blob: c1daf82c9b923be817a410f9ceffd3e44cc9a77d [file] [log] [blame] [edit]
// SPDX-License-Identifier: GPL-2.0
/*
* builtin-kwork.c
*
* Copyright (c) 2022 Huawei Inc, Yang Jihong <yangjihong1@huawei.com>
*/
#include "builtin.h"
#include "util/data.h"
#include "util/evlist.h"
#include "util/evsel.h"
#include "util/header.h"
#include "util/kwork.h"
#include "util/debug.h"
#include "util/session.h"
#include "util/symbol.h"
#include "util/thread.h"
#include "util/string2.h"
#include "util/callchain.h"
#include "util/evsel_fprintf.h"
#include "util/util.h"
#include <subcmd/pager.h>
#include <subcmd/parse-options.h>
#include <traceevent/event-parse.h>
#include <errno.h>
#include <inttypes.h>
#include <signal.h>
#include <linux/err.h>
#include <linux/time64.h>
#include <linux/zalloc.h>
/*
* report header elements width
*/
#define PRINT_CPU_WIDTH 4
#define PRINT_COUNT_WIDTH 9
#define PRINT_RUNTIME_WIDTH 10
#define PRINT_LATENCY_WIDTH 10
#define PRINT_TIMESTAMP_WIDTH 17
#define PRINT_KWORK_NAME_WIDTH 30
#define RPINT_DECIMAL_WIDTH 3
#define PRINT_BRACKETPAIR_WIDTH 2
#define PRINT_TIME_UNIT_SEC_WIDTH 2
#define PRINT_TIME_UNIT_MESC_WIDTH 3
#define PRINT_PID_WIDTH 7
#define PRINT_TASK_NAME_WIDTH 16
#define PRINT_CPU_USAGE_WIDTH 6
#define PRINT_CPU_USAGE_DECIMAL_WIDTH 2
#define PRINT_CPU_USAGE_HIST_WIDTH 30
#define PRINT_RUNTIME_HEADER_WIDTH (PRINT_RUNTIME_WIDTH + PRINT_TIME_UNIT_MESC_WIDTH)
#define PRINT_LATENCY_HEADER_WIDTH (PRINT_LATENCY_WIDTH + PRINT_TIME_UNIT_MESC_WIDTH)
#define PRINT_TIMEHIST_CPU_WIDTH (PRINT_CPU_WIDTH + PRINT_BRACKETPAIR_WIDTH)
#define PRINT_TIMESTAMP_HEADER_WIDTH (PRINT_TIMESTAMP_WIDTH + PRINT_TIME_UNIT_SEC_WIDTH)
struct sort_dimension {
const char *name;
int (*cmp)(struct kwork_work *l, struct kwork_work *r);
struct list_head list;
};
static int id_cmp(struct kwork_work *l, struct kwork_work *r)
{
if (l->cpu > r->cpu)
return 1;
if (l->cpu < r->cpu)
return -1;
if (l->id > r->id)
return 1;
if (l->id < r->id)
return -1;
return 0;
}
static int count_cmp(struct kwork_work *l, struct kwork_work *r)
{
if (l->nr_atoms > r->nr_atoms)
return 1;
if (l->nr_atoms < r->nr_atoms)
return -1;
return 0;
}
static int runtime_cmp(struct kwork_work *l, struct kwork_work *r)
{
if (l->total_runtime > r->total_runtime)
return 1;
if (l->total_runtime < r->total_runtime)
return -1;
return 0;
}
static int max_runtime_cmp(struct kwork_work *l, struct kwork_work *r)
{
if (l->max_runtime > r->max_runtime)
return 1;
if (l->max_runtime < r->max_runtime)
return -1;
return 0;
}
static int avg_latency_cmp(struct kwork_work *l, struct kwork_work *r)
{
u64 avgl, avgr;
if (!r->nr_atoms)
return 1;
if (!l->nr_atoms)
return -1;
avgl = l->total_latency / l->nr_atoms;
avgr = r->total_latency / r->nr_atoms;
if (avgl > avgr)
return 1;
if (avgl < avgr)
return -1;
return 0;
}
static int max_latency_cmp(struct kwork_work *l, struct kwork_work *r)
{
if (l->max_latency > r->max_latency)
return 1;
if (l->max_latency < r->max_latency)
return -1;
return 0;
}
static int cpu_usage_cmp(struct kwork_work *l, struct kwork_work *r)
{
if (l->cpu_usage > r->cpu_usage)
return 1;
if (l->cpu_usage < r->cpu_usage)
return -1;
return 0;
}
static int id_or_cpu_r_cmp(struct kwork_work *l, struct kwork_work *r)
{
if (l->id < r->id)
return 1;
if (l->id > r->id)
return -1;
if (l->id != 0)
return 0;
if (l->cpu < r->cpu)
return 1;
if (l->cpu > r->cpu)
return -1;
return 0;
}
static int sort_dimension__add(struct perf_kwork *kwork __maybe_unused,
const char *tok, struct list_head *list)
{
size_t i;
static struct sort_dimension max_sort_dimension = {
.name = "max",
.cmp = max_runtime_cmp,
};
static struct sort_dimension id_sort_dimension = {
.name = "id",
.cmp = id_cmp,
};
static struct sort_dimension runtime_sort_dimension = {
.name = "runtime",
.cmp = runtime_cmp,
};
static struct sort_dimension count_sort_dimension = {
.name = "count",
.cmp = count_cmp,
};
static struct sort_dimension avg_sort_dimension = {
.name = "avg",
.cmp = avg_latency_cmp,
};
static struct sort_dimension rate_sort_dimension = {
.name = "rate",
.cmp = cpu_usage_cmp,
};
static struct sort_dimension tid_sort_dimension = {
.name = "tid",
.cmp = id_or_cpu_r_cmp,
};
struct sort_dimension *available_sorts[] = {
&id_sort_dimension,
&max_sort_dimension,
&count_sort_dimension,
&runtime_sort_dimension,
&avg_sort_dimension,
&rate_sort_dimension,
&tid_sort_dimension,
};
if (kwork->report == KWORK_REPORT_LATENCY)
max_sort_dimension.cmp = max_latency_cmp;
for (i = 0; i < ARRAY_SIZE(available_sorts); i++) {
if (!strcmp(available_sorts[i]->name, tok)) {
list_add_tail(&available_sorts[i]->list, list);
return 0;
}
}
return -1;
}
static void setup_sorting(struct perf_kwork *kwork,
const struct option *options,
const char * const usage_msg[])
{
char *tmp, *tok, *str = strdup(kwork->sort_order);
for (tok = strtok_r(str, ", ", &tmp);
tok; tok = strtok_r(NULL, ", ", &tmp)) {
if (sort_dimension__add(kwork, tok, &kwork->sort_list) < 0)
usage_with_options_msg(usage_msg, options,
"Unknown --sort key: `%s'", tok);
}
pr_debug("Sort order: %s\n", kwork->sort_order);
free(str);
}
static struct kwork_atom *atom_new(struct perf_kwork *kwork,
struct perf_sample *sample)
{
unsigned long i;
struct kwork_atom_page *page;
struct kwork_atom *atom = NULL;
list_for_each_entry(page, &kwork->atom_page_list, list) {
if (!bitmap_full(page->bitmap, NR_ATOM_PER_PAGE)) {
i = find_first_zero_bit(page->bitmap, NR_ATOM_PER_PAGE);
BUG_ON(i >= NR_ATOM_PER_PAGE);
atom = &page->atoms[i];
goto found_atom;
}
}
/*
* new page
*/
page = zalloc(sizeof(*page));
if (page == NULL) {
pr_err("Failed to zalloc kwork atom page\n");
return NULL;
}
i = 0;
atom = &page->atoms[0];
list_add_tail(&page->list, &kwork->atom_page_list);
found_atom:
__set_bit(i, page->bitmap);
atom->time = sample->time;
atom->prev = NULL;
atom->page_addr = page;
atom->bit_inpage = i;
return atom;
}
static void atom_free(struct kwork_atom *atom)
{
if (atom->prev != NULL)
atom_free(atom->prev);
__clear_bit(atom->bit_inpage,
((struct kwork_atom_page *)atom->page_addr)->bitmap);
}
static void atom_del(struct kwork_atom *atom)
{
list_del(&atom->list);
atom_free(atom);
}
static int work_cmp(struct list_head *list,
struct kwork_work *l, struct kwork_work *r)
{
int ret = 0;
struct sort_dimension *sort;
BUG_ON(list_empty(list));
list_for_each_entry(sort, list, list) {
ret = sort->cmp(l, r);
if (ret)
return ret;
}
return ret;
}
static struct kwork_work *work_search(struct rb_root_cached *root,
struct kwork_work *key,
struct list_head *sort_list)
{
int cmp;
struct kwork_work *work;
struct rb_node *node = root->rb_root.rb_node;
while (node) {
work = container_of(node, struct kwork_work, node);
cmp = work_cmp(sort_list, key, work);
if (cmp > 0)
node = node->rb_left;
else if (cmp < 0)
node = node->rb_right;
else {
if (work->name == NULL)
work->name = key->name;
return work;
}
}
return NULL;
}
static void work_insert(struct rb_root_cached *root,
struct kwork_work *key, struct list_head *sort_list)
{
int cmp;
bool leftmost = true;
struct kwork_work *cur;
struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL;
while (*new) {
cur = container_of(*new, struct kwork_work, node);
parent = *new;
cmp = work_cmp(sort_list, key, cur);
if (cmp > 0)
new = &((*new)->rb_left);
else {
new = &((*new)->rb_right);
leftmost = false;
}
}
rb_link_node(&key->node, parent, new);
rb_insert_color_cached(&key->node, root, leftmost);
}
static struct kwork_work *work_new(struct kwork_work *key)
{
int i;
struct kwork_work *work = zalloc(sizeof(*work));
if (work == NULL) {
pr_err("Failed to zalloc kwork work\n");
return NULL;
}
for (i = 0; i < KWORK_TRACE_MAX; i++)
INIT_LIST_HEAD(&work->atom_list[i]);
work->id = key->id;
work->cpu = key->cpu;
work->name = key->name;
work->class = key->class;
return work;
}
static struct kwork_work *work_findnew(struct rb_root_cached *root,
struct kwork_work *key,
struct list_head *sort_list)
{
struct kwork_work *work = work_search(root, key, sort_list);
if (work != NULL)
return work;
work = work_new(key);
if (work)
work_insert(root, work, sort_list);
return work;
}
static void profile_update_timespan(struct perf_kwork *kwork,
struct perf_sample *sample)
{
if (!kwork->summary)
return;
if ((kwork->timestart == 0) || (kwork->timestart > sample->time))
kwork->timestart = sample->time;
if (kwork->timeend < sample->time)
kwork->timeend = sample->time;
}
static bool profile_name_match(struct perf_kwork *kwork,
struct kwork_work *work)
{
if (kwork->profile_name && work->name &&
(strcmp(work->name, kwork->profile_name) != 0)) {
return false;
}
return true;
}
static bool profile_event_match(struct perf_kwork *kwork,
struct kwork_work *work,
struct perf_sample *sample)
{
int cpu = work->cpu;
u64 time = sample->time;
struct perf_time_interval *ptime = &kwork->ptime;
if ((kwork->cpu_list != NULL) && !test_bit(cpu, kwork->cpu_bitmap))
return false;
if (((ptime->start != 0) && (ptime->start > time)) ||
((ptime->end != 0) && (ptime->end < time)))
return false;
/*
* report top needs to collect the runtime of all tasks to
* calculate the load of each core.
