|  | // SPDX-License-Identifier: GPL-2.0-only | 
|  | /* | 
|  | * Copyright (C) 2012,2013 - ARM Ltd | 
|  | * Author: Marc Zyngier <marc.zyngier@arm.com> | 
|  | * | 
|  | * Derived from arch/arm/kvm/coproc.c: | 
|  | * Copyright (C) 2012 - Virtual Open Systems and Columbia University | 
|  | * Authors: Rusty Russell <rusty@rustcorp.com.au> | 
|  | *          Christoffer Dall <c.dall@virtualopensystems.com> | 
|  | */ | 
|  |  | 
|  | #include <linux/bitfield.h> | 
|  | #include <linux/bsearch.h> | 
|  | #include <linux/cacheinfo.h> | 
|  | #include <linux/debugfs.h> | 
|  | #include <linux/kvm_host.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/printk.h> | 
|  | #include <linux/uaccess.h> | 
|  |  | 
|  | #include <asm/arm_pmuv3.h> | 
|  | #include <asm/cacheflush.h> | 
|  | #include <asm/cputype.h> | 
|  | #include <asm/debug-monitors.h> | 
|  | #include <asm/esr.h> | 
|  | #include <asm/kvm_arm.h> | 
|  | #include <asm/kvm_emulate.h> | 
|  | #include <asm/kvm_hyp.h> | 
|  | #include <asm/kvm_mmu.h> | 
|  | #include <asm/kvm_nested.h> | 
|  | #include <asm/perf_event.h> | 
|  | #include <asm/sysreg.h> | 
|  |  | 
|  | #include <trace/events/kvm.h> | 
|  |  | 
|  | #include "sys_regs.h" | 
|  | #include "vgic/vgic.h" | 
|  |  | 
|  | #include "trace.h" | 
|  |  | 
|  | /* | 
|  | * For AArch32, we only take care of what is being trapped. Anything | 
|  | * that has to do with init and userspace access has to go via the | 
|  | * 64bit interface. | 
|  | */ | 
|  |  | 
|  | static u64 sys_reg_to_index(const struct sys_reg_desc *reg); | 
|  | static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, | 
|  | u64 val); | 
|  |  | 
|  | static bool undef_access(struct kvm_vcpu *vcpu, struct sys_reg_params *p, | 
|  | const struct sys_reg_desc *r) | 
|  | { | 
|  | kvm_inject_undefined(vcpu); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool bad_trap(struct kvm_vcpu *vcpu, | 
|  | struct sys_reg_params *params, | 
|  | const struct sys_reg_desc *r, | 
|  | const char *msg) | 
|  | { | 
|  | WARN_ONCE(1, "Unexpected %s\n", msg); | 
|  | print_sys_reg_instr(params); | 
|  | return undef_access(vcpu, params, r); | 
|  | } | 
|  |  | 
|  | static bool read_from_write_only(struct kvm_vcpu *vcpu, | 
|  | struct sys_reg_params *params, | 
|  | const struct sys_reg_desc *r) | 
|  | { | 
|  | return bad_trap(vcpu, params, r, | 
|  | "sys_reg read to write-only register"); | 
|  | } | 
|  |  | 
|  | static bool write_to_read_only(struct kvm_vcpu *vcpu, | 
|  | struct sys_reg_params *params, | 
|  | const struct sys_reg_desc *r) | 
|  | { | 
|  | return bad_trap(vcpu, params, r, | 
|  | "sys_reg write to read-only register"); | 
|  | } | 
|  |  | 
|  | /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */ | 
|  | #define CSSELR_MAX 14 | 
|  |  | 
|  | /* | 
|  | * Returns the minimum line size for the selected cache, expressed as | 
|  | * Log2(bytes). | 
|  | */ | 
|  | static u8 get_min_cache_line_size(bool icache) | 
|  | { | 
|  | u64 ctr = read_sanitised_ftr_reg(SYS_CTR_EL0); | 
|  | u8 field; | 
|  |  | 
|  | if (icache) | 
|  | field = SYS_FIELD_GET(CTR_EL0, IminLine, ctr); | 
|  | else | 
|  | field = SYS_FIELD_GET(CTR_EL0, DminLine, ctr); | 
|  |  | 
|  | /* | 
|  | * Cache line size is represented as Log2(words) in CTR_EL0. | 
|  | * Log2(bytes) can be derived with the following: | 
|  | * | 
|  | * Log2(words) + 2 = Log2(bytes / 4) + 2 | 
|  | * 		   = Log2(bytes) - 2 + 2 | 
|  | * 		   = Log2(bytes) | 
|  | */ | 
|  | return field + 2; | 
|  | } | 
|  |  | 
|  | /* Which cache CCSIDR represents depends on CSSELR value. */ | 
|  | static u32 get_ccsidr(struct kvm_vcpu *vcpu, u32 csselr) | 
|  | { | 
|  | u8 line_size; | 
|  |  | 
|  | if (vcpu->arch.ccsidr) | 
|  | return vcpu->arch.ccsidr[csselr]; | 
|  |  | 
|  | line_size = get_min_cache_line_size(csselr & CSSELR_EL1_InD); | 
|  |  | 
|  | /* | 
|  | * Fabricate a CCSIDR value as the overriding value does not exist. | 
|  | * The real CCSIDR value will not be used as it can vary by the | 
|  | * physical CPU which the vcpu currently resides in. | 
|  | * | 
|  | * The line size is determined with get_min_cache_line_size(), which | 
|  | * should be valid for all CPUs even if they have different cache | 
|  | * configuration. | 
|  | * | 
|  | * The associativity bits are cleared, meaning the geometry of all data | 
|  | * and unified caches (which are guaranteed to be PIPT and thus | 
|  | * non-aliasing) are 1 set and 1 way. | 
|  | * Guests should not be doing cache operations by set/way at all, and | 
|  | * for this reason, we trap them and attempt to infer the intent, so | 
|  | * that we can flush the entire guest's address space at the appropriate | 
|  | * time. The exposed geometry minimizes the number of the traps. | 
|  | * [If guests should attempt to infer aliasing properties from the | 
|  | * geometry (which is not permitted by the architecture), they would | 
|  | * only do so for virtually indexed caches.] | 
|  | * | 
|  | * We don't check if the cache level exists as it is allowed to return | 
|  | * an UNKNOWN value if not. | 
|  | */ | 
|  | return SYS_FIELD_PREP(CCSIDR_EL1, LineSize, line_size - 4); | 
|  | } | 
|  |  | 
|  | static int set_ccsidr(struct kvm_vcpu *vcpu, u32 csselr, u32 val) | 
|  | { | 
|  | u8 line_size = FIELD_GET(CCSIDR_EL1_LineSize, val) + 4; | 
|  | u32 *ccsidr = vcpu->arch.ccsidr; | 
|  | u32 i; | 
|  |  | 
|  | if ((val & CCSIDR_EL1_RES0) || | 
|  | line_size < get_min_cache_line_size(csselr & CSSELR_EL1_InD)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (!ccsidr) { | 
|  | if (val == get_ccsidr(vcpu, csselr)) | 
|  | return 0; | 
|  |  | 
|  | ccsidr = kmalloc_array(CSSELR_MAX, sizeof(u32), GFP_KERNEL_ACCOUNT); | 
|  | if (!ccsidr) | 
|  | return -ENOMEM; | 
|  |  | 
|  | for (i = 0; i < CSSELR_MAX; i++) | 
|  | ccsidr[i] = get_ccsidr(vcpu, i); | 
|  |  | 
|  | vcpu->arch.ccsidr = ccsidr; | 
|  | } | 
|  |  | 
|  | ccsidr[csselr] = val; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static bool access_rw(struct kvm_vcpu *vcpu, | 
|  | struct sys_reg_params *p, | 
|  | const struct sys_reg_desc *r) | 
|  | { | 
|  | if (p->is_write) | 
|  | vcpu_write_sys_reg(vcpu, p->regval, r->reg); | 
|  | else | 
|  | p->regval = vcpu_read_sys_reg(vcpu, r->reg); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized). | 
|  | */ | 
|  | static bool access_dcsw(struct kvm_vcpu *vcpu, | 
|  | struct sys_reg_params *p, | 
|  | const struct sys_reg_desc *r) | 
|  | { | 
|  | if (!p->is_write) | 
|  | return read_from_write_only(vcpu, p, r); | 
|  |  | 
|  | /* | 
|  | * Only track S/W ops if we don't have FWB. It still indicates | 
|  | * that the guest is a bit broken (S/W operations should only | 
|  | * be done by firmware, knowing that there is only a single | 
|  | * CPU left in the system, and certainly not from non-secure | 
|  | * software). | 
|  | */ | 
|  | if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB)) | 
|  | kvm_set_way_flush(vcpu); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool access_dcgsw(struct kvm_vcpu *vcpu, | 
|  | struct sys_reg_params *p, | 
|  | const struct sys_reg_desc *r) | 
|  | { | 
|  | if (!kvm_has_mte(vcpu->kvm)) | 
|  | return undef_access(vcpu, p, r); | 
|  |  | 
|  | /* Treat MTE S/W ops as we treat the classic ones: with contempt */ | 
|  | return access_dcsw(vcpu, p, r); | 
|  | } | 
|  |  | 
|  | static void get_access_mask(const struct sys_reg_desc *r, u64 *mask, u64 *shift) | 
|  | { | 
|  | switch (r->aarch32_map) { | 
|  | case AA32_LO: | 
|  | *mask = GENMASK_ULL(31, 0); | 
|  | *shift = 0; | 
|  | break; | 
|  | case AA32_HI: | 
|  | *mask = GENMASK_ULL(63, 32); | 
|  | *shift = 32; | 
|  | break; | 
|  | default: | 
|  | *mask = GENMASK_ULL(63, 0); | 
|  | *shift = 0; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Generic accessor for VM registers. Only called as long as HCR_TVM | 
|  | * is set. If the guest enables the MMU, we stop trapping the VM | 
|  | * sys_regs and leave it in complete control of the caches. | 
|  | */ | 
|  | static bool access_vm_reg(struct kvm_vcpu *vcpu, | 
|  | struct sys_reg_params *p, | 
|  | const struct sys_reg_desc *r) | 
|  | { | 
|  | bool was_enabled = vcpu_has_cache_enabled(vcpu); | 
|  | u64 val, mask, shift; | 
|  |  | 
|  | if (reg_to_encoding(r) == SYS_TCR2_EL1 && | 
|  | !kvm_has_feat(vcpu->kvm, ID_AA64MMFR3_EL1, TCRX, IMP)) | 
|  | return undef_access(vcpu, p, r); | 
|  |  | 
|  | BUG_ON(!p->is_write); | 
|  |  | 
|  | get_access_mask(r, &mask, &shift); | 
|  |  | 
|  | if (~mask) { | 
|  | val = vcpu_read_sys_reg(vcpu, r->reg); | 
|  | val &= ~mask; | 
|  | } else { | 
|  | val = 0; | 
|  | } | 
|  |  | 
|  | val |= (p->regval & (mask >> shift)) << shift; | 
|  | vcpu_write_sys_reg(vcpu, val, r->reg); | 
|  |  | 
|  | kvm_toggle_cache(vcpu, was_enabled); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool access_actlr(struct kvm_vcpu *vcpu, | 
|  | struct sys_reg_params *p, | 
|  | const struct sys_reg_desc *r) | 
|  | { | 
|  | u64 mask, shift; | 
|  |  | 
|  | if (p->is_write) | 
|  | return ignore_write(vcpu, p); | 
|  |  | 
|  | get_access_mask(r, &mask, &shift); | 
|  | p->regval = (vcpu_read_sys_reg(vcpu, r->reg) & mask) >> shift; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Trap handler for the GICv3 SGI generation system register. | 
|  | * Forward the request to the VGIC emulation. | 
|  | * The cp15_64 code makes sure this automatically works | 
|  | * for both AArch64 and AArch32 accesses. | 
|  | */ | 
|  | static bool access_gic_sgi(struct kvm_vcpu *vcpu, | 
|  | struct sys_reg_params *p, | 
|  | const struct sys_reg_desc *r) | 
|  | { | 
|  | bool g1; | 
|  |  | 
|  | if (!kvm_has_gicv3(vcpu->kvm)) | 
|  | return undef_access(vcpu, p, r); | 
|  |  | 
|  | if (!p->is_write) | 
|  | return read_from_write_only(vcpu, p, r); | 
|  |  | 
|  | /* | 
|  | * In a system where GICD_CTLR.DS=1, a ICC_SGI0R_EL1 access generates | 
|  | * Group0 SGIs only, while ICC_SGI1R_EL1 can generate either group, | 
|  | * depending on the SGI configuration. ICC_ASGI1R_EL1 is effectively | 
|  | * equivalent to ICC_SGI0R_EL1, as there is no "alternative" secure | 
|  | * group. | 
|  | */ | 
|  | if (p->Op0 == 0) {		/* AArch32 */ | 
|  | switch (p->Op1) { | 
|  | default:		/* Keep GCC quiet */ | 
|  | case 0:			/* ICC_SGI1R */ | 
|  | g1 = true; | 
|  | break; | 
|  | case 1:			/* ICC_ASGI1R */ | 
|  | case 2:			/* ICC_SGI0R */ | 
|  | g1 = false; | 
|  | break; | 
|  | } | 
|  | } else {			/* AArch64 */ | 
|  | switch (p->Op2) { | 
|  | default:		/* Keep GCC quiet */ | 
|  | case 5:			/* ICC_SGI1R_EL1 */ | 
|  | g1 = true; | 
|  | break; | 
|  | case 6:			/* ICC_ASGI1R_EL1 */ | 
|  | case 7:			/* ICC_SGI0R_EL1 */ | 
|  | g1 = false; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | vgic_v3_dispatch_sgi(vcpu, p->regval, g1); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool access_gic_sre(struct kvm_vcpu *vcpu, | 
|  | struct sys_reg_params *p, | 
|  | const struct sys_reg_desc *r) | 
|  | { | 
|  | if (!kvm_has_gicv3(vcpu->kvm)) | 
|  | return undef_access(vcpu, p, r); | 
|  |  | 
|  | if (p->is_write) | 
|  | return ignore_write(vcpu, p); | 
|  |  | 
|  | p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool trap_raz_wi(struct kvm_vcpu *vcpu, | 
|  | struct sys_reg_params *p, | 
|  | const struct sys_reg_desc *r) | 
|  | { | 
|  | if (p->is_write) | 
|  | return ignore_write(vcpu, p); | 
|  | else | 
|  | return read_zero(vcpu, p); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ARMv8.1 mandates at least a trivial LORegion implementation, where all the | 
|  | * RW registers are RES0 (which we can implement as RAZ/WI). On an ARMv8.0 | 
|  | * system, these registers should UNDEF. LORID_EL1 being a RO register, we | 
|  | * treat it separately. | 
|  | */ | 
|  | static bool trap_loregion(struct kvm_vcpu *vcpu, | 
|  | struct sys_reg_params *p, | 
|  | const struct sys_reg_desc *r) | 
|  | { | 
|  | u32 sr = reg_to_encoding(r); | 
|  |  | 
|  | if (!kvm_has_feat(vcpu->kvm, ID_AA64MMFR1_EL1, LO, IMP)) | 
|  | return undef_access(vcpu, p, r); | 
|  |  | 
|  | if (p->is_write && sr == SYS_LORID_EL1) | 
|  | return write_to_read_only(vcpu, p, r); | 
