->request; |
| |
| noreclaim_flag = memalloc_noreclaim_save(); |
| if (req->state == NVME_TCP_SEND_CMD_PDU) { |
| ret = nvme_tcp_try_send_cmd_pdu(req); |
| if (ret <= 0) |
| goto done; |
| if (!nvme_tcp_has_inline_data(req)) |
| goto out; |
| } |
| |
| if (req->state == NVME_TCP_SEND_H2C_PDU) { |
| ret = nvme_tcp_try_send_data_pdu(req); |
| if (ret <= 0) |
| goto done; |
| } |
| |
| if (req->state == NVME_TCP_SEND_DATA) { |
| ret = nvme_tcp_try_send_data(req); |
| if (ret <= 0) |
| goto done; |
| } |
| |
| if (req->state == NVME_TCP_SEND_DDGST) |
| ret = nvme_tcp_try_send_ddgst(req); |
| done: |
| if (ret == -EAGAIN) { |
| ret = 0; |
| } else if (ret < 0) { |
| dev_err(queue->ctrl->ctrl.device, |
| "failed to send request %d\n", ret); |
| nvme_tcp_fail_request(queue->request); |
| nvme_tcp_done_send_req(queue); |
| } |
| out: |
| memalloc_noreclaim_restore(noreclaim_flag); |
| return ret; |
| } |
| |
| static int nvme_tcp_try_recv(struct nvme_tcp_queue *queue) |
| { |
| struct socket *sock = queue->sock; |
| struct sock *sk = sock->sk; |
| read_descriptor_t rd_desc; |
| int consumed; |
| |
| rd_desc.arg.data = queue; |
| rd_desc.count = 1; |
| lock_sock(sk); |
| queue->nr_cqe = 0; |
| consumed = sock->ops->read_sock(sk, &rd_desc, nvme_tcp_recv_skb); |
| release_sock(sk); |
| return consumed; |
| } |
| |
| static void nvme_tcp_io_work(struct work_struct *w) |
| { |
| struct nvme_tcp_queue *queue = |
| container_of(w, struct nvme_tcp_queue, io_work); |
| unsigned long deadline = jiffies + msecs_to_jiffies(1); |
| |
| do { |
| bool pending = false; |
| int result; |
| |
| if (mutex_trylock(&queue->send_mutex)) { |
| result = nvme_tcp_try_send(queue); |
| mutex_unlock(&queue->send_mutex); |
| if (result > 0) |
| pending = true; |
| else if (unlikely(result < 0)) |
| break; |
| } |
| |
| result = nvme_tcp_try_recv(queue); |
| if (result > 0) |
| pending = true; |
| else if (unlikely(result < 0)) |
| return; |
| |
| if (!pending || !queue->rd_enabled) |
| return; |
| |
| } while (!time_after(jiffies, deadline)); /* quota is exhausted */ |
| |
| queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); |
| } |
| |
| static void nvme_tcp_free_crypto(struct nvme_tcp_queue *queue) |
| { |
| struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash); |
| |
| ahash_request_free(queue->rcv_hash); |
| ahash_request_free(queue->snd_hash); |
| crypto_free_ahash(tfm); |
| } |
| |
| static int nvme_tcp_alloc_crypto(struct nvme_tcp_queue *queue) |
| { |
| struct crypto_ahash *tfm; |
| |
| tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC); |
| if (IS_ERR(tfm)) |
| return PTR_ERR(tfm); |
| |
| queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL); |
| if (!queue->snd_hash) |
| goto free_tfm; |
| ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL); |
| |
| queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL); |
| if (!queue->rcv_hash) |
| goto free_snd_hash; |
| ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL); |
| |
| return 0; |
| free_snd_hash: |
| ahash_request_free(queue->snd_hash); |
| free_tfm: |
| crypto_free_ahash(tfm); |
| return -ENOMEM; |
| } |
| |
| static void nvme_tcp_free_async_req(struct nvme_tcp_ctrl *ctrl) |
| { |
| struct nvme_tcp_request *async = &ctrl->async_req; |
| |
| page_frag_free(async->pdu); |
| } |
| |
| static int nvme_tcp_alloc_async_req(struct nvme_tcp_ctrl *ctrl) |
| { |
| struct nvme_tcp_queue *queue = &ctrl->queues[0]; |
| struct nvme_tcp_request *async = &ctrl->async_req; |
| u8 hdgst = nvme_tcp_hdgst_len(queue); |
| |
| async->pdu = page_frag_alloc(&queue->pf_cache, |
| sizeof(struct nvme_tcp_cmd_pdu) + hdgst, |
| GFP_KERNEL | __GFP_ZERO); |
| if (!async->pdu) |
| return -ENOMEM; |
| |
| async->queue = &ctrl->queues[0]; |
| return 0; |
| } |
| |
| static void nvme_tcp_free_queue(struct nvme_ctrl *nctrl, int qid) |
| { |
| struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); |
| struct nvme_tcp_queue *queue = &ctrl->queues[qid]; |
| unsigned int noreclaim_flag; |
| |
| if (!test_and_clear_bit(NVME_TCP_Q_ALLOCATED, &queue->flags)) |
| return; |
| |
| if (queue->hdr_digest || queue->data_digest) |
| nvme_tcp_free_crypto(queue); |
| |
| page_frag_cache_drain(&queue->pf_cache); |
| |
| noreclaim_flag = memalloc_noreclaim_save(); |
| /* ->sock will be released by fput() */ |
| fput(queue->sock->file); |
| queue->sock = NULL; |
| memalloc_noreclaim_restore(noreclaim_flag); |
| |
| kfree(queue->pdu); |
| mutex_destroy(&queue->send_mutex); |
| mutex_destroy(&queue->queue_lock); |
| } |
| |
| static int nvme_tcp_init_connection(struct nvme_tcp_queue *queue) |
| { |
| struct nvme_tcp_icreq_pdu *icreq; |
| struct nvme_tcp_icresp_pdu *icresp; |
| char cbuf[CMSG_LEN(sizeof(char))] = {}; |
| u8 ctype; |
| struct msghdr msg = {}; |
| struct kvec iov; |
| bool ctrl_hdgst, ctrl_ddgst; |
| u32 maxh2cdata; |
| int ret; |
| |
| icreq = kzalloc(sizeof(*icreq), GFP_KERNEL); |
| if (!icreq) |
| return -ENOMEM; |
| |
| icresp = kzalloc(sizeof(*icresp), GFP_KERNEL); |
| if (!icresp) { |
| ret = -ENOMEM; |
| goto free_icreq; |
| } |
| |
| icreq->hdr.type = nvme_tcp_icreq; |
| icreq->hdr.hlen = sizeof(*icreq); |
| icreq->hdr.pdo = 0; |
| icreq->hdr.plen = cpu_to_le32(icreq->hdr.hlen); |
| icreq->pfv = cpu_to_le16(NVME_TCP_PFV_1_0); |
| icreq->maxr2t = 0; /* single inflight r2t supported */ |
| icreq->hpda = 0; /* no alignment constraint */ |
| if (queue->hdr_digest) |
| icreq->digest |= NVME_TCP_HDR_DIGEST_ENABLE; |
| if (queue->data_digest) |
| icreq->digest |= NVME_TCP_DATA_DIGEST_ENABLE; |
| |
| iov.iov_base = icreq; |
| iov.iov_len = sizeof(*icreq); |
| ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len); |
| if (ret < 0) { |
| pr_warn("queue %d: failed to send icreq, error %d\n", |
| nvme_tcp_queue_id(queue), ret); |
| goto free_icresp; |
| } |
| |
| memset(&msg, 0, sizeof(msg)); |
| iov.iov_base = icresp; |
| iov.iov_len = sizeof(*icresp); |
| if (nvme_tcp_queue_tls(queue)) { |
| msg.msg_control = cbuf; |
| msg.msg_controllen = sizeof(cbuf); |