*/
if ((kwork->report != KWORK_REPORT_TOP) &&
!profile_name_match(kwork, work)) {
return false;
}
profile_update_timespan(kwork, sample);
return true;
}
static int work_push_atom(struct perf_kwork *kwork,
struct kwork_class *class,
enum kwork_trace_type src_type,
enum kwork_trace_type dst_type,
struct evsel *evsel,
struct perf_sample *sample,
struct machine *machine,
struct kwork_work **ret_work,
bool overwrite)
{
struct kwork_atom *atom, *dst_atom, *last_atom;
struct kwork_work *work, key;
BUG_ON(class->work_init == NULL);
class->work_init(kwork, class, &key, src_type, evsel, sample, machine);
atom = atom_new(kwork, sample);
if (atom == NULL)
return -1;
work = work_findnew(&class->work_root, &key, &kwork->cmp_id);
if (work == NULL) {
atom_free(atom);
return -1;
}
if (!profile_event_match(kwork, work, sample)) {
atom_free(atom);
return 0;
}
if (dst_type < KWORK_TRACE_MAX) {
dst_atom = list_last_entry_or_null(&work->atom_list[dst_type],
struct kwork_atom, list);
if (dst_atom != NULL) {
atom->prev = dst_atom;
list_del(&dst_atom->list);
}
}
if (ret_work != NULL)
*ret_work = work;
if (overwrite) {
last_atom = list_last_entry_or_null(&work->atom_list[src_type],
struct kwork_atom, list);
if (last_atom) {
atom_del(last_atom);
kwork->nr_skipped_events[src_type]++;
kwork->nr_skipped_events[KWORK_TRACE_MAX]++;
}
}
list_add_tail(&atom->list, &work->atom_list[src_type]);
return 0;
}
static struct kwork_atom *work_pop_atom(struct perf_kwork *kwork,
struct kwork_class *class,
enum kwork_trace_type src_type,
enum kwork_trace_type dst_type,
struct evsel *evsel,
struct perf_sample *sample,
struct machine *machine,
struct kwork_work **ret_work)
{
struct kwork_atom *atom, *src_atom;
struct kwork_work *work, key;
BUG_ON(class->work_init == NULL);
class->work_init(kwork, class, &key, src_type, evsel, sample, machine);
work = work_findnew(&class->work_root, &key, &kwork->cmp_id);
if (ret_work != NULL)
*ret_work = work;
if (work == NULL)
return NULL;
if (!profile_event_match(kwork, work, sample))
return NULL;
atom = list_last_entry_or_null(&work->atom_list[dst_type],
struct kwork_atom, list);
if (atom != NULL)
return atom;
src_atom = atom_new(kwork, sample);
if (src_atom != NULL)
list_add_tail(&src_atom->list, &work->atom_list[src_type]);
else {
if (ret_work != NULL)
*ret_work = NULL;
}
return NULL;
}
static struct kwork_work *find_work_by_id(struct rb_root_cached *root,
u64 id, int cpu)
{
struct rb_node *next;
struct kwork_work *work;
next = rb_first_cached(root);
while (next) {
work = rb_entry(next, struct kwork_work, node);
if ((cpu != -1 && work->id == id && work->cpu == cpu) ||
(cpu == -1 && work->id == id))
return work;
next = rb_next(next);
}
return NULL;
}
static struct kwork_class *get_kwork_class(struct perf_kwork *kwork,
enum kwork_class_type type)
{
struct kwork_class *class;
list_for_each_entry(class, &kwork->class_list, list) {
if (class->type == type)
return class;
}
return NULL;
}
static void report_update_exit_event(struct kwork_work *work,
struct kwork_atom *atom,
struct perf_sample *sample)
{
u64 delta;
u64 exit_time = sample->time;
u64 entry_time = atom->time;
if ((entry_time != 0) && (exit_time >= entry_time)) {
delta = exit_time - entry_time;
if ((delta > work->max_runtime) ||
(work->max_runtime == 0)) {
work->max_runtime = delta;
work->max_runtime_start = entry_time;
work->max_runtime_end = exit_time;
}
work->total_runtime += delta;
work->nr_atoms++;
}
}
static int report_entry_event(struct perf_kwork *kwork,
struct kwork_class *class,
struct evsel *evsel,
struct perf_sample *sample,
struct machine *machine)
{
return work_push_atom(kwork, class, KWORK_TRACE_ENTRY,
KWORK_TRACE_MAX, evsel, sample,
machine, NULL, true);
}
static int report_exit_event(struct perf_kwork *kwork,
struct kwork_class *class,
struct evsel *evsel,
struct perf_sample *sample,
struct machine *machine)
{
struct kwork_atom *atom = NULL;
struct kwork_work *work = NULL;
atom = work_pop_atom(kwork, class, KWORK_TRACE_EXIT,
KWORK_TRACE_ENTRY, evsel, sample,
machine, &work);
if (work == NULL)
return -1;
if (atom != NULL) {
report_update_exit_event(work, atom, sample);
atom_del(atom);
}
return 0;
}
static void latency_update_entry_event(struct kwork_work *work,
struct kwork_atom *atom,
struct perf_sample *sample)
{
u64 delta;
u64 entry_time = sample->time;
u64 raise_time = atom->time;
if ((raise_time != 0) && (entry_time >= raise_time)) {
delta = entry_time - raise_time;
if ((delta > work->max_latency) ||
(work->max_latency == 0)) {
work->max_latency = delta;
work->max_latency_start = raise_time;
work->max_latency_end = entry_time;
}
work->total_latency += delta;
work->nr_atoms++;
}
}
static int latency_raise_event(struct perf_kwork *kwork,
struct kwork_class *class,
struct evsel *evsel,
struct perf_sample *sample,
struct machine *machine)
{
return work_push_atom(kwork, class, KWORK_TRACE_RAISE,
KWORK_TRACE_MAX, evsel, sample,
machine, NULL, true);
}
static int latency_entry_event(struct perf_kwork *kwork,
struct kwork_class *class,
struct evsel *evsel,
struct perf_sample *sample,
struct machine *machine)
{
struct kwork_atom *atom = NULL;
struct kwork_work *work = NULL;
atom = work_pop_atom(kwork, class, KWORK_TRACE_ENTRY,
KWORK_TRACE_RAISE, evsel, sample,
machine, &work);
if (work == NULL)
return -1;
if (atom != NULL) {
latency_update_entry_event(work, atom, sample);
atom_del(atom);
}
return 0;
}
static void timehist_save_callchain(struct perf_kwork *kwork,
struct perf_sample *sample,
struct evsel *evsel,
struct machine *machine)
{
struct symbol *sym;
struct thread *thread;
struct callchain_cursor_node *node;
struct callchain_cursor *cursor;
if (!kwork->show_callchain || sample->callchain == NULL)
return;
/* want main thread for process - has maps */
thread = machine__findnew_thread(machine, sample->pid, sample->pid);
if (thread == NULL) {
pr_debug("Failed to get thread for pid %d\n", sample->pid);
return;
}
cursor = get_tls_callchain_cursor();
if (thread__resolve_callchain(thread, cursor, evsel, sample,
NULL, NULL, kwork->max_stack + 2) != 0) {
pr_debug("Failed to resolve callchain, skipping\n");
goto out_put;
}
callchain_cursor_commit(cursor);
while (true) {
node = callchain_cursor_current(cursor);
if (node == NULL)
break;
sym = node->ms.sym;
if (sym) {
if (!strcmp(sym->name, "__softirqentry_text_start") ||
!strcmp(sym->name, "__do_softirq"))
sym->ignore = 1;
}
callchain_cursor_advance(cursor);
}
out_put:
thread__put(thread);
}
static void timehist_print_event(struct perf_kwork *kwork,
struct kwork_work *work,
struct kwork_atom *atom,
struct perf_sample *sample,
struct addr_location *al)
{
char entrytime[32], exittime[32];
char kwork_name[PRINT_KWORK_NAME_WIDTH];
/*
* runtime start
*/
timestamp__scnprintf_usec(atom->time,
entrytime, sizeof(entrytime));
printf(" %*s ", PRINT_TIMESTAMP_WIDTH, entrytime);
/*
* runtime end
*/
timestamp__scnprintf_usec(sample->time,
exittime, sizeof(exittime));
printf(" %*s ", PRINT_TIMESTAMP_WIDTH, exittime);
/*
* cpu
*/
printf(" [%0*d] ", PRINT_CPU_WIDTH, work->cpu);
/*
* kwork name
*/
if (work->class && work->class->work_name) {
work->class->work_name(work, kwork_name,
PRINT_KWORK_NAME_WIDTH);
printf(" %-*s ", PRINT_KWORK_NAME_WIDTH, kwork_name);