|  |  | 
|  | return trap_raz_wi(vcpu, p, r); | 
|  | } | 
|  |  | 
|  | static bool trap_oslar_el1(struct kvm_vcpu *vcpu, | 
|  | struct sys_reg_params *p, | 
|  | const struct sys_reg_desc *r) | 
|  | { | 
|  | u64 oslsr; | 
|  |  | 
|  | if (!p->is_write) | 
|  | return read_from_write_only(vcpu, p, r); | 
|  |  | 
|  | /* Forward the OSLK bit to OSLSR */ | 
|  | oslsr = __vcpu_sys_reg(vcpu, OSLSR_EL1) & ~OSLSR_EL1_OSLK; | 
|  | if (p->regval & OSLAR_EL1_OSLK) | 
|  | oslsr |= OSLSR_EL1_OSLK; | 
|  |  | 
|  | __vcpu_sys_reg(vcpu, OSLSR_EL1) = oslsr; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool trap_oslsr_el1(struct kvm_vcpu *vcpu, | 
|  | struct sys_reg_params *p, | 
|  | const struct sys_reg_desc *r) | 
|  | { | 
|  | if (p->is_write) | 
|  | return write_to_read_only(vcpu, p, r); | 
|  |  | 
|  | p->regval = __vcpu_sys_reg(vcpu, r->reg); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static int set_oslsr_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, | 
|  | u64 val) | 
|  | { | 
|  | /* | 
|  | * The only modifiable bit is the OSLK bit. Refuse the write if | 
|  | * userspace attempts to change any other bit in the register. | 
|  | */ | 
|  | if ((val ^ rd->val) & ~OSLSR_EL1_OSLK) | 
|  | return -EINVAL; | 
|  |  | 
|  | __vcpu_sys_reg(vcpu, rd->reg) = val; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu, | 
|  | struct sys_reg_params *p, | 
|  | const struct sys_reg_desc *r) | 
|  | { | 
|  | if (p->is_write) { | 
|  | return ignore_write(vcpu, p); | 
|  | } else { | 
|  | p->regval = read_sysreg(dbgauthstatus_el1); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We want to avoid world-switching all the DBG registers all the | 
|  | * time: | 
|  | * | 
|  | * - If we've touched any debug register, it is likely that we're | 
|  | *   going to touch more of them. It then makes sense to disable the | 
|  | *   traps and start doing the save/restore dance | 
|  | * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is | 
|  | *   then mandatory to save/restore the registers, as the guest | 
|  | *   depends on them. | 
|  | * | 
|  | * For this, we use a DIRTY bit, indicating the guest has modified the | 
|  | * debug registers, used as follow: | 
|  | * | 
|  | * On guest entry: | 
|  | * - If the dirty bit is set (because we're coming back from trapping), | 
|  | *   disable the traps, save host registers, restore guest registers. | 
|  | * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), | 
|  | *   set the dirty bit, disable the traps, save host registers, | 
|  | *   restore guest registers. | 
|  | * - Otherwise, enable the traps | 
|  | * | 
|  | * On guest exit: | 
|  | * - If the dirty bit is set, save guest registers, restore host | 
|  | *   registers and clear the dirty bit. This ensure that the host can | 
|  | *   now use the debug registers. | 
|  | */ | 
|  | static bool trap_debug_regs(struct kvm_vcpu *vcpu, | 
|  | struct sys_reg_params *p, | 
|  | const struct sys_reg_desc *r) | 
|  | { | 
|  | access_rw(vcpu, p, r); | 
|  | if (p->is_write) | 
|  | vcpu_set_flag(vcpu, DEBUG_DIRTY); | 
|  |  | 
|  | trace_trap_reg(__func__, r->reg, p->is_write, p->regval); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * reg_to_dbg/dbg_to_reg | 
|  | * | 
|  | * A 32 bit write to a debug register leave top bits alone | 
|  | * A 32 bit read from a debug register only returns the bottom bits | 
|  | * | 
|  | * All writes will set the DEBUG_DIRTY flag to ensure the hyp code | 
|  | * switches between host and guest values in future. | 
|  | */ | 
|  | static void reg_to_dbg(struct kvm_vcpu *vcpu, | 
|  | struct sys_reg_params *p, | 
|  | const struct sys_reg_desc *rd, | 
|  | u64 *dbg_reg) | 
|  | { | 
|  | u64 mask, shift, val; | 
|  |  | 
|  | get_access_mask(rd, &mask, &shift); | 
|  |  | 
|  | val = *dbg_reg; | 
|  | val &= ~mask; | 
|  | val |= (p->regval & (mask >> shift)) << shift; | 
|  | *dbg_reg = val; | 
|  |  | 
|  | vcpu_set_flag(vcpu, DEBUG_DIRTY); | 
|  | } | 
|  |  | 
|  | static void dbg_to_reg(struct kvm_vcpu *vcpu, | 
|  | struct sys_reg_params *p, | 
|  | const struct sys_reg_desc *rd, | 
|  | u64 *dbg_reg) | 
|  | { | 
|  | u64 mask, shift; | 
|  |  | 
|  | get_access_mask(rd, &mask, &shift); | 
|  | p->regval = (*dbg_reg & mask) >> shift; | 
|  | } | 
|  |  | 
|  | static bool trap_bvr(struct kvm_vcpu *vcpu, | 
|  | struct sys_reg_params *p, | 
|  | const struct sys_reg_desc *rd) | 
|  | { | 
|  | u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm]; | 
|  |  | 
|  | if (p->is_write) | 
|  | reg_to_dbg(vcpu, p, rd, dbg_reg); | 
|  | else | 
|  | dbg_to_reg(vcpu, p, rd, dbg_reg); | 
|  |  | 
|  | trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, | 
|  | u64 val) | 
|  | { | 
|  | vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm] = val; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, | 
|  | u64 *val) | 
|  | { | 
|  | *val = vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm]; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static u64 reset_bvr(struct kvm_vcpu *vcpu, | 
|  | const struct sys_reg_desc *rd) | 
|  | { | 
|  | vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm] = rd->val; | 
|  | return rd->val; | 
|  | } | 
|  |  | 
|  | static bool trap_bcr(struct kvm_vcpu *vcpu, | 
|  | struct sys_reg_params *p, | 
|  | const struct sys_reg_desc *rd) | 
|  | { | 
|  | u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm]; | 
|  |  | 
|  | if (p->is_write) | 
|  | reg_to_dbg(vcpu, p, rd, dbg_reg); | 
|  | else | 
|  | dbg_to_reg(vcpu, p, rd, dbg_reg); | 
|  |  | 
|  | trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, | 
|  | u64 val) | 
|  | { | 
|  | vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm] = val; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, | 
|  | u64 *val) | 
|  | { | 
|  | *val = vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm]; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static u64 reset_bcr(struct kvm_vcpu *vcpu, | 
|  | const struct sys_reg_desc *rd) | 
|  | { | 
|  | vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm] = rd->val; | 
|  | return rd->val; | 
|  | } | 
|  |  | 
|  | static bool trap_wvr(struct kvm_vcpu *vcpu, | 
|  | struct sys_reg_params *p, | 
|  | const struct sys_reg_desc *rd) | 
|  | { | 
|  | u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm]; | 
|  |  | 
|  | if (p->is_write) | 
|  | reg_to_dbg(vcpu, p, rd, dbg_reg); | 
|  | else | 
|  | dbg_to_reg(vcpu, p, rd, dbg_reg); | 
|  |  | 
|  | trace_trap_reg(__func__, rd->CRm, p->is_write, | 
|  | vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm]); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, | 
|  | u64 val) | 
|  | { | 
|  | vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm] = val; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, | 
|  | u64 *val) | 
|  | { | 
|  | *val = vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm]; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static u64 reset_wvr(struct kvm_vcpu *vcpu, | 
|  | const struct sys_reg_desc *rd) | 
|  | { | 
|  | vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm] = rd->val; | 
|  | return rd->val; | 
|  | } | 
|  |  | 
|  | static bool trap_wcr(struct kvm_vcpu *vcpu, | 
|  | struct sys_reg_params *p, | 
|  | const struct sys_reg_desc *rd) | 
|  | { | 
|  | u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm]; | 
|  |  | 
|  | if (p->is_write) | 
|  | reg_to_dbg(vcpu, p, rd, dbg_reg); | 
|  | else | 
|  | dbg_to_reg(vcpu, p, rd, dbg_reg); | 
|  |  | 
|  | trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, | 
|  | u64 val) | 
|  | { | 
|  | vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm] = val; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, | 
|  | u64 *val) | 
|  | { | 
|  | *val = vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm]; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static u64 reset_wcr(struct kvm_vcpu *vcpu, | 
|  | const struct sys_reg_desc *rd) | 
|  | { | 
|  | vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm] = rd->val; | 
|  | return rd->val; | 
|  | } | 
|  |  | 
|  | static u64 reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) | 
|  | { | 
|  | u64 amair = read_sysreg(amair_el1); | 
|  | vcpu_write_sys_reg(vcpu, amair, AMAIR_EL1); | 
|  | return amair; | 
|  | } | 
|  |  | 
|  | static u64 reset_actlr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) | 
|  | { | 
|  | u64 actlr = read_sysreg(actlr_el1); | 
|  | vcpu_write_sys_reg(vcpu, actlr, ACTLR_EL1); | 
|  | return actlr; | 
|  | } | 
|  |  | 
|  | static u64 reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) | 
|  | { | 
|  | u64 mpidr = calculate_mpidr(vcpu); | 
|  |  | 
|  | vcpu_write_sys_reg(vcpu, mpidr, MPIDR_EL1); | 
|  | return mpidr; | 
|  | } | 
|  |  | 
|  | static unsigned int pmu_visibility(const struct kvm_vcpu *vcpu, | 
|  | const struct sys_reg_desc *r) | 
|  | { | 
|  | if (kvm_vcpu_has_pmu(vcpu)) | 
|  | return 0; | 
|  |  | 
|  | return REG_HIDDEN; | 
|  | } | 
|  |  | 
|  | static u64 reset_pmu_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) | 
|  | { | 
|  | u64 mask = BIT(ARMV8_PMU_CYCLE_IDX); | 
|  | u8 n = vcpu->kvm->arch.pmcr_n; | 
|  |  | 
|  | if (n) | 
|  | mask |= GENMASK(n - 1, 0); | 
|  |  | 
|  | reset_unknown(vcpu, r); | 
|  | __vcpu_sys_reg(vcpu, r->reg) &= mask; | 
|  |  | 
|  | return __vcpu_sys_reg(vcpu, r->reg); | 
|  | } | 
|  |  | 
|  | static u64 reset_pmevcntr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) | 
|  | { | 
|  | reset_unknown(vcpu, r); | 
|  | __vcpu_sys_reg(vcpu, r->reg) &= GENMASK(31, 0); | 
|  |  | 
|  | return __vcpu_sys_reg(vcpu, r->reg); | 
|  | } | 
|  |  | 
|  | static u64 reset_pmevtyper(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) | 
|  | { | 
|  | /* This thing will UNDEF, who cares about the reset value? */ | 
|  | if (!kvm_vcpu_has_pmu(vcpu)) | 
|  | return 0; | 
|  |  | 
|  | reset_unknown(vcpu, r); | 
|  | __vcpu_sys_reg(vcpu, r->reg) &= kvm_pmu_evtyper_mask(vcpu->kvm); | 
|  |  | 
|  | return __vcpu_sys_reg(vcpu, r->reg); | 
|  | } | 
|  |  | 
|  | static u64 reset_pmselr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) | 
|  | { | 
|  | reset_unknown(vcpu, r); | 
|  | __vcpu_sys_reg(vcpu, r->reg) &= PMSELR_EL0_SEL_MASK; | 
|  |  | 
|  | return __vcpu_sys_reg(vcpu, r->reg); | 
|  | } | 
|  |  | 
|  | static u64 reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) | 
|  | { | 
|  | u64 pmcr = 0; | 
|  |  | 
|  | if (!kvm_supports_32bit_el0()) | 
|  | pmcr |= ARMV8_PMU_PMCR_LC; | 
|  |  | 
|  | /* | 
|  | * The value of PMCR.N field is included when the | 
|  | * vCPU register is read via kvm_vcpu_read_pmcr(). | 
|  | */ | 
|  | __vcpu_sys_reg(vcpu, r->reg) = pmcr; | 
|  |  | 
|  | return __vcpu_sys_reg(vcpu, r->reg); | 
|  | } | 
|  |  | 
|  | static bool check_pmu_access_disabled(struct kvm_vcpu *vcpu, u64 flags) | 
|  | { | 
|  | u64 reg = __vcpu_sys_reg(vcpu, PMUSERENR_EL0); | 
|  | bool enabled = (reg & flags) || vcpu_mode_priv(vcpu); | 
|  |  | 
|  | if (!enabled) | 
|  | kvm_inject_undefined(vcpu); | 
|  |  | 
|  | return !enabled; | 
|  | } | 
|  |  | 
|  | static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_EN); | 
|  | } | 
|  |  | 
|  | static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN); | 
|  | } | 
|  |  | 
|  | static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN); | 
|  | } | 
|  |  | 
|  | static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN); | 
|  | } | 
|  |  | 
|  | static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, | 
|  | const struct sys_reg_desc *r) | 
|  | { | 
|  | u64 val; | 
|  |  | 
|  | if (pmu_access_el0_disabled(vcpu)) | 
|  | return false; | 
|  |  | 
|  | if (p->is_write) { | 
|  | /* | 
|  | * Only update writeable bits of PMCR (continuing into | 
|  | * kvm_pmu_handle_pmcr() as well) | 
|  | */ | 
|  | val = kvm_vcpu_read_pmcr(vcpu); | 
|  | val &= ~ARMV8_PMU_PMCR_MASK; | 
|  | val |= p->regval & ARMV8_PMU_PMCR_MASK; | 
|  | if (!kvm_supports_32bit_el0()) | 
|  | val |= ARMV8_PMU_PMCR_LC; | 
|  | kvm_pmu_handle_pmcr(vcpu, val); | 
|  | } else { | 
|  | /* PMCR.P & PMCR.C are RAZ */ | 
