|  | // SPDX-License-Identifier: GPL-2.0-only | 
|  | /* | 
|  | * Copyright (C) 2012 - Virtual Open Systems and Columbia University | 
|  | * Author: Christoffer Dall <c.dall@virtualopensystems.com> | 
|  | */ | 
|  |  | 
|  | #include <linux/bug.h> | 
|  | #include <linux/cpu_pm.h> | 
|  | #include <linux/entry-kvm.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/err.h> | 
|  | #include <linux/kvm_host.h> | 
|  | #include <linux/list.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/vmalloc.h> | 
|  | #include <linux/fs.h> | 
|  | #include <linux/mman.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/kvm.h> | 
|  | #include <linux/kvm_irqfd.h> | 
|  | #include <linux/irqbypass.h> | 
|  | #include <linux/sched/stat.h> | 
|  | #include <linux/shrinker.h> | 
|  | #include <linux/psci.h> | 
|  | #include <trace/events/kvm.h> | 
|  |  | 
|  | #define CREATE_TRACE_POINTS | 
|  | #include "trace_arm.h" | 
|  | #include "hyp_trace.h" | 
|  |  | 
|  | #include <linux/uaccess.h> | 
|  | #include <asm/archrandom.h> | 
|  | #include <asm/ptrace.h> | 
|  | #include <asm/mman.h> | 
|  | #include <asm/tlbflush.h> | 
|  | #include <asm/cacheflush.h> | 
|  | #include <asm/cpufeature.h> | 
|  | #include <asm/virt.h> | 
|  | #include <asm/kvm_arm.h> | 
|  | #include <asm/kvm_asm.h> | 
|  | #include <asm/kvm_emulate.h> | 
|  | #include <asm/kvm_mmu.h> | 
|  | #include <asm/kvm_nested.h> | 
|  | #include <asm/kvm_pkvm.h> | 
|  | #include <asm/kvm_ptrauth.h> | 
|  | #include <asm/sections.h> | 
|  |  | 
|  | #include <kvm/arm_hypercalls.h> | 
|  | #include <kvm/arm_pmu.h> | 
|  | #include <kvm/arm_psci.h> | 
|  |  | 
|  | #include "sys_regs.h" | 
|  |  | 
|  | static enum kvm_mode kvm_mode = KVM_MODE_DEFAULT; | 
|  |  | 
|  | enum kvm_wfx_trap_policy { | 
|  | KVM_WFX_NOTRAP_SINGLE_TASK, /* Default option */ | 
|  | KVM_WFX_NOTRAP, | 
|  | KVM_WFX_TRAP, | 
|  | }; | 
|  |  | 
|  | static enum kvm_wfx_trap_policy kvm_wfi_trap_policy __read_mostly = KVM_WFX_NOTRAP_SINGLE_TASK; | 
|  | static enum kvm_wfx_trap_policy kvm_wfe_trap_policy __read_mostly = KVM_WFX_NOTRAP_SINGLE_TASK; | 
|  |  | 
|  | DECLARE_KVM_HYP_PER_CPU(unsigned long, kvm_hyp_vector); | 
|  |  | 
|  | DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_base); | 
|  | DECLARE_KVM_NVHE_PER_CPU(struct kvm_nvhe_init_params, kvm_init_params); | 
|  | DECLARE_KVM_NVHE_PER_CPU(int, hyp_cpu_number); | 
|  |  | 
|  | DECLARE_KVM_NVHE_PER_CPU(struct kvm_cpu_context, kvm_hyp_ctxt); | 
|  |  | 
|  | static bool vgic_present, kvm_arm_initialised; | 
|  |  | 
|  | static DEFINE_PER_CPU(unsigned char, kvm_hyp_initialized); | 
|  | DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use); | 
|  |  | 
|  | bool is_kvm_arm_initialised(void) | 
|  | { | 
|  | return kvm_arm_initialised; | 
|  | } | 
|  |  | 
|  | int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This functions as an allow-list of protected VM capabilities. | 
|  | * Features not explicitly allowed by this function are denied. | 
|  | */ | 
|  | static bool pkvm_ext_allowed(struct kvm *kvm, long ext) | 
|  | { | 
|  | switch (ext) { | 
|  | case KVM_CAP_IRQCHIP: | 
|  | case KVM_CAP_ARM_PSCI: | 
|  | case KVM_CAP_ARM_PSCI_0_2: | 
|  | case KVM_CAP_NR_VCPUS: | 
|  | case KVM_CAP_MAX_VCPUS: | 
|  | case KVM_CAP_MAX_VCPU_ID: | 
|  | case KVM_CAP_MSI_DEVID: | 
|  | case KVM_CAP_ARM_VM_IPA_SIZE: | 
|  | case KVM_CAP_ARM_PROTECTED_VM: | 
|  | case KVM_CAP_ARM_PTRAUTH_ADDRESS: | 
|  | case KVM_CAP_ARM_PTRAUTH_GENERIC: | 
|  | case KVM_CAP_ARM_PMU_V3: | 
|  | case KVM_CAP_ARM_SVE: | 
|  | return true; | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | int kvm_vm_ioctl_enable_cap(struct kvm *kvm, | 
|  | struct kvm_enable_cap *cap) | 
|  | { | 
|  | int r = -EINVAL; | 
|  |  | 
|  | if (kvm_vm_is_protected(kvm) && !pkvm_ext_allowed(kvm, cap->cap)) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* Capabilities with flags */ | 
|  | switch (cap->cap) { | 
|  | case KVM_CAP_ARM_PROTECTED_VM: | 
|  | return pkvm_vm_ioctl_enable_cap(kvm, cap); | 
|  | default: | 
|  | if (cap->flags) | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* Capabilities without flags */ | 
|  | switch (cap->cap) { | 
|  | case KVM_CAP_ARM_NISV_TO_USER: | 
|  | r = 0; | 
|  | set_bit(KVM_ARCH_FLAG_RETURN_NISV_IO_ABORT_TO_USER, | 
|  | &kvm->arch.flags); | 
|  | break; | 
|  | case KVM_CAP_ARM_MTE: | 
|  | mutex_lock(&kvm->lock); | 
|  | if (system_supports_mte() && !kvm->created_vcpus) { | 
|  | r = 0; | 
|  | set_bit(KVM_ARCH_FLAG_MTE_ENABLED, &kvm->arch.flags); | 
|  | } | 
|  | mutex_unlock(&kvm->lock); | 
|  | break; | 
|  | case KVM_CAP_ARM_SYSTEM_SUSPEND: | 
|  | r = 0; | 
|  | set_bit(KVM_ARCH_FLAG_SYSTEM_SUSPEND_ENABLED, &kvm->arch.flags); | 
|  | break; | 
|  | case KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE: | 
|  | mutex_lock(&kvm->slots_lock); | 
|  | /* | 
|  | * To keep things simple, allow changing the chunk | 
|  | * size only when no memory slots have been created. | 
|  | */ | 
|  | if (kvm_are_all_memslots_empty(kvm)) { | 
|  | u64 new_cap = cap->args[0]; | 
|  |  | 
|  | if (!new_cap || kvm_is_block_size_supported(new_cap)) { | 
|  | r = 0; | 
|  | kvm->arch.mmu.split_page_chunk_size = new_cap; | 
|  | } | 
|  | } | 
|  | mutex_unlock(&kvm->slots_lock); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static int kvm_arm_default_max_vcpus(void) | 
|  | { | 
|  | return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * kvm_arch_init_vm - initializes a VM data structure | 
|  | * @kvm:	pointer to the KVM struct | 
|  | * @type:	kvm device type | 
|  | */ | 
|  | int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | if (type & ~KVM_VM_TYPE_MASK) | 
|  | return -EINVAL; | 
|  |  | 
|  | mutex_init(&kvm->arch.config_lock); | 
|  |  | 
|  | #ifdef CONFIG_LOCKDEP | 
|  | /* Clue in lockdep that the config_lock must be taken inside kvm->lock */ | 
|  | mutex_lock(&kvm->lock); | 
|  | mutex_lock(&kvm->arch.config_lock); | 
|  | mutex_unlock(&kvm->arch.config_lock); | 
|  | mutex_unlock(&kvm->lock); | 
|  | #endif | 
|  |  | 
|  | kvm_init_nested(kvm); | 
|  |  | 
|  | ret = kvm_share_hyp(kvm, kvm + 1); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = pkvm_init_host_vm(kvm, type); | 
|  | if (ret) | 
|  | goto err_unshare_kvm; | 
|  |  | 
|  | if (!zalloc_cpumask_var(&kvm->arch.supported_cpus, GFP_KERNEL_ACCOUNT)) { | 
|  | ret = -ENOMEM; | 
|  | goto err_unshare_kvm; | 
|  | } | 
|  | cpumask_copy(kvm->arch.supported_cpus, cpu_possible_mask); | 
|  |  | 
|  | ret = kvm_init_stage2_mmu(kvm, &kvm->arch.mmu, type); | 
|  | if (ret) | 
|  | goto err_free_cpumask; | 
|  |  | 
|  | kvm_vgic_early_init(kvm); | 
|  |  | 
|  | kvm_timer_init_vm(kvm); | 
|  |  | 
|  | /* The maximum number of VCPUs is limited by the host's GIC model */ | 
|  | kvm->max_vcpus = kvm_arm_default_max_vcpus(); | 
|  |  | 
|  | kvm_arm_init_hypercalls(kvm); | 
|  |  | 
|  | bitmap_zero(kvm->arch.vcpu_features, KVM_VCPU_MAX_FEATURES); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | err_free_cpumask: | 
|  | free_cpumask_var(kvm->arch.supported_cpus); | 
|  | err_unshare_kvm: | 
|  | kvm_unshare_hyp(kvm, kvm + 1); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) | 
|  | { | 
|  | return VM_FAULT_SIGBUS; | 
|  | } | 
|  |  | 
|  | void kvm_arch_create_vm_debugfs(struct kvm *kvm) | 
|  | { | 
|  | kvm_sys_regs_create_debugfs(kvm); | 
|  | kvm_s2_ptdump_create_debugfs(kvm); | 
|  | } | 
|  |  | 
|  | static void kvm_destroy_mpidr_data(struct kvm *kvm) | 
|  | { | 
|  | struct kvm_mpidr_data *data; | 
|  |  | 
|  | mutex_lock(&kvm->arch.config_lock); | 
|  |  | 
|  | data = rcu_dereference_protected(kvm->arch.mpidr_data, | 
|  | lockdep_is_held(&kvm->arch.config_lock)); | 
|  | if (data) { | 
|  | rcu_assign_pointer(kvm->arch.mpidr_data, NULL); | 
|  | synchronize_rcu(); | 
|  | kfree(data); | 
|  | } | 
|  |  | 
|  | mutex_unlock(&kvm->arch.config_lock); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * kvm_arch_destroy_vm - destroy the VM data structure | 
|  | * @kvm:	pointer to the KVM struct | 
|  | */ | 
|  | void kvm_arch_destroy_vm(struct kvm *kvm) | 
|  | { | 
|  | kvm_free_stage2_pgd(&kvm->arch.mmu); | 
|  | bitmap_free(kvm->arch.pmu_filter); | 
|  | free_cpumask_var(kvm->arch.supported_cpus); | 
|  |  | 
|  | kvm_vgic_destroy(kvm); | 
|  |  | 
|  | if (is_protected_kvm_enabled()) | 
|  | pkvm_destroy_hyp_vm(kvm); | 
|  |  | 
|  | kvm_destroy_mpidr_data(kvm); | 
|  |  | 
|  | kfree(kvm->arch.sysreg_masks); | 
|  | kvm_destroy_vcpus(kvm); | 
|  |  | 
|  | kvm_unshare_hyp(kvm, kvm + 1); | 
|  |  | 
|  | kvm_arm_teardown_hypercalls(kvm); | 
|  |  | 
|  | if (atomic64_read(&kvm->stat.protected_hyp_mem)) | 
|  | kvm_err("%lluB of donations to the nVHE hyp are missing\n", | 
|  | atomic64_read(&kvm->stat.protected_hyp_mem)); | 
|  | } | 
|  |  | 
|  | static bool kvm_has_full_ptr_auth(void) | 
|  | { | 
|  | bool apa, gpa, api, gpi, apa3, gpa3; | 
|  | u64 isar1, isar2, val; | 
|  |  | 
|  | /* | 
|  | * Check that: | 
|  | * | 
|  | * - both Address and Generic auth are implemented for a given | 
|  | *   algorithm (Q5, IMPDEF or Q3) | 
|  | * - only a single algorithm is implemented. | 
|  | */ | 
|  | if (!system_has_full_ptr_auth()) | 
|  | return false; | 
|  |  | 
|  | isar1 = read_sanitised_ftr_reg(SYS_ID_AA64ISAR1_EL1); | 
|  | isar2 = read_sanitised_ftr_reg(SYS_ID_AA64ISAR2_EL1); | 
|  |  | 
|  | apa = !!FIELD_GET(ID_AA64ISAR1_EL1_APA_MASK, isar1); | 
|  | val = FIELD_GET(ID_AA64ISAR1_EL1_GPA_MASK, isar1); | 
|  | gpa = (val == ID_AA64ISAR1_EL1_GPA_IMP); | 
|  |  | 
|  | api = !!FIELD_GET(ID_AA64ISAR1_EL1_API_MASK, isar1); | 
|  | val = FIELD_GET(ID_AA64ISAR1_EL1_GPI_MASK, isar1); | 
|  | gpi = (val == ID_AA64ISAR1_EL1_GPI_IMP); | 
|  |  | 
|  | apa3 = !!FIELD_GET(ID_AA64ISAR2_EL1_APA3_MASK, isar2); | 
|  | val  = FIELD_GET(ID_AA64ISAR2_EL1_GPA3_MASK, isar2); | 
|  | gpa3 = (val == ID_AA64ISAR2_EL1_GPA3_IMP); | 
|  |  | 
|  | return (apa == gpa && api == gpi && apa3 == gpa3 && | 
|  | (apa + api + apa3) == 1); | 
|  | } | 
|  |  | 
|  | int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) | 
|  | { | 
|  | int r; | 
|  |  | 
|  | if (kvm && kvm_vm_is_protected(kvm) && !pkvm_ext_allowed(kvm, ext)) | 
|  | return 0; | 
|  |  | 
|  | switch (ext) { | 
|  | case KVM_CAP_IRQCHIP: | 
|  | r = vgic_present; | 
|  | break; | 
|  | case KVM_CAP_IOEVENTFD: | 
|  | case KVM_CAP_USER_MEMORY: | 
|  | case KVM_CAP_SYNC_MMU: | 
|  | case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: | 
|  | case KVM_CAP_ONE_REG: | 
|  | case KVM_CAP_ARM_PSCI: | 
|  | case KVM_CAP_ARM_PSCI_0_2: | 
|  | case KVM_CAP_READONLY_MEM: | 
|  | case KVM_CAP_MP_STATE: | 
|  | case KVM_CAP_IMMEDIATE_EXIT: | 
|  | case KVM_CAP_VCPU_EVENTS: | 
|  | case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2: | 
|  | case KVM_CAP_ARM_NISV_TO_USER: | 
|  | case KVM_CAP_ARM_INJECT_EXT_DABT: | 
|  | case KVM_CAP_SET_GUEST_DEBUG: | 
|  | case KVM_CAP_VCPU_ATTRIBUTES: | 
|  | case KVM_CAP_PTP_KVM: | 
|  | case KVM_CAP_ARM_SYSTEM_SUSPEND: | 
|  | case KVM_CAP_IRQFD_RESAMPLE: | 
|  | case KVM_CAP_COUNTER_OFFSET: | 
|  | r = 1; | 
|  | break; | 
|  | case KVM_CAP_SET_GUEST_DEBUG2: | 
|  | return KVM_GUESTDBG_VALID_MASK; | 
|  | case KVM_CAP_ARM_SET_DEVICE_ADDR: | 
|  | r = 1; | 
|  | break; | 
|  | case KVM_CAP_NR_VCPUS: | 
|  | /* | 
|  | * ARM64 treats KVM_CAP_NR_CPUS differently from all other | 
|  | * architectures, as it does not always bound it to | 
|  | * KVM_CAP_MAX_VCPUS. It should not matter much because | 
|  | * this is just an advisory value. | 
|  | */ | 
|  | r = min_t(unsigned int, num_online_cpus(), | 
|  | kvm_arm_default_max_vcpus()); | 
|  | break; | 
|  | case KVM_CAP_MAX_VCPUS: | 
|  | case KVM_CAP_MAX_VCPU_ID: | 
|  | if (kvm) | 