} else
printf(" %-*s ", PRINT_KWORK_NAME_WIDTH, "");
/*
*runtime
*/
printf(" %*.*f ",
PRINT_RUNTIME_WIDTH, RPINT_DECIMAL_WIDTH,
(double)(sample->time - atom->time) / NSEC_PER_MSEC);
/*
* delaytime
*/
if (atom->prev != NULL)
printf(" %*.*f ", PRINT_LATENCY_WIDTH, RPINT_DECIMAL_WIDTH,
(double)(atom->time - atom->prev->time) / NSEC_PER_MSEC);
else
printf(" %*s ", PRINT_LATENCY_WIDTH, " ");
/*
* callchain
*/
if (kwork->show_callchain) {
struct callchain_cursor *cursor = get_tls_callchain_cursor();
if (cursor == NULL)
return;
printf(" ");
sample__fprintf_sym(sample, al, 0,
EVSEL__PRINT_SYM | EVSEL__PRINT_ONELINE |
EVSEL__PRINT_CALLCHAIN_ARROW |
EVSEL__PRINT_SKIP_IGNORED,
cursor, symbol_conf.bt_stop_list,
stdout);
}
printf("\n");
}
static int timehist_raise_event(struct perf_kwork *kwork,
struct kwork_class *class,
struct evsel *evsel,
struct perf_sample *sample,
struct machine *machine)
{
return work_push_atom(kwork, class, KWORK_TRACE_RAISE,
KWORK_TRACE_MAX, evsel, sample,
machine, NULL, true);
}
static int timehist_entry_event(struct perf_kwork *kwork,
struct kwork_class *class,
struct evsel *evsel,
struct perf_sample *sample,
struct machine *machine)
{
int ret;
struct kwork_work *work = NULL;
ret = work_push_atom(kwork, class, KWORK_TRACE_ENTRY,
KWORK_TRACE_RAISE, evsel, sample,
machine, &work, true);
if (ret)
return ret;
if (work != NULL)
timehist_save_callchain(kwork, sample, evsel, machine);
return 0;
}
static int timehist_exit_event(struct perf_kwork *kwork,
struct kwork_class *class,
struct evsel *evsel,
struct perf_sample *sample,
struct machine *machine)
{
struct kwork_atom *atom = NULL;
struct kwork_work *work = NULL;
struct addr_location al;
int ret = 0;
addr_location__init(&al);
if (machine__resolve(machine, &al, sample) < 0) {
pr_debug("Problem processing event, skipping it\n");
ret = -1;
goto out;
}
atom = work_pop_atom(kwork, class, KWORK_TRACE_EXIT,
KWORK_TRACE_ENTRY, evsel, sample,
machine, &work);
if (work == NULL) {
ret = -1;
goto out;
}
if (atom != NULL) {
work->nr_atoms++;
timehist_print_event(kwork, work, atom, sample, &al);
atom_del(atom);
}
out:
addr_location__exit(&al);
return ret;
}
static void top_update_runtime(struct kwork_work *work,
struct kwork_atom *atom,
struct perf_sample *sample)
{
u64 delta;
u64 exit_time = sample->time;
u64 entry_time = atom->time;
if ((entry_time != 0) && (exit_time >= entry_time)) {
delta = exit_time - entry_time;
work->total_runtime += delta;
}
}
static int top_entry_event(struct perf_kwork *kwork,
struct kwork_class *class,
struct evsel *evsel,
struct perf_sample *sample,
struct machine *machine)
{
return work_push_atom(kwork, class, KWORK_TRACE_ENTRY,
KWORK_TRACE_MAX, evsel, sample,
machine, NULL, true);
}
static int top_exit_event(struct perf_kwork *kwork,
struct kwork_class *class,
struct evsel *evsel,
struct perf_sample *sample,
struct machine *machine)
{
struct kwork_work *work, *sched_work;
struct kwork_class *sched_class;
struct kwork_atom *atom;
atom = work_pop_atom(kwork, class, KWORK_TRACE_EXIT,
KWORK_TRACE_ENTRY, evsel, sample,
machine, &work);
if (!work)
return -1;
if (atom) {
sched_class = get_kwork_class(kwork, KWORK_CLASS_SCHED);
if (sched_class) {
sched_work = find_work_by_id(&sched_class->work_root,
work->id, work->cpu);
if (sched_work)
top_update_runtime(work, atom, sample);
}
atom_del(atom);
}
return 0;
}
static int top_sched_switch_event(struct perf_kwork *kwork,
struct kwork_class *class,
struct evsel *evsel,
struct perf_sample *sample,
struct machine *machine)
{
struct kwork_atom *atom;
struct kwork_work *work;
atom = work_pop_atom(kwork, class, KWORK_TRACE_EXIT,
KWORK_TRACE_ENTRY, evsel, sample,
machine, &work);
if (!work)
return -1;
if (atom) {
top_update_runtime(work, atom, sample);
atom_del(atom);
}
return top_entry_event(kwork, class, evsel, sample, machine);
}
static struct kwork_class kwork_irq;
static int process_irq_handler_entry_event(const struct perf_tool *tool,
struct evsel *evsel,
struct perf_sample *sample,
struct machine *machine)
{
struct perf_kwork *kwork = container_of(tool, struct perf_kwork, tool);
if (kwork->tp_handler->entry_event)
return kwork->tp_handler->entry_event(kwork, &kwork_irq,
evsel, sample, machine);
return 0;
}
static int process_irq_handler_exit_event(const struct perf_tool *tool,
struct evsel *evsel,
struct perf_sample *sample,
struct machine *machine)
{
struct perf_kwork *kwork = container_of(tool, struct perf_kwork, tool);
if (kwork->tp_handler->exit_event)
return kwork->tp_handler->exit_event(kwork, &kwork_irq,
evsel, sample, machine);
return 0;
}
const struct evsel_str_handler irq_tp_handlers[] = {
{ "irq:irq_handler_entry", process_irq_handler_entry_event, },
{ "irq:irq_handler_exit", process_irq_handler_exit_event, },
};
static int irq_class_init(struct kwork_class *class,
struct perf_session *session)
{
if (perf_session__set_tracepoints_handlers(session, irq_tp_handlers)) {
pr_err("Failed to set irq tracepoints handlers\n");
return -1;
}
class->work_root = RB_ROOT_CACHED;
return 0;
}
static void irq_work_init(struct perf_kwork *kwork,
struct kwork_class *class,
struct kwork_work *work,
enum kwork_trace_type src_type __maybe_unused,
struct evsel *evsel,
struct perf_sample *sample,
struct machine *machine __maybe_unused)
{
work->class = class;
work->cpu = sample->cpu;
if (kwork->report == KWORK_REPORT_TOP) {
work->id = evsel__intval_common(evsel, sample, "common_pid");
work->name = NULL;
} else {
work->id = evsel__intval(evsel, sample, "irq");
work->name = evsel__strval(evsel, sample, "name");
}
}
static void irq_work_name(struct kwork_work *work, char *buf, int len)
{
snprintf(buf, len, "%s:%" PRIu64 "", work->name, work->id);
}
static struct kwork_class kwork_irq = {
.name = "irq",
.type = KWORK_CLASS_IRQ,
.nr_tracepoints = 2,
.tp_handlers = irq_tp_handlers,
.class_init = irq_class_init,
.work_init = irq_work_init,
.work_name = irq_work_name,
};
static struct kwork_class kwork_softirq;
static int process_softirq_raise_event(const struct perf_tool *tool,
struct evsel *evsel,
struct perf_sample *sample,
struct machine *machine)
{
struct perf_kwork *kwork = container_of(tool, struct perf_kwork, tool);
if (kwork->tp_handler->raise_event)
return kwork->tp_handler->raise_event(kwork, &kwork_softirq,
evsel, sample, machine);
return 0;
}
static int process_softirq_entry_event(const struct perf_tool *tool,
struct evsel *evsel,
struct perf_sample *sample,
struct machine *machine)
{
struct perf_kwork *kwork = container_of(tool, struct perf_kwork, tool);
if (kwork->tp_handler->entry_event)
return kwork->tp_handler->entry_event(kwork, &kwork_softirq,
evsel, sample, machine);
return 0;
}
static int process_softirq_exit_event(const struct perf_tool *tool,
struct evsel *evsel,
struct perf_sample *sample,
struct machine *machine)
{
struct perf_kwork *kwork = container_of(tool, struct perf_kwork, tool);
if (kwork->tp_handler->exit_event)
return kwork->tp_handler->exit_event(kwork, &kwork_softirq,
evsel, sample, machine);
return 0;
}
const struct evsel_str_handler softirq_tp_handlers[] = {
{ "irq:softirq_raise", process_softirq_raise_event, },
{ "irq:softirq_entry", process_softirq_entry_event, },