|  | val = kvm_vcpu_read_pmcr(vcpu) | 
|  | & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C); | 
|  | p->regval = val; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, | 
|  | const struct sys_reg_desc *r) | 
|  | { | 
|  | if (pmu_access_event_counter_el0_disabled(vcpu)) | 
|  | return false; | 
|  |  | 
|  | if (p->is_write) | 
|  | __vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval; | 
|  | else | 
|  | /* return PMSELR.SEL field */ | 
|  | p->regval = __vcpu_sys_reg(vcpu, PMSELR_EL0) | 
|  | & PMSELR_EL0_SEL_MASK; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p, | 
|  | const struct sys_reg_desc *r) | 
|  | { | 
|  | u64 pmceid, mask, shift; | 
|  |  | 
|  | BUG_ON(p->is_write); | 
|  |  | 
|  | if (pmu_access_el0_disabled(vcpu)) | 
|  | return false; | 
|  |  | 
|  | get_access_mask(r, &mask, &shift); | 
|  |  | 
|  | pmceid = kvm_pmu_get_pmceid(vcpu, (p->Op2 & 1)); | 
|  | pmceid &= mask; | 
|  | pmceid >>= shift; | 
|  |  | 
|  | p->regval = pmceid; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx) | 
|  | { | 
|  | u64 pmcr, val; | 
|  |  | 
|  | pmcr = kvm_vcpu_read_pmcr(vcpu); | 
|  | val = FIELD_GET(ARMV8_PMU_PMCR_N, pmcr); | 
|  | if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX) { | 
|  | kvm_inject_undefined(vcpu); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static int get_pmu_evcntr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r, | 
|  | u64 *val) | 
|  | { | 
|  | u64 idx; | 
|  |  | 
|  | if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 0) | 
|  | /* PMCCNTR_EL0 */ | 
|  | idx = ARMV8_PMU_CYCLE_IDX; | 
|  | else | 
|  | /* PMEVCNTRn_EL0 */ | 
|  | idx = ((r->CRm & 3) << 3) | (r->Op2 & 7); | 
|  |  | 
|  | *val = kvm_pmu_get_counter_value(vcpu, idx); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static bool access_pmu_evcntr(struct kvm_vcpu *vcpu, | 
|  | struct sys_reg_params *p, | 
|  | const struct sys_reg_desc *r) | 
|  | { | 
|  | u64 idx = ~0UL; | 
|  |  | 
|  | if (r->CRn == 9 && r->CRm == 13) { | 
|  | if (r->Op2 == 2) { | 
|  | /* PMXEVCNTR_EL0 */ | 
|  | if (pmu_access_event_counter_el0_disabled(vcpu)) | 
|  | return false; | 
|  |  | 
|  | idx = SYS_FIELD_GET(PMSELR_EL0, SEL, | 
|  | __vcpu_sys_reg(vcpu, PMSELR_EL0)); | 
|  | } else if (r->Op2 == 0) { | 
|  | /* PMCCNTR_EL0 */ | 
|  | if (pmu_access_cycle_counter_el0_disabled(vcpu)) | 
|  | return false; | 
|  |  | 
|  | idx = ARMV8_PMU_CYCLE_IDX; | 
|  | } | 
|  | } else if (r->CRn == 0 && r->CRm == 9) { | 
|  | /* PMCCNTR */ | 
|  | if (pmu_access_event_counter_el0_disabled(vcpu)) | 
|  | return false; | 
|  |  | 
|  | idx = ARMV8_PMU_CYCLE_IDX; | 
|  | } else if (r->CRn == 14 && (r->CRm & 12) == 8) { | 
|  | /* PMEVCNTRn_EL0 */ | 
|  | if (pmu_access_event_counter_el0_disabled(vcpu)) | 
|  | return false; | 
|  |  | 
|  | idx = ((r->CRm & 3) << 3) | (r->Op2 & 7); | 
|  | } | 
|  |  | 
|  | /* Catch any decoding mistake */ | 
|  | WARN_ON(idx == ~0UL); | 
|  |  | 
|  | if (!pmu_counter_idx_valid(vcpu, idx)) | 
|  | return false; | 
|  |  | 
|  | if (p->is_write) { | 
|  | if (pmu_access_el0_disabled(vcpu)) | 
|  | return false; | 
|  |  | 
|  | kvm_pmu_set_counter_value(vcpu, idx, p->regval); | 
|  | } else { | 
|  | p->regval = kvm_pmu_get_counter_value(vcpu, idx); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p, | 
|  | const struct sys_reg_desc *r) | 
|  | { | 
|  | u64 idx, reg; | 
|  |  | 
|  | if (pmu_access_el0_disabled(vcpu)) | 
|  | return false; | 
|  |  | 
|  | if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) { | 
|  | /* PMXEVTYPER_EL0 */ | 
|  | idx = SYS_FIELD_GET(PMSELR_EL0, SEL, __vcpu_sys_reg(vcpu, PMSELR_EL0)); | 
|  | reg = PMEVTYPER0_EL0 + idx; | 
|  | } else if (r->CRn == 14 && (r->CRm & 12) == 12) { | 
|  | idx = ((r->CRm & 3) << 3) | (r->Op2 & 7); | 
|  | if (idx == ARMV8_PMU_CYCLE_IDX) | 
|  | reg = PMCCFILTR_EL0; | 
|  | else | 
|  | /* PMEVTYPERn_EL0 */ | 
|  | reg = PMEVTYPER0_EL0 + idx; | 
|  | } else { | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | if (!pmu_counter_idx_valid(vcpu, idx)) | 
|  | return false; | 
|  |  | 
|  | if (p->is_write) { | 
|  | kvm_pmu_set_counter_event_type(vcpu, p->regval, idx); | 
|  | kvm_vcpu_pmu_restore_guest(vcpu); | 
|  | } else { | 
|  | p->regval = __vcpu_sys_reg(vcpu, reg); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static int set_pmreg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r, u64 val) | 
|  | { | 
|  | bool set; | 
|  |  | 
|  | val &= kvm_pmu_valid_counter_mask(vcpu); | 
|  |  | 
|  | switch (r->reg) { | 
|  | case PMOVSSET_EL0: | 
|  | /* CRm[1] being set indicates a SET register, and CLR otherwise */ | 
|  | set = r->CRm & 2; | 
|  | break; | 
|  | default: | 
|  | /* Op2[0] being set indicates a SET register, and CLR otherwise */ | 
|  | set = r->Op2 & 1; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (set) | 
|  | __vcpu_sys_reg(vcpu, r->reg) |= val; | 
|  | else | 
|  | __vcpu_sys_reg(vcpu, r->reg) &= ~val; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int get_pmreg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r, u64 *val) | 
|  | { | 
|  | u64 mask = kvm_pmu_valid_counter_mask(vcpu); | 
|  |  | 
|  | *val = __vcpu_sys_reg(vcpu, r->reg) & mask; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p, | 
|  | const struct sys_reg_desc *r) | 
|  | { | 
|  | u64 val, mask; | 
|  |  | 
|  | if (pmu_access_el0_disabled(vcpu)) | 
|  | return false; | 
|  |  | 
|  | mask = kvm_pmu_valid_counter_mask(vcpu); | 
|  | if (p->is_write) { | 
|  | val = p->regval & mask; | 
|  | if (r->Op2 & 0x1) { | 
|  | /* accessing PMCNTENSET_EL0 */ | 
|  | __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val; | 
|  | kvm_pmu_enable_counter_mask(vcpu, val); | 
|  | kvm_vcpu_pmu_restore_guest(vcpu); | 
|  | } else { | 
|  | /* accessing PMCNTENCLR_EL0 */ | 
|  | __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val; | 
|  | kvm_pmu_disable_counter_mask(vcpu, val); | 
|  | } | 
|  | } else { | 
|  | p->regval = __vcpu_sys_reg(vcpu, PMCNTENSET_EL0); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p, | 
|  | const struct sys_reg_desc *r) | 
|  | { | 
|  | u64 mask = kvm_pmu_valid_counter_mask(vcpu); | 
|  |  | 
|  | if (check_pmu_access_disabled(vcpu, 0)) | 
|  | return false; | 
|  |  | 
|  | if (p->is_write) { | 
|  | u64 val = p->regval & mask; | 
|  |  | 
|  | if (r->Op2 & 0x1) | 
|  | /* accessing PMINTENSET_EL1 */ | 
|  | __vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val; | 
|  | else | 
|  | /* accessing PMINTENCLR_EL1 */ | 
|  | __vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val; | 
|  | } else { | 
|  | p->regval = __vcpu_sys_reg(vcpu, PMINTENSET_EL1); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p, | 
|  | const struct sys_reg_desc *r) | 
|  | { | 
|  | u64 mask = kvm_pmu_valid_counter_mask(vcpu); | 
|  |  | 
|  | if (pmu_access_el0_disabled(vcpu)) | 
|  | return false; | 
|  |  | 
|  | if (p->is_write) { | 
|  | if (r->CRm & 0x2) | 
|  | /* accessing PMOVSSET_EL0 */ | 
|  | __vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= (p->regval & mask); | 
|  | else | 
|  | /* accessing PMOVSCLR_EL0 */ | 
|  | __vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask); | 
|  | } else { | 
|  | p->regval = __vcpu_sys_reg(vcpu, PMOVSSET_EL0); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p, | 
|  | const struct sys_reg_desc *r) | 
|  | { | 
|  | u64 mask; | 
|  |  | 
|  | if (!p->is_write) | 
|  | return read_from_write_only(vcpu, p, r); | 
|  |  | 
|  | if (pmu_write_swinc_el0_disabled(vcpu)) | 
|  | return false; | 
|  |  | 
|  | mask = kvm_pmu_valid_counter_mask(vcpu); | 
|  | kvm_pmu_software_increment(vcpu, p->regval & mask); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, | 
|  | const struct sys_reg_desc *r) | 
|  | { | 
|  | if (p->is_write) { | 
|  | if (!vcpu_mode_priv(vcpu)) | 
|  | return undef_access(vcpu, p, r); | 
|  |  | 
|  | __vcpu_sys_reg(vcpu, PMUSERENR_EL0) = | 
|  | p->regval & ARMV8_PMU_USERENR_MASK; | 
|  | } else { | 
|  | p->regval = __vcpu_sys_reg(vcpu, PMUSERENR_EL0) | 
|  | & ARMV8_PMU_USERENR_MASK; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static int get_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r, | 
|  | u64 *val) | 
|  | { | 
|  | *val = kvm_vcpu_read_pmcr(vcpu); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int set_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r, | 
|  | u64 val) | 
|  | { | 
|  | u8 new_n = FIELD_GET(ARMV8_PMU_PMCR_N, val); | 
|  | struct kvm *kvm = vcpu->kvm; | 
|  |  | 
|  | mutex_lock(&kvm->arch.config_lock); | 
|  |  | 
|  | /* | 
|  | * The vCPU can't have more counters than the PMU hardware | 
|  | * implements. Ignore this error to maintain compatibility | 
|  | * with the existing KVM behavior. | 
|  | */ | 
|  | if (!kvm_vm_has_ran_once(kvm) && | 
|  | new_n <= kvm_arm_pmu_get_max_counters(kvm)) | 
|  | kvm->arch.pmcr_n = new_n; | 
|  |  | 
|  | mutex_unlock(&kvm->arch.config_lock); | 
|  |  | 
|  | /* | 
|  | * Ignore writes to RES0 bits, read only bits that are cleared on | 
|  | * vCPU reset, and writable bits that KVM doesn't support yet. | 
|  | * (i.e. only PMCR.N and bits [7:0] are mutable from userspace) | 
|  | * The LP bit is RES0 when FEAT_PMUv3p5 is not supported on the vCPU. | 
|  | * But, we leave the bit as it is here, as the vCPU's PMUver might | 
|  | * be changed later (NOTE: the bit will be cleared on first vCPU run | 
|  | * if necessary). | 
|  | */ | 
|  | val &= ARMV8_PMU_PMCR_MASK; | 
|  |  | 
|  | /* The LC bit is RES1 when AArch32 is not supported */ | 
|  | if (!kvm_supports_32bit_el0()) | 
|  | val |= ARMV8_PMU_PMCR_LC; | 
|  |  | 
|  | __vcpu_sys_reg(vcpu, r->reg) = val; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */ | 
|  | #define DBG_BCR_BVR_WCR_WVR_EL1(n)					\ | 
|  | { SYS_DESC(SYS_DBGBVRn_EL1(n)),					\ | 
|  | trap_bvr, reset_bvr, 0, 0, get_bvr, set_bvr },		\ | 
|  | { SYS_DESC(SYS_DBGBCRn_EL1(n)),					\ | 
|  | trap_bcr, reset_bcr, 0, 0, get_bcr, set_bcr },		\ | 
|  | { SYS_DESC(SYS_DBGWVRn_EL1(n)),					\ | 
|  | trap_wvr, reset_wvr, 0, 0,  get_wvr, set_wvr },		\ | 
|  | { SYS_DESC(SYS_DBGWCRn_EL1(n)),					\ | 
|  | trap_wcr, reset_wcr, 0, 0,  get_wcr, set_wcr } | 
|  |  | 
|  | #define PMU_SYS_REG(name)						\ | 
|  | SYS_DESC(SYS_##name), .reset = reset_pmu_reg,			\ | 
|  | .visibility = pmu_visibility | 
|  |  | 
|  | /* Macro to expand the PMEVCNTRn_EL0 register */ | 
|  | #define PMU_PMEVCNTR_EL0(n)						\ | 
|  | { PMU_SYS_REG(PMEVCNTRn_EL0(n)),				\ | 
|  | .reset = reset_pmevcntr, .get_user = get_pmu_evcntr,		\ | 
|  | .access = access_pmu_evcntr, .reg = (PMEVCNTR0_EL0 + n), } | 
|  |  | 
|  | /* Macro to expand the PMEVTYPERn_EL0 register */ | 
|  | #define PMU_PMEVTYPER_EL0(n)						\ | 
|  | { PMU_SYS_REG(PMEVTYPERn_EL0(n)),				\ | 
|  | .reset = reset_pmevtyper,					\ | 
|  | .access = access_pmu_evtyper, .reg = (PMEVTYPER0_EL0 + n), } | 
|  |  | 
|  | /* Macro to expand the AMU counter and type registers*/ | 
|  | #define AMU_AMEVCNTR0_EL0(n) { SYS_DESC(SYS_AMEVCNTR0_EL0(n)), undef_access } | 
|  | #define AMU_AMEVTYPER0_EL0(n) { SYS_DESC(SYS_AMEVTYPER0_EL0(n)), undef_access } | 
|  | #define AMU_AMEVCNTR1_EL0(n) { SYS_DESC(SYS_AMEVCNTR1_EL0(n)), undef_access } | 
|  | #define AMU_AMEVTYPER1_EL0(n) { SYS_DESC(SYS_AMEVTYPER1_EL0(n)), undef_access } | 
|  |  | 
|  | static unsigned int ptrauth_visibility(const struct kvm_vcpu *vcpu, | 
|  | const struct sys_reg_desc *rd) | 
|  | { | 
|  | return vcpu_has_ptrauth(vcpu) ? 0 : REG_HIDDEN; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If we land here on a PtrAuth access, that is because we didn't | 
|  | * fixup the access on exit by allowing the PtrAuth sysregs. The only | 
|  | * way this happens is when the guest does not have PtrAuth support | 
|  | * enabled. | 
|  | */ | 
|  | #define __PTRAUTH_KEY(k)						\ | 
|  | { SYS_DESC(SYS_## k), undef_access, reset_unknown, k,		\ | 
|  | .visibility = ptrauth_visibility} | 
|  |  | 
|  | #define PTRAUTH_KEY(k)							\ | 
|  | __PTRAUTH_KEY(k ## KEYLO_EL1),					\ | 
|  | __PTRAUTH_KEY(k ## KEYHI_EL1) | 
|  |  | 
|  | static bool access_arch_timer(struct kvm_vcpu *vcpu, | 
|  | struct sys_reg_params *p, | 
|  | const struct sys_reg_desc *r) | 