|  | r = kvm->max_vcpus; | 
|  | else | 
|  | r = kvm_arm_default_max_vcpus(); | 
|  | break; | 
|  | case KVM_CAP_MSI_DEVID: | 
|  | if (!kvm) | 
|  | r = -EINVAL; | 
|  | else | 
|  | r = kvm->arch.vgic.msis_require_devid; | 
|  | break; | 
|  | case KVM_CAP_ARM_USER_IRQ: | 
|  | /* | 
|  | * 1: EL1_VTIMER, EL1_PTIMER, and PMU. | 
|  | * (bump this number if adding more devices) | 
|  | */ | 
|  | r = 1; | 
|  | break; | 
|  | case KVM_CAP_ARM_MTE: | 
|  | r = system_supports_mte(); | 
|  | break; | 
|  | case KVM_CAP_STEAL_TIME: | 
|  | r = kvm_arm_pvtime_supported(); | 
|  | break; | 
|  | case KVM_CAP_ARM_EL1_32BIT: | 
|  | r = cpus_have_final_cap(ARM64_HAS_32BIT_EL1); | 
|  | break; | 
|  | case KVM_CAP_GUEST_DEBUG_HW_BPS: | 
|  | r = get_num_brps(); | 
|  | break; | 
|  | case KVM_CAP_GUEST_DEBUG_HW_WPS: | 
|  | r = get_num_wrps(); | 
|  | break; | 
|  | case KVM_CAP_ARM_PMU_V3: | 
|  | r = kvm_arm_support_pmu_v3(); | 
|  | break; | 
|  | case KVM_CAP_ARM_INJECT_SERROR_ESR: | 
|  | r = cpus_have_final_cap(ARM64_HAS_RAS_EXTN); | 
|  | break; | 
|  | case KVM_CAP_ARM_VM_IPA_SIZE: | 
|  | r = get_kvm_ipa_limit(); | 
|  | break; | 
|  | case KVM_CAP_ARM_SVE: | 
|  | r = system_supports_sve(); | 
|  | break; | 
|  | case KVM_CAP_ARM_PTRAUTH_ADDRESS: | 
|  | case KVM_CAP_ARM_PTRAUTH_GENERIC: | 
|  | r = kvm_has_full_ptr_auth(); | 
|  | break; | 
|  | case KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE: | 
|  | if (kvm) | 
|  | r = kvm->arch.mmu.split_page_chunk_size; | 
|  | else | 
|  | r = KVM_ARM_EAGER_SPLIT_CHUNK_SIZE_DEFAULT; | 
|  | break; | 
|  | case KVM_CAP_ARM_SUPPORTED_BLOCK_SIZES: | 
|  | r = kvm_supported_block_sizes(); | 
|  | break; | 
|  | case KVM_CAP_ARM_SUPPORTED_REG_MASK_RANGES: | 
|  | r = BIT(0); | 
|  | break; | 
|  | case KVM_CAP_ARM_PROTECTED_VM: | 
|  | if (kvm) | 
|  | r = kvm_vm_is_protected(kvm); | 
|  | else | 
|  | r = is_protected_kvm_enabled(); | 
|  | break; | 
|  | default: | 
|  | r = 0; | 
|  | } | 
|  |  | 
|  | return r; | 
|  | } | 
|  |  | 
|  | long kvm_arch_dev_ioctl(struct file *filp, | 
|  | unsigned int ioctl, unsigned long arg) | 
|  | { | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | struct kvm *kvm_arch_alloc_vm(void) | 
|  | { | 
|  | size_t sz = sizeof(struct kvm); | 
|  |  | 
|  | if (!has_vhe()) | 
|  | return kzalloc(sz, GFP_KERNEL_ACCOUNT); | 
|  |  | 
|  | return __vmalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_HIGHMEM | __GFP_ZERO); | 
|  | } | 
|  |  | 
|  | int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id) | 
|  | { | 
|  | if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) | 
|  | return -EBUSY; | 
|  |  | 
|  | if (id >= kvm->max_vcpus) | 
|  | return -EINVAL; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | spin_lock_init(&vcpu->arch.mp_state_lock); | 
|  |  | 
|  | #ifdef CONFIG_LOCKDEP | 
|  | /* Inform lockdep that the config_lock is acquired after vcpu->mutex */ | 
|  | mutex_lock(&vcpu->mutex); | 
|  | mutex_lock(&vcpu->kvm->arch.config_lock); | 
|  | mutex_unlock(&vcpu->kvm->arch.config_lock); | 
|  | mutex_unlock(&vcpu->mutex); | 
|  | #endif | 
|  |  | 
|  | /* Force users to call KVM_ARM_VCPU_INIT */ | 
|  | vcpu_clear_flag(vcpu, VCPU_INITIALIZED); | 
|  |  | 
|  | vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO; | 
|  |  | 
|  | /* Set up the timer */ | 
|  | kvm_timer_vcpu_init(vcpu); | 
|  |  | 
|  | kvm_pmu_vcpu_init(vcpu); | 
|  |  | 
|  | kvm_arm_reset_debug_ptr(vcpu); | 
|  |  | 
|  | kvm_arm_pvtime_vcpu_init(&vcpu->arch); | 
|  |  | 
|  | vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu; | 
|  |  | 
|  | /* | 
|  | * This vCPU may have been created after mpidr_data was initialized. | 
|  | * Throw out the pre-computed mappings if that is the case which forces | 
|  | * KVM to fall back to iteratively searching the vCPUs. | 
|  | */ | 
|  | kvm_destroy_mpidr_data(vcpu->kvm); | 
|  |  | 
|  | err = kvm_vgic_vcpu_init(vcpu); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | return kvm_share_hyp(vcpu, vcpu + 1); | 
|  | } | 
|  |  | 
|  | void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | } | 
|  |  | 
|  | void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | if (vcpu_has_run_once(vcpu) && unlikely(!irqchip_in_kernel(vcpu->kvm))) | 
|  | static_branch_dec(&userspace_irqchip_in_use); | 
|  |  | 
|  | if (is_protected_kvm_enabled()) { | 
|  | atomic64_sub(vcpu->arch.stage2_mc.nr_pages << PAGE_SHIFT, | 
|  | &vcpu->kvm->stat.protected_hyp_mem); | 
|  | free_hyp_memcache(&vcpu->arch.stage2_mc); | 
|  | } else { | 
|  | kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache); | 
|  | } | 
|  |  | 
|  | kvm_timer_vcpu_terminate(vcpu); | 
|  | kvm_pmu_vcpu_destroy(vcpu); | 
|  | kvm_vgic_vcpu_destroy(vcpu); | 
|  | kvm_arm_vcpu_destroy(vcpu); | 
|  | } | 
|  |  | 
|  | void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu) | 
|  | { | 
|  |  | 
|  | } | 
|  |  | 
|  | void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu) | 
|  | { | 
|  |  | 
|  | } | 
|  |  | 
|  | static void vcpu_set_pauth_traps(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | if (vcpu_has_ptrauth(vcpu) && !is_protected_kvm_enabled()) { | 
|  | /* | 
|  | * Either we're running an L2 guest, and the API/APK bits come | 
|  | * from L1's HCR_EL2, or API/APK are both set. | 
|  | */ | 
|  | if (unlikely(vcpu_has_nv(vcpu) && !is_hyp_ctxt(vcpu))) { | 
|  | u64 val; | 
|  |  | 
|  | val = __vcpu_sys_reg(vcpu, HCR_EL2); | 
|  | val &= (HCR_API | HCR_APK); | 
|  | vcpu->arch.hcr_el2 &= ~(HCR_API | HCR_APK); | 
|  | vcpu->arch.hcr_el2 |= val; | 
|  | } else { | 
|  | vcpu->arch.hcr_el2 |= (HCR_API | HCR_APK); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Save the host keys if there is any chance for the guest | 
|  | * to use pauth, as the entry code will reload the guest | 
|  | * keys in that case. | 
|  | */ | 
|  | if (vcpu->arch.hcr_el2 & (HCR_API | HCR_APK)) { | 
|  | struct kvm_cpu_context *ctxt; | 
|  |  | 
|  | ctxt = this_cpu_ptr_hyp_sym(kvm_hyp_ctxt); | 
|  | ptrauth_save_keys(ctxt); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool kvm_vcpu_should_clear_twi(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | if (unlikely(kvm_wfi_trap_policy != KVM_WFX_NOTRAP_SINGLE_TASK)) | 
|  | return kvm_wfi_trap_policy == KVM_WFX_NOTRAP; | 
|  |  | 
|  | return single_task_running() && | 
|  | (atomic_read(&vcpu->arch.vgic_cpu.vgic_v3.its_vpe.vlpi_count) || | 
|  | vcpu->kvm->arch.vgic.nassgireq); | 
|  | } | 
|  |  | 
|  | static bool kvm_vcpu_should_clear_twe(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | if (unlikely(kvm_wfe_trap_policy != KVM_WFX_NOTRAP_SINGLE_TASK)) | 
|  | return kvm_wfe_trap_policy == KVM_WFX_NOTRAP; | 
|  |  | 
|  | return single_task_running(); | 
|  | } | 
|  |  | 
|  | void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) | 
|  | { | 
|  | struct kvm_s2_mmu *mmu; | 
|  | int *last_ran; | 
|  |  | 
|  | if (is_protected_kvm_enabled()) | 
|  | goto nommu; | 
|  |  | 
|  | if (vcpu_has_nv(vcpu)) | 
|  | kvm_vcpu_load_hw_mmu(vcpu); | 
|  |  | 
|  | mmu = vcpu->arch.hw_mmu; | 
|  | last_ran = this_cpu_ptr(mmu->last_vcpu_ran); | 
|  |  | 
|  | /* | 
|  | * We guarantee that both TLBs and I-cache are private to each | 
|  | * vcpu. If detecting that a vcpu from the same VM has | 
|  | * previously run on the same physical CPU, call into the | 
|  | * hypervisor code to nuke the relevant contexts. | 
|  | * | 
|  | * We might get preempted before the vCPU actually runs, but | 
|  | * over-invalidation doesn't affect correctness. | 
|  | */ | 
|  | if (*last_ran != vcpu->vcpu_idx) { | 
|  | kvm_call_hyp(__kvm_flush_cpu_context, mmu); | 
|  | *last_ran = vcpu->vcpu_idx; | 
|  | } | 
|  |  | 
|  | nommu: | 
|  | vcpu->cpu = cpu; | 
|  |  | 
|  | kvm_vgic_load(vcpu); | 
|  | kvm_timer_vcpu_load(vcpu); | 
|  | if (has_vhe()) | 
|  | kvm_vcpu_load_vhe(vcpu); | 
|  | kvm_arch_vcpu_load_fp(vcpu); | 
|  | kvm_vcpu_pmu_restore_guest(vcpu); | 
|  | if (kvm_arm_is_pvtime_enabled(&vcpu->arch)) | 
|  | kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu); | 
|  |  | 
|  | if (kvm_vcpu_should_clear_twe(vcpu)) | 
|  | vcpu->arch.hcr_el2 &= ~HCR_TWE; | 
|  | else | 
|  | vcpu->arch.hcr_el2 |= HCR_TWE; | 
|  |  | 
|  | if (kvm_vcpu_should_clear_twi(vcpu)) | 
|  | vcpu->arch.hcr_el2 &= ~HCR_TWI; | 
|  | else | 
|  | vcpu->arch.hcr_el2 |= HCR_TWI; | 
|  |  | 
|  | vcpu_set_pauth_traps(vcpu); | 
|  |  | 
|  | kvm_arch_vcpu_load_debug_state_flags(vcpu); | 
|  |  | 
|  | if (is_protected_kvm_enabled()) { | 
|  | kvm_call_hyp_nvhe(__pkvm_vcpu_load, | 
|  | vcpu->kvm->arch.pkvm.handle, | 
|  | vcpu->vcpu_idx, vcpu->arch.hcr_el2); | 
|  | kvm_call_hyp(__vgic_v3_restore_vmcr_aprs, | 
|  | &vcpu->arch.vgic_cpu.vgic_v3); | 
|  | } | 
|  |  | 
|  | if (!cpumask_test_cpu(cpu, vcpu->kvm->arch.supported_cpus)) | 
|  | vcpu_set_on_unsupported_cpu(vcpu); | 
|  | } | 
|  |  | 
|  | void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | if (is_protected_kvm_enabled()) { | 
|  | kvm_call_hyp(__vgic_v3_save_vmcr_aprs, | 
|  | &vcpu->arch.vgic_cpu.vgic_v3); | 
|  | kvm_call_hyp_nvhe(__pkvm_vcpu_put); | 
|  |  | 
|  | /* __pkvm_vcpu_put implies a sync of the state */ | 
|  | if (!kvm_vm_is_protected(vcpu->kvm)) | 
|  | vcpu_set_flag(vcpu, PKVM_HOST_STATE_DIRTY); | 
|  | } | 
|  |  | 
|  | kvm_arch_vcpu_put_debug_state_flags(vcpu); | 
|  | kvm_arch_vcpu_put_fp(vcpu); | 
|  | if (has_vhe()) | 
|  | kvm_vcpu_put_vhe(vcpu); | 
|  | kvm_timer_vcpu_put(vcpu); | 
|  | kvm_vgic_put(vcpu); | 
|  | kvm_vcpu_pmu_restore_host(vcpu); | 
|  | if (vcpu_has_nv(vcpu)) | 
|  | kvm_vcpu_put_hw_mmu(vcpu); | 
|  | kvm_arm_vmid_clear_active(); | 
|  |  | 
|  | vcpu_clear_on_unsupported_cpu(vcpu); | 
|  | vcpu->cpu = -1; | 
|  | } | 
|  |  | 
|  | static void __kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_STOPPED); | 
|  | kvm_make_request(KVM_REQ_SLEEP, vcpu); | 
|  | kvm_vcpu_kick(vcpu); | 
|  | } | 
|  |  | 
|  | void kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | spin_lock(&vcpu->arch.mp_state_lock); | 
|  | __kvm_arm_vcpu_power_off(vcpu); | 
|  | spin_unlock(&vcpu->arch.mp_state_lock); | 
|  | } | 
|  |  | 
|  | bool kvm_arm_vcpu_stopped(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | return READ_ONCE(vcpu->arch.mp_state.mp_state) == KVM_MP_STATE_STOPPED; | 
|  | } | 
|  |  | 
|  | static void kvm_arm_vcpu_suspend(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_SUSPENDED); | 
|  | kvm_make_request(KVM_REQ_SUSPEND, vcpu); | 
|  | kvm_vcpu_kick(vcpu); | 
|  | } | 
|  |  | 
|  | static bool kvm_arm_vcpu_suspended(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | return READ_ONCE(vcpu->arch.mp_state.mp_state) == KVM_MP_STATE_SUSPENDED; | 
|  | } | 
|  |  | 
|  | int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, | 
|  | struct kvm_mp_state *mp_state) | 
|  | { | 
|  | *mp_state = READ_ONCE(vcpu->arch.mp_state); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, | 
|  | struct kvm_mp_state *mp_state) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | spin_lock(&vcpu->arch.mp_state_lock); | 
|  |  | 
|  | switch (mp_state->mp_state) { | 
|  | case KVM_MP_STATE_RUNNABLE: | 
|  | WRITE_ONCE(vcpu->arch.mp_state, *mp_state); | 
|  | break; | 
|  | case KVM_MP_STATE_STOPPED: | 
|  | __kvm_arm_vcpu_power_off(vcpu); | 
|  | break; | 
|  | case KVM_MP_STATE_SUSPENDED: | 
|  | kvm_arm_vcpu_suspend(vcpu); | 
|  | break; | 
|  | default: | 
|  | ret = -EINVAL; | 
|  | } | 
|  |  | 
|  | spin_unlock(&vcpu->arch.mp_state_lock); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled | 
|  | * @v:		The VCPU pointer | 
|  | * | 
|  | * If the guest CPU is not waiting for interrupts or an interrupt line is | 
|  | * asserted, the CPU is by definition runnable. | 
|  | */ | 