{ "irq:softirq_exit", process_softirq_exit_event, },
};
static int softirq_class_init(struct kwork_class *class,
struct perf_session *session)
{
if (perf_session__set_tracepoints_handlers(session,
softirq_tp_handlers)) {
pr_err("Failed to set softirq tracepoints handlers\n");
return -1;
}
class->work_root = RB_ROOT_CACHED;
return 0;
}
static char *evsel__softirq_name(struct evsel *evsel, u64 num)
{
char *name = NULL;
bool found = false;
struct tep_print_flag_sym *sym = NULL;
struct tep_print_arg *args = evsel->tp_format->print_fmt.args;
if ((args == NULL) || (args->next == NULL))
return NULL;
/* skip softirq field: "REC->vec" */
for (sym = args->next->symbol.symbols; sym != NULL; sym = sym->next) {
if ((eval_flag(sym->value) == (unsigned long long)num) &&
(strlen(sym->str) != 0)) {
found = true;
break;
}
}
if (!found)
return NULL;
name = strdup(sym->str);
if (name == NULL) {
pr_err("Failed to copy symbol name\n");
return NULL;
}
return name;
}
static void softirq_work_init(struct perf_kwork *kwork,
struct kwork_class *class,
struct kwork_work *work,
enum kwork_trace_type src_type __maybe_unused,
struct evsel *evsel,
struct perf_sample *sample,
struct machine *machine __maybe_unused)
{
u64 num;
work->class = class;
work->cpu = sample->cpu;
if (kwork->report == KWORK_REPORT_TOP) {
work->id = evsel__intval_common(evsel, sample, "common_pid");
work->name = NULL;
} else {
num = evsel__intval(evsel, sample, "vec");
work->id = num;
work->name = evsel__softirq_name(evsel, num);
}
}
static void softirq_work_name(struct kwork_work *work, char *buf, int len)
{
snprintf(buf, len, "(s)%s:%" PRIu64 "", work->name, work->id);
}
static struct kwork_class kwork_softirq = {
.name = "softirq",
.type = KWORK_CLASS_SOFTIRQ,
.nr_tracepoints = 3,
.tp_handlers = softirq_tp_handlers,
.class_init = softirq_class_init,
.work_init = softirq_work_init,
.work_name = softirq_work_name,
};
static struct kwork_class kwork_workqueue;
static int process_workqueue_activate_work_event(const struct perf_tool *tool,
struct evsel *evsel,
struct perf_sample *sample,
struct machine *machine)
{
struct perf_kwork *kwork = container_of(tool, struct perf_kwork, tool);
if (kwork->tp_handler->raise_event)
return kwork->tp_handler->raise_event(kwork, &kwork_workqueue,
evsel, sample, machine);
return 0;
}
static int process_workqueue_execute_start_event(const struct perf_tool *tool,
struct evsel *evsel,
struct perf_sample *sample,
struct machine *machine)
{
struct perf_kwork *kwork = container_of(tool, struct perf_kwork, tool);
if (kwork->tp_handler->entry_event)
return kwork->tp_handler->entry_event(kwork, &kwork_workqueue,
evsel, sample, machine);
return 0;
}
static int process_workqueue_execute_end_event(const struct perf_tool *tool,
struct evsel *evsel,
struct perf_sample *sample,
struct machine *machine)
{
struct perf_kwork *kwork = container_of(tool, struct perf_kwork, tool);
if (kwork->tp_handler->exit_event)
return kwork->tp_handler->exit_event(kwork, &kwork_workqueue,
evsel, sample, machine);
return 0;
}
const struct evsel_str_handler workqueue_tp_handlers[] = {
{ "workqueue:workqueue_activate_work", process_workqueue_activate_work_event, },
{ "workqueue:workqueue_execute_start", process_workqueue_execute_start_event, },
{ "workqueue:workqueue_execute_end", process_workqueue_execute_end_event, },
};
static int workqueue_class_init(struct kwork_class *class,
struct perf_session *session)
{
if (perf_session__set_tracepoints_handlers(session,
workqueue_tp_handlers)) {
pr_err("Failed to set workqueue tracepoints handlers\n");
return -1;
}
class->work_root = RB_ROOT_CACHED;
return 0;
}
static void workqueue_work_init(struct perf_kwork *kwork __maybe_unused,
struct kwork_class *class,
struct kwork_work *work,
enum kwork_trace_type src_type __maybe_unused,
struct evsel *evsel,
struct perf_sample *sample,
struct machine *machine)
{
char *modp = NULL;
unsigned long long function_addr = evsel__intval(evsel,
sample, "function");
work->class = class;
work->cpu = sample->cpu;
work->id = evsel__intval(evsel, sample, "work");
work->name = function_addr == 0 ? NULL :
machine__resolve_kernel_addr(machine, &function_addr, &modp);
}
static void workqueue_work_name(struct kwork_work *work, char *buf, int len)
{
if (work->name != NULL)
snprintf(buf, len, "(w)%s", work->name);
else
snprintf(buf, len, "(w)0x%" PRIx64, work->id);
}
static struct kwork_class kwork_workqueue = {
.name = "workqueue",
.type = KWORK_CLASS_WORKQUEUE,
.nr_tracepoints = 3,
.tp_handlers = workqueue_tp_handlers,
.class_init = workqueue_class_init,
.work_init = workqueue_work_init,
.work_name = workqueue_work_name,
};
static struct kwork_class kwork_sched;
static int process_sched_switch_event(const struct perf_tool *tool,
struct evsel *evsel,
struct perf_sample *sample,
struct machine *machine)
{
struct perf_kwork *kwork = container_of(tool, struct perf_kwork, tool);
if (kwork->tp_handler->sched_switch_event)
return kwork->tp_handler->sched_switch_event(kwork, &kwork_sched,
evsel, sample, machine);
return 0;
}
const struct evsel_str_handler sched_tp_handlers[] = {
{ "sched:sched_switch", process_sched_switch_event, },
};
static int sched_class_init(struct kwork_class *class,
struct perf_session *session)
{
if (perf_session__set_tracepoints_handlers(session,
sched_tp_handlers)) {
pr_err("Failed to set sched tracepoints handlers\n");
return -1;
}
class->work_root = RB_ROOT_CACHED;
return 0;
}
static void sched_work_init(struct perf_kwork *kwork __maybe_unused,
struct kwork_class *class,
struct kwork_work *work,
enum kwork_trace_type src_type,
struct evsel *evsel,
struct perf_sample *sample,
struct machine *machine __maybe_unused)
{
work->class = class;
work->cpu = sample->cpu;
if (src_type == KWORK_TRACE_EXIT) {
work->id = evsel__intval(evsel, sample, "prev_pid");
work->name = strdup(evsel__strval(evsel, sample, "prev_comm"));
} else if (src_type == KWORK_TRACE_ENTRY) {
work->id = evsel__intval(evsel, sample, "next_pid");
work->name = strdup(evsel__strval(evsel, sample, "next_comm"));
}
}
static void sched_work_name(struct kwork_work *work, char *buf, int len)
{
snprintf(buf, len, "%s", work->name);
}
static struct kwork_class kwork_sched = {
.name = "sched",
.type = KWORK_CLASS_SCHED,
.nr_tracepoints = ARRAY_SIZE(sched_tp_handlers),
.tp_handlers = sched_tp_handlers,
.class_init = sched_class_init,
.work_init = sched_work_init,
.work_name = sched_work_name,
};
static struct kwork_class *kwork_class_supported_list[KWORK_CLASS_MAX] = {
[KWORK_CLASS_IRQ] = &kwork_irq,
[KWORK_CLASS_SOFTIRQ] = &kwork_softirq,
[KWORK_CLASS_WORKQUEUE] = &kwork_workqueue,
[KWORK_CLASS_SCHED] = &kwork_sched,
};
static void print_separator(int len)
{
printf(" %.*s\n", len, graph_dotted_line);
}
static int report_print_work(struct perf_kwork *kwork, struct kwork_work *work)
{
int ret = 0;
char kwork_name[PRINT_KWORK_NAME_WIDTH];
char max_runtime_start[32], max_runtime_end[32];
char max_latency_start[32], max_latency_end[32];
printf(" ");
/*
* kwork name
*/
if (work->class && work->class->work_name) {
work->class->work_name(work, kwork_name,
PRINT_KWORK_NAME_WIDTH);
ret += printf(" %-*s |", PRINT_KWORK_NAME_WIDTH, kwork_name);
} else {