|  | { | 
|  | enum kvm_arch_timers tmr; | 
|  | enum kvm_arch_timer_regs treg; | 
|  | u64 reg = reg_to_encoding(r); | 
|  |  | 
|  | switch (reg) { | 
|  | case SYS_CNTP_TVAL_EL0: | 
|  | case SYS_AARCH32_CNTP_TVAL: | 
|  | tmr = TIMER_PTIMER; | 
|  | treg = TIMER_REG_TVAL; | 
|  | break; | 
|  | case SYS_CNTP_CTL_EL0: | 
|  | case SYS_AARCH32_CNTP_CTL: | 
|  | tmr = TIMER_PTIMER; | 
|  | treg = TIMER_REG_CTL; | 
|  | break; | 
|  | case SYS_CNTP_CVAL_EL0: | 
|  | case SYS_AARCH32_CNTP_CVAL: | 
|  | tmr = TIMER_PTIMER; | 
|  | treg = TIMER_REG_CVAL; | 
|  | break; | 
|  | case SYS_CNTPCT_EL0: | 
|  | case SYS_CNTPCTSS_EL0: | 
|  | case SYS_AARCH32_CNTPCT: | 
|  | tmr = TIMER_PTIMER; | 
|  | treg = TIMER_REG_CNT; | 
|  | break; | 
|  | default: | 
|  | print_sys_reg_msg(p, "%s", "Unhandled trapped timer register"); | 
|  | return undef_access(vcpu, p, r); | 
|  | } | 
|  |  | 
|  | if (p->is_write) | 
|  | kvm_arm_timer_write_sysreg(vcpu, tmr, treg, p->regval); | 
|  | else | 
|  | p->regval = kvm_arm_timer_read_sysreg(vcpu, tmr, treg); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static s64 kvm_arm64_ftr_safe_value(u32 id, const struct arm64_ftr_bits *ftrp, | 
|  | s64 new, s64 cur) | 
|  | { | 
|  | struct arm64_ftr_bits kvm_ftr = *ftrp; | 
|  |  | 
|  | /* Some features have different safe value type in KVM than host features */ | 
|  | switch (id) { | 
|  | case SYS_ID_AA64DFR0_EL1: | 
|  | switch (kvm_ftr.shift) { | 
|  | case ID_AA64DFR0_EL1_PMUVer_SHIFT: | 
|  | kvm_ftr.type = FTR_LOWER_SAFE; | 
|  | break; | 
|  | case ID_AA64DFR0_EL1_DebugVer_SHIFT: | 
|  | kvm_ftr.type = FTR_LOWER_SAFE; | 
|  | break; | 
|  | } | 
|  | break; | 
|  | case SYS_ID_DFR0_EL1: | 
|  | if (kvm_ftr.shift == ID_DFR0_EL1_PerfMon_SHIFT) | 
|  | kvm_ftr.type = FTR_LOWER_SAFE; | 
|  | break; | 
|  | } | 
|  |  | 
|  | return arm64_ftr_safe_value(&kvm_ftr, new, cur); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * arm64_check_features() - Check if a feature register value constitutes | 
|  | * a subset of features indicated by the idreg's KVM sanitised limit. | 
|  | * | 
|  | * This function will check if each feature field of @val is the "safe" value | 
|  | * against idreg's KVM sanitised limit return from reset() callback. | 
|  | * If a field value in @val is the same as the one in limit, it is always | 
|  | * considered the safe value regardless For register fields that are not in | 
|  | * writable, only the value in limit is considered the safe value. | 
|  | * | 
|  | * Return: 0 if all the fields are safe. Otherwise, return negative errno. | 
|  | */ | 
|  | static int arm64_check_features(struct kvm_vcpu *vcpu, | 
|  | const struct sys_reg_desc *rd, | 
|  | u64 val) | 
|  | { | 
|  | const struct arm64_ftr_reg *ftr_reg; | 
|  | const struct arm64_ftr_bits *ftrp = NULL; | 
|  | u32 id = reg_to_encoding(rd); | 
|  | u64 writable_mask = rd->val; | 
|  | u64 limit = rd->reset(vcpu, rd); | 
|  | u64 mask = 0; | 
|  |  | 
|  | /* | 
|  | * Hidden and unallocated ID registers may not have a corresponding | 
|  | * struct arm64_ftr_reg. Of course, if the register is RAZ we know the | 
|  | * only safe value is 0. | 
|  | */ | 
|  | if (sysreg_visible_as_raz(vcpu, rd)) | 
|  | return val ? -E2BIG : 0; | 
|  |  | 
|  | ftr_reg = get_arm64_ftr_reg(id); | 
|  | if (!ftr_reg) | 
|  | return -EINVAL; | 
|  |  | 
|  | ftrp = ftr_reg->ftr_bits; | 
|  |  | 
|  | for (; ftrp && ftrp->width; ftrp++) { | 
|  | s64 f_val, f_lim, safe_val; | 
|  | u64 ftr_mask; | 
|  |  | 
|  | ftr_mask = arm64_ftr_mask(ftrp); | 
|  | if ((ftr_mask & writable_mask) != ftr_mask) | 
|  | continue; | 
|  |  | 
|  | f_val = arm64_ftr_value(ftrp, val); | 
|  | f_lim = arm64_ftr_value(ftrp, limit); | 
|  | mask |= ftr_mask; | 
|  |  | 
|  | if (f_val == f_lim) | 
|  | safe_val = f_val; | 
|  | else | 
|  | safe_val = kvm_arm64_ftr_safe_value(id, ftrp, f_val, f_lim); | 
|  |  | 
|  | if (safe_val != f_val) | 
|  | return -E2BIG; | 
|  | } | 
|  |  | 
|  | /* For fields that are not writable, values in limit are the safe values. */ | 
|  | if ((val & ~mask) != (limit & ~mask)) | 
|  | return -E2BIG; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static u8 pmuver_to_perfmon(u8 pmuver) | 
|  | { | 
|  | switch (pmuver) { | 
|  | case ID_AA64DFR0_EL1_PMUVer_IMP: | 
|  | return ID_DFR0_EL1_PerfMon_PMUv3; | 
|  | case ID_AA64DFR0_EL1_PMUVer_IMP_DEF: | 
|  | return ID_DFR0_EL1_PerfMon_IMPDEF; | 
|  | default: | 
|  | /* Anything ARMv8.1+ and NI have the same value. For now. */ | 
|  | return pmuver; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Read a sanitised cpufeature ID register by sys_reg_desc */ | 
|  | static u64 __kvm_read_sanitised_id_reg(const struct kvm_vcpu *vcpu, | 
|  | const struct sys_reg_desc *r) | 
|  | { | 
|  | u32 id = reg_to_encoding(r); | 
|  | u64 val; | 
|  |  | 
|  | if (sysreg_visible_as_raz(vcpu, r)) | 
|  | return 0; | 
|  |  | 
|  | val = read_sanitised_ftr_reg(id); | 
|  |  | 
|  | switch (id) { | 
|  | case SYS_ID_AA64PFR1_EL1: | 
|  | if (!kvm_has_mte(vcpu->kvm)) | 
|  | val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_MTE); | 
|  |  | 
|  | val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_SME); | 
|  | val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_RNDR_trap); | 
|  | val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_NMI); | 
|  | val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_MTE_frac); | 
|  | val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_GCS); | 
|  | val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_THE); | 
|  | val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_MTEX); | 
|  | val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_DF2); | 
|  | val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_PFAR); | 
|  | break; | 
|  | case SYS_ID_AA64PFR2_EL1: | 
|  | /* We only expose FPMR */ | 
|  | val &= ID_AA64PFR2_EL1_FPMR; | 
|  | break; | 
|  | case SYS_ID_AA64ISAR1_EL1: | 
|  | if (!vcpu_has_ptrauth(vcpu)) | 
|  | val &= ~(ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_APA) | | 
|  | ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_API) | | 
|  | ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_GPA) | | 
|  | ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_GPI)); | 
|  | break; | 
|  | case SYS_ID_AA64ISAR2_EL1: | 
|  | if (!vcpu_has_ptrauth(vcpu)) | 
|  | val &= ~(ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_APA3) | | 
|  | ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_GPA3)); | 
|  | if (!cpus_have_final_cap(ARM64_HAS_WFXT)) | 
|  | val &= ~ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_WFxT); | 
|  | break; | 
|  | case SYS_ID_AA64MMFR2_EL1: | 
|  | val &= ~ID_AA64MMFR2_EL1_CCIDX_MASK; | 
|  | break; | 
|  | case SYS_ID_AA64MMFR3_EL1: | 
|  | val &= ID_AA64MMFR3_EL1_TCRX | ID_AA64MMFR3_EL1_S1POE | | 
|  | ID_AA64MMFR3_EL1_S1PIE; | 
|  | break; | 
|  | case SYS_ID_MMFR4_EL1: | 
|  | val &= ~ARM64_FEATURE_MASK(ID_MMFR4_EL1_CCIDX); | 
|  | break; | 
|  | } | 
|  |  | 
|  | return val; | 
|  | } | 
|  |  | 
|  | static u64 kvm_read_sanitised_id_reg(struct kvm_vcpu *vcpu, | 
|  | const struct sys_reg_desc *r) | 
|  | { | 
|  | return __kvm_read_sanitised_id_reg(vcpu, r); | 
|  | } | 
|  |  | 
|  | static u64 read_id_reg(const struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) | 
|  | { | 
|  | return kvm_read_vm_id_reg(vcpu->kvm, reg_to_encoding(r)); | 
|  | } | 
|  |  | 
|  | static bool is_feature_id_reg(u32 encoding) | 
|  | { | 
|  | return (sys_reg_Op0(encoding) == 3 && | 
|  | (sys_reg_Op1(encoding) < 2 || sys_reg_Op1(encoding) == 3) && | 
|  | sys_reg_CRn(encoding) == 0 && | 
|  | sys_reg_CRm(encoding) <= 7); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return true if the register's (Op0, Op1, CRn, CRm, Op2) is | 
|  | * (3, 0, 0, crm, op2), where 1<=crm<8, 0<=op2<8, which is the range of ID | 
|  | * registers KVM maintains on a per-VM basis. | 
|  | */ | 
|  | static inline bool is_vm_ftr_id_reg(u32 id) | 
|  | { | 
|  | if (id == SYS_CTR_EL0) | 
|  | return true; | 
|  |  | 
|  | return (sys_reg_Op0(id) == 3 && sys_reg_Op1(id) == 0 && | 
|  | sys_reg_CRn(id) == 0 && sys_reg_CRm(id) >= 1 && | 
|  | sys_reg_CRm(id) < 8); | 
|  | } | 
|  |  | 
|  | static inline bool is_vcpu_ftr_id_reg(u32 id) | 
|  | { | 
|  | return is_feature_id_reg(id) && !is_vm_ftr_id_reg(id); | 
|  | } | 
|  |  | 
|  | static inline bool is_aa32_id_reg(u32 id) | 
|  | { | 
|  | return (sys_reg_Op0(id) == 3 && sys_reg_Op1(id) == 0 && | 
|  | sys_reg_CRn(id) == 0 && sys_reg_CRm(id) >= 1 && | 
|  | sys_reg_CRm(id) <= 3); | 
|  | } | 
|  |  | 
|  | static unsigned int id_visibility(const struct kvm_vcpu *vcpu, | 
|  | const struct sys_reg_desc *r) | 
|  | { | 
|  | u32 id = reg_to_encoding(r); | 
|  |  | 
|  | switch (id) { | 
|  | case SYS_ID_AA64ZFR0_EL1: | 
|  | if (!vcpu_has_sve(vcpu)) | 
|  | return REG_RAZ; | 
|  | break; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static unsigned int aa32_id_visibility(const struct kvm_vcpu *vcpu, | 
|  | const struct sys_reg_desc *r) | 
|  | { | 
|  | /* | 
|  | * AArch32 ID registers are UNKNOWN if AArch32 isn't implemented at any | 
|  | * EL. Promote to RAZ/WI in order to guarantee consistency between | 
|  | * systems. | 
|  | */ | 
|  | if (!kvm_supports_32bit_el0()) | 
|  | return REG_RAZ | REG_USER_WI; | 
|  |  | 
|  | return id_visibility(vcpu, r); | 
|  | } | 
|  |  | 
|  | static unsigned int raz_visibility(const struct kvm_vcpu *vcpu, | 
|  | const struct sys_reg_desc *r) | 
|  | { | 
|  | return REG_RAZ; | 
|  | } | 
|  |  | 
|  | /* cpufeature ID register access trap handlers */ | 
|  |  | 
|  | static bool access_id_reg(struct kvm_vcpu *vcpu, | 
|  | struct sys_reg_params *p, | 
|  | const struct sys_reg_desc *r) | 
|  | { | 
|  | if (p->is_write) | 
|  | return write_to_read_only(vcpu, p, r); | 
|  |  | 
|  | p->regval = read_id_reg(vcpu, r); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Visibility overrides for SVE-specific control registers */ | 
|  | static unsigned int sve_visibility(const struct kvm_vcpu *vcpu, | 
|  | const struct sys_reg_desc *rd) | 
|  | { | 
|  | if (vcpu_has_sve(vcpu)) | 
|  | return 0; | 
|  |  | 
|  | return REG_HIDDEN; | 
|  | } | 
|  |  | 
|  | static unsigned int sme_visibility(const struct kvm_vcpu *vcpu, | 
|  | const struct sys_reg_desc *rd) | 
|  | { | 
|  | if (kvm_has_feat(vcpu->kvm, ID_AA64PFR1_EL1, SME, IMP)) | 
|  | return 0; | 
|  |  | 
|  | return REG_HIDDEN; | 
|  | } | 
|  |  | 
|  | static unsigned int fp8_visibility(const struct kvm_vcpu *vcpu, | 
|  | const struct sys_reg_desc *rd) | 
|  | { | 
|  | if (kvm_has_fpmr(vcpu->kvm)) | 
|  | return 0; | 
|  |  | 
|  | return REG_HIDDEN; | 
|  | } | 
|  |  | 
|  | static u64 read_sanitised_id_aa64pfr0_el1(struct kvm_vcpu *vcpu, | 
|  | const struct sys_reg_desc *rd) | 
|  | { | 
|  | u64 val = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1); | 
|  |  | 
|  | if (!vcpu_has_sve(vcpu)) | 
|  | val &= ~ID_AA64PFR0_EL1_SVE_MASK; | 
|  |  | 
|  | /* | 
|  | * The default is to expose CSV2 == 1 if the HW isn't affected. | 
|  | * Although this is a per-CPU feature, we make it global because | 
|  | * asymmetric systems are just a nuisance. | 
|  | * | 
|  | * Userspace can override this as long as it doesn't promise | 
|  | * the impossible. | 
|  | */ | 
|  | if (arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED) { | 
|  | val &= ~ID_AA64PFR0_EL1_CSV2_MASK; | 
|  | val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, CSV2, IMP); | 
|  | } | 
|  | if (arm64_get_meltdown_state() == SPECTRE_UNAFFECTED) { | 
|  | val &= ~ID_AA64PFR0_EL1_CSV3_MASK; | 
|  | val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, CSV3, IMP); | 
|  | } | 
|  |  | 
|  | if (kvm_vgic_global_state.type == VGIC_V3) { | 
|  | val &= ~ID_AA64PFR0_EL1_GIC_MASK; | 
|  | val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, GIC, IMP); | 
|  | } | 
|  |  | 
|  | val &= ~ID_AA64PFR0_EL1_AMU_MASK; | 
|  |  | 
|  | return val; | 
|  | } | 
|  |  | 
|  | #define ID_REG_LIMIT_FIELD_ENUM(val, reg, field, limit)			       \ | 
|  | ({									       \ | 
|  | u64 __f_val = FIELD_GET(reg##_##field##_MASK, val);		       \ | 