| } |
| ret = kernel_recvmsg(queue->sock, &msg, &iov, 1, |
| iov.iov_len, msg.msg_flags); |
| if (ret < 0) { |
| pr_warn("queue %d: failed to receive icresp, error %d\n", |
| nvme_tcp_queue_id(queue), ret); |
| goto free_icresp; |
| } |
| ret = -ENOTCONN; |
| if (nvme_tcp_queue_tls(queue)) { |
| ctype = tls_get_record_type(queue->sock->sk, |
| (struct cmsghdr *)cbuf); |
| if (ctype != TLS_RECORD_TYPE_DATA) { |
| pr_err("queue %d: unhandled TLS record %d\n", |
| nvme_tcp_queue_id(queue), ctype); |
| goto free_icresp; |
| } |
| } |
| ret = -EINVAL; |
| if (icresp->hdr.type != nvme_tcp_icresp) { |
| pr_err("queue %d: bad type returned %d\n", |
| nvme_tcp_queue_id(queue), icresp->hdr.type); |
| goto free_icresp; |
| } |
| |
| if (le32_to_cpu(icresp->hdr.plen) != sizeof(*icresp)) { |
| pr_err("queue %d: bad pdu length returned %d\n", |
| nvme_tcp_queue_id(queue), icresp->hdr.plen); |
| goto free_icresp; |
| } |
| |
| if (icresp->pfv != NVME_TCP_PFV_1_0) { |
| pr_err("queue %d: bad pfv returned %d\n", |
| nvme_tcp_queue_id(queue), icresp->pfv); |
| goto free_icresp; |
| } |
| |
| ctrl_ddgst = !!(icresp->digest & NVME_TCP_DATA_DIGEST_ENABLE); |
| if ((queue->data_digest && !ctrl_ddgst) || |
| (!queue->data_digest && ctrl_ddgst)) { |
| pr_err("queue %d: data digest mismatch host: %s ctrl: %s\n", |
| nvme_tcp_queue_id(queue), |
| queue->data_digest ? "enabled" : "disabled", |
| ctrl_ddgst ? "enabled" : "disabled"); |
| goto free_icresp; |
| } |
| |
| ctrl_hdgst = !!(icresp->digest & NVME_TCP_HDR_DIGEST_ENABLE); |
| if ((queue->hdr_digest && !ctrl_hdgst) || |
| (!queue->hdr_digest && ctrl_hdgst)) { |
| pr_err("queue %d: header digest mismatch host: %s ctrl: %s\n", |
| nvme_tcp_queue_id(queue), |
| queue->hdr_digest ? "enabled" : "disabled", |
| ctrl_hdgst ? "enabled" : "disabled"); |
| goto free_icresp; |
| } |
| |
| if (icresp->cpda != 0) { |
| pr_err("queue %d: unsupported cpda returned %d\n", |
| nvme_tcp_queue_id(queue), icresp->cpda); |
| goto free_icresp; |
| } |
| |
| maxh2cdata = le32_to_cpu(icresp->maxdata); |
| if ((maxh2cdata % 4) || (maxh2cdata < NVME_TCP_MIN_MAXH2CDATA)) { |
| pr_err("queue %d: invalid maxh2cdata returned %u\n", |
| nvme_tcp_queue_id(queue), maxh2cdata); |
| goto free_icresp; |
| } |
| queue->maxh2cdata = maxh2cdata; |
| |
| ret = 0; |
| free_icresp: |
| kfree(icresp); |
| free_icreq: |
| kfree(icreq); |
| return ret; |
| } |
| |
| static bool nvme_tcp_admin_queue(struct nvme_tcp_queue *queue) |
| { |
| return nvme_tcp_queue_id(queue) == 0; |
| } |
| |
| static bool nvme_tcp_default_queue(struct nvme_tcp_queue *queue) |
| { |
| struct nvme_tcp_ctrl *ctrl = queue->ctrl; |
| int qid = nvme_tcp_queue_id(queue); |
| |
| return !nvme_tcp_admin_queue(queue) && |
| qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT]; |
| } |
| |
| static bool nvme_tcp_read_queue(struct nvme_tcp_queue *queue) |
| { |
| struct nvme_tcp_ctrl *ctrl = queue->ctrl; |
| int qid = nvme_tcp_queue_id(queue); |
| |
| return !nvme_tcp_admin_queue(queue) && |
| !nvme_tcp_default_queue(queue) && |
| qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] + |
| ctrl->io_queues[HCTX_TYPE_READ]; |
| } |
| |
| static bool nvme_tcp_poll_queue(struct nvme_tcp_queue *queue) |
| { |
| struct nvme_tcp_ctrl *ctrl = queue->ctrl; |
| int qid = nvme_tcp_queue_id(queue); |
| |
| return !nvme_tcp_admin_queue(queue) && |
| !nvme_tcp_default_queue(queue) && |
| !nvme_tcp_read_queue(queue) && |
| qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] + |
| ctrl->io_queues[HCTX_TYPE_READ] + |
| ctrl->io_queues[HCTX_TYPE_POLL]; |
| } |
| |
| static void nvme_tcp_set_queue_io_cpu(struct nvme_tcp_queue *queue) |
| { |
| struct nvme_tcp_ctrl *ctrl = queue->ctrl; |
| int qid = nvme_tcp_queue_id(queue); |
| int n = 0; |
| |
| if (nvme_tcp_default_queue(queue)) |
| n = qid - 1; |
| else if (nvme_tcp_read_queue(queue)) |
| n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] - 1; |
| else if (nvme_tcp_poll_queue(queue)) |
| n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] - |
| ctrl->io_queues[HCTX_TYPE_READ] - 1; |
| if (wq_unbound) |
| queue->io_cpu = WORK_CPU_UNBOUND; |
| else |
| queue->io_cpu = cpumask_next_wrap(n - 1, cpu_online_mask, -1, false); |
| } |
| |
| static void nvme_tcp_tls_done(void *data, int status, key_serial_t pskid) |
| { |
| struct nvme_tcp_queue *queue = data; |
| struct nvme_tcp_ctrl *ctrl = queue->ctrl; |
| int qid = nvme_tcp_queue_id(queue); |
| struct key *tls_key; |
| |
| dev_dbg(ctrl->ctrl.device, "queue %d: TLS handshake done, key %x, status %d\n", |
| qid, pskid, status); |
| |
| if (status) { |
| queue->tls_err = -status; |
| goto out_complete; |
| } |
| |
| tls_key = nvme_tls_key_lookup(pskid); |
| if (IS_ERR(tls_key)) { |
| dev_warn(ctrl->ctrl.device, "queue %d: Invalid key %x\n", |
| qid, pskid); |
| queue->tls_err = -ENOKEY; |
| } else { |
| queue->tls_enabled = true; |
| if (qid == 0) |
| ctrl->ctrl.tls_pskid = key_serial(tls_key); |
| key_put(tls_key); |
| queue->tls_err = 0; |
| } |
| |
| out_complete: |
| complete(&queue->tls_complete); |
| } |
| |
| static int nvme_tcp_start_tls(struct nvme_ctrl *nctrl, |
| struct nvme_tcp_queue *queue, |
| key_serial_t pskid) |
| { |
| int qid = nvme_tcp_queue_id(queue); |
| int ret; |
| struct tls_handshake_args args; |
| unsigned long tmo = tls_handshake_timeout * HZ; |
| key_serial_t keyring = nvme_keyring_id(); |
| |
| dev_dbg(nctrl->device, "queue %d: start TLS with key %x\n", |
| qid, pskid); |
| memset(&args, 0, sizeof(args)); |
| args.ta_sock = queue->sock; |
| args.ta_done = nvme_tcp_tls_done; |
| args.ta_data = queue; |
| args.ta_my_peerids[0] = pskid; |
| args.ta_num_peerids = 1; |
| if (nctrl->opts->keyring) |
| keyring = key_serial(nctrl->opts->keyring); |
| args.ta_keyring = keyring; |
| args.ta_timeout_ms = tls_handshake_timeout * 1000; |
| queue->tls_err = -EOPNOTSUPP; |
| init_completion(&queue->tls_complete); |
| ret = tls_client_hello_psk(&args, GFP_KERNEL); |
| if (ret) { |