ret += printf(" %-*s |", PRINT_KWORK_NAME_WIDTH, "");
}
/*
* cpu
*/
ret += printf(" %0*d |", PRINT_CPU_WIDTH, work->cpu);
/*
* total runtime
*/
if (kwork->report == KWORK_REPORT_RUNTIME) {
ret += printf(" %*.*f ms |",
PRINT_RUNTIME_WIDTH, RPINT_DECIMAL_WIDTH,
(double)work->total_runtime / NSEC_PER_MSEC);
} else if (kwork->report == KWORK_REPORT_LATENCY) { // avg delay
ret += printf(" %*.*f ms |",
PRINT_LATENCY_WIDTH, RPINT_DECIMAL_WIDTH,
(double)work->total_latency /
work->nr_atoms / NSEC_PER_MSEC);
}
/*
* count
*/
ret += printf(" %*" PRIu64 " |", PRINT_COUNT_WIDTH, work->nr_atoms);
/*
* max runtime, max runtime start, max runtime end
*/
if (kwork->report == KWORK_REPORT_RUNTIME) {
timestamp__scnprintf_usec(work->max_runtime_start,
max_runtime_start,
sizeof(max_runtime_start));
timestamp__scnprintf_usec(work->max_runtime_end,
max_runtime_end,
sizeof(max_runtime_end));
ret += printf(" %*.*f ms | %*s s | %*s s |",
PRINT_RUNTIME_WIDTH, RPINT_DECIMAL_WIDTH,
(double)work->max_runtime / NSEC_PER_MSEC,
PRINT_TIMESTAMP_WIDTH, max_runtime_start,
PRINT_TIMESTAMP_WIDTH, max_runtime_end);
}
/*
* max delay, max delay start, max delay end
*/
else if (kwork->report == KWORK_REPORT_LATENCY) {
timestamp__scnprintf_usec(work->max_latency_start,
max_latency_start,
sizeof(max_latency_start));
timestamp__scnprintf_usec(work->max_latency_end,
max_latency_end,
sizeof(max_latency_end));
ret += printf(" %*.*f ms | %*s s | %*s s |",
PRINT_LATENCY_WIDTH, RPINT_DECIMAL_WIDTH,
(double)work->max_latency / NSEC_PER_MSEC,
PRINT_TIMESTAMP_WIDTH, max_latency_start,
PRINT_TIMESTAMP_WIDTH, max_latency_end);
}
printf("\n");
return ret;
}
static int report_print_header(struct perf_kwork *kwork)
{
int ret;
printf("\n ");
ret = printf(" %-*s | %-*s |",
PRINT_KWORK_NAME_WIDTH, "Kwork Name",
PRINT_CPU_WIDTH, "Cpu");
if (kwork->report == KWORK_REPORT_RUNTIME) {
ret += printf(" %-*s |",
PRINT_RUNTIME_HEADER_WIDTH, "Total Runtime");
} else if (kwork->report == KWORK_REPORT_LATENCY) {
ret += printf(" %-*s |",
PRINT_LATENCY_HEADER_WIDTH, "Avg delay");
}
ret += printf(" %-*s |", PRINT_COUNT_WIDTH, "Count");
if (kwork->report == KWORK_REPORT_RUNTIME) {
ret += printf(" %-*s | %-*s | %-*s |",
PRINT_RUNTIME_HEADER_WIDTH, "Max runtime",
PRINT_TIMESTAMP_HEADER_WIDTH, "Max runtime start",
PRINT_TIMESTAMP_HEADER_WIDTH, "Max runtime end");
} else if (kwork->report == KWORK_REPORT_LATENCY) {
ret += printf(" %-*s | %-*s | %-*s |",
PRINT_LATENCY_HEADER_WIDTH, "Max delay",
PRINT_TIMESTAMP_HEADER_WIDTH, "Max delay start",
PRINT_TIMESTAMP_HEADER_WIDTH, "Max delay end");
}
printf("\n");
print_separator(ret);
return ret;
}
static void timehist_print_header(void)
{
/*
* header row
*/
printf(" %-*s %-*s %-*s %-*s %-*s %-*s\n",
PRINT_TIMESTAMP_WIDTH, "Runtime start",
PRINT_TIMESTAMP_WIDTH, "Runtime end",
PRINT_TIMEHIST_CPU_WIDTH, "Cpu",
PRINT_KWORK_NAME_WIDTH, "Kwork name",
PRINT_RUNTIME_WIDTH, "Runtime",
PRINT_RUNTIME_WIDTH, "Delaytime");
/*
* units row
*/
printf(" %-*s %-*s %-*s %-*s %-*s %-*s\n",
PRINT_TIMESTAMP_WIDTH, "",
PRINT_TIMESTAMP_WIDTH, "",
PRINT_TIMEHIST_CPU_WIDTH, "",
PRINT_KWORK_NAME_WIDTH, "(TYPE)NAME:NUM",
PRINT_RUNTIME_WIDTH, "(msec)",
PRINT_RUNTIME_WIDTH, "(msec)");
/*
* separator
*/
printf(" %.*s %.*s %.*s %.*s %.*s %.*s\n",
PRINT_TIMESTAMP_WIDTH, graph_dotted_line,
PRINT_TIMESTAMP_WIDTH, graph_dotted_line,
PRINT_TIMEHIST_CPU_WIDTH, graph_dotted_line,
PRINT_KWORK_NAME_WIDTH, graph_dotted_line,
PRINT_RUNTIME_WIDTH, graph_dotted_line,
PRINT_RUNTIME_WIDTH, graph_dotted_line);
}
static void print_summary(struct perf_kwork *kwork)
{
u64 time = kwork->timeend - kwork->timestart;
printf(" Total count : %9" PRIu64 "\n", kwork->all_count);
printf(" Total runtime (msec) : %9.3f (%.3f%% load average)\n",
(double)kwork->all_runtime / NSEC_PER_MSEC,
time == 0 ? 0 : (double)kwork->all_runtime / time);
printf(" Total time span (msec) : %9.3f\n",
(double)time / NSEC_PER_MSEC);
}
static unsigned long long nr_list_entry(struct list_head *head)
{
struct list_head *pos;
unsigned long long n = 0;
list_for_each(pos, head)
n++;
return n;
}
static void print_skipped_events(struct perf_kwork *kwork)
{
int i;
const char *const kwork_event_str[] = {
[KWORK_TRACE_RAISE] = "raise",
[KWORK_TRACE_ENTRY] = "entry",
[KWORK_TRACE_EXIT] = "exit",
};
if ((kwork->nr_skipped_events[KWORK_TRACE_MAX] != 0) &&
(kwork->nr_events != 0)) {
printf(" INFO: %.3f%% skipped events (%" PRIu64 " including ",
(double)kwork->nr_skipped_events[KWORK_TRACE_MAX] /
(double)kwork->nr_events * 100.0,
kwork->nr_skipped_events[KWORK_TRACE_MAX]);
for (i = 0; i < KWORK_TRACE_MAX; i++) {
printf("%" PRIu64 " %s%s",
kwork->nr_skipped_events[i],
kwork_event_str[i],
(i == KWORK_TRACE_MAX - 1) ? ")\n" : ", ");
}
}
if (verbose > 0)
printf(" INFO: use %lld atom pages\n",
nr_list_entry(&kwork->atom_page_list));
}
static void print_bad_events(struct perf_kwork *kwork)
{
if ((kwork->nr_lost_events != 0) && (kwork->nr_events != 0)) {
printf(" INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
(double)kwork->nr_lost_events /
(double)kwork->nr_events * 100.0,
kwork->nr_lost_events, kwork->nr_events,
kwork->nr_lost_chunks);
}
}
const char *graph_load = "||||||||||||||||||||||||||||||||||||||||||||||||";
const char *graph_idle = " ";
static void top_print_per_cpu_load(struct perf_kwork *kwork)
{
int i, load_width;
u64 total, load, load_ratio;
struct kwork_top_stat *stat = &kwork->top_stat;
for (i = 0; i < MAX_NR_CPUS; i++) {
total = stat->cpus_runtime[i].total;
load = stat->cpus_runtime[i].load;
if (test_bit(i, stat->all_cpus_bitmap) && total) {
load_ratio = load * 10000 / total;
load_width = PRINT_CPU_USAGE_HIST_WIDTH *
load_ratio / 10000;
printf("%%Cpu%-*d[%.*s%.*s %*.*f%%]\n",
PRINT_CPU_WIDTH, i,
load_width, graph_load,
PRINT_CPU_USAGE_HIST_WIDTH - load_width,
graph_idle,
PRINT_CPU_USAGE_WIDTH,
PRINT_CPU_USAGE_DECIMAL_WIDTH,
(double)load_ratio / 100);
}
}
}
static void top_print_cpu_usage(struct perf_kwork *kwork)
{
struct kwork_top_stat *stat = &kwork->top_stat;
u64 idle_time = stat->cpus_runtime[MAX_NR_CPUS].idle;
u64 hardirq_time = stat->cpus_runtime[MAX_NR_CPUS].irq;
u64 softirq_time = stat->cpus_runtime[MAX_NR_CPUS].softirq;
int cpus_nr = bitmap_weight(stat->all_cpus_bitmap, MAX_NR_CPUS);
u64 cpus_total_time = stat->cpus_runtime[MAX_NR_CPUS].total;
printf("Total : %*.*f ms, %d cpus\n",
PRINT_RUNTIME_WIDTH, RPINT_DECIMAL_WIDTH,
(double)cpus_total_time / NSEC_PER_MSEC,
cpus_nr);
printf("%%Cpu(s): %*.*f%% id, %*.*f%% hi, %*.*f%% si\n",
PRINT_CPU_USAGE_WIDTH, PRINT_CPU_USAGE_DECIMAL_WIDTH,
cpus_total_time ? (double)idle_time * 100 / cpus_total_time : 0,
PRINT_CPU_USAGE_WIDTH, PRINT_CPU_USAGE_DECIMAL_WIDTH,
cpus_total_time ? (double)hardirq_time * 100 / cpus_total_time : 0,
PRINT_CPU_USAGE_WIDTH, PRINT_CPU_USAGE_DECIMAL_WIDTH,
cpus_total_time ? (double)softirq_time * 100 / cpus_total_time : 0);
top_print_per_cpu_load(kwork);
}
static void top_print_header(struct perf_kwork *kwork __maybe_unused)
{
int ret;
printf("\n ");
ret = printf(" %*s %s%*s%s %*s %*s %-*s",
PRINT_PID_WIDTH, "PID",
kwork->use_bpf ? " " : "",
kwork->use_bpf ? PRINT_PID_WIDTH : 0,
kwork->use_bpf ? "SPID" : "",
kwork->use_bpf ? " " : "",
PRINT_CPU_USAGE_WIDTH, "%CPU",