|  | (val) &= ~reg##_##field##_MASK;					       \ | 
|  | (val) |= FIELD_PREP(reg##_##field##_MASK,			       \ | 
|  | min(__f_val,				       \ | 
|  | (u64)SYS_FIELD_VALUE(reg, field, limit)));     \ | 
|  | (val);								       \ | 
|  | }) | 
|  |  | 
|  | static u64 read_sanitised_id_aa64dfr0_el1(struct kvm_vcpu *vcpu, | 
|  | const struct sys_reg_desc *rd) | 
|  | { | 
|  | u64 val = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1); | 
|  |  | 
|  | val = ID_REG_LIMIT_FIELD_ENUM(val, ID_AA64DFR0_EL1, DebugVer, V8P8); | 
|  |  | 
|  | /* | 
|  | * Only initialize the PMU version if the vCPU was configured with one. | 
|  | */ | 
|  | val &= ~ID_AA64DFR0_EL1_PMUVer_MASK; | 
|  | if (kvm_vcpu_has_pmu(vcpu)) | 
|  | val |= SYS_FIELD_PREP(ID_AA64DFR0_EL1, PMUVer, | 
|  | kvm_arm_pmu_get_pmuver_limit()); | 
|  |  | 
|  | /* Hide SPE from guests */ | 
|  | val &= ~ID_AA64DFR0_EL1_PMSVer_MASK; | 
|  |  | 
|  | return val; | 
|  | } | 
|  |  | 
|  | static int set_id_aa64dfr0_el1(struct kvm_vcpu *vcpu, | 
|  | const struct sys_reg_desc *rd, | 
|  | u64 val) | 
|  | { | 
|  | u8 debugver = SYS_FIELD_GET(ID_AA64DFR0_EL1, DebugVer, val); | 
|  | u8 pmuver = SYS_FIELD_GET(ID_AA64DFR0_EL1, PMUVer, val); | 
|  |  | 
|  | /* | 
|  | * Prior to commit 3d0dba5764b9 ("KVM: arm64: PMU: Move the | 
|  | * ID_AA64DFR0_EL1.PMUver limit to VM creation"), KVM erroneously | 
|  | * exposed an IMP_DEF PMU to userspace and the guest on systems w/ | 
|  | * non-architectural PMUs. Of course, PMUv3 is the only game in town for | 
|  | * PMU virtualization, so the IMP_DEF value was rather user-hostile. | 
|  | * | 
|  | * At minimum, we're on the hook to allow values that were given to | 
|  | * userspace by KVM. Cover our tracks here and replace the IMP_DEF value | 
|  | * with a more sensible NI. The value of an ID register changing under | 
|  | * the nose of the guest is unfortunate, but is certainly no more | 
|  | * surprising than an ill-guided PMU driver poking at impdef system | 
|  | * registers that end in an UNDEF... | 
|  | */ | 
|  | if (pmuver == ID_AA64DFR0_EL1_PMUVer_IMP_DEF) | 
|  | val &= ~ID_AA64DFR0_EL1_PMUVer_MASK; | 
|  |  | 
|  | /* | 
|  | * ID_AA64DFR0_EL1.DebugVer is one of those awkward fields with a | 
|  | * nonzero minimum safe value. | 
|  | */ | 
|  | if (debugver < ID_AA64DFR0_EL1_DebugVer_IMP) | 
|  | return -EINVAL; | 
|  |  | 
|  | return set_id_reg(vcpu, rd, val); | 
|  | } | 
|  |  | 
|  | static u64 read_sanitised_id_dfr0_el1(struct kvm_vcpu *vcpu, | 
|  | const struct sys_reg_desc *rd) | 
|  | { | 
|  | u8 perfmon = pmuver_to_perfmon(kvm_arm_pmu_get_pmuver_limit()); | 
|  | u64 val = read_sanitised_ftr_reg(SYS_ID_DFR0_EL1); | 
|  |  | 
|  | val &= ~ID_DFR0_EL1_PerfMon_MASK; | 
|  | if (kvm_vcpu_has_pmu(vcpu)) | 
|  | val |= SYS_FIELD_PREP(ID_DFR0_EL1, PerfMon, perfmon); | 
|  |  | 
|  | val = ID_REG_LIMIT_FIELD_ENUM(val, ID_DFR0_EL1, CopDbg, Debugv8p8); | 
|  |  | 
|  | return val; | 
|  | } | 
|  |  | 
|  | static int set_id_dfr0_el1(struct kvm_vcpu *vcpu, | 
|  | const struct sys_reg_desc *rd, | 
|  | u64 val) | 
|  | { | 
|  | u8 perfmon = SYS_FIELD_GET(ID_DFR0_EL1, PerfMon, val); | 
|  | u8 copdbg = SYS_FIELD_GET(ID_DFR0_EL1, CopDbg, val); | 
|  |  | 
|  | if (perfmon == ID_DFR0_EL1_PerfMon_IMPDEF) { | 
|  | val &= ~ID_DFR0_EL1_PerfMon_MASK; | 
|  | perfmon = 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allow DFR0_EL1.PerfMon to be set from userspace as long as | 
|  | * it doesn't promise more than what the HW gives us on the | 
|  | * AArch64 side (as everything is emulated with that), and | 
|  | * that this is a PMUv3. | 
|  | */ | 
|  | if (perfmon != 0 && perfmon < ID_DFR0_EL1_PerfMon_PMUv3) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (copdbg < ID_DFR0_EL1_CopDbg_Armv8) | 
|  | return -EINVAL; | 
|  |  | 
|  | return set_id_reg(vcpu, rd, val); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * cpufeature ID register user accessors | 
|  | * | 
|  | * For now, these registers are immutable for userspace, so no values | 
|  | * are stored, and for set_id_reg() we don't allow the effective value | 
|  | * to be changed. | 
|  | */ | 
|  | static int get_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, | 
|  | u64 *val) | 
|  | { | 
|  | /* | 
|  | * Avoid locking if the VM has already started, as the ID registers are | 
|  | * guaranteed to be invariant at that point. | 
|  | */ | 
|  | if (kvm_vm_has_ran_once(vcpu->kvm)) { | 
|  | *val = read_id_reg(vcpu, rd); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | mutex_lock(&vcpu->kvm->arch.config_lock); | 
|  | *val = read_id_reg(vcpu, rd); | 
|  | mutex_unlock(&vcpu->kvm->arch.config_lock); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, | 
|  | u64 val) | 
|  | { | 
|  | u32 id = reg_to_encoding(rd); | 
|  | int ret; | 
|  |  | 
|  | mutex_lock(&vcpu->kvm->arch.config_lock); | 
|  |  | 
|  | /* | 
|  | * Once the VM has started the ID registers are immutable. Reject any | 
|  | * write that does not match the final register value. | 
|  | */ | 
|  | if (kvm_vm_has_ran_once(vcpu->kvm)) { | 
|  | if (val != read_id_reg(vcpu, rd)) | 
|  | ret = -EBUSY; | 
|  | else | 
|  | ret = 0; | 
|  |  | 
|  | mutex_unlock(&vcpu->kvm->arch.config_lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | ret = arm64_check_features(vcpu, rd, val); | 
|  | if (!ret) | 
|  | kvm_set_vm_id_reg(vcpu->kvm, id, val); | 
|  |  | 
|  | mutex_unlock(&vcpu->kvm->arch.config_lock); | 
|  |  | 
|  | /* | 
|  | * arm64_check_features() returns -E2BIG to indicate the register's | 
|  | * feature set is a superset of the maximally-allowed register value. | 
|  | * While it would be nice to precisely describe this to userspace, the | 
|  | * existing UAPI for KVM_SET_ONE_REG has it that invalid register | 
|  | * writes return -EINVAL. | 
|  | */ | 
|  | if (ret == -E2BIG) | 
|  | ret = -EINVAL; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void kvm_set_vm_id_reg(struct kvm *kvm, u32 reg, u64 val) | 
|  | { | 
|  | u64 *p = __vm_id_reg(&kvm->arch, reg); | 
|  |  | 
|  | lockdep_assert_held(&kvm->arch.config_lock); | 
|  |  | 
|  | if (KVM_BUG_ON(kvm_vm_has_ran_once(kvm) || !p, kvm)) | 
|  | return; | 
|  |  | 
|  | *p = val; | 
|  | } | 
|  |  | 
|  | static int get_raz_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, | 
|  | u64 *val) | 
|  | { | 
|  | *val = 0; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int set_wi_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, | 
|  | u64 val) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static bool access_ctr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, | 
|  | const struct sys_reg_desc *r) | 
|  | { | 
|  | if (p->is_write) | 
|  | return write_to_read_only(vcpu, p, r); | 
|  |  | 
|  | p->regval = kvm_read_vm_id_reg(vcpu->kvm, SYS_CTR_EL0); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool access_clidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, | 
|  | const struct sys_reg_desc *r) | 
|  | { | 
|  | if (p->is_write) | 
|  | return write_to_read_only(vcpu, p, r); | 
|  |  | 
|  | p->regval = __vcpu_sys_reg(vcpu, r->reg); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Fabricate a CLIDR_EL1 value instead of using the real value, which can vary | 
|  | * by the physical CPU which the vcpu currently resides in. | 
|  | */ | 
|  | static u64 reset_clidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) | 
|  | { | 
|  | u64 ctr_el0 = read_sanitised_ftr_reg(SYS_CTR_EL0); | 
|  | u64 clidr; | 
|  | u8 loc; | 
|  |  | 
|  | if ((ctr_el0 & CTR_EL0_IDC)) { | 
|  | /* | 
|  | * Data cache clean to the PoU is not required so LoUU and LoUIS | 
|  | * will not be set and a unified cache, which will be marked as | 
|  | * LoC, will be added. | 
|  | * | 
|  | * If not DIC, let the unified cache L2 so that an instruction | 
|  | * cache can be added as L1 later. | 
|  | */ | 
|  | loc = (ctr_el0 & CTR_EL0_DIC) ? 1 : 2; | 
|  | clidr = CACHE_TYPE_UNIFIED << CLIDR_CTYPE_SHIFT(loc); | 
|  | } else { | 
|  | /* | 
|  | * Data cache clean to the PoU is required so let L1 have a data | 
|  | * cache and mark it as LoUU and LoUIS. As L1 has a data cache, | 
|  | * it can be marked as LoC too. | 
|  | */ | 
|  | loc = 1; | 
|  | clidr = 1 << CLIDR_LOUU_SHIFT; | 
|  | clidr |= 1 << CLIDR_LOUIS_SHIFT; | 
|  | clidr |= CACHE_TYPE_DATA << CLIDR_CTYPE_SHIFT(1); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Instruction cache invalidation to the PoU is required so let L1 have | 
|  | * an instruction cache. If L1 already has a data cache, it will be | 
|  | * CACHE_TYPE_SEPARATE. | 
|  | */ | 
|  | if (!(ctr_el0 & CTR_EL0_DIC)) | 
|  | clidr |= CACHE_TYPE_INST << CLIDR_CTYPE_SHIFT(1); | 
|  |  | 
|  | clidr |= loc << CLIDR_LOC_SHIFT; | 
|  |  | 
|  | /* | 
|  | * Add tag cache unified to data cache. Allocation tags and data are | 
|  | * unified in a cache line so that it looks valid even if there is only | 
|  | * one cache line. | 
|  | */ | 
|  | if (kvm_has_mte(vcpu->kvm)) | 
|  | clidr |= 2ULL << CLIDR_TTYPE_SHIFT(loc); | 
|  |  | 
|  | __vcpu_sys_reg(vcpu, r->reg) = clidr; | 
|  |  | 
|  | return __vcpu_sys_reg(vcpu, r->reg); | 
|  | } | 
|  |  | 
|  | static int set_clidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, | 
|  | u64 val) | 
|  | { | 
|  | u64 ctr_el0 = read_sanitised_ftr_reg(SYS_CTR_EL0); | 
|  | u64 idc = !CLIDR_LOC(val) || (!CLIDR_LOUIS(val) && !CLIDR_LOUU(val)); | 
|  |  | 
|  | if ((val & CLIDR_EL1_RES0) || (!(ctr_el0 & CTR_EL0_IDC) && idc)) | 
|  | return -EINVAL; | 
|  |  | 
|  | __vcpu_sys_reg(vcpu, rd->reg) = val; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static bool access_csselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, | 
|  | const struct sys_reg_desc *r) | 
|  | { | 
|  | int reg = r->reg; | 
|  |  | 
|  | if (p->is_write) | 
|  | vcpu_write_sys_reg(vcpu, p->regval, reg); | 
|  | else | 
|  | p->regval = vcpu_read_sys_reg(vcpu, reg); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool access_ccsidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, | 
|  | const struct sys_reg_desc *r) | 
|  | { | 
|  | u32 csselr; | 
|  |  | 
|  | if (p->is_write) | 
|  | return write_to_read_only(vcpu, p, r); | 
|  |  | 
|  | csselr = vcpu_read_sys_reg(vcpu, CSSELR_EL1); | 
|  | csselr &= CSSELR_EL1_Level | CSSELR_EL1_InD; | 
|  | if (csselr < CSSELR_MAX) | 
|  | p->regval = get_ccsidr(vcpu, csselr); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static unsigned int mte_visibility(const struct kvm_vcpu *vcpu, | 
|  | const struct sys_reg_desc *rd) | 
|  | { | 
|  | if (kvm_has_mte(vcpu->kvm)) | 
|  | return 0; | 
|  |  | 
|  | return REG_HIDDEN; | 
|  | } | 
|  |  | 
|  | #define MTE_REG(name) {				\ | 
|  | SYS_DESC(SYS_##name),			\ | 
|  | .access = undef_access,			\ | 
|  | .reset = reset_unknown,			\ | 
|  | .reg = name,				\ | 
|  | .visibility = mte_visibility,		\ | 
|  | } | 
|  |  | 
|  | static unsigned int el2_visibility(const struct kvm_vcpu *vcpu, | 
|  | const struct sys_reg_desc *rd) | 
|  | { | 
|  | if (vcpu_has_nv(vcpu)) | 
|  | return 0; | 
|  |  | 
|  | return REG_HIDDEN; | 
|  | } | 
|  |  | 
|  | static bool bad_vncr_trap(struct kvm_vcpu *vcpu, | 
|  | struct sys_reg_params *p, | 
|  | const struct sys_reg_desc *r) | 
|  | { | 
|  | /* | 
|  | * We really shouldn't be here, and this is likely the result | 
|  | * of a misconfigured trap, as this register should target the | 
|  | * VNCR page, and nothing else. | 
|  | */ | 
|  | return bad_trap(vcpu, p, r, | 
|  | "trap of VNCR-backed register"); | 
|  | } | 
|  |  | 
|  | static bool bad_redir_trap(struct kvm_vcpu *vcpu, | 
|  | struct sys_reg_params *p, | 
|  | const struct sys_reg_desc *r) | 
|  | { | 
|  | /* | 
|  | * We really shouldn't be here, and this is likely the result | 
|  | * of a misconfigured trap, as this register should target the | 
|  | * corresponding EL1, and nothing else. | 
|  | */ | 
|  | return bad_trap(vcpu, p, r, | 
|  | "trap of EL2 register redirected to EL1"); | 
|  | } | 
|  |  | 
|  | #define EL2_REG(name, acc, rst, v) {		\ | 
|  | SYS_DESC(SYS_##name),			\ | 
|  | .access = acc,				\ | 
|  | .reset = rst,				\ | 
|  | .reg = name,				\ | 