| dev_err(nctrl->device, "queue %d: failed to start TLS: %d\n", |
| qid, ret); |
| return ret; |
| } |
| ret = wait_for_completion_interruptible_timeout(&queue->tls_complete, tmo); |
| if (ret <= 0) { |
| if (ret == 0) |
| ret = -ETIMEDOUT; |
| |
| dev_err(nctrl->device, |
| "queue %d: TLS handshake failed, error %d\n", |
| qid, ret); |
| tls_handshake_cancel(queue->sock->sk); |
| } else { |
| dev_dbg(nctrl->device, |
| "queue %d: TLS handshake complete, error %d\n", |
| qid, queue->tls_err); |
| ret = queue->tls_err; |
| } |
| return ret; |
| } |
| |
| static int nvme_tcp_alloc_queue(struct nvme_ctrl *nctrl, int qid, |
| key_serial_t pskid) |
| { |
| struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); |
| struct nvme_tcp_queue *queue = &ctrl->queues[qid]; |
| int ret, rcv_pdu_size; |
| struct file *sock_file; |
| |
| mutex_init(&queue->queue_lock); |
| queue->ctrl = ctrl; |
| init_llist_head(&queue->req_list); |
| INIT_LIST_HEAD(&queue->send_list); |
| mutex_init(&queue->send_mutex); |
| INIT_WORK(&queue->io_work, nvme_tcp_io_work); |
| |
| if (qid > 0) |
| queue->cmnd_capsule_len = nctrl->ioccsz * 16; |
| else |
| queue->cmnd_capsule_len = sizeof(struct nvme_command) + |
| NVME_TCP_ADMIN_CCSZ; |
| |
| ret = sock_create(ctrl->addr.ss_family, SOCK_STREAM, |
| IPPROTO_TCP, &queue->sock); |
| if (ret) { |
| dev_err(nctrl->device, |
| "failed to create socket: %d\n", ret); |
| goto err_destroy_mutex; |
| } |
| |
| sock_file = sock_alloc_file(queue->sock, O_CLOEXEC, NULL); |
| if (IS_ERR(sock_file)) { |
| ret = PTR_ERR(sock_file); |
| goto err_destroy_mutex; |
| } |
| nvme_tcp_reclassify_socket(queue->sock); |
| |
| /* Single syn retry */ |
| tcp_sock_set_syncnt(queue->sock->sk, 1); |
| |
| /* Set TCP no delay */ |
| tcp_sock_set_nodelay(queue->sock->sk); |
| |
| /* |
| * Cleanup whatever is sitting in the TCP transmit queue on socket |
| * close. This is done to prevent stale data from being sent should |
| * the network connection be restored before TCP times out. |
| */ |
| sock_no_linger(queue->sock->sk); |
| |
| if (so_priority > 0) |
| sock_set_priority(queue->sock->sk, so_priority); |
| |
| /* Set socket type of service */ |
| if (nctrl->opts->tos >= 0) |
| ip_sock_set_tos(queue->sock->sk, nctrl->opts->tos); |
| |
| /* Set 10 seconds timeout for icresp recvmsg */ |
| queue->sock->sk->sk_rcvtimeo = 10 * HZ; |
| |
| queue->sock->sk->sk_allocation = GFP_ATOMIC; |
| queue->sock->sk->sk_use_task_frag = false; |
| nvme_tcp_set_queue_io_cpu(queue); |
| queue->request = NULL; |
| queue->data_remaining = 0; |
| queue->ddgst_remaining = 0; |
| queue->pdu_remaining = 0; |
| queue->pdu_offset = 0; |
| sk_set_memalloc(queue->sock->sk); |
| |
| if (nctrl->opts->mask & NVMF_OPT_HOST_TRADDR) { |
| ret = kernel_bind(queue->sock, (struct sockaddr *)&ctrl->src_addr, |
| sizeof(ctrl->src_addr)); |
| if (ret) { |
| dev_err(nctrl->device, |
| "failed to bind queue %d socket %d\n", |
| qid, ret); |
| goto err_sock; |
| } |
| } |
| |
| if (nctrl->opts->mask & NVMF_OPT_HOST_IFACE) { |
| char *iface = nctrl->opts->host_iface; |
| sockptr_t optval = KERNEL_SOCKPTR(iface); |
| |
| ret = sock_setsockopt(queue->sock, SOL_SOCKET, SO_BINDTODEVICE, |
| optval, strlen(iface)); |
| if (ret) { |
| dev_err(nctrl->device, |
| "failed to bind to interface %s queue %d err %d\n", |
| iface, qid, ret); |
| goto err_sock; |
| } |
| } |
| |
| queue->hdr_digest = nctrl->opts->hdr_digest; |
| queue->data_digest = nctrl->opts->data_digest; |
| if (queue->hdr_digest || queue->data_digest) { |
| ret = nvme_tcp_alloc_crypto(queue); |
| if (ret) { |
| dev_err(nctrl->device, |
| "failed to allocate queue %d crypto\n", qid); |
| goto err_sock; |
| } |
| } |
| |
| rcv_pdu_size = sizeof(struct nvme_tcp_rsp_pdu) + |
| nvme_tcp_hdgst_len(queue); |
| queue->pdu = kmalloc(rcv_pdu_size, GFP_KERNEL); |
| if (!queue->pdu) { |
| ret = -ENOMEM; |
| goto err_crypto; |
| } |
| |
| dev_dbg(nctrl->device, "connecting queue %d\n", |
| nvme_tcp_queue_id(queue)); |
| |
| ret = kernel_connect(queue->sock, (struct sockaddr *)&ctrl->addr, |
| sizeof(ctrl->addr), 0); |
| if (ret) { |
| dev_err(nctrl->device, |
| "failed to connect socket: %d\n", ret); |
| goto err_rcv_pdu; |
| } |
| |
| /* If PSKs are configured try to start TLS */ |
| if (nvme_tcp_tls_configured(nctrl) && pskid) { |
| ret = nvme_tcp_start_tls(nctrl, queue, pskid); |
| if (ret) |
| goto err_init_connect; |
| } |
| |
| ret = nvme_tcp_init_connection(queue); |
| if (ret) |
| goto err_init_connect; |
| |
| set_bit(NVME_TCP_Q_ALLOCATED, &queue->flags); |
| |
| return 0; |
| |
| err_init_connect: |
| kernel_sock_shutdown(queue->sock, SHUT_RDWR); |
| err_rcv_pdu: |
| kfree(queue->pdu); |
| err_crypto: |
| if (queue->hdr_digest || queue->data_digest) |
| nvme_tcp_free_crypto(queue); |
| err_sock: |
| /* ->sock will be released by fput() */ |
| fput(queue->sock->file); |
| queue->sock = NULL; |
| err_destroy_mutex: |
| mutex_destroy(&queue->send_mutex); |
| mutex_destroy(&queue->queue_lock); |
| return ret; |
| } |
| |
| static void nvme_tcp_restore_sock_ops(struct nvme_tcp_queue *queue) |
| { |
| struct socket *sock = queue->sock; |
| |
| write_lock_bh(&sock->sk->sk_callback_lock); |
| sock->sk->sk_user_data = NULL; |
| sock->sk->sk_data_ready = queue->data_ready; |
| sock->sk->sk_state_change = queue->state_change; |
| sock->sk->sk_write_space = queue->write_space; |
| write_unlock_bh(&sock->sk->sk_callback_lock); |
| } |
| |
| static void __nvme_tcp_stop_queue(struct nvme_tcp_queue *queue) |
| { |
| kernel_sock_shutdown(queue->sock, SHUT_RDWR); |
| nvme_tcp_restore_sock_ops(queue); |
| cancel_work_sync(&queue->io_work); |
| } |
| |
| static void nvme_tcp_stop_queue(struct nvme_ctrl *nctrl, int qid) |
| { |
| struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); |
| struct nvme_tcp_queue *queue = &ctrl->queues[qid]; |
| |
| if (!test_bit(NVME_TCP_Q_ALLOCATED, &queue->flags)) |
| return; |
| |
| mutex_lock(&queue->queue_lock); |
| if (test_and_clear_bit(NVME_TCP_Q_LIVE, &queue->flags)) |