|  | int kvm_arch_vcpu_runnable(struct kvm_vcpu *v) | 
|  | { | 
|  | bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF); | 
|  | return ((irq_lines || kvm_vgic_vcpu_pending_irq(v)) | 
|  | && !kvm_arm_vcpu_stopped(v) && !v->arch.pause); | 
|  | } | 
|  |  | 
|  | bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | return vcpu_mode_priv(vcpu); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_GUEST_PERF_EVENTS | 
|  | unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | return *vcpu_pc(vcpu); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static void kvm_init_mpidr_data(struct kvm *kvm) | 
|  | { | 
|  | struct kvm_mpidr_data *data = NULL; | 
|  | unsigned long c, mask, nr_entries; | 
|  | u64 aff_set = 0, aff_clr = ~0UL; | 
|  | struct kvm_vcpu *vcpu; | 
|  |  | 
|  | mutex_lock(&kvm->arch.config_lock); | 
|  |  | 
|  | if (rcu_access_pointer(kvm->arch.mpidr_data) || | 
|  | atomic_read(&kvm->online_vcpus) == 1) | 
|  | goto out; | 
|  |  | 
|  | kvm_for_each_vcpu(c, vcpu, kvm) { | 
|  | u64 aff = kvm_vcpu_get_mpidr_aff(vcpu); | 
|  | aff_set |= aff; | 
|  | aff_clr &= aff; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * A significant bit can be either 0 or 1, and will only appear in | 
|  | * aff_set. Use aff_clr to weed out the useless stuff. | 
|  | */ | 
|  | mask = aff_set ^ aff_clr; | 
|  | nr_entries = BIT_ULL(hweight_long(mask)); | 
|  |  | 
|  | /* | 
|  | * Don't let userspace fool us. If we need more than a single page | 
|  | * to describe the compressed MPIDR array, just fall back to the | 
|  | * iterative method. Single vcpu VMs do not need this either. | 
|  | */ | 
|  | if (struct_size(data, cmpidr_to_idx, nr_entries) <= PAGE_SIZE) | 
|  | data = kzalloc(struct_size(data, cmpidr_to_idx, nr_entries), | 
|  | GFP_KERNEL_ACCOUNT); | 
|  |  | 
|  | if (!data) | 
|  | goto out; | 
|  |  | 
|  | data->mpidr_mask = mask; | 
|  |  | 
|  | kvm_for_each_vcpu(c, vcpu, kvm) { | 
|  | u64 aff = kvm_vcpu_get_mpidr_aff(vcpu); | 
|  | u16 index = kvm_mpidr_index(data, aff); | 
|  |  | 
|  | data->cmpidr_to_idx[index] = c; | 
|  | } | 
|  |  | 
|  | rcu_assign_pointer(kvm->arch.mpidr_data, data); | 
|  | out: | 
|  | mutex_unlock(&kvm->arch.config_lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Handle both the initialisation that is being done when the vcpu is | 
|  | * run for the first time, as well as the updates that must be | 
|  | * performed each time we get a new thread dealing with this vcpu. | 
|  | */ | 
|  | int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct kvm *kvm = vcpu->kvm; | 
|  | int ret; | 
|  |  | 
|  | if (!kvm_vcpu_initialized(vcpu)) | 
|  | return -ENOEXEC; | 
|  |  | 
|  | if (!kvm_arm_vcpu_is_finalized(vcpu)) | 
|  | return -EPERM; | 
|  |  | 
|  | ret = kvm_arch_vcpu_run_map_fp(vcpu); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | if (likely(vcpu_has_run_once(vcpu))) | 
|  | return 0; | 
|  |  | 
|  | kvm_init_mpidr_data(kvm); | 
|  |  | 
|  | kvm_arm_vcpu_init_debug(vcpu); | 
|  |  | 
|  | if (likely(irqchip_in_kernel(kvm))) { | 
|  | /* | 
|  | * Map the VGIC hardware resources before running a vcpu the | 
|  | * first time on this VM. | 
|  | */ | 
|  | ret = kvm_vgic_map_resources(kvm); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | ret = kvm_finalize_sys_regs(vcpu); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | /* | 
|  | * This needs to happen after any restriction has been applied | 
|  | * to the feature set. | 
|  | */ | 
|  | kvm_calculate_traps(vcpu); | 
|  |  | 
|  | ret = kvm_timer_enable(vcpu); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = kvm_arm_pmu_v3_enable(vcpu); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | if (is_protected_kvm_enabled()) { | 
|  | /* Start with the vcpu in a dirty state */ | 
|  | if (!kvm_vm_is_protected(vcpu->kvm)) | 
|  | vcpu_set_flag(vcpu, PKVM_HOST_STATE_DIRTY); | 
|  | ret = pkvm_create_hyp_vm(kvm); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | if (!irqchip_in_kernel(kvm)) { | 
|  | /* | 
|  | * Tell the rest of the code that there are userspace irqchip | 
|  | * VMs in the wild. | 
|  | */ | 
|  | static_branch_inc(&userspace_irqchip_in_use); | 
|  | } | 
|  |  | 
|  | mutex_lock(&kvm->arch.config_lock); | 
|  | set_bit(KVM_ARCH_FLAG_HAS_RAN_ONCE, &kvm->arch.flags); | 
|  | mutex_unlock(&kvm->arch.config_lock); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | bool kvm_arch_intc_initialized(struct kvm *kvm) | 
|  | { | 
|  | return vgic_initialized(kvm); | 
|  | } | 
|  |  | 
|  | void kvm_arm_halt_guest(struct kvm *kvm) | 
|  | { | 
|  | unsigned long i; | 
|  | struct kvm_vcpu *vcpu; | 
|  |  | 
|  | kvm_for_each_vcpu(i, vcpu, kvm) | 
|  | vcpu->arch.pause = true; | 
|  | kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP); | 
|  | } | 
|  |  | 
|  | void kvm_arm_resume_guest(struct kvm *kvm) | 
|  | { | 
|  | unsigned long i; | 
|  | struct kvm_vcpu *vcpu; | 
|  |  | 
|  | kvm_for_each_vcpu(i, vcpu, kvm) { | 
|  | vcpu->arch.pause = false; | 
|  | __kvm_vcpu_wake_up(vcpu); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void kvm_vcpu_sleep(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu); | 
|  |  | 
|  | rcuwait_wait_event(wait, | 
|  | (!kvm_arm_vcpu_stopped(vcpu)) && (!vcpu->arch.pause), | 
|  | TASK_INTERRUPTIBLE); | 
|  |  | 
|  | if (kvm_arm_vcpu_stopped(vcpu) || vcpu->arch.pause) { | 
|  | /* Awaken to handle a signal, request we sleep again later. */ | 
|  | kvm_make_request(KVM_REQ_SLEEP, vcpu); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Make sure we will observe a potential reset request if we've | 
|  | * observed a change to the power state. Pairs with the smp_wmb() in | 
|  | * kvm_psci_vcpu_on(). | 
|  | */ | 
|  | smp_rmb(); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * kvm_vcpu_wfi - emulate Wait-For-Interrupt behavior | 
|  | * @vcpu:	The VCPU pointer | 
|  | * | 
|  | * Suspend execution of a vCPU until a valid wake event is detected, i.e. until | 
|  | * the vCPU is runnable.  The vCPU may or may not be scheduled out, depending | 
|  | * on when a wake event arrives, e.g. there may already be a pending wake event. | 
|  | */ | 
|  | void kvm_vcpu_wfi(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | /* | 
|  | * Sync back the state of the GIC CPU interface so that we have | 
|  | * the latest PMR and group enables. This ensures that | 
|  | * kvm_arch_vcpu_runnable has up-to-date data to decide whether | 
|  | * we have pending interrupts, e.g. when determining if the | 
|  | * vCPU should block. | 
|  | * | 
|  | * For the same reason, we want to tell GICv4 that we need | 
|  | * doorbells to be signalled, should an interrupt become pending. | 
|  | */ | 
|  | preempt_disable(); | 
|  | vcpu_set_flag(vcpu, IN_WFI); | 
|  | kvm_vgic_put(vcpu); | 
|  | preempt_enable(); | 
|  |  | 
|  | kvm_vcpu_halt(vcpu); | 
|  | vcpu_clear_flag(vcpu, IN_WFIT); | 
|  |  | 
|  | preempt_disable(); | 
|  | vcpu_clear_flag(vcpu, IN_WFI); | 
|  | kvm_vgic_load(vcpu); | 
|  | preempt_enable(); | 
|  | } | 
|  |  | 
|  | static int kvm_vcpu_suspend(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | if (!kvm_arm_vcpu_suspended(vcpu)) | 
|  | return 1; | 
|  |  | 
|  | kvm_vcpu_wfi(vcpu); | 
|  |  | 
|  | /* | 
|  | * The suspend state is sticky; we do not leave it until userspace | 
|  | * explicitly marks the vCPU as runnable. Request that we suspend again | 
|  | * later. | 
|  | */ | 
|  | kvm_make_request(KVM_REQ_SUSPEND, vcpu); | 
|  |  | 
|  | /* | 
|  | * Check to make sure the vCPU is actually runnable. If so, exit to | 
|  | * userspace informing it of the wakeup condition. | 
|  | */ | 
|  | if (kvm_arch_vcpu_runnable(vcpu)) { | 
|  | memset(&vcpu->run->system_event, 0, sizeof(vcpu->run->system_event)); | 
|  | vcpu->run->system_event.type = KVM_SYSTEM_EVENT_WAKEUP; | 
|  | vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Otherwise, we were unblocked to process a different event, such as a | 
|  | * pending signal. Return 1 and allow kvm_arch_vcpu_ioctl_run() to | 
|  | * process the event. | 
|  | */ | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * check_vcpu_requests - check and handle pending vCPU requests | 
|  | * @vcpu:	the VCPU pointer | 
|  | * | 
|  | * Return: 1 if we should enter the guest | 
|  | *	   0 if we should exit to userspace | 
|  | *	   < 0 if we should exit to userspace, where the return value indicates | 
|  | *	   an error | 
|  | */ | 
|  | static int check_vcpu_requests(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | if (kvm_request_pending(vcpu)) { | 
|  | if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) | 
|  | return -EIO; | 
|  |  | 
|  | if (kvm_check_request(KVM_REQ_SLEEP, vcpu)) | 
|  | kvm_vcpu_sleep(vcpu); | 
|  |  | 
|  | if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu)) | 
|  | kvm_reset_vcpu(vcpu); | 
|  |  | 
|  | /* | 
|  | * Clear IRQ_PENDING requests that were made to guarantee | 
|  | * that a VCPU sees new virtual interrupts. | 
|  | */ | 
|  | kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu); | 
|  |  | 
|  | if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu)) | 
|  | kvm_update_stolen_time(vcpu); | 
|  |  | 
|  | if (kvm_check_request(KVM_REQ_RELOAD_GICv4, vcpu)) { | 
|  | /* The distributor enable bits were changed */ | 
|  | preempt_disable(); | 
|  | vgic_v4_put(vcpu); | 
|  | vgic_v4_load(vcpu); | 
|  | preempt_enable(); | 
|  | } | 
|  |  | 
|  | if (kvm_check_request(KVM_REQ_RELOAD_PMU, vcpu)) | 
|  | kvm_vcpu_reload_pmu(vcpu); | 
|  |  | 
|  | if (kvm_check_request(KVM_REQ_RESYNC_PMU_EL0, vcpu)) | 
|  | kvm_vcpu_pmu_restore_guest(vcpu); | 
|  |  | 
|  | if (kvm_check_request(KVM_REQ_SUSPEND, vcpu)) | 
|  | return kvm_vcpu_suspend(vcpu); | 
|  |  | 
|  | if (kvm_dirty_ring_check_request(vcpu)) | 
|  | return 0; | 
|  |  | 
|  | check_nested_vcpu_requests(vcpu); | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static bool vcpu_mode_is_bad_32bit(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | if (likely(!vcpu_mode_is_32bit(vcpu))) | 
|  | return false; | 
|  |  | 
|  | if (vcpu_has_nv(vcpu)) | 
|  | return true; | 
|  |  | 
|  | return !kvm_supports_32bit_el0(); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * kvm_vcpu_exit_request - returns true if the VCPU should *not* enter the guest | 
|  | * @vcpu:	The VCPU pointer | 
|  | * @ret:	Pointer to write optional return code | 
|  | * | 
|  | * Returns: true if the VCPU needs to return to a preemptible + interruptible | 
|  | *	    and skip guest entry. | 
|  | * | 
|  | * This function disambiguates between two different types of exits: exits to a | 
|  | * preemptible + interruptible kernel context and exits to userspace. For an | 
|  | * exit to userspace, this function will write the return code to ret and return | 
|  | * true. For an exit to preemptible + interruptible kernel context (i.e. check | 
|  | * for pending work and re-enter), return true without writing to ret. | 
|  | */ | 
|  | static bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu, int *ret) | 
|  | { | 
|  | struct kvm_run *run = vcpu->run; | 
|  |  | 
|  | /* | 
|  | * If we're using a userspace irqchip, then check if we need | 
|  | * to tell a userspace irqchip about timer or PMU level | 
|  | * changes and if so, exit to userspace (the actual level | 
|  | * state gets updated in kvm_timer_update_run and | 
|  | * kvm_pmu_update_run below). | 
|  | */ | 
|  | if (static_branch_unlikely(&userspace_irqchip_in_use)) { | 
|  | if (kvm_timer_should_notify_user(vcpu) || | 
|  | kvm_pmu_should_notify_user(vcpu)) { | 
|  | *ret = -EINTR; | 
|  | run->exit_reason = KVM_EXIT_INTR; | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (unlikely(vcpu_on_unsupported_cpu(vcpu))) { | 
|  | run->exit_reason = KVM_EXIT_FAIL_ENTRY; | 