|  | .visibility = el2_visibility,		\ | 
|  | .val = v,				\ | 
|  | } | 
|  |  | 
|  | #define EL2_REG_VNCR(name, rst, v)	EL2_REG(name, bad_vncr_trap, rst, v) | 
|  | #define EL2_REG_REDIR(name, rst, v)	EL2_REG(name, bad_redir_trap, rst, v) | 
|  |  | 
|  | /* | 
|  | * Since reset() callback and field val are not used for idregs, they will be | 
|  | * used for specific purposes for idregs. | 
|  | * The reset() would return KVM sanitised register value. The value would be the | 
|  | * same as the host kernel sanitised value if there is no KVM sanitisation. | 
|  | * The val would be used as a mask indicating writable fields for the idreg. | 
|  | * Only bits with 1 are writable from userspace. This mask might not be | 
|  | * necessary in the future whenever all ID registers are enabled as writable | 
|  | * from userspace. | 
|  | */ | 
|  |  | 
|  | #define ID_DESC(name)				\ | 
|  | SYS_DESC(SYS_##name),			\ | 
|  | .access	= access_id_reg,		\ | 
|  | .get_user = get_id_reg			\ | 
|  |  | 
|  | /* sys_reg_desc initialiser for known cpufeature ID registers */ | 
|  | #define ID_SANITISED(name) {			\ | 
|  | ID_DESC(name),				\ | 
|  | .set_user = set_id_reg,			\ | 
|  | .visibility = id_visibility,		\ | 
|  | .reset = kvm_read_sanitised_id_reg,	\ | 
|  | .val = 0,				\ | 
|  | } | 
|  |  | 
|  | /* sys_reg_desc initialiser for known cpufeature ID registers */ | 
|  | #define AA32_ID_SANITISED(name) {		\ | 
|  | ID_DESC(name),				\ | 
|  | .set_user = set_id_reg,			\ | 
|  | .visibility = aa32_id_visibility,	\ | 
|  | .reset = kvm_read_sanitised_id_reg,	\ | 
|  | .val = 0,				\ | 
|  | } | 
|  |  | 
|  | /* sys_reg_desc initialiser for writable ID registers */ | 
|  | #define ID_WRITABLE(name, mask) {		\ | 
|  | ID_DESC(name),				\ | 
|  | .set_user = set_id_reg,			\ | 
|  | .visibility = id_visibility,		\ | 
|  | .reset = kvm_read_sanitised_id_reg,	\ | 
|  | .val = mask,				\ | 
|  | } | 
|  |  | 
|  | /* | 
|  | * sys_reg_desc initialiser for architecturally unallocated cpufeature ID | 
|  | * register with encoding Op0=3, Op1=0, CRn=0, CRm=crm, Op2=op2 | 
|  | * (1 <= crm < 8, 0 <= Op2 < 8). | 
|  | */ | 
|  | #define ID_UNALLOCATED(crm, op2) {			\ | 
|  | Op0(3), Op1(0), CRn(0), CRm(crm), Op2(op2),	\ | 
|  | .access = access_id_reg,			\ | 
|  | .get_user = get_id_reg,				\ | 
|  | .set_user = set_id_reg,				\ | 
|  | .visibility = raz_visibility,			\ | 
|  | .reset = kvm_read_sanitised_id_reg,		\ | 
|  | .val = 0,					\ | 
|  | } | 
|  |  | 
|  | /* | 
|  | * sys_reg_desc initialiser for known ID registers that we hide from guests. | 
|  | * For now, these are exposed just like unallocated ID regs: they appear | 
|  | * RAZ for the guest. | 
|  | */ | 
|  | #define ID_HIDDEN(name) {			\ | 
|  | ID_DESC(name),				\ | 
|  | .set_user = set_id_reg,			\ | 
|  | .visibility = raz_visibility,		\ | 
|  | .reset = kvm_read_sanitised_id_reg,	\ | 
|  | .val = 0,				\ | 
|  | } | 
|  |  | 
|  | static bool access_sp_el1(struct kvm_vcpu *vcpu, | 
|  | struct sys_reg_params *p, | 
|  | const struct sys_reg_desc *r) | 
|  | { | 
|  | if (p->is_write) | 
|  | __vcpu_sys_reg(vcpu, SP_EL1) = p->regval; | 
|  | else | 
|  | p->regval = __vcpu_sys_reg(vcpu, SP_EL1); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool access_elr(struct kvm_vcpu *vcpu, | 
|  | struct sys_reg_params *p, | 
|  | const struct sys_reg_desc *r) | 
|  | { | 
|  | if (p->is_write) | 
|  | vcpu_write_sys_reg(vcpu, p->regval, ELR_EL1); | 
|  | else | 
|  | p->regval = vcpu_read_sys_reg(vcpu, ELR_EL1); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool access_spsr(struct kvm_vcpu *vcpu, | 
|  | struct sys_reg_params *p, | 
|  | const struct sys_reg_desc *r) | 
|  | { | 
|  | if (p->is_write) | 
|  | __vcpu_sys_reg(vcpu, SPSR_EL1) = p->regval; | 
|  | else | 
|  | p->regval = __vcpu_sys_reg(vcpu, SPSR_EL1); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool access_cntkctl_el12(struct kvm_vcpu *vcpu, | 
|  | struct sys_reg_params *p, | 
|  | const struct sys_reg_desc *r) | 
|  | { | 
|  | if (p->is_write) | 
|  | __vcpu_sys_reg(vcpu, CNTKCTL_EL1) = p->regval; | 
|  | else | 
|  | p->regval = __vcpu_sys_reg(vcpu, CNTKCTL_EL1); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static u64 reset_hcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) | 
|  | { | 
|  | u64 val = r->val; | 
|  |  | 
|  | if (!cpus_have_final_cap(ARM64_HAS_HCR_NV1)) | 
|  | val |= HCR_E2H; | 
|  |  | 
|  | return __vcpu_sys_reg(vcpu, r->reg) = val; | 
|  | } | 
|  |  | 
|  | static unsigned int sve_el2_visibility(const struct kvm_vcpu *vcpu, | 
|  | const struct sys_reg_desc *rd) | 
|  | { | 
|  | unsigned int r; | 
|  |  | 
|  | r = el2_visibility(vcpu, rd); | 
|  | if (r) | 
|  | return r; | 
|  |  | 
|  | return sve_visibility(vcpu, rd); | 
|  | } | 
|  |  | 
|  | static bool access_zcr_el2(struct kvm_vcpu *vcpu, | 
|  | struct sys_reg_params *p, | 
|  | const struct sys_reg_desc *r) | 
|  | { | 
|  | unsigned int vq; | 
|  |  | 
|  | if (guest_hyp_sve_traps_enabled(vcpu)) { | 
|  | kvm_inject_nested_sve_trap(vcpu); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (!p->is_write) { | 
|  | p->regval = vcpu_read_sys_reg(vcpu, ZCR_EL2); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | vq = SYS_FIELD_GET(ZCR_ELx, LEN, p->regval) + 1; | 
|  | vq = min(vq, vcpu_sve_max_vq(vcpu)); | 
|  | vcpu_write_sys_reg(vcpu, vq - 1, ZCR_EL2); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static unsigned int s1poe_visibility(const struct kvm_vcpu *vcpu, | 
|  | const struct sys_reg_desc *rd) | 
|  | { | 
|  | if (kvm_has_feat(vcpu->kvm, ID_AA64MMFR3_EL1, S1POE, IMP)) | 
|  | return 0; | 
|  |  | 
|  | return REG_HIDDEN; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Architected system registers. | 
|  | * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2 | 
|  | * | 
|  | * Debug handling: We do trap most, if not all debug related system | 
|  | * registers. The implementation is good enough to ensure that a guest | 
|  | * can use these with minimal performance degradation. The drawback is | 
|  | * that we don't implement any of the external debug architecture. | 
|  | * This should be revisited if we ever encounter a more demanding | 
|  | * guest... | 
|  | */ | 
|  | static const struct sys_reg_desc sys_reg_descs[] = { | 
|  | DBG_BCR_BVR_WCR_WVR_EL1(0), | 
|  | DBG_BCR_BVR_WCR_WVR_EL1(1), | 
|  | { SYS_DESC(SYS_MDCCINT_EL1), trap_debug_regs, reset_val, MDCCINT_EL1, 0 }, | 
|  | { SYS_DESC(SYS_MDSCR_EL1), trap_debug_regs, reset_val, MDSCR_EL1, 0 }, | 
|  | DBG_BCR_BVR_WCR_WVR_EL1(2), | 
|  | DBG_BCR_BVR_WCR_WVR_EL1(3), | 
|  | DBG_BCR_BVR_WCR_WVR_EL1(4), | 
|  | DBG_BCR_BVR_WCR_WVR_EL1(5), | 
|  | DBG_BCR_BVR_WCR_WVR_EL1(6), | 
|  | DBG_BCR_BVR_WCR_WVR_EL1(7), | 
|  | DBG_BCR_BVR_WCR_WVR_EL1(8), | 
|  | DBG_BCR_BVR_WCR_WVR_EL1(9), | 
|  | DBG_BCR_BVR_WCR_WVR_EL1(10), | 
|  | DBG_BCR_BVR_WCR_WVR_EL1(11), | 
|  | DBG_BCR_BVR_WCR_WVR_EL1(12), | 
|  | DBG_BCR_BVR_WCR_WVR_EL1(13), | 
|  | DBG_BCR_BVR_WCR_WVR_EL1(14), | 
|  | DBG_BCR_BVR_WCR_WVR_EL1(15), | 
|  |  | 
|  | { SYS_DESC(SYS_MDRAR_EL1), trap_raz_wi }, | 
|  | { SYS_DESC(SYS_OSLAR_EL1), trap_oslar_el1 }, | 
|  | { SYS_DESC(SYS_OSLSR_EL1), trap_oslsr_el1, reset_val, OSLSR_EL1, | 
|  | OSLSR_EL1_OSLM_IMPLEMENTED, .set_user = set_oslsr_el1, }, | 
|  | { SYS_DESC(SYS_OSDLR_EL1), trap_raz_wi }, | 
|  | { SYS_DESC(SYS_DBGPRCR_EL1), trap_raz_wi }, | 
|  | { SYS_DESC(SYS_DBGCLAIMSET_EL1), trap_raz_wi }, | 
|  | { SYS_DESC(SYS_DBGCLAIMCLR_EL1), trap_raz_wi }, | 
|  | { SYS_DESC(SYS_DBGAUTHSTATUS_EL1), trap_dbgauthstatus_el1 }, | 
|  |  | 
|  | { SYS_DESC(SYS_MDCCSR_EL0), trap_raz_wi }, | 
|  | { SYS_DESC(SYS_DBGDTR_EL0), trap_raz_wi }, | 
|  | // DBGDTR[TR]X_EL0 share the same encoding | 
|  | { SYS_DESC(SYS_DBGDTRTX_EL0), trap_raz_wi }, | 
|  |  | 
|  | { SYS_DESC(SYS_DBGVCR32_EL2), undef_access, reset_val, DBGVCR32_EL2, 0 }, | 
|  |  | 
|  | { SYS_DESC(SYS_MPIDR_EL1), NULL, reset_mpidr, MPIDR_EL1 }, | 
|  |  | 
|  | /* | 
|  | * ID regs: all ID_SANITISED() entries here must have corresponding | 
|  | * entries in arm64_ftr_regs[]. | 
|  | */ | 
|  |  | 
|  | /* AArch64 mappings of the AArch32 ID registers */ | 
|  | /* CRm=1 */ | 
|  | AA32_ID_SANITISED(ID_PFR0_EL1), | 
|  | AA32_ID_SANITISED(ID_PFR1_EL1), | 
|  | { SYS_DESC(SYS_ID_DFR0_EL1), | 
|  | .access = access_id_reg, | 
|  | .get_user = get_id_reg, | 
|  | .set_user = set_id_dfr0_el1, | 
|  | .visibility = aa32_id_visibility, | 
|  | .reset = read_sanitised_id_dfr0_el1, | 
|  | .val = ID_DFR0_EL1_PerfMon_MASK | | 
|  | ID_DFR0_EL1_CopDbg_MASK, }, | 
|  | ID_HIDDEN(ID_AFR0_EL1), | 
|  | AA32_ID_SANITISED(ID_MMFR0_EL1), | 
|  | AA32_ID_SANITISED(ID_MMFR1_EL1), | 
|  | AA32_ID_SANITISED(ID_MMFR2_EL1), | 
|  | AA32_ID_SANITISED(ID_MMFR3_EL1), | 
|  |  | 
|  | /* CRm=2 */ | 
|  | AA32_ID_SANITISED(ID_ISAR0_EL1), | 
|  | AA32_ID_SANITISED(ID_ISAR1_EL1), | 
|  | AA32_ID_SANITISED(ID_ISAR2_EL1), | 
|  | AA32_ID_SANITISED(ID_ISAR3_EL1), | 
|  | AA32_ID_SANITISED(ID_ISAR4_EL1), | 
|  | AA32_ID_SANITISED(ID_ISAR5_EL1), | 
|  | AA32_ID_SANITISED(ID_MMFR4_EL1), | 
|  | AA32_ID_SANITISED(ID_ISAR6_EL1), | 
|  |  | 
|  | /* CRm=3 */ | 
|  | AA32_ID_SANITISED(MVFR0_EL1), | 
|  | AA32_ID_SANITISED(MVFR1_EL1), | 
|  | AA32_ID_SANITISED(MVFR2_EL1), | 
|  | ID_UNALLOCATED(3,3), | 
|  | AA32_ID_SANITISED(ID_PFR2_EL1), | 
|  | ID_HIDDEN(ID_DFR1_EL1), | 
|  | AA32_ID_SANITISED(ID_MMFR5_EL1), | 
|  | ID_UNALLOCATED(3,7), | 
|  |  | 
|  | /* AArch64 ID registers */ | 
|  | /* CRm=4 */ | 
|  | { SYS_DESC(SYS_ID_AA64PFR0_EL1), | 
|  | .access = access_id_reg, | 
|  | .get_user = get_id_reg, | 
|  | .set_user = set_id_reg, | 
|  | .reset = read_sanitised_id_aa64pfr0_el1, | 
|  | .val = ~(ID_AA64PFR0_EL1_AMU | | 
|  | ID_AA64PFR0_EL1_MPAM | | 
|  | ID_AA64PFR0_EL1_SVE | | 
|  | ID_AA64PFR0_EL1_RAS | | 
|  | ID_AA64PFR0_EL1_AdvSIMD | | 
|  | ID_AA64PFR0_EL1_FP), }, | 
|  | ID_WRITABLE(ID_AA64PFR1_EL1, ~(ID_AA64PFR1_EL1_PFAR | | 
|  | ID_AA64PFR1_EL1_DF2 | | 
|  | ID_AA64PFR1_EL1_MTEX | | 
|  | ID_AA64PFR1_EL1_THE | | 
|  | ID_AA64PFR1_EL1_GCS | | 
|  | ID_AA64PFR1_EL1_MTE_frac | | 
|  | ID_AA64PFR1_EL1_NMI | | 
|  | ID_AA64PFR1_EL1_RNDR_trap | | 
|  | ID_AA64PFR1_EL1_SME | | 
|  | ID_AA64PFR1_EL1_RES0 | | 
|  | ID_AA64PFR1_EL1_MPAM_frac | | 
|  | ID_AA64PFR1_EL1_RAS_frac | | 
|  | ID_AA64PFR1_EL1_MTE)), | 
|  | ID_WRITABLE(ID_AA64PFR2_EL1, ID_AA64PFR2_EL1_FPMR), | 
|  | ID_UNALLOCATED(4,3), | 
|  | ID_WRITABLE(ID_AA64ZFR0_EL1, ~ID_AA64ZFR0_EL1_RES0), | 
|  | ID_HIDDEN(ID_AA64SMFR0_EL1), | 
|  | ID_UNALLOCATED(4,6), | 
|  | ID_WRITABLE(ID_AA64FPFR0_EL1, ~ID_AA64FPFR0_EL1_RES0), | 
|  |  | 
|  | /* CRm=5 */ | 
|  | { SYS_DESC(SYS_ID_AA64DFR0_EL1), | 
|  | .access = access_id_reg, | 
|  | .get_user = get_id_reg, | 
|  | .set_user = set_id_aa64dfr0_el1, | 
|  | .reset = read_sanitised_id_aa64dfr0_el1, | 
|  | /* | 
|  | * Prior to FEAT_Debugv8.9, the architecture defines context-aware | 
|  | * breakpoints (CTX_CMPs) as the highest numbered breakpoints (BRPs). | 
|  | * KVM does not trap + emulate the breakpoint registers, and as such | 
|  | * cannot support a layout that misaligns with the underlying hardware. | 
|  | * While it may be possible to describe a subset that aligns with | 
|  | * hardware, just prevent changes to BRPs and CTX_CMPs altogether for | 
|  | * simplicity. | 
|  | * | 
|  | * See DDI0487K.a, section D2.8.3 Breakpoint types and linking | 
|  | * of breakpoints for more details. | 
|  | */ | 
|  | .val = ID_AA64DFR0_EL1_DoubleLock_MASK | | 
|  | ID_AA64DFR0_EL1_WRPs_MASK | | 
|  | ID_AA64DFR0_EL1_PMUVer_MASK | | 
|  | ID_AA64DFR0_EL1_DebugVer_MASK, }, | 
|  | ID_SANITISED(ID_AA64DFR1_EL1), | 
|  | ID_UNALLOCATED(5,2), | 
|  | ID_UNALLOCATED(5,3), | 
|  | ID_HIDDEN(ID_AA64AFR0_EL1), | 
|  | ID_HIDDEN(ID_AA64AFR1_EL1), | 
|  | ID_UNALLOCATED(5,6), | 
|  | ID_UNALLOCATED(5,7), | 
|  |  | 
|  | /* CRm=6 */ | 
|  | ID_WRITABLE(ID_AA64ISAR0_EL1, ~ID_AA64ISAR0_EL1_RES0), | 
|  | ID_WRITABLE(ID_AA64ISAR1_EL1, ~(ID_AA64ISAR1_EL1_GPI | | 
|  | ID_AA64ISAR1_EL1_GPA | | 
|  | ID_AA64ISAR1_EL1_API | | 
|  | ID_AA64ISAR1_EL1_APA)), | 
|  | ID_WRITABLE(ID_AA64ISAR2_EL1, ~(ID_AA64ISAR2_EL1_RES0 | | 
|  | ID_AA64ISAR2_EL1_APA3 | | 