PRINT_RUNTIME_HEADER_WIDTH + RPINT_DECIMAL_WIDTH, "RUNTIME",
PRINT_TASK_NAME_WIDTH, "COMMAND");
printf("\n ");
print_separator(ret);
}
static int top_print_work(struct perf_kwork *kwork __maybe_unused, struct kwork_work *work)
{
int ret = 0;
printf(" ");
/*
* pid
*/
ret += printf(" %*" PRIu64 " ", PRINT_PID_WIDTH, work->id);
/*
* tgid
*/
if (kwork->use_bpf)
ret += printf(" %*d ", PRINT_PID_WIDTH, work->tgid);
/*
* cpu usage
*/
ret += printf(" %*.*f ",
PRINT_CPU_USAGE_WIDTH, PRINT_CPU_USAGE_DECIMAL_WIDTH,
(double)work->cpu_usage / 100);
/*
* total runtime
*/
ret += printf(" %*.*f ms ",
PRINT_RUNTIME_WIDTH + RPINT_DECIMAL_WIDTH, RPINT_DECIMAL_WIDTH,
(double)work->total_runtime / NSEC_PER_MSEC);
/*
* command
*/
if (kwork->use_bpf)
ret += printf(" %s%s%s",
work->is_kthread ? "[" : "",
work->name,
work->is_kthread ? "]" : "");
else
ret += printf(" %-*s", PRINT_TASK_NAME_WIDTH, work->name);
printf("\n");
return ret;
}
static void work_sort(struct perf_kwork *kwork,
struct kwork_class *class, struct rb_root_cached *root)
{
struct rb_node *node;
struct kwork_work *data;
pr_debug("Sorting %s ...\n", class->name);
for (;;) {
node = rb_first_cached(root);
if (!node)
break;
rb_erase_cached(node, root);
data = rb_entry(node, struct kwork_work, node);
work_insert(&kwork->sorted_work_root,
data, &kwork->sort_list);
}
}
static void perf_kwork__sort(struct perf_kwork *kwork)
{
struct kwork_class *class;
list_for_each_entry(class, &kwork->class_list, list)
work_sort(kwork, class, &class->work_root);
}
static int perf_kwork__check_config(struct perf_kwork *kwork,
struct perf_session *session)
{
int ret;
struct evsel *evsel;
struct kwork_class *class;
static struct trace_kwork_handler report_ops = {
.entry_event = report_entry_event,
.exit_event = report_exit_event,
};
static struct trace_kwork_handler latency_ops = {
.raise_event = latency_raise_event,
.entry_event = latency_entry_event,
};
static struct trace_kwork_handler timehist_ops = {
.raise_event = timehist_raise_event,
.entry_event = timehist_entry_event,
.exit_event = timehist_exit_event,
};
static struct trace_kwork_handler top_ops = {
.entry_event = timehist_entry_event,
.exit_event = top_exit_event,
.sched_switch_event = top_sched_switch_event,
};
switch (kwork->report) {
case KWORK_REPORT_RUNTIME:
kwork->tp_handler = &report_ops;
break;
case KWORK_REPORT_LATENCY:
kwork->tp_handler = &latency_ops;
break;
case KWORK_REPORT_TIMEHIST:
kwork->tp_handler = &timehist_ops;
break;
case KWORK_REPORT_TOP:
kwork->tp_handler = &top_ops;
break;
default:
pr_debug("Invalid report type %d\n", kwork->report);
return -1;
}
list_for_each_entry(class, &kwork->class_list, list)
if ((class->class_init != NULL) &&
(class->class_init(class, session) != 0))
return -1;
if (kwork->cpu_list != NULL) {
ret = perf_session__cpu_bitmap(session,
kwork->cpu_list,
kwork->cpu_bitmap);
if (ret < 0) {
pr_err("Invalid cpu bitmap\n");
return -1;
}
}
if (kwork->time_str != NULL) {
ret = perf_time__parse_str(&kwork->ptime, kwork->time_str);
if (ret != 0) {
pr_err("Invalid time span\n");
return -1;
}
}
list_for_each_entry(evsel, &session->evlist->core.entries, core.node) {
if (kwork->show_callchain && !evsel__has_callchain(evsel)) {
pr_debug("Samples do not have callchains\n");
kwork->show_callchain = 0;
symbol_conf.use_callchain = 0;
}
}
return 0;
}
static int perf_kwork__read_events(struct perf_kwork *kwork)
{
int ret = -1;
struct perf_session *session = NULL;
struct perf_data data = {
.path = input_name,
.mode = PERF_DATA_MODE_READ,
.force = kwork->force,
};
session = perf_session__new(&data, &kwork->tool);
if (IS_ERR(session)) {
pr_debug("Error creating perf session\n");
return PTR_ERR(session);
}
symbol__init(&session->header.env);
if (perf_kwork__check_config(kwork, session) != 0)
goto out_delete;
if (session->tevent.pevent &&
tep_set_function_resolver(session->tevent.pevent,
machine__resolve_kernel_addr,
&session->machines.host) < 0) {
pr_err("Failed to set libtraceevent function resolver\n");
goto out_delete;
}
if (kwork->report == KWORK_REPORT_TIMEHIST)
timehist_print_header();
ret = perf_session__process_events(session);
if (ret) {
pr_debug("Failed to process events, error %d\n", ret);
goto out_delete;
}
kwork->nr_events = session->evlist->stats.nr_events[0];
kwork->nr_lost_events = session->evlist->stats.total_lost;
kwork->nr_lost_chunks = session->evlist->stats.nr_events[PERF_RECORD_LOST];
out_delete:
perf_session__delete(session);
return ret;
}
static void process_skipped_events(struct perf_kwork *kwork,
struct kwork_work *work)
{
int i;
unsigned long long count;
for (i = 0; i < KWORK_TRACE_MAX; i++) {
count = nr_list_entry(&work->atom_list[i]);
kwork->nr_skipped_events[i] += count;
kwork->nr_skipped_events[KWORK_TRACE_MAX] += count;
}
}
struct kwork_work *perf_kwork_add_work(struct perf_kwork *kwork,
struct kwork_class *class,
struct kwork_work *key)
{
struct kwork_work *work = NULL;
work = work_new(key);
if (work == NULL)
return NULL;
work_insert(&class->work_root, work, &kwork->cmp_id);
return work;
}
static void sig_handler(int sig)
{
/*
* Simply capture termination signal so that
* the program can continue after pause returns
*/
pr_debug("Capture signal %d\n", sig);
}
static int perf_kwork__report_bpf(struct perf_kwork *kwork)
{
int ret;
signal(SIGINT, sig_handler);
signal(SIGTERM, sig_handler);
ret = perf_kwork__trace_prepare_bpf(kwork);
if (ret)
return -1;
printf("Starting trace, Hit <Ctrl+C> to stop and report\n");
perf_kwork__trace_start();
/*
* a simple pause, wait here for stop signal
*/
pause();
perf_kwork__trace_finish();
perf_kwork__report_read_bpf(kwork);
perf_kwork__report_cleanup_bpf();
return 0;
}
static int perf_kwork__report(struct perf_kwork *kwork)
{
int ret;
struct rb_node *next;
struct kwork_work *work;
if (kwork->use_bpf)
ret = perf_kwork__report_bpf(kwork);
else
ret = perf_kwork__read_events(kwork);
if (ret != 0)
return -1;
perf_kwork__sort(kwork);
setup_pager();
ret = report_print_header(kwork);
next = rb_first_cached(&kwork->sorted_work_root);
while (next) {
work = rb_entry(next, struct kwork_work, node);
process_skipped_events(kwork, work);
if (work->nr_atoms != 0) {
report_print_work(kwork, work);
if (kwork->summary) {
kwork->all_runtime += work->total_runtime;
kwork->all_count += work->nr_atoms;
}
}
next = rb_next(next);
}
print_separator(ret);
if (kwork->summary) {
print_summary(kwork);
print_separator(ret);
}
print_bad_events(kwork);
print_skipped_events(kwork);
printf("\n");
return 0;
}
typedef int (*tracepoint_handler)(const struct perf_tool *tool,
struct evsel *evsel,
struct perf_sample *sample,
struct machine *machine);
static int perf_kwork__process_tracepoint_sample(const struct perf_tool *tool,
union perf_event *event __maybe_unused,
struct perf_sample *sample,
struct evsel *evsel,
struct machine *machine)
{
int err = 0;
if (evsel->handler != NULL) {
tracepoint_handler f = evsel->handler;
err = f(tool, evsel, sample, machine);
}
return err;
}
static int perf_kwork__timehist(struct perf_kwork *kwork)
{
/*
* event handlers for timehist option
*/
kwork->tool.comm = perf_event__process_comm;
kwork->tool.exit = perf_event__process_exit;
kwork->tool.fork = perf_event__process_fork;