|  | run->fail_entry.hardware_entry_failure_reason = KVM_EXIT_FAIL_ENTRY_CPU_UNSUPPORTED; | 
|  | run->fail_entry.cpu = smp_processor_id(); | 
|  | *ret = 0; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return kvm_request_pending(vcpu) || | 
|  | xfer_to_guest_mode_work_pending(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Actually run the vCPU, entering an RCU extended quiescent state (EQS) while | 
|  | * the vCPU is running. | 
|  | * | 
|  | * This must be noinstr as instrumentation may make use of RCU, and this is not | 
|  | * safe during the EQS. | 
|  | */ | 
|  | static int noinstr kvm_arm_vcpu_enter_exit(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | guest_state_enter_irqoff(); | 
|  | ret = kvm_call_hyp_ret(__kvm_vcpu_run, vcpu); | 
|  | guest_state_exit_irqoff(); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code | 
|  | * @vcpu:	The VCPU pointer | 
|  | * | 
|  | * This function is called through the VCPU_RUN ioctl called from user space. It | 
|  | * will execute VM code in a loop until the time slice for the process is used | 
|  | * or some emulation is needed from user space in which case the function will | 
|  | * return with return value 0 and with the kvm_run structure filled in with the | 
|  | * required data for the requested emulation. | 
|  | */ | 
|  | int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct kvm_run *run = vcpu->run; | 
|  | int ret; | 
|  |  | 
|  | if (run->exit_reason == KVM_EXIT_MMIO) { | 
|  | ret = kvm_handle_mmio_return(vcpu); | 
|  | if (ret <= 0) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | vcpu_load(vcpu); | 
|  |  | 
|  | if (!vcpu->wants_to_run) { | 
|  | ret = -EINTR; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | kvm_sigset_activate(vcpu); | 
|  |  | 
|  | ret = 1; | 
|  | run->exit_reason = KVM_EXIT_UNKNOWN; | 
|  | run->flags = 0; | 
|  | while (ret > 0) { | 
|  | /* | 
|  | * Check conditions before entering the guest | 
|  | */ | 
|  | ret = xfer_to_guest_mode_handle_work(vcpu); | 
|  | if (!ret) | 
|  | ret = 1; | 
|  |  | 
|  | if (ret > 0) | 
|  | ret = check_vcpu_requests(vcpu); | 
|  |  | 
|  | /* | 
|  | * Preparing the interrupts to be injected also | 
|  | * involves poking the GIC, which must be done in a | 
|  | * non-preemptible context. | 
|  | */ | 
|  | preempt_disable(); | 
|  |  | 
|  | /* | 
|  | * The VMID allocator only tracks active VMIDs per | 
|  | * physical CPU, and therefore the VMID allocated may not be | 
|  | * preserved on VMID roll-over if the task was preempted, | 
|  | * making a thread's VMID inactive. So we need to call | 
|  | * kvm_arm_vmid_update() in non-premptible context. | 
|  | */ | 
|  | if (kvm_arm_vmid_update(&vcpu->arch.hw_mmu->vmid) && | 
|  | has_vhe()) | 
|  | __load_stage2(vcpu->arch.hw_mmu, | 
|  | vcpu->arch.hw_mmu->arch); | 
|  |  | 
|  | kvm_pmu_flush_hwstate(vcpu); | 
|  |  | 
|  | local_irq_disable(); | 
|  |  | 
|  | kvm_vgic_flush_hwstate(vcpu); | 
|  |  | 
|  | kvm_pmu_update_vcpu_events(vcpu); | 
|  |  | 
|  | /* | 
|  | * Ensure we set mode to IN_GUEST_MODE after we disable | 
|  | * interrupts and before the final VCPU requests check. | 
|  | * See the comment in kvm_vcpu_exiting_guest_mode() and | 
|  | * Documentation/virt/kvm/vcpu-requests.rst | 
|  | */ | 
|  | smp_store_mb(vcpu->mode, IN_GUEST_MODE); | 
|  |  | 
|  | if (ret <= 0 || kvm_vcpu_exit_request(vcpu, &ret)) { | 
|  | vcpu->mode = OUTSIDE_GUEST_MODE; | 
|  | isb(); /* Ensure work in x_flush_hwstate is committed */ | 
|  | kvm_pmu_sync_hwstate(vcpu); | 
|  | if (static_branch_unlikely(&userspace_irqchip_in_use)) | 
|  | kvm_timer_sync_user(vcpu); | 
|  | kvm_vgic_sync_hwstate(vcpu); | 
|  | local_irq_enable(); | 
|  | preempt_enable(); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | kvm_arm_setup_debug(vcpu); | 
|  | kvm_arch_vcpu_ctxflush_fp(vcpu); | 
|  |  | 
|  | /************************************************************** | 
|  | * Enter the guest | 
|  | */ | 
|  | trace_kvm_entry(*vcpu_pc(vcpu)); | 
|  | guest_timing_enter_irqoff(); | 
|  |  | 
|  | ret = kvm_arm_vcpu_enter_exit(vcpu); | 
|  |  | 
|  | vcpu->mode = OUTSIDE_GUEST_MODE; | 
|  | vcpu->stat.exits++; | 
|  | /* | 
|  | * Back from guest | 
|  | *************************************************************/ | 
|  |  | 
|  | kvm_arm_clear_debug(vcpu); | 
|  |  | 
|  | /* | 
|  | * We must sync the PMU state before the vgic state so | 
|  | * that the vgic can properly sample the updated state of the | 
|  | * interrupt line. | 
|  | */ | 
|  | kvm_pmu_sync_hwstate(vcpu); | 
|  |  | 
|  | /* | 
|  | * Sync the vgic state before syncing the timer state because | 
|  | * the timer code needs to know if the virtual timer | 
|  | * interrupts are active. | 
|  | */ | 
|  | kvm_vgic_sync_hwstate(vcpu); | 
|  |  | 
|  | /* | 
|  | * Sync the timer hardware state before enabling interrupts as | 
|  | * we don't want vtimer interrupts to race with syncing the | 
|  | * timer virtual interrupt state. | 
|  | */ | 
|  | if (static_branch_unlikely(&userspace_irqchip_in_use)) | 
|  | kvm_timer_sync_user(vcpu); | 
|  |  | 
|  | kvm_arch_vcpu_ctxsync_fp(vcpu); | 
|  |  | 
|  | /* | 
|  | * We must ensure that any pending interrupts are taken before | 
|  | * we exit guest timing so that timer ticks are accounted as | 
|  | * guest time. Transiently unmask interrupts so that any | 
|  | * pending interrupts are taken. | 
|  | * | 
|  | * Per ARM DDI 0487G.b section D1.13.4, an ISB (or other | 
|  | * context synchronization event) is necessary to ensure that | 
|  | * pending interrupts are taken. | 
|  | */ | 
|  | if (ARM_EXCEPTION_CODE(ret) == ARM_EXCEPTION_IRQ) { | 
|  | local_irq_enable(); | 
|  | isb(); | 
|  | local_irq_disable(); | 
|  | } | 
|  |  | 
|  | guest_timing_exit_irqoff(); | 
|  |  | 
|  | local_irq_enable(); | 
|  |  | 
|  | trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu)); | 
|  |  | 
|  | /* Exit types that need handling before we can be preempted */ | 
|  | handle_exit_early(vcpu, ret); | 
|  |  | 
|  | preempt_enable(); | 
|  |  | 
|  | /* | 
|  | * The ARMv8 architecture doesn't give the hypervisor | 
|  | * a mechanism to prevent a guest from dropping to AArch32 EL0 | 
|  | * if implemented by the CPU. If we spot the guest in such | 
|  | * state and that we decided it wasn't supposed to do so (like | 
|  | * with the asymmetric AArch32 case), return to userspace with | 
|  | * a fatal error. | 
|  | */ | 
|  | if (vcpu_mode_is_bad_32bit(vcpu)) { | 
|  | /* | 
|  | * As we have caught the guest red-handed, decide that | 
|  | * it isn't fit for purpose anymore by making the vcpu | 
|  | * invalid. The VMM can try and fix it by issuing  a | 
|  | * KVM_ARM_VCPU_INIT if it really wants to. | 
|  | */ | 
|  | vcpu_clear_flag(vcpu, VCPU_INITIALIZED); | 
|  | ret = ARM_EXCEPTION_IL; | 
|  | } | 
|  |  | 
|  | ret = handle_exit(vcpu, ret); | 
|  | } | 
|  |  | 
|  | /* Tell userspace about in-kernel device output levels */ | 
|  | if (unlikely(!irqchip_in_kernel(vcpu->kvm))) { | 
|  | kvm_timer_update_run(vcpu); | 
|  | kvm_pmu_update_run(vcpu); | 
|  | } | 
|  |  | 
|  | kvm_sigset_deactivate(vcpu); | 
|  |  | 
|  | out: | 
|  | /* | 
|  | * In the unlikely event that we are returning to userspace | 
|  | * with pending exceptions or PC adjustment, commit these | 
|  | * adjustments in order to give userspace a consistent view of | 
|  | * the vcpu state. Note that this relies on __kvm_adjust_pc() | 
|  | * being preempt-safe on VHE. | 
|  | */ | 
|  | if (unlikely(vcpu_get_flag(vcpu, PENDING_EXCEPTION) || | 
|  | vcpu_get_flag(vcpu, INCREMENT_PC))) | 
|  | kvm_call_hyp(__kvm_adjust_pc, vcpu); | 
|  |  | 
|  | vcpu_put(vcpu); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level) | 
|  | { | 
|  | int bit_index; | 
|  | bool set; | 
|  | unsigned long *hcr; | 
|  |  | 
|  | if (number == KVM_ARM_IRQ_CPU_IRQ) | 
|  | bit_index = __ffs(HCR_VI); | 
|  | else /* KVM_ARM_IRQ_CPU_FIQ */ | 
|  | bit_index = __ffs(HCR_VF); | 
|  |  | 
|  | hcr = vcpu_hcr(vcpu); | 
|  | if (level) | 
|  | set = test_and_set_bit(bit_index, hcr); | 
|  | else | 
|  | set = test_and_clear_bit(bit_index, hcr); | 
|  |  | 
|  | /* | 
|  | * If we didn't change anything, no need to wake up or kick other CPUs | 
|  | */ | 
|  | if (set == level) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * The vcpu irq_lines field was updated, wake up sleeping VCPUs and | 
|  | * trigger a world-switch round on the running physical CPU to set the | 
|  | * virtual IRQ/FIQ fields in the HCR appropriately. | 
|  | */ | 
|  | kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu); | 
|  | kvm_vcpu_kick(vcpu); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level, | 
|  | bool line_status) | 
|  | { | 
|  | u32 irq = irq_level->irq; | 
|  | unsigned int irq_type, vcpu_id, irq_num; | 
|  | struct kvm_vcpu *vcpu = NULL; | 
|  | bool level = irq_level->level; | 
|  |  | 
|  | irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK; | 
|  | vcpu_id = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK; | 
|  | vcpu_id += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1); | 
|  | irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK; | 
|  |  | 
|  | trace_kvm_irq_line(irq_type, vcpu_id, irq_num, irq_level->level); | 
|  |  | 
|  | switch (irq_type) { | 
|  | case KVM_ARM_IRQ_TYPE_CPU: | 
|  | if (irqchip_in_kernel(kvm)) | 
|  | return -ENXIO; | 
|  |  | 
|  | vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id); | 
|  | if (!vcpu) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (irq_num > KVM_ARM_IRQ_CPU_FIQ) | 
|  | return -EINVAL; | 
|  |  | 
|  | return vcpu_interrupt_line(vcpu, irq_num, level); | 
|  | case KVM_ARM_IRQ_TYPE_PPI: | 
|  | if (!irqchip_in_kernel(kvm)) | 
|  | return -ENXIO; | 
|  |  | 
|  | vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id); | 
|  | if (!vcpu) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS) | 
|  | return -EINVAL; | 
|  |  | 
|  | return kvm_vgic_inject_irq(kvm, vcpu, irq_num, level, NULL); | 
|  | case KVM_ARM_IRQ_TYPE_SPI: | 
|  | if (!irqchip_in_kernel(kvm)) | 
|  | return -ENXIO; | 
|  |  | 
|  | if (irq_num < VGIC_NR_PRIVATE_IRQS) | 
|  | return -EINVAL; | 
|  |  | 
|  | return kvm_vgic_inject_irq(kvm, NULL, irq_num, level, NULL); | 
|  | } | 
|  |  | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | static unsigned long system_supported_vcpu_features(void) | 
|  | { | 
|  | unsigned long features = KVM_VCPU_VALID_FEATURES; | 
|  |  | 
|  | if (!cpus_have_final_cap(ARM64_HAS_32BIT_EL1)) | 
|  | clear_bit(KVM_ARM_VCPU_EL1_32BIT, &features); | 
|  |  | 
|  | if (!kvm_arm_support_pmu_v3()) | 
|  | clear_bit(KVM_ARM_VCPU_PMU_V3, &features); | 
|  |  | 
|  | if (!system_supports_sve()) | 
|  | clear_bit(KVM_ARM_VCPU_SVE, &features); | 
|  |  | 
|  | if (!kvm_has_full_ptr_auth()) { | 
|  | clear_bit(KVM_ARM_VCPU_PTRAUTH_ADDRESS, &features); | 
|  | clear_bit(KVM_ARM_VCPU_PTRAUTH_GENERIC, &features); | 
|  | } | 
|  |  | 
|  | if (!cpus_have_final_cap(ARM64_HAS_NESTED_VIRT)) | 
|  | clear_bit(KVM_ARM_VCPU_HAS_EL2, &features); | 
|  |  | 
|  | return features; | 
|  | } | 
|  |  | 
|  | static int kvm_vcpu_init_check_features(struct kvm_vcpu *vcpu, | 
|  | const struct kvm_vcpu_init *init) | 
|  | { | 
|  | unsigned long features = init->features[0]; | 
|  | int i; | 
|  |  | 
|  | if (features & ~KVM_VCPU_VALID_FEATURES) | 
|  | return -ENOENT; | 
|  |  | 
|  | for (i = 1; i < ARRAY_SIZE(init->features); i++) { | 
|  | if (init->features[i]) | 
|  | return -ENOENT; | 
|  | } | 
|  |  | 
|  | if (features & ~system_supported_vcpu_features()) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* | 
|  | * For now make sure that both address/generic pointer authentication | 