| __nvme_tcp_stop_queue(queue); |
| /* Stopping the queue will disable TLS */ |
| queue->tls_enabled = false; |
| mutex_unlock(&queue->queue_lock); |
| } |
| |
| static void nvme_tcp_setup_sock_ops(struct nvme_tcp_queue *queue) |
| { |
| write_lock_bh(&queue->sock->sk->sk_callback_lock); |
| queue->sock->sk->sk_user_data = queue; |
| queue->state_change = queue->sock->sk->sk_state_change; |
| queue->data_ready = queue->sock->sk->sk_data_ready; |
| queue->write_space = queue->sock->sk->sk_write_space; |
| queue->sock->sk->sk_data_ready = nvme_tcp_data_ready; |
| queue->sock->sk->sk_state_change = nvme_tcp_state_change; |
| queue->sock->sk->sk_write_space = nvme_tcp_write_space; |
| #ifdef CONFIG_NET_RX_BUSY_POLL |
| queue->sock->sk->sk_ll_usec = 1; |
| #endif |
| write_unlock_bh(&queue->sock->sk->sk_callback_lock); |
| } |
| |
| static int nvme_tcp_start_queue(struct nvme_ctrl *nctrl, int idx) |
| { |
| struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); |
| struct nvme_tcp_queue *queue = &ctrl->queues[idx]; |
| int ret; |
| |
| queue->rd_enabled = true; |
| nvme_tcp_init_recv_ctx(queue); |
| nvme_tcp_setup_sock_ops(queue); |
| |
| if (idx) |
| ret = nvmf_connect_io_queue(nctrl, idx); |
| else |
| ret = nvmf_connect_admin_queue(nctrl); |
| |
| if (!ret) { |
| set_bit(NVME_TCP_Q_LIVE, &queue->flags); |
| } else { |
| if (test_bit(NVME_TCP_Q_ALLOCATED, &queue->flags)) |
| __nvme_tcp_stop_queue(queue); |
| dev_err(nctrl->device, |
| "failed to connect queue: %d ret=%d\n", idx, ret); |
| } |
| return ret; |
| } |
| |
| static void nvme_tcp_free_admin_queue(struct nvme_ctrl *ctrl) |
| { |
| if (to_tcp_ctrl(ctrl)->async_req.pdu) { |
| cancel_work_sync(&ctrl->async_event_work); |
| nvme_tcp_free_async_req(to_tcp_ctrl(ctrl)); |
| to_tcp_ctrl(ctrl)->async_req.pdu = NULL; |
| } |
| |
| nvme_tcp_free_queue(ctrl, 0); |
| } |
| |
| static void nvme_tcp_free_io_queues(struct nvme_ctrl *ctrl) |
| { |
| int i; |
| |
| for (i = 1; i < ctrl->queue_count; i++) |
| nvme_tcp_free_queue(ctrl, i); |
| } |
| |
| static void nvme_tcp_stop_io_queues(struct nvme_ctrl *ctrl) |
| { |
| int i; |
| |
| for (i = 1; i < ctrl->queue_count; i++) |
| nvme_tcp_stop_queue(ctrl, i); |
| } |
| |
| static int nvme_tcp_start_io_queues(struct nvme_ctrl *ctrl, |
| int first, int last) |
| { |
| int i, ret; |
| |
| for (i = first; i < last; i++) { |
| ret = nvme_tcp_start_queue(ctrl, i); |
| if (ret) |
| goto out_stop_queues; |
| } |
| |
| return 0; |
| |
| out_stop_queues: |
| for (i--; i >= first; i--) |
| nvme_tcp_stop_queue(ctrl, i); |
| return ret; |
| } |
| |
| static int nvme_tcp_alloc_admin_queue(struct nvme_ctrl *ctrl) |
| { |
| int ret; |
| key_serial_t pskid = 0; |
| |
| if (nvme_tcp_tls_configured(ctrl)) { |
| if (ctrl->opts->tls_key) |
| pskid = key_serial(ctrl->opts->tls_key); |
| else { |
| pskid = nvme_tls_psk_default(ctrl->opts->keyring, |
| ctrl->opts->host->nqn, |
| ctrl->opts->subsysnqn); |
| if (!pskid) { |
| dev_err(ctrl->device, "no valid PSK found\n"); |
| return -ENOKEY; |
| } |
| } |
| } |
| |
| ret = nvme_tcp_alloc_queue(ctrl, 0, pskid); |
| if (ret) |
| return ret; |
| |
| ret = nvme_tcp_alloc_async_req(to_tcp_ctrl(ctrl)); |
| if (ret) |
| goto out_free_queue; |
| |
| return 0; |
| |
| out_free_queue: |
| nvme_tcp_free_queue(ctrl, 0); |
| return ret; |
| } |
| |
| static int __nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl) |
| { |
| int i, ret; |
| |
| if (nvme_tcp_tls_configured(ctrl) && !ctrl->tls_pskid) { |
| dev_err(ctrl->device, "no PSK negotiated\n"); |
| return -ENOKEY; |
| } |
| |
| for (i = 1; i < ctrl->queue_count; i++) { |
| ret = nvme_tcp_alloc_queue(ctrl, i, |
| ctrl->tls_pskid); |
| if (ret) |
| goto out_free_queues; |
| } |
| |
| return 0; |
| |
| out_free_queues: |
| for (i--; i >= 1; i--) |
| nvme_tcp_free_queue(ctrl, i); |
| |
| return ret; |
| } |
| |
| static int nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl) |
| { |
| unsigned int nr_io_queues; |
| int ret; |
| |
| nr_io_queues = nvmf_nr_io_queues(ctrl->opts); |
| ret = nvme_set_queue_count(ctrl, &nr_io_queues); |
| if (ret) |
| return ret; |
| |
| if (nr_io_queues == 0) { |
| dev_err(ctrl->device, |
| "unable to set any I/O queues\n"); |
| return -ENOMEM; |
| } |
| |
| ctrl->queue_count = nr_io_queues + 1; |
| dev_info(ctrl->device, |
| "creating %d I/O queues.\n", nr_io_queues); |
| |
| nvmf_set_io_queues(ctrl->opts, nr_io_queues, |
| to_tcp_ctrl(ctrl)->io_queues); |
| return __nvme_tcp_alloc_io_queues(ctrl); |
| } |
| |
| static void nvme_tcp_destroy_io_queues(struct nvme_ctrl *ctrl, bool remove) |
| { |
| nvme_tcp_stop_io_queues(ctrl); |
| if (remove) |
| nvme_remove_io_tag_set(ctrl); |
| nvme_tcp_free_io_queues(ctrl); |
| } |
| |
| static int nvme_tcp_configure_io_queues(struct nvme_ctrl *ctrl, bool new) |
| { |
| int ret, nr_queues; |
| |
| ret = nvme_tcp_alloc_io_queues(ctrl); |
| if (ret) |
| return ret; |
| |
| if (new) { |
| ret = nvme_alloc_io_tag_set(ctrl, &to_tcp_ctrl(ctrl)->tag_set, |
| &nvme_tcp_mq_ops, |
| ctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2, |
| sizeof(struct nvme_tcp_request)); |
| if (ret) |
| goto out_free_io_queues; |
| } |
| |
| /* |
| * Only start IO queues for which we have allocated the tagset |
| * and limitted it to the available queues. On reconnects, the |
| * queue number might have changed. |
| */ |
| nr_queues = min(ctrl->tagset->nr_hw_queues + 1, ctrl->queue_count); |
| ret = nvme_tcp_start_io_queues(ctrl, 1, nr_queues); |
| if (ret) |
| goto out_cleanup_connect_q; |
| |
| if (!new) { |
| nvme_start_freeze(ctrl); |
| nvme_unquiesce_io_queues(ctrl); |
| if (!nvme_wait_freeze_timeout(ctrl, NVME_IO_TIMEOUT)) { |
| /* |
| * If we timed out waiting for freeze we are likely to |
| * be stuck. Fail the controller initialization just |
| * to be safe. |
| */ |
| ret = -ENODEV; |
| nvme_unfreeze(ctrl); |
| goto out_wait_freeze_timed_out; |
| } |
| blk_mq_update_nr_hw_queues(ctrl->tagset, |
| ctrl->queue_count - 1); |