|  | ID_AA64ISAR2_EL1_GPA3)), | 
|  | ID_UNALLOCATED(6,3), | 
|  | ID_UNALLOCATED(6,4), | 
|  | ID_UNALLOCATED(6,5), | 
|  | ID_UNALLOCATED(6,6), | 
|  | ID_UNALLOCATED(6,7), | 
|  |  | 
|  | /* CRm=7 */ | 
|  | ID_WRITABLE(ID_AA64MMFR0_EL1, ~(ID_AA64MMFR0_EL1_RES0 | | 
|  | ID_AA64MMFR0_EL1_TGRAN4_2 | | 
|  | ID_AA64MMFR0_EL1_TGRAN64_2 | | 
|  | ID_AA64MMFR0_EL1_TGRAN16_2)), | 
|  | ID_WRITABLE(ID_AA64MMFR1_EL1, ~(ID_AA64MMFR1_EL1_RES0 | | 
|  | ID_AA64MMFR1_EL1_HCX | | 
|  | ID_AA64MMFR1_EL1_TWED | | 
|  | ID_AA64MMFR1_EL1_XNX | | 
|  | ID_AA64MMFR1_EL1_VH | | 
|  | ID_AA64MMFR1_EL1_VMIDBits)), | 
|  | ID_WRITABLE(ID_AA64MMFR2_EL1, ~(ID_AA64MMFR2_EL1_RES0 | | 
|  | ID_AA64MMFR2_EL1_EVT | | 
|  | ID_AA64MMFR2_EL1_FWB | | 
|  | ID_AA64MMFR2_EL1_IDS | | 
|  | ID_AA64MMFR2_EL1_NV | | 
|  | ID_AA64MMFR2_EL1_CCIDX)), | 
|  | ID_WRITABLE(ID_AA64MMFR3_EL1, (ID_AA64MMFR3_EL1_TCRX	| | 
|  | ID_AA64MMFR3_EL1_S1PIE   | | 
|  | ID_AA64MMFR3_EL1_S1POE)), | 
|  | ID_SANITISED(ID_AA64MMFR4_EL1), | 
|  | ID_UNALLOCATED(7,5), | 
|  | ID_UNALLOCATED(7,6), | 
|  | ID_UNALLOCATED(7,7), | 
|  |  | 
|  | { SYS_DESC(SYS_SCTLR_EL1), access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 }, | 
|  | { SYS_DESC(SYS_ACTLR_EL1), access_actlr, reset_actlr, ACTLR_EL1 }, | 
|  | { SYS_DESC(SYS_CPACR_EL1), NULL, reset_val, CPACR_EL1, 0 }, | 
|  |  | 
|  | MTE_REG(RGSR_EL1), | 
|  | MTE_REG(GCR_EL1), | 
|  |  | 
|  | { SYS_DESC(SYS_ZCR_EL1), NULL, reset_val, ZCR_EL1, 0, .visibility = sve_visibility }, | 
|  | { SYS_DESC(SYS_TRFCR_EL1), undef_access }, | 
|  | { SYS_DESC(SYS_SMPRI_EL1), undef_access }, | 
|  | { SYS_DESC(SYS_SMCR_EL1), undef_access }, | 
|  | { SYS_DESC(SYS_TTBR0_EL1), access_vm_reg, reset_unknown, TTBR0_EL1 }, | 
|  | { SYS_DESC(SYS_TTBR1_EL1), access_vm_reg, reset_unknown, TTBR1_EL1 }, | 
|  | { SYS_DESC(SYS_TCR_EL1), access_vm_reg, reset_val, TCR_EL1, 0 }, | 
|  | { SYS_DESC(SYS_TCR2_EL1), access_vm_reg, reset_val, TCR2_EL1, 0 }, | 
|  |  | 
|  | PTRAUTH_KEY(APIA), | 
|  | PTRAUTH_KEY(APIB), | 
|  | PTRAUTH_KEY(APDA), | 
|  | PTRAUTH_KEY(APDB), | 
|  | PTRAUTH_KEY(APGA), | 
|  |  | 
|  | { SYS_DESC(SYS_SPSR_EL1), access_spsr}, | 
|  | { SYS_DESC(SYS_ELR_EL1), access_elr}, | 
|  |  | 
|  | { SYS_DESC(SYS_ICC_PMR_EL1), undef_access }, | 
|  |  | 
|  | { SYS_DESC(SYS_AFSR0_EL1), access_vm_reg, reset_unknown, AFSR0_EL1 }, | 
|  | { SYS_DESC(SYS_AFSR1_EL1), access_vm_reg, reset_unknown, AFSR1_EL1 }, | 
|  | { SYS_DESC(SYS_ESR_EL1), access_vm_reg, reset_unknown, ESR_EL1 }, | 
|  |  | 
|  | { SYS_DESC(SYS_ERRIDR_EL1), trap_raz_wi }, | 
|  | { SYS_DESC(SYS_ERRSELR_EL1), trap_raz_wi }, | 
|  | { SYS_DESC(SYS_ERXFR_EL1), trap_raz_wi }, | 
|  | { SYS_DESC(SYS_ERXCTLR_EL1), trap_raz_wi }, | 
|  | { SYS_DESC(SYS_ERXSTATUS_EL1), trap_raz_wi }, | 
|  | { SYS_DESC(SYS_ERXADDR_EL1), trap_raz_wi }, | 
|  | { SYS_DESC(SYS_ERXMISC0_EL1), trap_raz_wi }, | 
|  | { SYS_DESC(SYS_ERXMISC1_EL1), trap_raz_wi }, | 
|  |  | 
|  | MTE_REG(TFSR_EL1), | 
|  | MTE_REG(TFSRE0_EL1), | 
|  |  | 
|  | { SYS_DESC(SYS_FAR_EL1), access_vm_reg, reset_unknown, FAR_EL1 }, | 
|  | { SYS_DESC(SYS_PAR_EL1), NULL, reset_unknown, PAR_EL1 }, | 
|  |  | 
|  | { SYS_DESC(SYS_PMSCR_EL1), undef_access }, | 
|  | { SYS_DESC(SYS_PMSNEVFR_EL1), undef_access }, | 
|  | { SYS_DESC(SYS_PMSICR_EL1), undef_access }, | 
|  | { SYS_DESC(SYS_PMSIRR_EL1), undef_access }, | 
|  | { SYS_DESC(SYS_PMSFCR_EL1), undef_access }, | 
|  | { SYS_DESC(SYS_PMSEVFR_EL1), undef_access }, | 
|  | { SYS_DESC(SYS_PMSLATFR_EL1), undef_access }, | 
|  | { SYS_DESC(SYS_PMSIDR_EL1), undef_access }, | 
|  | { SYS_DESC(SYS_PMBLIMITR_EL1), undef_access }, | 
|  | { SYS_DESC(SYS_PMBPTR_EL1), undef_access }, | 
|  | { SYS_DESC(SYS_PMBSR_EL1), undef_access }, | 
|  | /* PMBIDR_EL1 is not trapped */ | 
|  |  | 
|  | { PMU_SYS_REG(PMINTENSET_EL1), | 
|  | .access = access_pminten, .reg = PMINTENSET_EL1, | 
|  | .get_user = get_pmreg, .set_user = set_pmreg }, | 
|  | { PMU_SYS_REG(PMINTENCLR_EL1), | 
|  | .access = access_pminten, .reg = PMINTENSET_EL1, | 
|  | .get_user = get_pmreg, .set_user = set_pmreg }, | 
|  | { SYS_DESC(SYS_PMMIR_EL1), trap_raz_wi }, | 
|  |  | 
|  | { SYS_DESC(SYS_MAIR_EL1), access_vm_reg, reset_unknown, MAIR_EL1 }, | 
|  | { SYS_DESC(SYS_PIRE0_EL1), NULL, reset_unknown, PIRE0_EL1 }, | 
|  | { SYS_DESC(SYS_PIR_EL1), NULL, reset_unknown, PIR_EL1 }, | 
|  | { SYS_DESC(SYS_POR_EL1), NULL, reset_unknown, POR_EL1, | 
|  | .visibility = s1poe_visibility }, | 
|  | { SYS_DESC(SYS_AMAIR_EL1), access_vm_reg, reset_amair_el1, AMAIR_EL1 }, | 
|  |  | 
|  | { SYS_DESC(SYS_LORSA_EL1), trap_loregion }, | 
|  | { SYS_DESC(SYS_LOREA_EL1), trap_loregion }, | 
|  | { SYS_DESC(SYS_LORN_EL1), trap_loregion }, | 
|  | { SYS_DESC(SYS_LORC_EL1), trap_loregion }, | 
|  | { SYS_DESC(SYS_LORID_EL1), trap_loregion }, | 
|  |  | 
|  | { SYS_DESC(SYS_VBAR_EL1), access_rw, reset_val, VBAR_EL1, 0 }, | 
|  | { SYS_DESC(SYS_DISR_EL1), NULL, reset_val, DISR_EL1, 0 }, | 
|  |  | 
|  | { SYS_DESC(SYS_ICC_IAR0_EL1), undef_access }, | 
|  | { SYS_DESC(SYS_ICC_EOIR0_EL1), undef_access }, | 
|  | { SYS_DESC(SYS_ICC_HPPIR0_EL1), undef_access }, | 
|  | { SYS_DESC(SYS_ICC_BPR0_EL1), undef_access }, | 
|  | { SYS_DESC(SYS_ICC_AP0R0_EL1), undef_access }, | 
|  | { SYS_DESC(SYS_ICC_AP0R1_EL1), undef_access }, | 
|  | { SYS_DESC(SYS_ICC_AP0R2_EL1), undef_access }, | 
|  | { SYS_DESC(SYS_ICC_AP0R3_EL1), undef_access }, | 
|  | { SYS_DESC(SYS_ICC_AP1R0_EL1), undef_access }, | 
|  | { SYS_DESC(SYS_ICC_AP1R1_EL1), undef_access }, | 
|  | { SYS_DESC(SYS_ICC_AP1R2_EL1), undef_access }, | 
|  | { SYS_DESC(SYS_ICC_AP1R3_EL1), undef_access }, | 
|  | { SYS_DESC(SYS_ICC_DIR_EL1), undef_access }, | 
|  | { SYS_DESC(SYS_ICC_RPR_EL1), undef_access }, | 
|  | { SYS_DESC(SYS_ICC_SGI1R_EL1), access_gic_sgi }, | 
|  | { SYS_DESC(SYS_ICC_ASGI1R_EL1), access_gic_sgi }, | 
|  | { SYS_DESC(SYS_ICC_SGI0R_EL1), access_gic_sgi }, | 
|  | { SYS_DESC(SYS_ICC_IAR1_EL1), undef_access }, | 
|  | { SYS_DESC(SYS_ICC_EOIR1_EL1), undef_access }, | 
|  | { SYS_DESC(SYS_ICC_HPPIR1_EL1), undef_access }, | 
|  | { SYS_DESC(SYS_ICC_BPR1_EL1), undef_access }, | 
|  | { SYS_DESC(SYS_ICC_CTLR_EL1), undef_access }, | 
|  | { SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre }, | 
|  | { SYS_DESC(SYS_ICC_IGRPEN0_EL1), undef_access }, | 
|  | { SYS_DESC(SYS_ICC_IGRPEN1_EL1), undef_access }, | 
|  |  | 
|  | { SYS_DESC(SYS_CONTEXTIDR_EL1), access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 }, | 
|  | { SYS_DESC(SYS_TPIDR_EL1), NULL, reset_unknown, TPIDR_EL1 }, | 
|  |  | 
|  | { SYS_DESC(SYS_ACCDATA_EL1), undef_access }, | 
|  |  | 
|  | { SYS_DESC(SYS_SCXTNUM_EL1), undef_access }, | 
|  |  | 
|  | { SYS_DESC(SYS_CNTKCTL_EL1), NULL, reset_val, CNTKCTL_EL1, 0}, | 
|  |  | 
|  | { SYS_DESC(SYS_CCSIDR_EL1), access_ccsidr }, | 
|  | { SYS_DESC(SYS_CLIDR_EL1), access_clidr, reset_clidr, CLIDR_EL1, | 
|  | .set_user = set_clidr, .val = ~CLIDR_EL1_RES0 }, | 
|  | { SYS_DESC(SYS_CCSIDR2_EL1), undef_access }, | 
|  | { SYS_DESC(SYS_SMIDR_EL1), undef_access }, | 
|  | { SYS_DESC(SYS_CSSELR_EL1), access_csselr, reset_unknown, CSSELR_EL1 }, | 
|  | ID_WRITABLE(CTR_EL0, CTR_EL0_DIC_MASK | | 
|  | CTR_EL0_IDC_MASK | | 
|  | CTR_EL0_DminLine_MASK | | 
|  | CTR_EL0_IminLine_MASK), | 
|  | { SYS_DESC(SYS_SVCR), undef_access, reset_val, SVCR, 0, .visibility = sme_visibility  }, | 
|  | { SYS_DESC(SYS_FPMR), undef_access, reset_val, FPMR, 0, .visibility = fp8_visibility }, | 
|  |  | 
|  | { PMU_SYS_REG(PMCR_EL0), .access = access_pmcr, .reset = reset_pmcr, | 
|  | .reg = PMCR_EL0, .get_user = get_pmcr, .set_user = set_pmcr }, | 
|  | { PMU_SYS_REG(PMCNTENSET_EL0), | 
|  | .access = access_pmcnten, .reg = PMCNTENSET_EL0, | 
|  | .get_user = get_pmreg, .set_user = set_pmreg }, | 
|  | { PMU_SYS_REG(PMCNTENCLR_EL0), | 
|  | .access = access_pmcnten, .reg = PMCNTENSET_EL0, | 
|  | .get_user = get_pmreg, .set_user = set_pmreg }, | 
|  | { PMU_SYS_REG(PMOVSCLR_EL0), | 
|  | .access = access_pmovs, .reg = PMOVSSET_EL0, | 
|  | .get_user = get_pmreg, .set_user = set_pmreg }, | 
|  | /* | 
|  | * PM_SWINC_EL0 is exposed to userspace as RAZ/WI, as it was | 
|  | * previously (and pointlessly) advertised in the past... | 
|  | */ | 
|  | { PMU_SYS_REG(PMSWINC_EL0), | 
|  | .get_user = get_raz_reg, .set_user = set_wi_reg, | 
|  | .access = access_pmswinc, .reset = NULL }, | 
|  | { PMU_SYS_REG(PMSELR_EL0), | 
|  | .access = access_pmselr, .reset = reset_pmselr, .reg = PMSELR_EL0 }, | 
|  | { PMU_SYS_REG(PMCEID0_EL0), | 
|  | .access = access_pmceid, .reset = NULL }, | 
|  | { PMU_SYS_REG(PMCEID1_EL0), | 
|  | .access = access_pmceid, .reset = NULL }, | 
|  | { PMU_SYS_REG(PMCCNTR_EL0), | 
|  | .access = access_pmu_evcntr, .reset = reset_unknown, | 
|  | .reg = PMCCNTR_EL0, .get_user = get_pmu_evcntr}, | 
|  | { PMU_SYS_REG(PMXEVTYPER_EL0), | 
|  | .access = access_pmu_evtyper, .reset = NULL }, | 
|  | { PMU_SYS_REG(PMXEVCNTR_EL0), | 
|  | .access = access_pmu_evcntr, .reset = NULL }, | 
|  | /* | 
|  | * PMUSERENR_EL0 resets as unknown in 64bit mode while it resets as zero | 
|  | * in 32bit mode. Here we choose to reset it as zero for consistency. | 
|  | */ | 
|  | { PMU_SYS_REG(PMUSERENR_EL0), .access = access_pmuserenr, | 
|  | .reset = reset_val, .reg = PMUSERENR_EL0, .val = 0 }, | 
|  | { PMU_SYS_REG(PMOVSSET_EL0), | 
|  | .access = access_pmovs, .reg = PMOVSSET_EL0, | 
|  | .get_user = get_pmreg, .set_user = set_pmreg }, | 
|  |  | 
|  | { SYS_DESC(SYS_POR_EL0), NULL, reset_unknown, POR_EL0, | 
|  | .visibility = s1poe_visibility }, | 
|  | { SYS_DESC(SYS_TPIDR_EL0), NULL, reset_unknown, TPIDR_EL0 }, | 
|  | { SYS_DESC(SYS_TPIDRRO_EL0), NULL, reset_unknown, TPIDRRO_EL0 }, | 
|  | { SYS_DESC(SYS_TPIDR2_EL0), undef_access }, | 
|  |  | 
|  | { SYS_DESC(SYS_SCXTNUM_EL0), undef_access }, | 
|  |  | 
|  | { SYS_DESC(SYS_AMCR_EL0), undef_access }, | 
|  | { SYS_DESC(SYS_AMCFGR_EL0), undef_access }, | 
|  | { SYS_DESC(SYS_AMCGCR_EL0), undef_access }, | 
|  | { SYS_DESC(SYS_AMUSERENR_EL0), undef_access }, | 
|  | { SYS_DESC(SYS_AMCNTENCLR0_EL0), undef_access }, | 
|  | { SYS_DESC(SYS_AMCNTENSET0_EL0), undef_access }, | 
|  | { SYS_DESC(SYS_AMCNTENCLR1_EL0), undef_access }, | 
|  | { SYS_DESC(SYS_AMCNTENSET1_EL0), undef_access }, | 
|  | AMU_AMEVCNTR0_EL0(0), | 
|  | AMU_AMEVCNTR0_EL0(1), | 
|  | AMU_AMEVCNTR0_EL0(2), | 
|  | AMU_AMEVCNTR0_EL0(3), | 
|  | AMU_AMEVCNTR0_EL0(4), | 
|  | AMU_AMEVCNTR0_EL0(5), | 
|  | AMU_AMEVCNTR0_EL0(6), | 
|  | AMU_AMEVCNTR0_EL0(7), | 
|  | AMU_AMEVCNTR0_EL0(8), | 
|  | AMU_AMEVCNTR0_EL0(9), | 
|  | AMU_AMEVCNTR0_EL0(10), | 
|  | AMU_AMEVCNTR0_EL0(11), | 
|  | AMU_AMEVCNTR0_EL0(12), | 
|  | AMU_AMEVCNTR0_EL0(13), | 
|  | AMU_AMEVCNTR0_EL0(14), | 
|  | AMU_AMEVCNTR0_EL0(15), | 
|  | AMU_AMEVTYPER0_EL0(0), | 
|  | AMU_AMEVTYPER0_EL0(1), | 
|  | AMU_AMEVTYPER0_EL0(2), | 
|  | AMU_AMEVTYPER0_EL0(3), | 
|  | AMU_AMEVTYPER0_EL0(4), | 
|  | AMU_AMEVTYPER0_EL0(5), | 
|  | AMU_AMEVTYPER0_EL0(6), | 
|  | AMU_AMEVTYPER0_EL0(7), | 
|  | AMU_AMEVTYPER0_EL0(8), | 
|  | AMU_AMEVTYPER0_EL0(9), | 
|  | AMU_AMEVTYPER0_EL0(10), | 
|  | AMU_AMEVTYPER0_EL0(11), | 
|  | AMU_AMEVTYPER0_EL0(12), | 
|  | AMU_AMEVTYPER0_EL0(13), | 
|  | AMU_AMEVTYPER0_EL0(14), | 
|  | AMU_AMEVTYPER0_EL0(15), | 
|  | AMU_AMEVCNTR1_EL0(0), | 
|  | AMU_AMEVCNTR1_EL0(1), | 
|  | AMU_AMEVCNTR1_EL0(2), | 
|  | AMU_AMEVCNTR1_EL0(3), | 
|  | AMU_AMEVCNTR1_EL0(4), | 
|  | AMU_AMEVCNTR1_EL0(5), | 
|  | AMU_AMEVCNTR1_EL0(6), | 
|  | AMU_AMEVCNTR1_EL0(7), | 
|  | AMU_AMEVCNTR1_EL0(8), | 
|  | AMU_AMEVCNTR1_EL0(9), | 
|  | AMU_AMEVCNTR1_EL0(10), | 
|  | AMU_AMEVCNTR1_EL0(11), | 
|  | AMU_AMEVCNTR1_EL0(12), | 
|  | AMU_AMEVCNTR1_EL0(13), | 
|  | AMU_AMEVCNTR1_EL0(14), | 
|  | AMU_AMEVCNTR1_EL0(15), | 
|  | AMU_AMEVTYPER1_EL0(0), | 
|  | AMU_AMEVTYPER1_EL0(1), | 
|  | AMU_AMEVTYPER1_EL0(2), | 
|  | AMU_AMEVTYPER1_EL0(3), | 
|  | AMU_AMEVTYPER1_EL0(4), | 
|  | AMU_AMEVTYPER1_EL0(5), | 
|  | AMU_AMEVTYPER1_EL0(6), | 
|  | AMU_AMEVTYPER1_EL0(7), | 
|  | AMU_AMEVTYPER1_EL0(8), | 
|  | AMU_AMEVTYPER1_EL0(9), | 
|  | AMU_AMEVTYPER1_EL0(10), | 
|  | AMU_AMEVTYPER1_EL0(11), | 
|  | AMU_AMEVTYPER1_EL0(12), | 
|  | AMU_AMEVTYPER1_EL0(13), | 
|  | AMU_AMEVTYPER1_EL0(14), | 
|  | AMU_AMEVTYPER1_EL0(15), | 