|  | * features are requested by the userspace together. | 
|  | */ | 
|  | if (test_bit(KVM_ARM_VCPU_PTRAUTH_ADDRESS, &features) != | 
|  | test_bit(KVM_ARM_VCPU_PTRAUTH_GENERIC, &features)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (!test_bit(KVM_ARM_VCPU_EL1_32BIT, &features)) | 
|  | return 0; | 
|  |  | 
|  | /* MTE is incompatible with AArch32 */ | 
|  | if (kvm_has_mte(vcpu->kvm)) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* NV is incompatible with AArch32 */ | 
|  | if (test_bit(KVM_ARM_VCPU_HAS_EL2, &features)) | 
|  | return -EINVAL; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static bool kvm_vcpu_init_changed(struct kvm_vcpu *vcpu, | 
|  | const struct kvm_vcpu_init *init) | 
|  | { | 
|  | unsigned long features = init->features[0]; | 
|  |  | 
|  | return !bitmap_equal(vcpu->kvm->arch.vcpu_features, &features, | 
|  | KVM_VCPU_MAX_FEATURES); | 
|  | } | 
|  |  | 
|  | static int kvm_setup_vcpu(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct kvm *kvm = vcpu->kvm; | 
|  | int ret = 0; | 
|  |  | 
|  | /* | 
|  | * When the vCPU has a PMU, but no PMU is set for the guest | 
|  | * yet, set the default one. | 
|  | */ | 
|  | if (kvm_vcpu_has_pmu(vcpu) && !kvm->arch.arm_pmu) | 
|  | ret = kvm_arm_set_default_pmu(kvm); | 
|  |  | 
|  | /* Prepare for nested if required */ | 
|  | if (!ret && vcpu_has_nv(vcpu)) | 
|  | ret = kvm_vcpu_init_nested(vcpu); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int __kvm_vcpu_set_target(struct kvm_vcpu *vcpu, | 
|  | const struct kvm_vcpu_init *init) | 
|  | { | 
|  | unsigned long features = init->features[0]; | 
|  | struct kvm *kvm = vcpu->kvm; | 
|  | int ret = -EINVAL; | 
|  |  | 
|  | mutex_lock(&kvm->arch.config_lock); | 
|  |  | 
|  | if (test_bit(KVM_ARCH_FLAG_VCPU_FEATURES_CONFIGURED, &kvm->arch.flags) && | 
|  | kvm_vcpu_init_changed(vcpu, init)) | 
|  | goto out_unlock; | 
|  |  | 
|  | bitmap_copy(kvm->arch.vcpu_features, &features, KVM_VCPU_MAX_FEATURES); | 
|  |  | 
|  | ret = kvm_setup_vcpu(vcpu); | 
|  | if (ret) | 
|  | goto out_unlock; | 
|  |  | 
|  | /* Now we know what it is, we can reset it. */ | 
|  | kvm_reset_vcpu(vcpu); | 
|  |  | 
|  | set_bit(KVM_ARCH_FLAG_VCPU_FEATURES_CONFIGURED, &kvm->arch.flags); | 
|  | vcpu_set_flag(vcpu, VCPU_INITIALIZED); | 
|  | ret = 0; | 
|  | out_unlock: | 
|  | mutex_unlock(&kvm->arch.config_lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu, | 
|  | const struct kvm_vcpu_init *init) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | if (init->target != KVM_ARM_TARGET_GENERIC_V8 && | 
|  | init->target != kvm_target_cpu()) | 
|  | return -EINVAL; | 
|  |  | 
|  | ret = kvm_vcpu_init_check_features(vcpu, init); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | if (!kvm_vcpu_initialized(vcpu)) | 
|  | return __kvm_vcpu_set_target(vcpu, init); | 
|  |  | 
|  | if (kvm_vcpu_init_changed(vcpu, init)) | 
|  | return -EINVAL; | 
|  |  | 
|  | kvm_reset_vcpu(vcpu); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu, | 
|  | struct kvm_vcpu_init *init) | 
|  | { | 
|  | bool power_off = false; | 
|  | int ret; | 
|  |  | 
|  | /* | 
|  | * Treat the power-off vCPU feature as ephemeral. Clear the bit to avoid | 
|  | * reflecting it in the finalized feature set, thus limiting its scope | 
|  | * to a single KVM_ARM_VCPU_INIT call. | 
|  | */ | 
|  | if (init->features[0] & BIT(KVM_ARM_VCPU_POWER_OFF)) { | 
|  | init->features[0] &= ~BIT(KVM_ARM_VCPU_POWER_OFF); | 
|  | power_off = true; | 
|  | } | 
|  |  | 
|  | ret = kvm_vcpu_set_target(vcpu, init); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | /* | 
|  | * Ensure a rebooted VM will fault in RAM pages and detect if the | 
|  | * guest MMU is turned off and flush the caches as needed. | 
|  | * | 
|  | * S2FWB enforces all memory accesses to RAM being cacheable, | 
|  | * ensuring that the data side is always coherent. We still | 
|  | * need to invalidate the I-cache though, as FWB does *not* | 
|  | * imply CTR_EL0.DIC. | 
|  | */ | 
|  | if (vcpu_has_run_once(vcpu)) { | 
|  | if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB)) | 
|  | stage2_unmap_vm(vcpu->kvm); | 
|  | else | 
|  | icache_inval_all_pou(); | 
|  | } | 
|  |  | 
|  | vcpu_reset_hcr(vcpu); | 
|  | vcpu->arch.cptr_el2 = kvm_get_reset_cptr_el2(vcpu); | 
|  |  | 
|  | /* | 
|  | * Handle the "start in power-off" case. | 
|  | */ | 
|  | spin_lock(&vcpu->arch.mp_state_lock); | 
|  |  | 
|  | if (power_off) | 
|  | __kvm_arm_vcpu_power_off(vcpu); | 
|  | else | 
|  | WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_RUNNABLE); | 
|  |  | 
|  | spin_unlock(&vcpu->arch.mp_state_lock); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu, | 
|  | struct kvm_device_attr *attr) | 
|  | { | 
|  | int ret = -ENXIO; | 
|  |  | 
|  | switch (attr->group) { | 
|  | default: | 
|  | ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr); | 
|  | break; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu, | 
|  | struct kvm_device_attr *attr) | 
|  | { | 
|  | int ret = -ENXIO; | 
|  |  | 
|  | switch (attr->group) { | 
|  | default: | 
|  | ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr); | 
|  | break; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu, | 
|  | struct kvm_device_attr *attr) | 
|  | { | 
|  | int ret = -ENXIO; | 
|  |  | 
|  | switch (attr->group) { | 
|  | default: | 
|  | ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr); | 
|  | break; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu, | 
|  | struct kvm_vcpu_events *events) | 
|  | { | 
|  | memset(events, 0, sizeof(*events)); | 
|  |  | 
|  | return __kvm_arm_vcpu_get_events(vcpu, events); | 
|  | } | 
|  |  | 
|  | static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu, | 
|  | struct kvm_vcpu_events *events) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | /* check whether the reserved field is zero */ | 
|  | for (i = 0; i < ARRAY_SIZE(events->reserved); i++) | 
|  | if (events->reserved[i]) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* check whether the pad field is zero */ | 
|  | for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++) | 
|  | if (events->exception.pad[i]) | 
|  | return -EINVAL; | 
|  |  | 
|  | return __kvm_arm_vcpu_set_events(vcpu, events); | 
|  | } | 
|  |  | 
|  | long kvm_arch_vcpu_ioctl(struct file *filp, | 
|  | unsigned int ioctl, unsigned long arg) | 
|  | { | 
|  | struct kvm_vcpu *vcpu = filp->private_data; | 
|  | void __user *argp = (void __user *)arg; | 
|  | struct kvm_device_attr attr; | 
|  | long r; | 
|  |  | 
|  | switch (ioctl) { | 
|  | case KVM_ARM_VCPU_INIT: { | 
|  | struct kvm_vcpu_init init; | 
|  |  | 
|  | r = -EFAULT; | 
|  | if (copy_from_user(&init, argp, sizeof(init))) | 
|  | break; | 
|  |  | 
|  | r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init); | 
|  | break; | 
|  | } | 
|  | case KVM_SET_ONE_REG: | 
|  | case KVM_GET_ONE_REG: { | 
|  | struct kvm_one_reg reg; | 
|  |  | 
|  | r = -ENOEXEC; | 
|  | if (unlikely(!kvm_vcpu_initialized(vcpu))) | 
|  | break; | 
|  |  | 
|  | r = -EFAULT; | 
|  | if (copy_from_user(®, argp, sizeof(reg))) | 
|  | break; | 
|  |  | 
|  | /* | 
|  | * We could owe a reset due to PSCI. Handle the pending reset | 
|  | * here to ensure userspace register accesses are ordered after | 
|  | * the reset. | 
|  | */ | 
|  | if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu)) | 
|  | kvm_reset_vcpu(vcpu); | 
|  |  | 
|  | if (ioctl == KVM_SET_ONE_REG) | 
|  | r = kvm_arm_set_reg(vcpu, ®); | 
|  | else | 
|  | r = kvm_arm_get_reg(vcpu, ®); | 
|  | break; | 
|  | } | 
|  | case KVM_GET_REG_LIST: { | 
|  | struct kvm_reg_list __user *user_list = argp; | 
|  | struct kvm_reg_list reg_list; | 
|  | unsigned n; | 
|  |  | 
|  | r = -ENOEXEC; | 
|  | if (unlikely(!kvm_vcpu_initialized(vcpu))) | 
|  | break; | 
|  |  | 
|  | r = -EPERM; | 
|  | if (!kvm_arm_vcpu_is_finalized(vcpu)) | 
|  | break; | 
|  |  | 
|  | r = -EFAULT; | 
|  | if (copy_from_user(®_list, user_list, sizeof(reg_list))) | 
|  | break; | 
|  | n = reg_list.n; | 
|  | reg_list.n = kvm_arm_num_regs(vcpu); | 
|  | if (copy_to_user(user_list, ®_list, sizeof(reg_list))) | 
|  | break; | 
|  | r = -E2BIG; | 
|  | if (n < reg_list.n) | 
|  | break; | 
|  | r = kvm_arm_copy_reg_indices(vcpu, user_list->reg); | 
|  | break; | 
|  | } | 
|  | case KVM_SET_DEVICE_ATTR: { | 
|  | r = -EFAULT; | 
|  | if (copy_from_user(&attr, argp, sizeof(attr))) | 
|  | break; | 
|  | r = kvm_arm_vcpu_set_attr(vcpu, &attr); | 
|  | break; | 
|  | } | 
|  | case KVM_GET_DEVICE_ATTR: { | 
|  | r = -EFAULT; | 
|  | if (copy_from_user(&attr, argp, sizeof(attr))) | 
|  | break; | 
|  | r = kvm_arm_vcpu_get_attr(vcpu, &attr); | 
|  | break; | 
|  | } | 
|  | case KVM_HAS_DEVICE_ATTR: { | 
|  | r = -EFAULT; | 
|  | if (copy_from_user(&attr, argp, sizeof(attr))) | 
|  | break; | 
|  | r = kvm_arm_vcpu_has_attr(vcpu, &attr); | 
|  | break; | 
|  | } | 
|  | case KVM_GET_VCPU_EVENTS: { | 
|  | struct kvm_vcpu_events events; | 
|  |  | 
|  | if (kvm_arm_vcpu_get_events(vcpu, &events)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (copy_to_user(argp, &events, sizeof(events))) | 
|  | return -EFAULT; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | case KVM_SET_VCPU_EVENTS: { | 
|  | struct kvm_vcpu_events events; | 
|  |  | 
|  | if (copy_from_user(&events, argp, sizeof(events))) | 
|  | return -EFAULT; | 
|  |  | 
|  | return kvm_arm_vcpu_set_events(vcpu, &events); | 
|  | } | 
|  | case KVM_ARM_VCPU_FINALIZE: { | 
|  | int what; | 
|  |  | 
|  | if (!kvm_vcpu_initialized(vcpu)) | 
|  | return -ENOEXEC; | 
|  |  | 
|  | if (get_user(what, (const int __user *)argp)) | 
|  | return -EFAULT; | 
|  |  | 
|  | return kvm_arm_vcpu_finalize(vcpu, what); | 
|  | } | 
|  | default: | 
|  | r = -EINVAL; | 
|  | } | 
|  |  | 
|  | return r; | 
|  | } | 
|  |  | 
|  | void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot) | 
|  | { | 
|  |  | 
|  | } | 
|  |  | 
|  | static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm, | 
|  | struct kvm_arm_device_addr *dev_addr) | 
|  | { | 
|  | switch (FIELD_GET(KVM_ARM_DEVICE_ID_MASK, dev_addr->id)) { | 
|  | case KVM_ARM_DEVICE_VGIC_V2: | 
|  | if (!vgic_present) | 
|  | return -ENXIO; | 
|  | return kvm_set_legacy_vgic_v2_addr(kvm, dev_addr); | 
|  | default: | 
|  | return -ENODEV; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int kvm_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr) | 
|  | { | 
|  | switch (attr->group) { | 
|  | case KVM_ARM_VM_SMCCC_CTRL: | 
|  | return kvm_vm_smccc_has_attr(kvm, attr); | 
|  | default: | 
|  | return -ENXIO; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int kvm_vm_set_attr(struct kvm *kvm, struct kvm_device_attr *attr) | 
|  | { | 
|  | switch (attr->group) { | 
|  | case KVM_ARM_VM_SMCCC_CTRL: | 
|  | return kvm_vm_smccc_set_attr(kvm, attr); | 
|  | default: | 
|  | return -ENXIO; | 
|  | } | 
|  | } | 
|  |  | 
|  | int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) | 
|  | { | 
|  | struct kvm *kvm = filp->private_data; | 
|  | void __user *argp = (void __user *)arg; | 
|  | struct kvm_device_attr attr; | 
|  |  | 
|  | switch (ioctl) { | 
|  | case KVM_CREATE_IRQCHIP: { | 
|  | int ret; | 
|  | if (!vgic_present) | 
|  | return -ENXIO; | 
|  | mutex_lock(&kvm->lock); | 
|  | ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2); | 
|  | mutex_unlock(&kvm->lock); | 
|  | return ret; | 
|  | } | 
|  | case KVM_ARM_SET_DEVICE_ADDR: { | 
|  | struct kvm_arm_device_addr dev_addr; | 
|  |  | 
|  | if (copy_from_user(&dev_addr, argp, sizeof(dev_addr))) | 
|  | return -EFAULT; | 
|  | return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr); | 
|  | } | 
|  | case KVM_ARM_PREFERRED_TARGET: { | 
|  | struct kvm_vcpu_init init = { | 