kwork->tool.attr = perf_event__process_attr;
kwork->tool.tracing_data = perf_event__process_tracing_data;
kwork->tool.build_id = perf_event__process_build_id;
kwork->tool.ordered_events = true;
kwork->tool.ordering_requires_timestamps = true;
symbol_conf.use_callchain = kwork->show_callchain;
if (symbol__validate_sym_arguments()) {
pr_err("Failed to validate sym arguments\n");
return -1;
}
setup_pager();
return perf_kwork__read_events(kwork);
}
static void top_calc_total_runtime(struct perf_kwork *kwork)
{
struct kwork_class *class;
struct kwork_work *work;
struct rb_node *next;
struct kwork_top_stat *stat = &kwork->top_stat;
class = get_kwork_class(kwork, KWORK_CLASS_SCHED);
if (!class)
return;
next = rb_first_cached(&class->work_root);
while (next) {
work = rb_entry(next, struct kwork_work, node);
BUG_ON(work->cpu >= MAX_NR_CPUS);
stat->cpus_runtime[work->cpu].total += work->total_runtime;
stat->cpus_runtime[MAX_NR_CPUS].total += work->total_runtime;
next = rb_next(next);
}
}
static void top_calc_idle_time(struct perf_kwork *kwork,
struct kwork_work *work)
{
struct kwork_top_stat *stat = &kwork->top_stat;
if (work->id == 0) {
stat->cpus_runtime[work->cpu].idle += work->total_runtime;
stat->cpus_runtime[MAX_NR_CPUS].idle += work->total_runtime;
}
}
static void top_calc_irq_runtime(struct perf_kwork *kwork,
enum kwork_class_type type,
struct kwork_work *work)
{
struct kwork_top_stat *stat = &kwork->top_stat;
if (type == KWORK_CLASS_IRQ) {
stat->cpus_runtime[work->cpu].irq += work->total_runtime;
stat->cpus_runtime[MAX_NR_CPUS].irq += work->total_runtime;
} else if (type == KWORK_CLASS_SOFTIRQ) {
stat->cpus_runtime[work->cpu].softirq += work->total_runtime;
stat->cpus_runtime[MAX_NR_CPUS].softirq += work->total_runtime;
}
}
static void top_subtract_irq_runtime(struct perf_kwork *kwork,
struct kwork_work *work)
{
struct kwork_class *class;
struct kwork_work *data;
unsigned int i;
int irq_class_list[] = {KWORK_CLASS_IRQ, KWORK_CLASS_SOFTIRQ};
for (i = 0; i < ARRAY_SIZE(irq_class_list); i++) {
class = get_kwork_class(kwork, irq_class_list[i]);
if (!class)
continue;
data = find_work_by_id(&class->work_root,
work->id, work->cpu);
if (!data)
continue;
if (work->total_runtime > data->total_runtime) {
work->total_runtime -= data->total_runtime;
top_calc_irq_runtime(kwork, irq_class_list[i], data);
}
}
}
static void top_calc_cpu_usage(struct perf_kwork *kwork)
{
struct kwork_class *class;
struct kwork_work *work;
struct rb_node *next;
struct kwork_top_stat *stat = &kwork->top_stat;
class = get_kwork_class(kwork, KWORK_CLASS_SCHED);
if (!class)
return;
next = rb_first_cached(&class->work_root);
while (next) {
work = rb_entry(next, struct kwork_work, node);
if (work->total_runtime == 0)
goto next;
__set_bit(work->cpu, stat->all_cpus_bitmap);
top_subtract_irq_runtime(kwork, work);
work->cpu_usage = work->total_runtime * 10000 /
stat->cpus_runtime[work->cpu].total;
top_calc_idle_time(kwork, work);
next:
next = rb_next(next);
}
}
static void top_calc_load_runtime(struct perf_kwork *kwork,
struct kwork_work *work)
{
struct kwork_top_stat *stat = &kwork->top_stat;
if (work->id != 0) {
stat->cpus_runtime[work->cpu].load += work->total_runtime;
stat->cpus_runtime[MAX_NR_CPUS].load += work->total_runtime;
}
}
static void top_merge_tasks(struct perf_kwork *kwork)
{
struct kwork_work *merged_work, *data;
struct kwork_class *class;
struct rb_node *node;
int cpu;
struct rb_root_cached merged_root = RB_ROOT_CACHED;
class = get_kwork_class(kwork, KWORK_CLASS_SCHED);
if (!class)
return;
for (;;) {
node = rb_first_cached(&class->work_root);
if (!node)
break;
rb_erase_cached(node, &class->work_root);
data = rb_entry(node, struct kwork_work, node);
if (!profile_name_match(kwork, data))
continue;
cpu = data->cpu;
merged_work = find_work_by_id(&merged_root, data->id,
data->id == 0 ? cpu : -1);
if (!merged_work) {
work_insert(&merged_root, data, &kwork->cmp_id);
} else {
merged_work->total_runtime += data->total_runtime;
merged_work->cpu_usage += data->cpu_usage;
}
top_calc_load_runtime(kwork, data);
}
work_sort(kwork, class, &merged_root);
}
static void perf_kwork__top_report(struct perf_kwork *kwork)
{
struct kwork_work *work;
struct rb_node *next;
printf("\n");
top_print_cpu_usage(kwork);
top_print_header(kwork);
next = rb_first_cached(&kwork->sorted_work_root);
while (next) {
work = rb_entry(next, struct kwork_work, node);
process_skipped_events(kwork, work);
if (work->total_runtime == 0)
goto next;
top_print_work(kwork, work);
next:
next = rb_next(next);
}
printf("\n");
}
static int perf_kwork__top_bpf(struct perf_kwork *kwork)
{
int ret;
signal(SIGINT, sig_handler);
signal(SIGTERM, sig_handler);
ret = perf_kwork__top_prepare_bpf(kwork);
if (ret)
return -1;
printf("Starting trace, Hit <Ctrl+C> to stop and report\n");
perf_kwork__top_start();
/*
* a simple pause, wait here for stop signal
*/
pause();
perf_kwork__top_finish();
perf_kwork__top_read_bpf(kwork);
perf_kwork__top_cleanup_bpf();
return 0;
}
static int perf_kwork__top(struct perf_kwork *kwork)
{
struct __top_cpus_runtime *cpus_runtime;
int ret = 0;
cpus_runtime = zalloc(sizeof(struct __top_cpus_runtime) * (MAX_NR_CPUS + 1));
if (!cpus_runtime)
return -1;
kwork->top_stat.cpus_runtime = cpus_runtime;
bitmap_zero(kwork->top_stat.all_cpus_bitmap, MAX_NR_CPUS);
if (kwork->use_bpf)
ret = perf_kwork__top_bpf(kwork);
else
ret = perf_kwork__read_events(kwork);
if (ret)
goto out;
top_calc_total_runtime(kwork);
top_calc_cpu_usage(kwork);
top_merge_tasks(kwork);
setup_pager();
perf_kwork__top_report(kwork);
out:
zfree(&kwork->top_stat.cpus_runtime);
return ret;
}
static void setup_event_list(struct perf_kwork *kwork,
const struct option *options,
const char * const usage_msg[])
{
int i;
struct kwork_class *class;
char *tmp, *tok, *str;
/*
* set default events list if not specified
*/
if (kwork->event_list_str == NULL)
kwork->event_list_str = "irq, softirq, workqueue";
str = strdup(kwork->event_list_str);
for (tok = strtok_r(str, ", ", &tmp);
tok; tok = strtok_r(NULL, ", ", &tmp)) {
for (i = 0; i < KWORK_CLASS_MAX; i++) {
class = kwork_class_supported_list[i];
if (strcmp(tok, class->name) == 0) {
list_add_tail(&class->list, &kwork->class_list);
break;
}
}
if (i == KWORK_CLASS_MAX) {
usage_with_options_msg(usage_msg, options,
"Unknown --event key: `%s'", tok);
}
}
free(str);
pr_debug("Config event list:");
list_for_each_entry(class, &kwork->class_list, list)
pr_debug(" %s", class->name);
pr_debug("\n");
}
static int perf_kwork__record(struct perf_kwork *kwork,
int argc, const char **argv)
{
const char **rec_argv;
unsigned int rec_argc, i, j;
struct kwork_class *class;
const char *const record_args[] = {
"record",
"-a",
"-R",
"-m", "1024",
"-c", "1",
};
rec_argc = ARRAY_SIZE(record_args) + argc - 1;
list_for_each_entry(class, &kwork->class_list, list)
rec_argc += 2 * class->nr_tracepoints;
rec_argv = calloc(rec_argc + 1, sizeof(char *));
if (rec_argv == NULL)
return -ENOMEM;
for (i = 0; i < ARRAY_SIZE(record_args); i++)
rec_argv[i] = strdup(record_args[i]);
list_for_each_entry(class, &kwork->class_list, list) {
for (j = 0; j < class->nr_tracepoints; j++) {
rec_argv[i++] = strdup("-e");