| nvme_unfreeze(ctrl); |
| } |
| |
| /* |
| * If the number of queues has increased (reconnect case) |
| * start all new queues now. |
| */ |
| ret = nvme_tcp_start_io_queues(ctrl, nr_queues, |
| ctrl->tagset->nr_hw_queues + 1); |
| if (ret) |
| goto out_wait_freeze_timed_out; |
| |
| return 0; |
| |
| out_wait_freeze_timed_out: |
| nvme_quiesce_io_queues(ctrl); |
| nvme_sync_io_queues(ctrl); |
| nvme_tcp_stop_io_queues(ctrl); |
| out_cleanup_connect_q: |
| nvme_cancel_tagset(ctrl); |
| if (new) |
| nvme_remove_io_tag_set(ctrl); |
| out_free_io_queues: |
| nvme_tcp_free_io_queues(ctrl); |
| return ret; |
| } |
| |
| static void nvme_tcp_destroy_admin_queue(struct nvme_ctrl *ctrl, bool remove) |
| { |
| nvme_tcp_stop_queue(ctrl, 0); |
| if (remove) |
| nvme_remove_admin_tag_set(ctrl); |
| nvme_tcp_free_admin_queue(ctrl); |
| } |
| |
| static int nvme_tcp_configure_admin_queue(struct nvme_ctrl *ctrl, bool new) |
| { |
| int error; |
| |
| error = nvme_tcp_alloc_admin_queue(ctrl); |
| if (error) |
| return error; |
| |
| if (new) { |
| error = nvme_alloc_admin_tag_set(ctrl, |
| &to_tcp_ctrl(ctrl)->admin_tag_set, |
| &nvme_tcp_admin_mq_ops, |
| sizeof(struct nvme_tcp_request)); |
| if (error) |
| goto out_free_queue; |
| } |
| |
| error = nvme_tcp_start_queue(ctrl, 0); |
| if (error) |
| goto out_cleanup_tagset; |
| |
| error = nvme_enable_ctrl(ctrl); |
| if (error) |
| goto out_stop_queue; |
| |
| nvme_unquiesce_admin_queue(ctrl); |
| |
| error = nvme_init_ctrl_finish(ctrl, false); |
| if (error) |
| goto out_quiesce_queue; |
| |
| return 0; |
| |
| out_quiesce_queue: |
| nvme_quiesce_admin_queue(ctrl); |
| blk_sync_queue(ctrl->admin_q); |
| out_stop_queue: |
| nvme_tcp_stop_queue(ctrl, 0); |
| nvme_cancel_admin_tagset(ctrl); |
| out_cleanup_tagset: |
| if (new) |
| nvme_remove_admin_tag_set(ctrl); |
| out_free_queue: |
| nvme_tcp_free_admin_queue(ctrl); |
| return error; |
| } |
| |
| static void nvme_tcp_teardown_admin_queue(struct nvme_ctrl *ctrl, |
| bool remove) |
| { |
| nvme_quiesce_admin_queue(ctrl); |
| blk_sync_queue(ctrl->admin_q); |
| nvme_tcp_stop_queue(ctrl, 0); |
| nvme_cancel_admin_tagset(ctrl); |
| if (remove) |
| nvme_unquiesce_admin_queue(ctrl); |
| nvme_tcp_destroy_admin_queue(ctrl, remove); |
| if (ctrl->tls_pskid) { |
| dev_dbg(ctrl->device, "Wipe negotiated TLS_PSK %08x\n", |
| ctrl->tls_pskid); |
| ctrl->tls_pskid = 0; |
| } |
| } |
| |
| static void nvme_tcp_teardown_io_queues(struct nvme_ctrl *ctrl, |
| bool remove) |
| { |
| if (ctrl->queue_count <= 1) |
| return; |
| nvme_quiesce_admin_queue(ctrl); |
| nvme_quiesce_io_queues(ctrl); |
| nvme_sync_io_queues(ctrl); |
| nvme_tcp_stop_io_queues(ctrl); |
| nvme_cancel_tagset(ctrl); |
| if (remove) |
| nvme_unquiesce_io_queues(ctrl); |
| nvme_tcp_destroy_io_queues(ctrl, remove); |
| } |
| |
| static void nvme_tcp_reconnect_or_remove(struct nvme_ctrl *ctrl, |
| int status) |
| { |
| enum nvme_ctrl_state state = nvme_ctrl_state(ctrl); |
| |
| /* If we are resetting/deleting then do nothing */ |
| if (state != NVME_CTRL_CONNECTING) { |
| WARN_ON_ONCE(state == NVME_CTRL_NEW || state == NVME_CTRL_LIVE); |
| return; |
| } |
| |
| if (nvmf_should_reconnect(ctrl, status)) { |
| dev_info(ctrl->device, "Reconnecting in %d seconds...\n", |
| ctrl->opts->reconnect_delay); |
| queue_delayed_work(nvme_wq, &to_tcp_ctrl(ctrl)->connect_work, |
| ctrl->opts->reconnect_delay * HZ); |
| } else { |
| dev_info(ctrl->device, "Removing controller (%d)...\n", |
| status); |
| nvme_delete_ctrl(ctrl); |
| } |
| } |
| |
| static int nvme_tcp_setup_ctrl(struct nvme_ctrl *ctrl, bool new) |
| { |
| struct nvmf_ctrl_options *opts = ctrl->opts; |
| int ret; |
| |
| ret = nvme_tcp_configure_admin_queue(ctrl, new); |
| if (ret) |
| return ret; |
| |
| if (ctrl->icdoff) { |
| ret = -EOPNOTSUPP; |
| dev_err(ctrl->device, "icdoff is not supported!\n"); |
| goto destroy_admin; |
| } |
| |
| if (!nvme_ctrl_sgl_supported(ctrl)) { |
| ret = -EOPNOTSUPP; |
| dev_err(ctrl->device, "Mandatory sgls are not supported!\n"); |
| goto destroy_admin; |
| } |
| |
| if (opts->queue_size > ctrl->sqsize + 1) |
| dev_warn(ctrl->device, |
| "queue_size %zu > ctrl sqsize %u, clamping down\n", |
| opts->queue_size, ctrl->sqsize + 1); |
| |
| if (ctrl->sqsize + 1 > ctrl->maxcmd) { |
| dev_warn(ctrl->device, |
| "sqsize %u > ctrl maxcmd %u, clamping down\n", |
| ctrl->sqsize + 1, ctrl->maxcmd); |
| ctrl->sqsize = ctrl->maxcmd - 1; |
| } |
| |
| if (ctrl->queue_count > 1) { |
| ret = nvme_tcp_configure_io_queues(ctrl, new); |
| if (ret) |
| goto destroy_admin; |
| } |
| |
| if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) { |
| /* |
| * state change failure is ok if we started ctrl delete, |
| * unless we're during creation of a new controller to |
| * avoid races with teardown flow. |
| */ |
| enum nvme_ctrl_state state = nvme_ctrl_state(ctrl); |
| |
| WARN_ON_ONCE(state != NVME_CTRL_DELETING && |
| state != NVME_CTRL_DELETING_NOIO); |
| WARN_ON_ONCE(new); |
| ret = -EINVAL; |
| goto destroy_io; |
| } |
| |
| nvme_start_ctrl(ctrl); |
| return 0; |
| |
| destroy_io: |
| if (ctrl->queue_count > 1) { |
| nvme_quiesce_io_queues(ctrl); |
| nvme_sync_io_queues(ctrl); |
| nvme_tcp_stop_io_queues(ctrl); |
| nvme_cancel_tagset(ctrl); |
| nvme_tcp_destroy_io_queues(ctrl, new); |
| } |
| destroy_admin: |
| nvme_stop_keep_alive(ctrl); |
| nvme_tcp_teardown_admin_queue(ctrl, false); |
| return ret; |
| } |
| |
| static void nvme_tcp_reconnect_ctrl_work(struct work_struct *work) |
| { |
| struct nvme_tcp_ctrl *tcp_ctrl = container_of(to_delayed_work(work), |
| struct nvme_tcp_ctrl, connect_work); |
| struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl; |
| int ret; |
| |
| ++ctrl->nr_reconnects; |
| |
| ret = nvme_tcp_setup_ctrl(ctrl, false); |
| if (ret) |
| goto requeue; |
| |
| dev_info(ctrl->device, "Successfully reconnected (attempt %d/%d)\n", |
| ctrl->nr_reconnects, ctrl->opts->max_reconnects); |
| |
| ctrl->nr_reconnects = 0; |
| |
| return; |
| |
| requeue: |