|  | .target = KVM_ARM_TARGET_GENERIC_V8, | 
|  | }; | 
|  |  | 
|  | if (copy_to_user(argp, &init, sizeof(init))) | 
|  | return -EFAULT; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | case KVM_ARM_MTE_COPY_TAGS: { | 
|  | struct kvm_arm_copy_mte_tags copy_tags; | 
|  |  | 
|  | if (copy_from_user(©_tags, argp, sizeof(copy_tags))) | 
|  | return -EFAULT; | 
|  | return kvm_vm_ioctl_mte_copy_tags(kvm, ©_tags); | 
|  | } | 
|  | case KVM_ARM_SET_COUNTER_OFFSET: { | 
|  | struct kvm_arm_counter_offset offset; | 
|  |  | 
|  | if (copy_from_user(&offset, argp, sizeof(offset))) | 
|  | return -EFAULT; | 
|  | return kvm_vm_ioctl_set_counter_offset(kvm, &offset); | 
|  | } | 
|  | case KVM_HAS_DEVICE_ATTR: { | 
|  | if (copy_from_user(&attr, argp, sizeof(attr))) | 
|  | return -EFAULT; | 
|  |  | 
|  | return kvm_vm_has_attr(kvm, &attr); | 
|  | } | 
|  | case KVM_SET_DEVICE_ATTR: { | 
|  | if (copy_from_user(&attr, argp, sizeof(attr))) | 
|  | return -EFAULT; | 
|  |  | 
|  | return kvm_vm_set_attr(kvm, &attr); | 
|  | } | 
|  | case KVM_ARM_GET_REG_WRITABLE_MASKS: { | 
|  | struct reg_mask_range range; | 
|  |  | 
|  | if (copy_from_user(&range, argp, sizeof(range))) | 
|  | return -EFAULT; | 
|  | return kvm_vm_ioctl_get_reg_writable_masks(kvm, &range); | 
|  | } | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* unlocks vcpus from @vcpu_lock_idx and smaller */ | 
|  | static void unlock_vcpus(struct kvm *kvm, int vcpu_lock_idx) | 
|  | { | 
|  | struct kvm_vcpu *tmp_vcpu; | 
|  |  | 
|  | for (; vcpu_lock_idx >= 0; vcpu_lock_idx--) { | 
|  | tmp_vcpu = kvm_get_vcpu(kvm, vcpu_lock_idx); | 
|  | mutex_unlock(&tmp_vcpu->mutex); | 
|  | } | 
|  | } | 
|  |  | 
|  | void unlock_all_vcpus(struct kvm *kvm) | 
|  | { | 
|  | lockdep_assert_held(&kvm->lock); | 
|  |  | 
|  | unlock_vcpus(kvm, atomic_read(&kvm->online_vcpus) - 1); | 
|  | } | 
|  |  | 
|  | /* Returns true if all vcpus were locked, false otherwise */ | 
|  | bool lock_all_vcpus(struct kvm *kvm) | 
|  | { | 
|  | struct kvm_vcpu *tmp_vcpu; | 
|  | unsigned long c; | 
|  |  | 
|  | lockdep_assert_held(&kvm->lock); | 
|  |  | 
|  | /* | 
|  | * Any time a vcpu is in an ioctl (including running), the | 
|  | * core KVM code tries to grab the vcpu->mutex. | 
|  | * | 
|  | * By grabbing the vcpu->mutex of all VCPUs we ensure that no | 
|  | * other VCPUs can fiddle with the state while we access it. | 
|  | */ | 
|  | kvm_for_each_vcpu(c, tmp_vcpu, kvm) { | 
|  | if (!mutex_trylock(&tmp_vcpu->mutex)) { | 
|  | unlock_vcpus(kvm, c - 1); | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static unsigned long nvhe_percpu_size(void) | 
|  | { | 
|  | return (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_end) - | 
|  | (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_start); | 
|  | } | 
|  |  | 
|  | static unsigned long nvhe_percpu_order(void) | 
|  | { | 
|  | unsigned long size = nvhe_percpu_size(); | 
|  |  | 
|  | return size ? get_order(size) : 0; | 
|  | } | 
|  |  | 
|  | static size_t pkvm_host_sve_state_order(void) | 
|  | { | 
|  | return get_order(pkvm_host_sve_state_size()); | 
|  | } | 
|  |  | 
|  | /* A lookup table holding the hypervisor VA for each vector slot */ | 
|  | static void *hyp_spectre_vector_selector[BP_HARDEN_EL2_SLOTS]; | 
|  |  | 
|  | static void kvm_init_vector_slot(void *base, enum arm64_hyp_spectre_vector slot) | 
|  | { | 
|  | hyp_spectre_vector_selector[slot] = __kvm_vector_slot2addr(base, slot); | 
|  | } | 
|  |  | 
|  | static int kvm_init_vector_slots(void) | 
|  | { | 
|  | int err; | 
|  | void *base; | 
|  |  | 
|  | base = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector)); | 
|  | kvm_init_vector_slot(base, HYP_VECTOR_DIRECT); | 
|  |  | 
|  | base = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs)); | 
|  | kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_DIRECT); | 
|  |  | 
|  | if (kvm_system_needs_idmapped_vectors() && | 
|  | !is_protected_kvm_enabled()) { | 
|  | err = create_hyp_exec_mappings(__pa_symbol(__bp_harden_hyp_vecs), | 
|  | __BP_HARDEN_HYP_VECS_SZ, &base); | 
|  | if (err) | 
|  | return err; | 
|  | } | 
|  |  | 
|  | kvm_init_vector_slot(base, HYP_VECTOR_INDIRECT); | 
|  | kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_INDIRECT); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void __init cpu_prepare_hyp_mode(int cpu, u32 hyp_va_bits) | 
|  | { | 
|  | struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu); | 
|  | u64 mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1); | 
|  | unsigned long tcr; | 
|  | int *hyp_cpu_number_ptr = per_cpu_ptr_nvhe_sym(hyp_cpu_number, cpu); | 
|  |  | 
|  | *hyp_cpu_number_ptr = cpu; | 
|  |  | 
|  | /* | 
|  | * Calculate the raw per-cpu offset without a translation from the | 
|  | * kernel's mapping to the linear mapping, and store it in tpidr_el2 | 
|  | * so that we can use adr_l to access per-cpu variables in EL2. | 
|  | * Also drop the KASAN tag which gets in the way... | 
|  | */ | 
|  | params->tpidr_el2 = (unsigned long)kasan_reset_tag(per_cpu_ptr_nvhe_sym(__per_cpu_start, cpu)) - | 
|  | (unsigned long)kvm_ksym_ref(CHOOSE_NVHE_SYM(__per_cpu_start)); | 
|  |  | 
|  | params->mair_el2 = read_sysreg(mair_el1); | 
|  |  | 
|  | tcr = read_sysreg(tcr_el1); | 
|  | if (cpus_have_final_cap(ARM64_KVM_HVHE)) { | 
|  | tcr |= TCR_EPD1_MASK; | 
|  | } else { | 
|  | tcr &= TCR_EL2_MASK; | 
|  | tcr |= TCR_EL2_RES1; | 
|  | } | 
|  | tcr &= ~TCR_T0SZ_MASK; | 
|  | tcr |= TCR_T0SZ(hyp_va_bits); | 
|  | tcr &= ~TCR_EL2_PS_MASK; | 
|  | tcr |= FIELD_PREP(TCR_EL2_PS_MASK, kvm_get_parange(mmfr0)); | 
|  | if (kvm_lpa2_is_enabled()) | 
|  | tcr |= TCR_EL2_DS; | 
|  | params->tcr_el2 = tcr; | 
|  |  | 
|  | params->pgd_pa = kvm_mmu_get_httbr(); | 
|  | if (is_protected_kvm_enabled()) | 
|  | params->hcr_el2 = HCR_HOST_NVHE_PROTECTED_FLAGS; | 
|  | else | 
|  | params->hcr_el2 = HCR_HOST_NVHE_FLAGS; | 
|  | if (cpus_have_final_cap(ARM64_KVM_HVHE)) | 
|  | params->hcr_el2 |= HCR_E2H; | 
|  | params->vttbr = params->vtcr = 0; | 
|  | params->hfgwtr_el2 = HFGxTR_EL2_nSMPRI_EL1_MASK | HFGxTR_EL2_nTPIDR2_EL0_MASK; | 
|  |  | 
|  | /* | 
|  | * Flush the init params from the data cache because the struct will | 
|  | * be read while the MMU is off. | 
|  | */ | 
|  | kvm_flush_dcache_to_poc(params, sizeof(*params)); | 
|  | } | 
|  |  | 
|  | static void hyp_install_host_vector(void) | 
|  | { | 
|  | struct kvm_nvhe_init_params *params; | 
|  | struct arm_smccc_res res; | 
|  |  | 
|  | /* Switch from the HYP stub to our own HYP init vector */ | 
|  | __hyp_set_vectors(kvm_get_idmap_vector()); | 
|  |  | 
|  | /* | 
|  | * Call initialization code, and switch to the full blown HYP code. | 
|  | * If the cpucaps haven't been finalized yet, something has gone very | 
|  | * wrong, and hyp will crash and burn when it uses any | 
|  | * cpus_have_*_cap() wrapper. | 
|  | */ | 
|  | BUG_ON(!system_capabilities_finalized()); | 
|  | params = this_cpu_ptr_nvhe_sym(kvm_init_params); | 
|  | arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(__kvm_hyp_init), virt_to_phys(params), &res); | 
|  | WARN_ON(res.a0 != SMCCC_RET_SUCCESS); | 
|  | } | 
|  |  | 
|  | static void cpu_init_hyp_mode(void) | 
|  | { | 
|  | hyp_install_host_vector(); | 
|  |  | 
|  | /* | 
|  | * Disabling SSBD on a non-VHE system requires us to enable SSBS | 
|  | * at EL2. | 
|  | */ | 
|  | if (this_cpu_has_cap(ARM64_SSBS) && | 
|  | arm64_get_spectre_v4_state() == SPECTRE_VULNERABLE) { | 
|  | kvm_call_hyp_nvhe(__kvm_enable_ssbs); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void cpu_hyp_reset(void) | 
|  | { | 
|  | if (!is_kernel_in_hyp_mode()) | 
|  | __hyp_reset_vectors(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * EL2 vectors can be mapped and rerouted in a number of ways, | 
|  | * depending on the kernel configuration and CPU present: | 
|  | * | 
|  | * - If the CPU is affected by Spectre-v2, the hardening sequence is | 
|  | *   placed in one of the vector slots, which is executed before jumping | 
|  | *   to the real vectors. | 
|  | * | 
|  | * - If the CPU also has the ARM64_SPECTRE_V3A cap, the slot | 
|  | *   containing the hardening sequence is mapped next to the idmap page, | 
|  | *   and executed before jumping to the real vectors. | 
|  | * | 
|  | * - If the CPU only has the ARM64_SPECTRE_V3A cap, then an | 
|  | *   empty slot is selected, mapped next to the idmap page, and | 
|  | *   executed before jumping to the real vectors. | 
|  | * | 
|  | * Note that ARM64_SPECTRE_V3A is somewhat incompatible with | 
|  | * VHE, as we don't have hypervisor-specific mappings. If the system | 
|  | * is VHE and yet selects this capability, it will be ignored. | 
|  | */ | 
|  | static void cpu_set_hyp_vector(void) | 
|  | { | 
|  | struct bp_hardening_data *data = this_cpu_ptr(&bp_hardening_data); | 
|  | void *vector = hyp_spectre_vector_selector[data->slot]; | 
|  |  | 
|  | if (!is_protected_kvm_enabled()) | 
|  | *this_cpu_ptr_hyp_sym(kvm_hyp_vector) = (unsigned long)vector; | 
|  | else | 
|  | kvm_call_hyp_nvhe(__pkvm_cpu_set_vector, data->slot); | 
|  | } | 
|  |  | 
|  | static void cpu_hyp_init_context(void) | 
|  | { | 
|  | kvm_init_host_cpu_context(host_data_ptr(host_ctxt)); | 
|  |  | 
|  | if (!is_kernel_in_hyp_mode()) | 
|  | cpu_init_hyp_mode(); | 
|  | } | 
|  |  | 
|  | static void cpu_hyp_init_features(void) | 
|  | { | 
|  | cpu_set_hyp_vector(); | 
|  | kvm_arm_init_debug(); | 
|  |  | 
|  | if (is_kernel_in_hyp_mode()) | 
|  | kvm_timer_init_vhe(); | 
|  |  | 
|  | if (vgic_present) | 
|  | kvm_vgic_init_cpu_hardware(); | 
|  | } | 
|  |  | 
|  | static void cpu_hyp_reinit(void) | 
|  | { | 
|  | cpu_hyp_reset(); | 
|  | cpu_hyp_init_context(); | 
|  | cpu_hyp_init_features(); | 
|  | } | 
|  |  | 
|  | static void cpu_hyp_init(void *discard) | 
|  | { | 
|  | if (!__this_cpu_read(kvm_hyp_initialized)) { | 
|  | cpu_hyp_reinit(); | 
|  | __this_cpu_write(kvm_hyp_initialized, 1); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void cpu_hyp_uninit(void *discard) | 
|  | { | 
|  | if (__this_cpu_read(kvm_hyp_initialized)) { | 
|  | cpu_hyp_reset(); | 
|  | __this_cpu_write(kvm_hyp_initialized, 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | int kvm_arch_enable_virtualization_cpu(void) | 
|  | { | 
|  | /* | 
|  | * Most calls to this function are made with migration | 
|  | * disabled, but not with preemption disabled. The former is | 
|  | * enough to ensure correctness, but most of the helpers | 
|  | * expect the later and will throw a tantrum otherwise. | 
|  | */ | 
|  | preempt_disable(); | 
|  |  | 
|  | cpu_hyp_init(NULL); | 
|  |  | 
|  | kvm_vgic_cpu_up(); | 
|  | kvm_timer_cpu_up(); | 
|  |  | 
|  | preempt_enable(); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void kvm_arch_disable_virtualization_cpu(void) | 
|  | { | 
|  | kvm_timer_cpu_down(); | 
|  | kvm_vgic_cpu_down(); | 
|  |  | 
|  | if (!is_protected_kvm_enabled()) | 
|  | cpu_hyp_uninit(NULL); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_CPU_PM | 
|  | static int hyp_init_cpu_pm_notifier(struct notifier_block *self, | 
|  | unsigned long cmd, | 
|  | void *v) | 
|  | { | 
|  | /* | 
|  | * kvm_hyp_initialized is left with its old value over | 
|  | * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should | 
|  | * re-enable hyp. | 
|  | */ | 
|  | switch (cmd) { | 
|  | case CPU_PM_ENTER: | 
|  | if (__this_cpu_read(kvm_hyp_initialized)) | 
|  | /* | 
|  | * don't update kvm_hyp_initialized here | 
|  | * so that the hyp will be re-enabled | 
|  | * when we resume. See below. | 
|  | */ | 
|  | cpu_hyp_reset(); | 
|  |  | 
|  | return NOTIFY_OK; | 
|  | case CPU_PM_ENTER_FAILED: | 
|  | case CPU_PM_EXIT: | 