rec_argv[i++] = strdup(class->tp_handlers[j].name);
}
}
for (j = 1; j < (unsigned int)argc; j++, i++)
rec_argv[i] = argv[j];
BUG_ON(i != rec_argc);
pr_debug("record comm: ");
for (j = 0; j < rec_argc; j++)
pr_debug("%s ", rec_argv[j]);
pr_debug("\n");
return cmd_record(i, rec_argv);
}
int cmd_kwork(int argc, const char **argv)
{
static struct perf_kwork kwork = {
.class_list = LIST_HEAD_INIT(kwork.class_list),
.atom_page_list = LIST_HEAD_INIT(kwork.atom_page_list),
.sort_list = LIST_HEAD_INIT(kwork.sort_list),
.cmp_id = LIST_HEAD_INIT(kwork.cmp_id),
.sorted_work_root = RB_ROOT_CACHED,
.tp_handler = NULL,
.profile_name = NULL,
.cpu_list = NULL,
.time_str = NULL,
.force = false,
.event_list_str = NULL,
.summary = false,
.sort_order = NULL,
.show_callchain = false,
.max_stack = 5,
.timestart = 0,
.timeend = 0,
.nr_events = 0,
.nr_lost_chunks = 0,
.nr_lost_events = 0,
.all_runtime = 0,
.all_count = 0,
.nr_skipped_events = { 0 },
};
static const char default_report_sort_order[] = "runtime, max, count";
static const char default_latency_sort_order[] = "avg, max, count";
static const char default_top_sort_order[] = "rate, runtime";
const struct option kwork_options[] = {
OPT_INCR('v', "verbose", &verbose,
"be more verbose (show symbol address, etc)"),
OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
"dump raw trace in ASCII"),
OPT_STRING('k', "kwork", &kwork.event_list_str, "kwork",
"list of kwork to profile (irq, softirq, workqueue, sched, etc)"),
OPT_BOOLEAN('f', "force", &kwork.force, "don't complain, do it"),
OPT_END()
};
const struct option report_options[] = {
OPT_STRING('s', "sort", &kwork.sort_order, "key[,key2...]",
"sort by key(s): runtime, max, count"),
OPT_STRING('C', "cpu", &kwork.cpu_list, "cpu",
"list of cpus to profile"),
OPT_STRING('n', "name", &kwork.profile_name, "name",
"event name to profile"),
OPT_STRING(0, "time", &kwork.time_str, "str",
"Time span for analysis (start,stop)"),
OPT_STRING('i', "input", &input_name, "file",
"input file name"),
OPT_BOOLEAN('S', "with-summary", &kwork.summary,
"Show summary with statistics"),
#ifdef HAVE_BPF_SKEL
OPT_BOOLEAN('b', "use-bpf", &kwork.use_bpf,
"Use BPF to measure kwork runtime"),
#endif
OPT_PARENT(kwork_options)
};
const struct option latency_options[] = {
OPT_STRING('s', "sort", &kwork.sort_order, "key[,key2...]",
"sort by key(s): avg, max, count"),
OPT_STRING('C', "cpu", &kwork.cpu_list, "cpu",
"list of cpus to profile"),
OPT_STRING('n', "name", &kwork.profile_name, "name",
"event name to profile"),
OPT_STRING(0, "time", &kwork.time_str, "str",
"Time span for analysis (start,stop)"),
OPT_STRING('i', "input", &input_name, "file",
"input file name"),
#ifdef HAVE_BPF_SKEL
OPT_BOOLEAN('b', "use-bpf", &kwork.use_bpf,
"Use BPF to measure kwork latency"),
#endif
OPT_PARENT(kwork_options)
};
const struct option timehist_options[] = {
OPT_STRING('k', "vmlinux", &symbol_conf.vmlinux_name,
"file", "vmlinux pathname"),
OPT_STRING(0, "kallsyms", &symbol_conf.kallsyms_name,
"file", "kallsyms pathname"),
OPT_BOOLEAN('g', "call-graph", &kwork.show_callchain,
"Display call chains if present"),
OPT_UINTEGER(0, "max-stack", &kwork.max_stack,
"Maximum number of functions to display backtrace."),
OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory",
"Look for files with symbols relative to this directory"),
OPT_STRING(0, "time", &kwork.time_str, "str",
"Time span for analysis (start,stop)"),
OPT_STRING('C', "cpu", &kwork.cpu_list, "cpu",
"list of cpus to profile"),
OPT_STRING('n', "name", &kwork.profile_name, "name",
"event name to profile"),
OPT_STRING('i', "input", &input_name, "file",
"input file name"),
OPT_PARENT(kwork_options)
};
const struct option top_options[] = {
OPT_STRING('s', "sort", &kwork.sort_order, "key[,key2...]",
"sort by key(s): rate, runtime, tid"),
OPT_STRING('C', "cpu", &kwork.cpu_list, "cpu",
"list of cpus to profile"),
OPT_STRING('n', "name", &kwork.profile_name, "name",
"event name to profile"),
OPT_STRING(0, "time", &kwork.time_str, "str",
"Time span for analysis (start,stop)"),
OPT_STRING('i', "input", &input_name, "file",
"input file name"),
#ifdef HAVE_BPF_SKEL
OPT_BOOLEAN('b', "use-bpf", &kwork.use_bpf,
"Use BPF to measure task cpu usage"),
#endif
OPT_PARENT(kwork_options)
};
const char *kwork_usage[] = {
NULL,
NULL
};
const char * const report_usage[] = {
"perf kwork report [<options>]",
NULL
};
const char * const latency_usage[] = {
"perf kwork latency [<options>]",
NULL
};
const char * const timehist_usage[] = {
"perf kwork timehist [<options>]",
NULL
};
const char * const top_usage[] = {
"perf kwork top [<options>]",
NULL
};
const char *const kwork_subcommands[] = {
"record", "report", "latency", "timehist", "top", NULL
};
perf_tool__init(&kwork.tool, /*ordered_events=*/true);
kwork.tool.mmap = perf_event__process_mmap;
kwork.tool.mmap2 = perf_event__process_mmap2;
kwork.tool.sample = perf_kwork__process_tracepoint_sample;
argc = parse_options_subcommand(argc, argv, kwork_options,
kwork_subcommands, kwork_usage,
PARSE_OPT_STOP_AT_NON_OPTION);
if (!argc)
usage_with_options(kwork_usage, kwork_options);
sort_dimension__add(&kwork, "id", &kwork.cmp_id);
if (strlen(argv[0]) > 2 && strstarts("record", argv[0])) {
setup_event_list(&kwork, kwork_options, kwork_usage);
return perf_kwork__record(&kwork, argc, argv);
} else if (strlen(argv[0]) > 2 && strstarts("report", argv[0])) {
kwork.sort_order = default_report_sort_order;
if (argc > 1) {
argc = parse_options(argc, argv, report_options, report_usage, 0);
if (argc)
usage_with_options(report_usage, report_options);
}
kwork.report = KWORK_REPORT_RUNTIME;
setup_sorting(&kwork, report_options, report_usage);
setup_event_list(&kwork, kwork_options, kwork_usage);
return perf_kwork__report(&kwork);
} else if (strlen(argv[0]) > 2 && strstarts("latency", argv[0])) {
kwork.sort_order = default_latency_sort_order;
if (argc > 1) {
argc = parse_options(argc, argv, latency_options, latency_usage, 0);
if (argc)
usage_with_options(latency_usage, latency_options);
}
kwork.report = KWORK_REPORT_LATENCY;
setup_sorting(&kwork, latency_options, latency_usage);
setup_event_list(&kwork, kwork_options, kwork_usage);
return perf_kwork__report(&kwork);
} else if (strlen(argv[0]) > 2 && strstarts("timehist", argv[0])) {
if (argc > 1) {
argc = parse_options(argc, argv, timehist_options, timehist_usage, 0);
if (argc)
usage_with_options(timehist_usage, timehist_options);
}
kwork.report = KWORK_REPORT_TIMEHIST;
setup_event_list(&kwork, kwork_options, kwork_usage);
return perf_kwork__timehist(&kwork);
} else if (strlen(argv[0]) > 2 && strstarts("top", argv[0])) {
kwork.sort_order = default_top_sort_order;
if (argc > 1) {
argc = parse_options(argc, argv, top_options, top_usage, 0);
if (argc)
usage_with_options(top_usage, top_options);
}
kwork.report = KWORK_REPORT_TOP;
if (!kwork.event_list_str)
kwork.event_list_str = "sched, irq, softirq";
setup_event_list(&kwork, kwork_options, kwork_usage);
setup_sorting(&kwork, top_options, top_usage);
return perf_kwork__top(&kwork);
} else
usage_with_options(kwork_usage, kwork_options);
/* free usage string allocated by parse_options_subcommand */
free((void *)kwork_usage[0]);
return 0;
}