| dev_info(ctrl->device, "Failed reconnect attempt %d/%d\n", |
| ctrl->nr_reconnects, ctrl->opts->max_reconnects); |
| nvme_tcp_reconnect_or_remove(ctrl, ret); |
| } |
| |
| static void nvme_tcp_error_recovery_work(struct work_struct *work) |
| { |
| struct nvme_tcp_ctrl *tcp_ctrl = container_of(work, |
| struct nvme_tcp_ctrl, err_work); |
| struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl; |
| |
| nvme_stop_keep_alive(ctrl); |
| flush_work(&ctrl->async_event_work); |
| nvme_tcp_teardown_io_queues(ctrl, false); |
| /* unquiesce to fail fast pending requests */ |
| nvme_unquiesce_io_queues(ctrl); |
| nvme_tcp_teardown_admin_queue(ctrl, false); |
| nvme_unquiesce_admin_queue(ctrl); |
| nvme_auth_stop(ctrl); |
| |
| if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) { |
| /* state change failure is ok if we started ctrl delete */ |
| enum nvme_ctrl_state state = nvme_ctrl_state(ctrl); |
| |
| WARN_ON_ONCE(state != NVME_CTRL_DELETING && |
| state != NVME_CTRL_DELETING_NOIO); |
| return; |
| } |
| |
| nvme_tcp_reconnect_or_remove(ctrl, 0); |
| } |
| |
| static void nvme_tcp_teardown_ctrl(struct nvme_ctrl *ctrl, bool shutdown) |
| { |
| nvme_tcp_teardown_io_queues(ctrl, shutdown); |
| nvme_quiesce_admin_queue(ctrl); |
| nvme_disable_ctrl(ctrl, shutdown); |
| nvme_tcp_teardown_admin_queue(ctrl, shutdown); |
| } |
| |
| static void nvme_tcp_delete_ctrl(struct nvme_ctrl *ctrl) |
| { |
| nvme_tcp_teardown_ctrl(ctrl, true); |
| } |
| |
| static void nvme_reset_ctrl_work(struct work_struct *work) |
| { |
| struct nvme_ctrl *ctrl = |
| container_of(work, struct nvme_ctrl, reset_work); |
| int ret; |
| |
| nvme_stop_ctrl(ctrl); |
| nvme_tcp_teardown_ctrl(ctrl, false); |
| |
| if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) { |
| /* state change failure is ok if we started ctrl delete */ |
| enum nvme_ctrl_state state = nvme_ctrl_state(ctrl); |
| |
| WARN_ON_ONCE(state != NVME_CTRL_DELETING && |
| state != NVME_CTRL_DELETING_NOIO); |
| return; |
| } |
| |
| ret = nvme_tcp_setup_ctrl(ctrl, false); |
| if (ret) |
| goto out_fail; |
| |
| return; |
| |
| out_fail: |
| ++ctrl->nr_reconnects; |
| nvme_tcp_reconnect_or_remove(ctrl, ret); |
| } |
| |
| static void nvme_tcp_stop_ctrl(struct nvme_ctrl *ctrl) |
| { |
| flush_work(&to_tcp_ctrl(ctrl)->err_work); |
| cancel_delayed_work_sync(&to_tcp_ctrl(ctrl)->connect_work); |
| } |
| |
| static void nvme_tcp_free_ctrl(struct nvme_ctrl *nctrl) |
| { |
| struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); |
| |
| if (list_empty(&ctrl->list)) |
| goto free_ctrl; |
| |
| mutex_lock(&nvme_tcp_ctrl_mutex); |
| list_del(&ctrl->list); |
| mutex_unlock(&nvme_tcp_ctrl_mutex); |
| |
| nvmf_free_options(nctrl->opts); |
| free_ctrl: |
| kfree(ctrl->queues); |
| kfree(ctrl); |
| } |
| |
| static void nvme_tcp_set_sg_null(struct nvme_command *c) |
| { |
| struct nvme_sgl_desc *sg = &c->common.dptr.sgl; |
| |
| sg->addr = 0; |
| sg->length = 0; |
| sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) | |
| NVME_SGL_FMT_TRANSPORT_A; |
| } |
| |
| static void nvme_tcp_set_sg_inline(struct nvme_tcp_queue *queue, |
| struct nvme_command *c, u32 data_len) |
| { |
| struct nvme_sgl_desc *sg = &c->common.dptr.sgl; |
| |
| sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff); |
| sg->length = cpu_to_le32(data_len); |
| sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET; |
| } |
| |
| static void nvme_tcp_set_sg_host_data(struct nvme_command *c, |
| u32 data_len) |
| { |
| struct nvme_sgl_desc *sg = &c->common.dptr.sgl; |
| |
| sg->addr = 0; |
| sg->length = cpu_to_le32(data_len); |
| sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) | |
| NVME_SGL_FMT_TRANSPORT_A; |
| } |
| |
| static void nvme_tcp_submit_async_event(struct nvme_ctrl *arg) |
| { |
| struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(arg); |
| struct nvme_tcp_queue *queue = &ctrl->queues[0]; |
| struct nvme_tcp_cmd_pdu *pdu = ctrl->async_req.pdu; |
| struct nvme_command *cmd = &pdu->cmd; |
| u8 hdgst = nvme_tcp_hdgst_len(queue); |
| |
| memset(pdu, 0, sizeof(*pdu)); |
| pdu->hdr.type = nvme_tcp_cmd; |
| if (queue->hdr_digest) |
| pdu->hdr.flags |= NVME_TCP_F_HDGST; |
| pdu->hdr.hlen = sizeof(*pdu); |
| pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst); |
| |
| cmd->common.opcode = nvme_admin_async_event; |
| cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH; |
| cmd->common.flags |= NVME_CMD_SGL_METABUF; |
| nvme_tcp_set_sg_null(cmd); |
| |
| ctrl->async_req.state = NVME_TCP_SEND_CMD_PDU; |
| ctrl->async_req.offset = 0; |
| ctrl->async_req.curr_bio = NULL; |
| ctrl->async_req.data_len = 0; |
| |
| nvme_tcp_queue_request(&ctrl->async_req, true, true); |
| } |
| |
| static void nvme_tcp_complete_timed_out(struct request *rq) |
| { |
| struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); |
| struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl; |
| |
| nvme_tcp_stop_queue(ctrl, nvme_tcp_queue_id(req->queue)); |
| nvmf_complete_timed_out_request(rq); |
| } |
| |
| static enum blk_eh_timer_return nvme_tcp_timeout(struct request *rq) |
| { |
| struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); |
| struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl; |
| struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req); |
| struct nvme_command *cmd = &pdu->cmd; |
| int qid = nvme_tcp_queue_id(req->queue); |
| |
| dev_warn(ctrl->device, |
| "I/O tag %d (%04x) type %d opcode %#x (%s) QID %d timeout\n", |
| rq->tag, nvme_cid(rq), pdu->hdr.type, cmd->common.opcode, |
| nvme_fabrics_opcode_str(qid, cmd), qid); |
| |
| if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE) { |
| /* |
| * If we are resetting, connecting or deleting we should |
| * complete immediately because we may block controller |
| * teardown or setup sequence |
| * - ctrl disable/shutdown fabrics requests |
| * - connect requests |
| * - initialization admin requests |
| * - I/O requests that entered after unquiescing and |