|  | if (__this_cpu_read(kvm_hyp_initialized)) | 
|  | /* The hyp was enabled before suspend. */ | 
|  | cpu_hyp_reinit(); | 
|  |  | 
|  | return NOTIFY_OK; | 
|  |  | 
|  | default: | 
|  | return NOTIFY_DONE; | 
|  | } | 
|  | } | 
|  |  | 
|  | static struct notifier_block hyp_init_cpu_pm_nb = { | 
|  | .notifier_call = hyp_init_cpu_pm_notifier, | 
|  | }; | 
|  |  | 
|  | static void __init hyp_cpu_pm_init(void) | 
|  | { | 
|  | if (!is_protected_kvm_enabled()) | 
|  | cpu_pm_register_notifier(&hyp_init_cpu_pm_nb); | 
|  | } | 
|  | static void __init hyp_cpu_pm_exit(void) | 
|  | { | 
|  | if (!is_protected_kvm_enabled()) | 
|  | cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb); | 
|  | } | 
|  | #else | 
|  | static inline void __init hyp_cpu_pm_init(void) | 
|  | { | 
|  | } | 
|  | static inline void __init hyp_cpu_pm_exit(void) | 
|  | { | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static void __init init_cpu_logical_map(void) | 
|  | { | 
|  | unsigned int cpu; | 
|  |  | 
|  | /* | 
|  | * Copy the MPIDR <-> logical CPU ID mapping to hyp. | 
|  | * Only copy the set of online CPUs whose features have been checked | 
|  | * against the finalized system capabilities. The hypervisor will not | 
|  | * allow any other CPUs from the `possible` set to boot. | 
|  | */ | 
|  | for_each_online_cpu(cpu) | 
|  | hyp_cpu_logical_map[cpu] = cpu_logical_map(cpu); | 
|  | } | 
|  |  | 
|  | #define init_psci_0_1_impl_state(config, what)	\ | 
|  | config.psci_0_1_ ## what ## _implemented = psci_ops.what | 
|  |  | 
|  | static bool __init init_psci_relay(void) | 
|  | { | 
|  | /* | 
|  | * If PSCI has not been initialized, protected KVM cannot install | 
|  | * itself on newly booted CPUs. | 
|  | */ | 
|  | if (!psci_ops.get_version) { | 
|  | kvm_err("Cannot initialize protected mode without PSCI\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | kvm_host_psci_config.version = psci_ops.get_version(); | 
|  | kvm_host_psci_config.smccc_version = arm_smccc_get_version(); | 
|  |  | 
|  | if (kvm_host_psci_config.version == PSCI_VERSION(0, 1)) { | 
|  | kvm_host_psci_config.function_ids_0_1 = get_psci_0_1_function_ids(); | 
|  | init_psci_0_1_impl_state(kvm_host_psci_config, cpu_suspend); | 
|  | init_psci_0_1_impl_state(kvm_host_psci_config, cpu_on); | 
|  | init_psci_0_1_impl_state(kvm_host_psci_config, cpu_off); | 
|  | init_psci_0_1_impl_state(kvm_host_psci_config, migrate); | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static int __init init_subsystems(void) | 
|  | { | 
|  | int err = 0; | 
|  |  | 
|  | /* | 
|  | * Enable hardware so that subsystem initialisation can access EL2. | 
|  | */ | 
|  | on_each_cpu(cpu_hyp_init, NULL, 1); | 
|  |  | 
|  | /* | 
|  | * Register CPU lower-power notifier | 
|  | */ | 
|  | hyp_cpu_pm_init(); | 
|  |  | 
|  | /* | 
|  | * Init HYP view of VGIC | 
|  | */ | 
|  | err = kvm_vgic_hyp_init(); | 
|  | switch (err) { | 
|  | case 0: | 
|  | vgic_present = true; | 
|  | break; | 
|  | case -ENODEV: | 
|  | case -ENXIO: | 
|  | vgic_present = false; | 
|  | err = 0; | 
|  | break; | 
|  | default: | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Init HYP architected timer support | 
|  | */ | 
|  | err = kvm_timer_hyp_init(vgic_present); | 
|  | if (err) | 
|  | goto out; | 
|  |  | 
|  | kvm_register_perf_callbacks(NULL); | 
|  |  | 
|  | err = hyp_trace_init_tracefs(); | 
|  | if (err) | 
|  | kvm_err("Failed to initialize Hyp tracing\n"); | 
|  | out: | 
|  | if (err) | 
|  | hyp_cpu_pm_exit(); | 
|  |  | 
|  | if (err || !is_protected_kvm_enabled()) | 
|  | on_each_cpu(cpu_hyp_uninit, NULL, 1); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static void __init teardown_subsystems(void) | 
|  | { | 
|  | kvm_unregister_perf_callbacks(); | 
|  | hyp_cpu_pm_exit(); | 
|  | } | 
|  |  | 
|  | static void __init teardown_hyp_mode(void) | 
|  | { | 
|  | bool free_sve = system_supports_sve() && is_protected_kvm_enabled(); | 
|  | int cpu; | 
|  |  | 
|  | free_hyp_pgds(); | 
|  | for_each_possible_cpu(cpu) { | 
|  | free_pages(per_cpu(kvm_arm_hyp_stack_base, cpu), NVHE_STACK_SHIFT - PAGE_SHIFT); | 
|  | free_pages(kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu], nvhe_percpu_order()); | 
|  |  | 
|  | if (free_sve) { | 
|  | struct cpu_sve_state *sve_state; | 
|  |  | 
|  | sve_state = per_cpu_ptr_nvhe_sym(kvm_host_data, cpu)->sve_state; | 
|  | free_pages((unsigned long) sve_state, pkvm_host_sve_state_order()); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static int __init do_pkvm_init(u32 hyp_va_bits) | 
|  | { | 
|  | void *per_cpu_base = kvm_ksym_ref(kvm_nvhe_sym(kvm_arm_hyp_percpu_base)); | 
|  | int ret; | 
|  |  | 
|  | preempt_disable(); | 
|  | cpu_hyp_init_context(); | 
|  | ret = kvm_call_hyp_nvhe(__pkvm_init, hyp_mem_base, hyp_mem_size, | 
|  | num_possible_cpus(), kern_hyp_va(per_cpu_base), | 
|  | hyp_va_bits); | 
|  | cpu_hyp_init_features(); | 
|  |  | 
|  | /* | 
|  | * The stub hypercalls are now disabled, so set our local flag to | 
|  | * prevent a later re-init attempt in kvm_arch_enable_virtualization_cpu(). | 
|  | */ | 
|  | __this_cpu_write(kvm_hyp_initialized, 1); | 
|  | preempt_enable(); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static u64 get_hyp_id_aa64pfr0_el1(void) | 
|  | { | 
|  | /* | 
|  | * Track whether the system isn't affected by spectre/meltdown in the | 
|  | * hypervisor's view of id_aa64pfr0_el1, used for protected VMs. | 
|  | * Although this is per-CPU, we make it global for simplicity, e.g., not | 
|  | * to have to worry about vcpu migration. | 
|  | * | 
|  | * Unlike for non-protected VMs, userspace cannot override this for | 
|  | * protected VMs. | 
|  | */ | 
|  | u64 val = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1); | 
|  |  | 
|  | val &= ~(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV2) | | 
|  | ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV3)); | 
|  |  | 
|  | val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV2), | 
|  | arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED); | 
|  | val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV3), | 
|  | arm64_get_meltdown_state() == SPECTRE_UNAFFECTED); | 
|  |  | 
|  | return val; | 
|  | } | 
|  |  | 
|  | static void kvm_hyp_init_symbols(void) | 
|  | { | 
|  | kvm_nvhe_sym(id_aa64pfr0_el1_sys_val) = get_hyp_id_aa64pfr0_el1(); | 
|  | kvm_nvhe_sym(id_aa64pfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1); | 
|  | kvm_nvhe_sym(id_aa64zfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ZFR0_EL1); | 
|  | kvm_nvhe_sym(id_aa64isar0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR0_EL1); | 
|  | kvm_nvhe_sym(id_aa64isar1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR1_EL1); | 
|  | kvm_nvhe_sym(id_aa64isar2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR2_EL1); | 
|  | kvm_nvhe_sym(id_aa64mmfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1); | 
|  | kvm_nvhe_sym(id_aa64mmfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1); | 
|  | kvm_nvhe_sym(id_aa64mmfr2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR2_EL1); | 
|  | kvm_nvhe_sym(id_aa64smfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64SMFR0_EL1); | 
|  | kvm_nvhe_sym(__icache_flags) = __icache_flags; | 
|  | kvm_nvhe_sym(kvm_arm_vmid_bits) = kvm_arm_vmid_bits; | 
|  | kvm_nvhe_sym(smccc_trng_available) = smccc_trng_available; | 
|  | } | 
|  |  | 
|  | static unsigned long kvm_hyp_shrinker_count(struct shrinker *shrinker, | 
|  | struct shrink_control *sc) | 
|  | { | 
|  | unsigned long reclaimable = kvm_call_hyp_nvhe(__pkvm_hyp_alloc_mgt_reclaimable); | 
|  |  | 
|  | return reclaimable ? reclaimable : SHRINK_EMPTY; | 
|  | } | 
|  |  | 
|  | static unsigned long kvm_hyp_shrinker_scan(struct shrinker *shrinker, | 
|  | struct shrink_control *sc) | 
|  | { | 
|  | return __pkvm_reclaim_hyp_alloc_mgt(sc->nr_to_scan); | 
|  | } | 
|  |  | 
|  | static int __init kvm_hyp_init_protection(u32 hyp_va_bits) | 
|  | { | 
|  | void *addr = phys_to_virt(hyp_mem_base); | 
|  | struct shrinker *shrinker; | 
|  | int ret; | 
|  |  | 
|  | ret = create_hyp_mappings(addr, addr + hyp_mem_size, PAGE_HYP); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = do_pkvm_init(hyp_va_bits); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | free_hyp_pgds(); | 
|  |  | 
|  | shrinker = shrinker_alloc(0, "pkvm"); | 
|  | if (!shrinker) { | 
|  | pr_warn("Failed to register pKVM shrinker"); | 
|  | } else { | 
|  | shrinker->count_objects = kvm_hyp_shrinker_count; | 
|  | shrinker->scan_objects = kvm_hyp_shrinker_scan; | 
|  | shrinker->seeks = DEFAULT_SEEKS; | 
|  |  | 
|  | shrinker_register(shrinker); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int init_pkvm_host_sve_state(void) | 
|  | { | 
|  | int cpu; | 
|  |  | 
|  | if (!system_supports_sve()) | 
|  | return 0; | 
|  |  | 
|  | /* Allocate pages for host sve state in protected mode. */ | 
|  | for_each_possible_cpu(cpu) { | 
|  | struct page *page = alloc_pages(GFP_KERNEL, pkvm_host_sve_state_order()); | 
|  |  | 
|  | if (!page) | 
|  | return -ENOMEM; | 
|  |  | 
|  | per_cpu_ptr_nvhe_sym(kvm_host_data, cpu)->sve_state = page_address(page); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Don't map the pages in hyp since these are only used in protected | 
|  | * mode, which will (re)create its own mapping when initialized. | 
|  | */ | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Finalizes the initialization of hyp mode, once everything else is initialized | 
|  | * and the initialziation process cannot fail. | 
|  | */ | 
|  | static void finalize_init_hyp_mode(void) | 
|  | { | 
|  | int cpu; | 
|  |  | 
|  | if (system_supports_sve() && is_protected_kvm_enabled()) { | 
|  | for_each_possible_cpu(cpu) { | 
|  | struct cpu_sve_state *sve_state; | 
|  |  | 
|  | sve_state = per_cpu_ptr_nvhe_sym(kvm_host_data, cpu)->sve_state; | 
|  | per_cpu_ptr_nvhe_sym(kvm_host_data, cpu)->sve_state = | 
|  | kern_hyp_va(sve_state); | 
|  | } | 
|  | } else { | 
|  | for_each_possible_cpu(cpu) { | 
|  | struct user_fpsimd_state *fpsimd_state; | 
|  |  | 
|  | fpsimd_state = &per_cpu_ptr_nvhe_sym(kvm_host_data, cpu)->host_ctxt.fp_regs; | 
|  | per_cpu_ptr_nvhe_sym(kvm_host_data, cpu)->fpsimd_state = | 
|  | kern_hyp_va(fpsimd_state); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void pkvm_hyp_init_ptrauth(void) | 
|  | { | 
|  | struct kvm_cpu_context *hyp_ctxt; | 
|  | int cpu; | 
|  |  | 
|  | for_each_possible_cpu(cpu) { | 
|  | hyp_ctxt = per_cpu_ptr_nvhe_sym(kvm_hyp_ctxt, cpu); | 
|  | hyp_ctxt->sys_regs[APIAKEYLO_EL1] = get_random_long(); | 
|  | hyp_ctxt->sys_regs[APIAKEYHI_EL1] = get_random_long(); | 
|  | hyp_ctxt->sys_regs[APIBKEYLO_EL1] = get_random_long(); | 
|  | hyp_ctxt->sys_regs[APIBKEYHI_EL1] = get_random_long(); | 
|  | hyp_ctxt->sys_regs[APDAKEYLO_EL1] = get_random_long(); | 
|  | hyp_ctxt->sys_regs[APDAKEYHI_EL1] = get_random_long(); | 
|  | hyp_ctxt->sys_regs[APDBKEYLO_EL1] = get_random_long(); | 
|  | hyp_ctxt->sys_regs[APDBKEYHI_EL1] = get_random_long(); | 
|  | hyp_ctxt->sys_regs[APGAKEYLO_EL1] = get_random_long(); | 
|  | hyp_ctxt->sys_regs[APGAKEYHI_EL1] = get_random_long(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Inits Hyp-mode on all online CPUs */ | 
|  | static int __init init_hyp_mode(void) | 
|  | { | 
|  | u32 hyp_va_bits; | 
|  | int cpu; | 
|  | int err = -ENOMEM; | 
|  |  | 
|  | /* | 
|  | * The protected Hyp-mode cannot be initialized if the memory pool | 
|  | * allocation has failed. | 
|  | */ | 
|  | if (is_protected_kvm_enabled() && !hyp_mem_base) | 
|  | goto out_err; | 
|  |  | 
|  | /* | 
|  | * Allocate Hyp PGD and setup Hyp identity mapping | 
|  | */ | 
|  | err = kvm_mmu_init(&hyp_va_bits); | 
|  | if (err) | 
|  | goto out_err; | 
|  |  | 
|  | /* | 
|  | * Allocate stack pages for Hypervisor-mode | 
|  | */ | 
|  | for_each_possible_cpu(cpu) { | 
|  | unsigned long stack_base; | 
|  |  | 
|  | stack_base = __get_free_pages(GFP_KERNEL, NVHE_STACK_SHIFT - PAGE_SHIFT); | 
|  | if (!stack_base) { | 
|  | err = -ENOMEM; | 
|  | goto out_err; | 
|  | } | 
|  |  | 
|  | per_cpu(kvm_arm_hyp_stack_base, cpu) = stack_base; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allocate and initialize pages for Hypervisor-mode percpu regions. | 
|  | */ | 
|  | for_each_possible_cpu(cpu) { | 
|  | struct page *page; | 
|  | void *page_addr; | 
|  |  | 
|  | page = alloc_pages(GFP_KERNEL, nvhe_percpu_order()); | 
|  | if (!page) { | 
|  | err = -ENOMEM; | 
|  | goto out_err; | 
|  | } | 
|  |  | 
|  | page_addr = page_address(page); | 
|  | memcpy(page_addr, CHOOSE_NVHE_SYM(__per_cpu_start), nvhe_percpu_size()); | 
|  | kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu] = (unsigned long)page_addr; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Map the Hyp-code called directly from the host | 
|  | */ | 
|  | err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start), | 
|  | kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC); | 
|  | if (err) { | 
|  | kvm_err("Cannot map world-switch code\n"); | 
|  | goto out_err; | 
|  | } | 
|  |  | 
|  | err = create_hyp_mappings(kvm_ksym_ref(__hyp_data_start), | 
|  | kvm_ksym_ref(__hyp_data_end), PAGE_HYP); | 
|  | if (err) { | 
|  | kvm_err("Cannot map .hyp.data section\n"); | 
|  | goto out_err; | 
|  | } | 
|  |  | 
|  | err = create_hyp_mappings(kvm_ksym_ref(__hyp_rodata_start), | 
|  | kvm_ksym_ref(__hyp_rodata_end), PAGE_HYP_RO); | 
|  | if (err) { | 
|  | kvm_err("Cannot map .hyp.rodata section\n"); | 
|  | goto out_err; | 
|  | } | 
|  |  | 
|  | err = create_hyp_mappings(kvm_ksym_ref(__start_rodata), | 
|  | kvm_ksym_ref(__end_rodata), PAGE_HYP_RO); | 
|  | if (err) { | 
|  | kvm_err("Cannot map rodata section\n"); | 
|  | goto out_err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * .hyp.bss is guaranteed to be placed at the beginning of the .bss | 
|  | * section thanks to an assertion in the linker script. Map it RW and | 
|  | * the rest of .bss RO. | 
|  | */ | 
|  | err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_start), | 
|  | kvm_ksym_ref(__hyp_bss_end), PAGE_HYP); | 
|  | if (err) { | 
|  | kvm_err("Cannot map hyp bss section: %d\n", err); | 
|  | goto out_err; | 
|  | } | 
|  |  | 
|  | err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_end), | 
|  | kvm_ksym_ref(__bss_stop), PAGE_HYP_RO); | 
|  | if (err) { | 
|  | kvm_err("Cannot map bss section\n"); | 
|  | goto out_err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Map the Hyp stack pages | 
|  | */ | 
|  | for_each_possible_cpu(cpu) { | 
|  | struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu); | 
|  | char *stack_base = (char *)per_cpu(kvm_arm_hyp_stack_base, cpu); | 
|  |  | 
|  | err = create_hyp_stack(__pa(stack_base), ¶ms->stack_hyp_va); | 
|  | if (err) { | 
|  | kvm_err("Cannot map hyp stack\n"); | 
|  | goto out_err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Save the stack PA in nvhe_init_params. This will be needed | 
|  | * to recreate the stack mapping in protected nVHE mode. | 
|  | * __hyp_pa() won't do the right thing there, since the stack | 
|  | * has been mapped in the flexible private VA space. | 
|  | */ | 
|  | params->stack_pa = __pa(stack_base); | 
|  | } | 
|  |  | 
|  | for_each_possible_cpu(cpu) { | 
|  | char *percpu_begin = (char *)kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu]; | 
|  | char *percpu_end = percpu_begin + nvhe_percpu_size(); | 
|  |  | 
|  | /* Map Hyp percpu pages */ | 
|  | err = create_hyp_mappings(percpu_begin, percpu_end, PAGE_HYP); | 
|  | if (err) { | 
|  | kvm_err("Cannot map hyp percpu region\n"); | 
|  | goto out_err; | 
|  | } | 
|  |  | 
|  | /* Prepare the CPU initialization parameters */ | 
|  | cpu_prepare_hyp_mode(cpu, hyp_va_bits); | 
|  | } | 
|  |  | 
|  | kvm_hyp_init_symbols(); | 
|  |  | 
|  | hyp_trace_init_events(); | 
|  |  | 
|  | if (is_protected_kvm_enabled()) { | 
|  | if (IS_ENABLED(CONFIG_ARM64_PTR_AUTH_KERNEL) && | 
|  | cpus_have_final_cap(ARM64_HAS_ADDRESS_AUTH)) | 
|  | pkvm_hyp_init_ptrauth(); | 
|  |  | 
|  | init_cpu_logical_map(); | 
|  |  | 
|  | if (!init_psci_relay()) { | 
|  | err = -ENODEV; | 
|  | goto out_err; | 
|  | } | 
|  |  | 
|  | err = init_pkvm_host_sve_state(); | 
|  | if (err) | 
|  | goto out_err; | 
|  |  | 
|  | err = kvm_hyp_init_protection(hyp_va_bits); | 
|  | if (err) { | 
|  | kvm_err("Failed to init hyp memory protection\n"); | 
|  | goto out_err; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | out_err: | 
|  | teardown_hyp_mode(); | 
|  | kvm_err("error initializing Hyp mode: %d\n", err); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr) | 
|  | { | 
|  | struct kvm_vcpu *vcpu = NULL; | 
|  | struct kvm_mpidr_data *data; | 
|  | unsigned long i; | 
|  |  | 
|  | mpidr &= MPIDR_HWID_BITMASK; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | data = rcu_dereference(kvm->arch.mpidr_data); | 
|  |  | 
|  | if (data) { | 
|  | u16 idx = kvm_mpidr_index(data, mpidr); | 
|  |  | 
|  | vcpu = kvm_get_vcpu(kvm, data->cmpidr_to_idx[idx]); | 
|  | if (mpidr != kvm_vcpu_get_mpidr_aff(vcpu)) | 
|  | vcpu = NULL; | 
|  | } | 
|  |  | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | if (vcpu) | 
|  | return vcpu; | 
|  |  | 
|  | kvm_for_each_vcpu(i, vcpu, kvm) { | 
|  | if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu)) | 
|  | return vcpu; | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | bool kvm_arch_irqchip_in_kernel(struct kvm *kvm) | 
|  | { | 
|  | return irqchip_in_kernel(kvm); | 
|  | } | 
|  |  | 
|  | bool kvm_arch_has_irq_bypass(void) | 
|  | { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, | 
|  | struct irq_bypass_producer *prod) | 
|  | { | 
|  | struct kvm_kernel_irqfd *irqfd = | 
|  | container_of(cons, struct kvm_kernel_irqfd, consumer); | 
|  |  | 
|  | return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq, | 
|  | &irqfd->irq_entry); | 
|  | } | 
|  | void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, | 
|  | struct irq_bypass_producer *prod) | 
|  | { | 
|  | struct kvm_kernel_irqfd *irqfd = | 
|  | container_of(cons, struct kvm_kernel_irqfd, consumer); | 
|  |  | 
|  | kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq, | 
|  | &irqfd->irq_entry); | 
|  | } | 
|  |  | 
|  | void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons) | 
|  | { | 
|  | struct kvm_kernel_irqfd *irqfd = | 
|  | container_of(cons, struct kvm_kernel_irqfd, consumer); | 
|  |  | 
|  | kvm_arm_halt_guest(irqfd->kvm); | 
|  | } | 
|  |  | 
|  | void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons) | 
|  | { | 
|  | struct kvm_kernel_irqfd *irqfd = | 
|  | container_of(cons, struct kvm_kernel_irqfd, consumer); | 
|  |  | 
|  | kvm_arm_resume_guest(irqfd->kvm); | 
|  | } | 
|  |  | 
|  | /* Initialize Hyp-mode and memory mappings on all CPUs */ | 
|  | static __init int kvm_arm_init(void) | 
|  | { | 
|  | int err; | 
|  | bool in_hyp_mode; | 
|  |  | 
|  | if (!is_hyp_mode_available()) { | 
|  | kvm_info("HYP mode not available\n"); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | if (kvm_get_mode() == KVM_MODE_NONE) { | 
|  | kvm_info("KVM disabled from command line\n"); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | err = kvm_sys_reg_table_init(); | 
|  | if (err) { | 
|  | kvm_info("Error initializing system register tables"); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | in_hyp_mode = is_kernel_in_hyp_mode(); | 
|  |  | 
|  | if (cpus_have_final_cap(ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE) || | 
|  | cpus_have_final_cap(ARM64_WORKAROUND_1508412)) | 
|  | kvm_info("Guests without required CPU erratum workarounds can deadlock system!\n" \ | 
|  | "Only trusted guests should be used on this system.\n"); | 
|  |  | 
|  | err = kvm_set_ipa_limit(); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | err = kvm_arm_init_sve(); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | err = kvm_arm_vmid_alloc_init(); | 
|  | if (err) { | 
|  | kvm_err("Failed to initialize VMID allocator.\n"); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | if (!in_hyp_mode) { | 
|  | err = init_hyp_mode(); | 
|  | if (err) | 
|  | goto out_err; | 
|  | } | 
|  |  | 
|  | err = kvm_init_vector_slots(); | 
|  | if (err) { | 
|  | kvm_err("Cannot initialise vector slots\n"); | 
|  | goto out_hyp; | 
|  | } | 
|  |  | 
|  | err = init_subsystems(); | 
|  | if (err) | 
|  | goto out_hyp; | 
|  |  | 
|  | kvm_info("%s%sVHE mode initialized successfully\n", | 
|  | in_hyp_mode ? "" : (is_protected_kvm_enabled() ? | 
|  | "Protected " : "Hyp "), | 
|  | in_hyp_mode ? "" : (cpus_have_final_cap(ARM64_KVM_HVHE) ? | 
|  | "h" : "n")); | 
|  |  | 
|  | /* | 
|  | * FIXME: Do something reasonable if kvm_init() fails after pKVM | 
|  | * hypervisor protection is finalized. | 
|  | */ | 
|  | err = kvm_init(sizeof(struct kvm_vcpu), 0, THIS_MODULE); | 
|  | if (err) | 
|  | goto out_subs; | 
|  |  | 
|  | /* | 
|  | * This should be called after initialization is done and failure isn't | 
|  | * possible anymore. | 
|  | */ | 
|  | if (!in_hyp_mode) | 
|  | finalize_init_hyp_mode(); | 
|  |  | 
|  | kvm_arm_initialised = true; | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | out_subs: | 
|  | teardown_subsystems(); | 
|  | out_hyp: | 
|  | if (!in_hyp_mode) | 
|  | teardown_hyp_mode(); | 
|  | out_err: | 
|  | kvm_arm_vmid_alloc_free(); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int __init early_kvm_mode_cfg(char *arg) | 
|  | { | 
|  | if (!arg) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (strcmp(arg, "none") == 0) { | 
|  | kvm_mode = KVM_MODE_NONE; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (!is_hyp_mode_available()) { | 
|  | pr_warn_once("KVM is not available. Ignoring kvm-arm.mode\n"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (strcmp(arg, "protected") == 0) { | 
|  | if (!is_kernel_in_hyp_mode()) | 
|  | kvm_mode = KVM_MODE_PROTECTED; | 
|  | else | 
|  | pr_warn_once("Protected KVM not available with VHE\n"); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (strcmp(arg, "nvhe") == 0 && !WARN_ON(is_kernel_in_hyp_mode())) { | 
|  | kvm_mode = KVM_MODE_DEFAULT; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (strcmp(arg, "nested") == 0 && !WARN_ON(!is_kernel_in_hyp_mode())) { | 
|  | kvm_mode = KVM_MODE_NV; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return -EINVAL; | 
|  | } | 
|  | early_param("kvm-arm.mode", early_kvm_mode_cfg); | 
|  |  | 
|  | static int __init early_kvm_wfx_trap_policy_cfg(char *arg, enum kvm_wfx_trap_policy *p) | 
|  | { | 
|  | if (!arg) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (strcmp(arg, "trap") == 0) { | 
|  | *p = KVM_WFX_TRAP; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (strcmp(arg, "notrap") == 0) { | 
|  | *p = KVM_WFX_NOTRAP; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | static int __init early_kvm_wfi_trap_policy_cfg(char *arg) | 
|  | { | 
|  | return early_kvm_wfx_trap_policy_cfg(arg, &kvm_wfi_trap_policy); | 
|  | } | 
|  | early_param("kvm-arm.wfi_trap_policy", early_kvm_wfi_trap_policy_cfg); | 
|  |  | 
|  | static int __init early_kvm_wfe_trap_policy_cfg(char *arg) | 
|  | { | 
|  | return early_kvm_wfx_trap_policy_cfg(arg, &kvm_wfe_trap_policy); | 
|  | } | 
|  | early_param("kvm-arm.wfe_trap_policy", early_kvm_wfe_trap_policy_cfg); | 
|  |  | 
|  | enum kvm_mode kvm_get_mode(void) | 
|  | { | 
|  | return kvm_mode; | 
|  | } | 
|  |  | 
|  | module_init(kvm_arm_init); |