| * the controller stopped responding |
| * |
| * All other requests should be cancelled by the error |
| * recovery work, so it's fine that we fail it here. |
| */ |
| nvme_tcp_complete_timed_out(rq); |
| return BLK_EH_DONE; |
| } |
| |
| /* |
| * LIVE state should trigger the normal error recovery which will |
| * handle completing this request. |
| */ |
| nvme_tcp_error_recovery(ctrl); |
| return BLK_EH_RESET_TIMER; |
| } |
| |
| static blk_status_t nvme_tcp_map_data(struct nvme_tcp_queue *queue, |
| struct request *rq) |
| { |
| struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); |
| struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req); |
| struct nvme_command *c = &pdu->cmd; |
| |
| c->common.flags |= NVME_CMD_SGL_METABUF; |
| |
| if (!blk_rq_nr_phys_segments(rq)) |
| nvme_tcp_set_sg_null(c); |
| else if (rq_data_dir(rq) == WRITE && |
| req->data_len <= nvme_tcp_inline_data_size(req)) |
| nvme_tcp_set_sg_inline(queue, c, req->data_len); |
| else |
| nvme_tcp_set_sg_host_data(c, req->data_len); |
| |
| return 0; |
| } |
| |
| static blk_status_t nvme_tcp_setup_cmd_pdu(struct nvme_ns *ns, |
| struct request *rq) |
| { |
| struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); |
| struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req); |
| struct nvme_tcp_queue *queue = req->queue; |
| u8 hdgst = nvme_tcp_hdgst_len(queue), ddgst = 0; |
| blk_status_t ret; |
| |
| ret = nvme_setup_cmd(ns, rq); |
| if (ret) |
| return ret; |
| |
| req->state = NVME_TCP_SEND_CMD_PDU; |
| req->status = cpu_to_le16(NVME_SC_SUCCESS); |
| req->offset = 0; |
| req->data_sent = 0; |
| req->pdu_len = 0; |
| req->pdu_sent = 0; |
| req->h2cdata_left = 0; |
| req->data_len = blk_rq_nr_phys_segments(rq) ? |
| blk_rq_payload_bytes(rq) : 0; |
| req->curr_bio = rq->bio; |
| if (req->curr_bio && req->data_len) |
| nvme_tcp_init_iter(req, rq_data_dir(rq)); |
| |
| if (rq_data_dir(rq) == WRITE && |
| req->data_len <= nvme_tcp_inline_data_size(req)) |
| req->pdu_len = req->data_len; |
| |
| pdu->hdr.type = nvme_tcp_cmd; |
| pdu->hdr.flags = 0; |
| if (queue->hdr_digest) |
| pdu->hdr.flags |= NVME_TCP_F_HDGST; |
| if (queue->data_digest && req->pdu_len) { |
| pdu->hdr.flags |= NVME_TCP_F_DDGST; |
| ddgst = nvme_tcp_ddgst_len(queue); |
| } |
| pdu->hdr.hlen = sizeof(*pdu); |
| pdu->hdr.pdo = req->pdu_len ? pdu->hdr.hlen + hdgst : 0; |
| pdu->hdr.plen = |
| cpu_to_le32(pdu->hdr.hlen + hdgst + req->pdu_len + ddgst); |
| |
| ret = nvme_tcp_map_data(queue, rq); |
| if (unlikely(ret)) { |
| nvme_cleanup_cmd(rq); |
| dev_err(queue->ctrl->ctrl.device, |
| "Failed to map data (%d)\n", ret); |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static void nvme_tcp_commit_rqs(struct blk_mq_hw_ctx *hctx) |
| { |
| struct nvme_tcp_queue *queue = hctx->driver_data; |
| |
| if (!llist_empty(&queue->req_list)) |
| queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); |
| } |
| |
| static blk_status_t nvme_tcp_queue_rq(struct blk_mq_hw_ctx *hctx, |
| const struct blk_mq_queue_data *bd) |
| { |
| struct nvme_ns *ns = hctx->queue->queuedata; |
| struct nvme_tcp_queue *queue = hctx->driver_data; |
| struct request *rq = bd->rq; |
| struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); |
| bool queue_ready = test_bit(NVME_TCP_Q_LIVE, &queue->flags); |
| blk_status_t ret; |
| |
| if (!nvme_check_ready(&queue->ctrl->ctrl, rq, queue_ready)) |
| return nvme_fail_nonready_command(&queue->ctrl->ctrl, rq); |
| |
| ret = nvme_tcp_setup_cmd_pdu(ns, rq); |
| if (unlikely(ret)) |
| return ret; |
| |
| nvme_start_request(rq); |
| |
| nvme_tcp_queue_request(req, true, bd->last); |
| |
| return BLK_STS_OK; |
| } |
| |
| static void nvme_tcp_map_queues(struct blk_mq_tag_set *set) |
| { |
| struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(set->driver_data); |
| |
| nvmf_map_queues(set, &ctrl->ctrl, ctrl->io_queues); |
| } |
| |
| static int nvme_tcp_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob) |
| { |
| struct nvme_tcp_queue *queue = hctx->driver_data; |
| struct sock *sk = queue->sock->sk; |
| |
| if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags)) |
| return 0; |
| |
| set_bit(NVME_TCP_Q_POLLING, &queue->flags); |
| if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue)) |
| sk_busy_loop(sk, true); |
| nvme_tcp_try_recv(queue); |
| clear_bit(NVME_TCP_Q_POLLING, &queue->flags); |
| return queue->nr_cqe; |
| } |
| |
| static int nvme_tcp_get_address(struct nvme_ctrl *ctrl, char *buf, int size) |
| { |
| struct nvme_tcp_queue *queue = &to_tcp_ctrl(ctrl)->queues[0]; |
| struct sockaddr_storage src_addr; |
| int ret, len; |
| |
| len = nvmf_get_address(ctrl, buf, size); |
| |
| mutex_lock(&queue->queue_lock); |
| |
| if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags)) |
| goto done; |
| ret = kernel_getsockname(queue->sock, (struct sockaddr *)&src_addr); |
| if (ret > 0) { |
| if (len > 0) |
| len--; /* strip trailing newline */ |
| len += scnprintf(buf + len, size - len, "%ssrc_addr=%pISc\n", |
| (len) ? "," : "", &src_addr); |
| } |
| done: |
| mutex_unlock(&queue->queue_lock); |
| |
| return len; |
| } |
| |
| static const struct blk_mq_ops nvme_tcp_mq_ops = { |
| .queue_rq = nvme_tcp_queue_rq, |
| .commit_rqs = nvme_tcp_commit_rqs, |
| .complete = nvme_complete_rq, |
| .init_request = nvme_tcp_init_request, |
| .exit_request = nvme_tcp_exit_request, |
| .init_hctx = nvme_tcp_init_hctx, |
| .timeout = nvme_tcp_timeout, |
| .map_queues = nvme_tcp_map_queues, |
| .poll = nvme_tcp_poll, |
| }; |
| |
| static const struct blk_mq_ops nvme_tcp_admin_mq_ops = { |
| .queue_rq = nvme_tcp_queue_rq, |
| .complete = nvme_complete_rq, |
| .init_request = nvme_tcp_init_request, |
| .exit_request = nvme_tcp_exit_request, |
| .init_hctx = nvme_tcp_init_admin_hctx, |
| .timeout = nvme_tcp_timeout, |
| }; |
| |
| static const struct nvme_ctrl_ops nvme_tcp_ctrl_ops = { |
| .name = "tcp", |
| .module = THIS_MODULE, |
| .flags = NVME_F_FABRICS | NVME_F_BLOCKING, |
| .reg_read32 = nvmf_reg_read32, |
| .reg_read64 = nvmf_reg_read64, |
| .reg_write32 = nvmf_reg_write32, |
| .subsystem_reset = nvmf_subsystem_reset, |
| .free_ctrl = nvme_tcp_free_ctrl, |
| .submit_async_event = nvme_tcp_submit_async_event, |
| .delete_ctrl = nvme_tcp_delete_ctrl, |
| .get_address = nvme_tcp_get_address, |
| .stop_ctrl = nvme_tcp_stop_ctrl, |
| }; |
| |
| static bool |
| nvme_tcp_existing_controller(struct nvmf_ctrl_options *opts) |
| { |
| struct nvme_tcp_ctrl *ctrl; |
| bool found = false; |
| |
| mutex_lock(&nvme_tcp_ctrl_mutex); |
| list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) { |
| found = nvmf_ip_options_match(&ctrl->ctrl, opts); |
| if (found) |
| break; |
| } |
| mutex_unlock(&nvme_tcp_ctrl_mutex); |
| |
| return found; |
| } |
| |
| static struct nvme_tcp_ctrl *nvme_tcp_alloc_ctrl(struct device *dev, |
| struct nvmf_ctrl_options *opts) |
| { |
| struct nvme_tcp_ctrl *ctrl; |
| int ret; |
| |
| ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); |
| if (!ctrl) |
| return ERR_PTR(-ENOMEM); |
| |
| INIT_LIST_HEAD(&ctrl->list); |
| ctrl->ctrl.opts = opts; |
| ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues + |
| opts->nr_poll_queues + 1; |
| ctrl->ctrl.sqsize = opts->queue_size - 1; |
| ctrl->ctrl.kato = opts->kato; |
| |
| INIT_DELAYED_WORK(&ctrl->connect_work, |
| nvme_tcp_reconnect_ctrl_work); |
| INIT_WORK(&ctrl->err_work, nvme_tcp_error_recovery_work); |
| INIT_WORK(&ctrl->ctrl.reset_work, nvme_reset_ctrl_work); |
| |
| if (!(opts->mask & NVMF_OPT_TRSVCID)) { |
| opts->trsvcid = |
| kstrdup(__stringify(NVME_TCP_DISC_PORT), GFP_KERNEL); |
| if (!opts->trsvcid) { |
| ret = -ENOMEM; |
| goto out_free_ctrl; |
| } |
| opts->mask |= NVMF_OPT_TRSVCID; |
| } |
| |
| ret = inet_pton_with_scope(&init_net, AF_UNSPEC, |
| opts->traddr, opts->trsvcid, &ctrl->addr); |
| if (ret) { |
| pr_err("malformed address passed: %s:%s\n", |
| opts->traddr, opts->trsvcid); |
| goto out_free_ctrl; |
| } |
| |
| if (opts->mask & NVMF_OPT_HOST_TRADDR) { |
| ret = inet_pton_with_scope(&init_net, AF_UNSPEC, |
| opts->host_traddr, NULL, &ctrl->src_addr); |
| if (ret) { |
| pr_err("malformed src address passed: %s\n", |
| opts->host_traddr); |
| goto out_free_ctrl; |
| } |
| } |
| |
| if (opts->mask & NVMF_OPT_HOST_IFACE) { |
| if (!__dev_get_by_name(&init_net, opts->host_iface)) { |
| pr_err("invalid interface passed: %s\n", |
| opts->host_iface); |
| ret = -ENODEV; |
| goto out_free_ctrl; |
| } |
| } |
| |
| if (!opts->duplicate_connect && nvme_tcp_existing_controller(opts)) { |
| ret = -EALREADY; |
| goto out_free_ctrl; |
| } |
| |
| ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues), |
| GFP_KERNEL); |
| if (!ctrl->queues) { |
| ret = -ENOMEM; |
| goto out_free_ctrl; |
| } |
| |
| ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_tcp_ctrl_ops, 0); |
| if (ret) |
| goto out_kfree_queues; |
| |
| return ctrl; |
| out_kfree_queues: |
| kfree(ctrl->queues); |
| out_free_ctrl: |
| kfree(ctrl); |
| return ERR_PTR(ret); |
| } |
| |
| static struct nvme_ctrl *nvme_tcp_create_ctrl(struct device *dev, |
| struct nvmf_ctrl_options *opts) |
| { |
| struct nvme_tcp_ctrl *ctrl; |
| int ret; |
| |
| ctrl = nvme_tcp_alloc_ctrl(dev, opts); |
| if (IS_ERR(ctrl)) |
| return ERR_CAST(ctrl); |
| |
| ret = nvme_add_ctrl(&ctrl->ctrl); |
| if (ret) |
| goto out_put_ctrl; |
| |
| if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) { |
| WARN_ON_ONCE(1); |
| ret = -EINTR; |
| goto out_uninit_ctrl; |
| } |
| |
| ret = nvme_tcp_setup_ctrl(&ctrl->ctrl, true); |
| if (ret) |
| goto out_uninit_ctrl; |
| |
| dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp, hostnqn: %s\n", |
| nvmf_ctrl_subsysnqn(&ctrl->ctrl), &ctrl->addr, opts->host->nqn); |
| |
| mutex_lock(&nvme_tcp_ctrl_mutex); |
| list_add_tail(&ctrl->list, &nvme_tcp_ctrl_list); |
| mutex_unlock(&nvme_tcp_ctrl_mutex); |
| |
| return &ctrl->ctrl; |
| |
| out_uninit_ctrl: |
| nvme_uninit_ctrl(&ctrl->ctrl); |
| out_put_ctrl: |
| nvme_put_ctrl(&ctrl->ctrl); |
| if (ret > 0) |
| ret = -EIO; |
| return ERR_PTR(ret); |
| } |
| |
| static struct nvmf_transport_ops nvme_tcp_transport = { |
| .name = "tcp", |
| .module = THIS_MODULE, |
| .required_opts = NVMF_OPT_TRADDR, |
| .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY | |
| NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO | |
| NVMF_OPT_HDR_DIGEST | NVMF_OPT_DATA_DIGEST | |
| NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES | |
| NVMF_OPT_TOS | NVMF_OPT_HOST_IFACE | NVMF_OPT_TLS | |
| NVMF_OPT_KEYRING | NVMF_OPT_TLS_KEY, |
| .create_ctrl = nvme_tcp_create_ctrl, |
| }; |
| |
| static int __init nvme_tcp_init_module(void) |
| { |
| unsigned int wq_flags = WQ_MEM_RECLAIM | WQ_HIGHPRI | WQ_SYSFS; |
| |
| BUILD_BUG_ON(sizeof(struct nvme_tcp_hdr) != 8); |
| BUILD_BUG_ON(sizeof(struct nvme_tcp_cmd_pdu) != 72); |
| BUILD_BUG_ON(sizeof(struct nvme_tcp_data_pdu) != 24); |
| BUILD_BUG_ON(sizeof(struct nvme_tcp_rsp_pdu) != 24); |
| BUILD_BUG_ON(sizeof(struct nvme_tcp_r2t_pdu) != 24); |
| BUILD_BUG_ON(sizeof(struct nvme_tcp_icreq_pdu) != 128); |
| BUILD_BUG_ON(sizeof(struct nvme_tcp_icresp_pdu) != 128); |
| BUILD_BUG_ON(sizeof(struct nvme_tcp_term_pdu) != 24); |
| |
| if (wq_unbound) |
| wq_flags |= WQ_UNBOUND; |
| |
| nvme_tcp_wq = alloc_workqueue("nvme_tcp_wq", wq_flags, 0); |
| if (!nvme_tcp_wq) |
| return -ENOMEM; |
| |
| nvmf_register_transport(&nvme_tcp_transport); |
| return 0; |
| } |
| |
| static void __exit nvme_tcp_cleanup_module(void) |
| { |
| struct nvme_tcp_ctrl *ctrl; |
| |
| nvmf_unregister_transport(&nvme_tcp_transport); |
| |
| mutex_lock(&nvme_tcp_ctrl_mutex); |
| list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) |
| nvme_delete_ctrl(&ctrl->ctrl); |
| mutex_unlock(&nvme_tcp_ctrl_mutex); |
| flush_workqueue(nvme_delete_wq); |
| |
| destroy_workqueue(nvme_tcp_wq); |
| } |
| |
| module_init(nvme_tcp_init_module); |
| module_exit(nvme_tcp_cleanup_module); |
| |
| MODULE_DESCRIPTION("NVMe host TCP transport driver"); |
| MODULE_LICENSE("GPL v2"); |