|  |  | 
|  | { SYS_DESC(SYS_CNTPCT_EL0), access_arch_timer }, | 
|  | { SYS_DESC(SYS_CNTPCTSS_EL0), access_arch_timer }, | 
|  | { SYS_DESC(SYS_CNTP_TVAL_EL0), access_arch_timer }, | 
|  | { SYS_DESC(SYS_CNTP_CTL_EL0), access_arch_timer }, | 
|  | { SYS_DESC(SYS_CNTP_CVAL_EL0), access_arch_timer }, | 
|  |  | 
|  | /* PMEVCNTRn_EL0 */ | 
|  | PMU_PMEVCNTR_EL0(0), | 
|  | PMU_PMEVCNTR_EL0(1), | 
|  | PMU_PMEVCNTR_EL0(2), | 
|  | PMU_PMEVCNTR_EL0(3), | 
|  | PMU_PMEVCNTR_EL0(4), | 
|  | PMU_PMEVCNTR_EL0(5), | 
|  | PMU_PMEVCNTR_EL0(6), | 
|  | PMU_PMEVCNTR_EL0(7), | 
|  | PMU_PMEVCNTR_EL0(8), | 
|  | PMU_PMEVCNTR_EL0(9), | 
|  | PMU_PMEVCNTR_EL0(10), | 
|  | PMU_PMEVCNTR_EL0(11), | 
|  | PMU_PMEVCNTR_EL0(12), | 
|  | PMU_PMEVCNTR_EL0(13), | 
|  | PMU_PMEVCNTR_EL0(14), | 
|  | PMU_PMEVCNTR_EL0(15), | 
|  | PMU_PMEVCNTR_EL0(16), | 
|  | PMU_PMEVCNTR_EL0(17), | 
|  | PMU_PMEVCNTR_EL0(18), | 
|  | PMU_PMEVCNTR_EL0(19), | 
|  | PMU_PMEVCNTR_EL0(20), | 
|  | PMU_PMEVCNTR_EL0(21), | 
|  | PMU_PMEVCNTR_EL0(22), | 
|  | PMU_PMEVCNTR_EL0(23), | 
|  | PMU_PMEVCNTR_EL0(24), | 
|  | PMU_PMEVCNTR_EL0(25), | 
|  | PMU_PMEVCNTR_EL0(26), | 
|  | PMU_PMEVCNTR_EL0(27), | 
|  | PMU_PMEVCNTR_EL0(28), | 
|  | PMU_PMEVCNTR_EL0(29), | 
|  | PMU_PMEVCNTR_EL0(30), | 
|  | /* PMEVTYPERn_EL0 */ | 
|  | PMU_PMEVTYPER_EL0(0), | 
|  | PMU_PMEVTYPER_EL0(1), | 
|  | PMU_PMEVTYPER_EL0(2), | 
|  | PMU_PMEVTYPER_EL0(3), | 
|  | PMU_PMEVTYPER_EL0(4), | 
|  | PMU_PMEVTYPER_EL0(5), | 
|  | PMU_PMEVTYPER_EL0(6), | 
|  | PMU_PMEVTYPER_EL0(7), | 
|  | PMU_PMEVTYPER_EL0(8), | 
|  | PMU_PMEVTYPER_EL0(9), | 
|  | PMU_PMEVTYPER_EL0(10), | 
|  | PMU_PMEVTYPER_EL0(11), | 
|  | PMU_PMEVTYPER_EL0(12), | 
|  | PMU_PMEVTYPER_EL0(13), | 
|  | PMU_PMEVTYPER_EL0(14), | 
|  | PMU_PMEVTYPER_EL0(15), | 
|  | PMU_PMEVTYPER_EL0(16), | 
|  | PMU_PMEVTYPER_EL0(17), | 
|  | PMU_PMEVTYPER_EL0(18), | 
|  | PMU_PMEVTYPER_EL0(19), | 
|  | PMU_PMEVTYPER_EL0(20), | 
|  | PMU_PMEVTYPER_EL0(21), | 
|  | PMU_PMEVTYPER_EL0(22), | 
|  | PMU_PMEVTYPER_EL0(23), | 
|  | PMU_PMEVTYPER_EL0(24), | 
|  | PMU_PMEVTYPER_EL0(25), | 
|  | PMU_PMEVTYPER_EL0(26), | 
|  | PMU_PMEVTYPER_EL0(27), | 
|  | PMU_PMEVTYPER_EL0(28), | 
|  | PMU_PMEVTYPER_EL0(29), | 
|  | PMU_PMEVTYPER_EL0(30), | 
|  | /* | 
|  | * PMCCFILTR_EL0 resets as unknown in 64bit mode while it resets as zero | 
|  | * in 32bit mode. Here we choose to reset it as zero for consistency. | 
|  | */ | 
|  | { PMU_SYS_REG(PMCCFILTR_EL0), .access = access_pmu_evtyper, | 
|  | .reset = reset_val, .reg = PMCCFILTR_EL0, .val = 0 }, | 
|  |  | 
|  | EL2_REG_VNCR(VPIDR_EL2, reset_unknown, 0), | 
|  | EL2_REG_VNCR(VMPIDR_EL2, reset_unknown, 0), | 
|  | EL2_REG(SCTLR_EL2, access_rw, reset_val, SCTLR_EL2_RES1), | 
|  | EL2_REG(ACTLR_EL2, access_rw, reset_val, 0), | 
|  | EL2_REG_VNCR(HCR_EL2, reset_hcr, 0), | 
|  | EL2_REG(MDCR_EL2, access_rw, reset_val, 0), | 
|  | EL2_REG(CPTR_EL2, access_rw, reset_val, CPTR_NVHE_EL2_RES1), | 
|  | EL2_REG_VNCR(HSTR_EL2, reset_val, 0), | 
|  | EL2_REG_VNCR(HFGRTR_EL2, reset_val, 0), | 
|  | EL2_REG_VNCR(HFGWTR_EL2, reset_val, 0), | 
|  | EL2_REG_VNCR(HFGITR_EL2, reset_val, 0), | 
|  | EL2_REG_VNCR(HACR_EL2, reset_val, 0), | 
|  |  | 
|  | { SYS_DESC(SYS_ZCR_EL2), .access = access_zcr_el2, .reset = reset_val, | 
|  | .visibility = sve_el2_visibility, .reg = ZCR_EL2 }, | 
|  |  | 
|  | EL2_REG_VNCR(HCRX_EL2, reset_val, 0), | 
|  |  | 
|  | EL2_REG(TTBR0_EL2, access_rw, reset_val, 0), | 
|  | EL2_REG(TTBR1_EL2, access_rw, reset_val, 0), | 
|  | EL2_REG(TCR_EL2, access_rw, reset_val, TCR_EL2_RES1), | 
|  | EL2_REG_VNCR(VTTBR_EL2, reset_val, 0), | 
|  | EL2_REG_VNCR(VTCR_EL2, reset_val, 0), | 
|  |  | 
|  | { SYS_DESC(SYS_DACR32_EL2), undef_access, reset_unknown, DACR32_EL2 }, | 
|  | EL2_REG_VNCR(HDFGRTR_EL2, reset_val, 0), | 
|  | EL2_REG_VNCR(HDFGWTR_EL2, reset_val, 0), | 
|  | EL2_REG_VNCR(HAFGRTR_EL2, reset_val, 0), | 
|  | EL2_REG_REDIR(SPSR_EL2, reset_val, 0), | 
|  | EL2_REG_REDIR(ELR_EL2, reset_val, 0), | 
|  | { SYS_DESC(SYS_SP_EL1), access_sp_el1}, | 
|  |  | 
|  | /* AArch32 SPSR_* are RES0 if trapped from a NV guest */ | 
|  | { SYS_DESC(SYS_SPSR_irq), .access = trap_raz_wi }, | 
|  | { SYS_DESC(SYS_SPSR_abt), .access = trap_raz_wi }, | 
|  | { SYS_DESC(SYS_SPSR_und), .access = trap_raz_wi }, | 
|  | { SYS_DESC(SYS_SPSR_fiq), .access = trap_raz_wi }, | 
|  |  | 
|  | { SYS_DESC(SYS_IFSR32_EL2), undef_access, reset_unknown, IFSR32_EL2 }, | 
|  | EL2_REG(AFSR0_EL2, access_rw, reset_val, 0), | 
|  | EL2_REG(AFSR1_EL2, access_rw, reset_val, 0), | 
|  | EL2_REG_REDIR(ESR_EL2, reset_val, 0), | 
|  | { SYS_DESC(SYS_FPEXC32_EL2), undef_access, reset_val, FPEXC32_EL2, 0x700 }, | 
|  |  | 
|  | EL2_REG_REDIR(FAR_EL2, reset_val, 0), | 
|  | EL2_REG(HPFAR_EL2, access_rw, reset_val, 0), | 
|  |  | 
|  | EL2_REG(MAIR_EL2, access_rw, reset_val, 0), | 
|  | EL2_REG(AMAIR_EL2, access_rw, reset_val, 0), | 
|  |  | 
|  | EL2_REG(VBAR_EL2, access_rw, reset_val, 0), | 
|  | EL2_REG(RVBAR_EL2, access_rw, reset_val, 0), | 
|  | { SYS_DESC(SYS_RMR_EL2), undef_access }, | 
|  |  | 
|  | EL2_REG_VNCR(ICH_HCR_EL2, reset_val, 0), | 
|  |  | 
|  | EL2_REG(CONTEXTIDR_EL2, access_rw, reset_val, 0), | 
|  | EL2_REG(TPIDR_EL2, access_rw, reset_val, 0), | 
|  |  | 
|  | EL2_REG_VNCR(CNTVOFF_EL2, reset_val, 0), | 
|  | EL2_REG(CNTHCTL_EL2, access_rw, reset_val, 0), | 
|  |  | 
|  | { SYS_DESC(SYS_CNTKCTL_EL12), access_cntkctl_el12 }, | 
|  |  | 
|  | EL2_REG(SP_EL2, NULL, reset_unknown, 0), | 
|  | }; | 
|  |  | 
|  | static bool handle_at_s1e01(struct kvm_vcpu *vcpu, struct sys_reg_params *p, | 
|  | const struct sys_reg_desc *r) | 
|  | { | 
|  | u32 op = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2); | 
|  |  | 
|  | __kvm_at_s1e01(vcpu, op, p->regval); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool handle_at_s1e2(struct kvm_vcpu *vcpu, struct sys_reg_params *p, | 
|  | const struct sys_reg_desc *r) | 
|  | { | 
|  | u32 op = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2); | 
|  |  | 
|  | /* There is no FGT associated with AT S1E2A :-( */ | 
|  | if (op == OP_AT_S1E2A && | 
|  | !kvm_has_feat(vcpu->kvm, ID_AA64ISAR2_EL1, ATS1A, IMP)) { | 
|  | kvm_inject_undefined(vcpu); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | __kvm_at_s1e2(vcpu, op, p->regval); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool handle_at_s12(struct kvm_vcpu *vcpu, struct sys_reg_params *p, | 
|  | const struct sys_reg_desc *r) | 
|  | { | 
|  | u32 op = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2); | 
|  |  | 
|  | __kvm_at_s12(vcpu, op, p->regval); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool kvm_supported_tlbi_s12_op(struct kvm_vcpu *vpcu, u32 instr) | 
|  | { | 
|  | struct kvm *kvm = vpcu->kvm; | 
|  | u8 CRm = sys_reg_CRm(instr); | 
|  |  | 
|  | if (sys_reg_CRn(instr) == TLBI_CRn_nXS && | 
|  | !kvm_has_feat(kvm, ID_AA64ISAR1_EL1, XS, IMP)) | 
|  | return false; | 
|  |  | 
|  | if (CRm == TLBI_CRm_nROS && | 
|  | !kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, OS)) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool handle_alle1is(struct kvm_vcpu *vcpu, struct sys_reg_params *p, | 
|  | const struct sys_reg_desc *r) | 
|  | { | 
|  | u32 sys_encoding = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2); | 
|  |  | 
|  | if (!kvm_supported_tlbi_s12_op(vcpu, sys_encoding)) | 
|  | return undef_access(vcpu, p, r); | 
|  |  | 
|  | write_lock(&vcpu->kvm->mmu_lock); | 
|  |  | 
|  | /* | 
|  | * Drop all shadow S2s, resulting in S1/S2 TLBIs for each of the | 
|  | * corresponding VMIDs. | 
|  | */ | 
|  | kvm_nested_s2_unmap(vcpu->kvm, true); | 
|  |  | 
|  | write_unlock(&vcpu->kvm->mmu_lock); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool kvm_supported_tlbi_ipas2_op(struct kvm_vcpu *vpcu, u32 instr) | 
|  | { | 
|  | struct kvm *kvm = vpcu->kvm; | 
|  | u8 CRm = sys_reg_CRm(instr); | 
|  | u8 Op2 = sys_reg_Op2(instr); | 
|  |  | 
|  | if (sys_reg_CRn(instr) == TLBI_CRn_nXS && | 
|  | !kvm_has_feat(kvm, ID_AA64ISAR1_EL1, XS, IMP)) | 
|  | return false; | 
|  |  | 
|  | if (CRm == TLBI_CRm_IPAIS && (Op2 == 2 || Op2 == 6) && | 
|  | !kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, RANGE)) | 
|  | return false; | 
|  |  | 
|  | if (CRm == TLBI_CRm_IPAONS && (Op2 == 0 || Op2 == 4) && | 
|  | !kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, OS)) | 
|  | return false; | 
|  |  | 
|  | if (CRm == TLBI_CRm_IPAONS && (Op2 == 3 || Op2 == 7) && | 
|  | !kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, RANGE)) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Only defined here as this is an internal "abstraction" */ | 
|  | union tlbi_info { | 
|  | struct { | 
|  | u64	start; | 
|  | u64	size; | 
|  | } range; | 
|  |  | 
|  | struct { | 
|  | u64	addr; | 
|  | } ipa; | 
|  |  | 
|  | struct { | 
|  | u64	addr; | 
|  | u32	encoding; | 
|  | } va; | 
|  | }; | 
|  |  | 
|  | static void s2_mmu_unmap_range(struct kvm_s2_mmu *mmu, | 
|  | const union tlbi_info *info) | 
|  | { | 
|  | /* | 
|  | * The unmap operation is allowed to drop the MMU lock and block, which | 
|  | * means that @mmu could be used for a different context than the one | 
|  | * currently being invalidated. | 
|  | * | 
|  | * This behavior is still safe, as: | 
|  | * | 
|  | *  1) The vCPU(s) that recycled the MMU are responsible for invalidating | 
|  | *     the entire MMU before reusing it, which still honors the intent | 
|  | *     of a TLBI. | 
|  | * | 
|  | *  2) Until the guest TLBI instruction is 'retired' (i.e. increment PC | 
|  | *     and ERET to the guest), other vCPUs are allowed to use stale | 
|  | *     translations. | 
|  | * | 
|  | *  3) Accidentally unmapping an unrelated MMU context is nonfatal, and | 
|  | *     at worst may cause more aborts for shadow stage-2 fills. | 
|  | * | 
|  | * Dropping the MMU lock also implies that shadow stage-2 fills could | 
|  | * happen behind the back of the TLBI. This is still safe, though, as | 
|  | * the L1 needs to put its stage-2 in a consistent state before doing | 
|  | * the TLBI. | 
|  | */ | 
|  | kvm_stage2_unmap_range(mmu, info->range.start, info->range.size, true); | 
|  | } | 
|  |  | 
|  | static bool handle_vmalls12e1is(struct kvm_vcpu *vcpu, struct sys_reg_params *p, | 
|  | const struct sys_reg_desc *r) | 
|  | { | 
|  | u32 sys_encoding = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2); | 
|  | u64 limit, vttbr; | 
|  |  | 
|  | if (!kvm_supported_tlbi_s12_op(vcpu, sys_encoding)) | 
|  | return undef_access(vcpu, p, r); | 
|  |  | 
|  | vttbr = vcpu_read_sys_reg(vcpu, VTTBR_EL2); | 
|  | limit = BIT_ULL(kvm_get_pa_bits(vcpu->kvm)); | 
|  |  | 
|  | kvm_s2_mmu_iterate_by_vmid(vcpu->kvm, get_vmid(vttbr), | 
|  | &(union tlbi_info) { | 
|  | .range = { | 
|  | .start = 0, | 
|  | .size = limit, | 
|  | }, | 
|  | }, | 
|  | s2_mmu_unmap_range); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool handle_ripas2e1is(struct kvm_vcpu *vcpu, struct sys_reg_params *p, | 
|  | const struct sys_reg_desc *r) | 
|  | { | 
|  | u32 sys_encoding = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2); | 
|  | u64 vttbr = vcpu_read_sys_reg(vcpu, VTTBR_EL2); | 
|  | u64 base, range, tg, num, scale; | 
|  | int shift; | 
|  |  | 
|  | if (!kvm_supported_tlbi_ipas2_op(vcpu, sys_encoding)) | 
|  | return undef_access(vcpu, p, r); | 
|  |  | 
|  | /* | 
|  | * Because the shadow S2 structure doesn't necessarily reflect that | 
|  | * of the guest's S2 (different base granule size, for example), we | 
|  | * decide to ignore TTL and only use the described range. | 
|  | */ | 
|  | tg	= FIELD_GET(GENMASK(47, 46), p->regval); | 
|  | scale	= FIELD_GET(GENMASK(45, 44), p->regval); | 
|  | num	= FIELD_GET(GENMASK(43, 39), p->regval); | 
|  | base	= p->regval & GENMASK(36, 0); | 
|  |  | 
|  | switch(tg) { | 
|  | case 1: | 
|  | shift = 12; | 
|  | break; | 
|  | case 2: | 
|  | shift = 14; | 
|  | break; | 
|  | case 3: | 
|  | default:		/* IMPDEF: handle tg==0 as 64k */ | 
|  | shift = 16; | 
|  | break; | 
|  | } | 
|  |  | 
|  | base <<= shift; | 
|  | range = __TLBI_RANGE_PAGES(num, scale) << shift; | 
|  |  | 
|  | kvm_s2_mmu_iterate_by_vmid(vcpu->kvm, get_vmid(vttbr), | 
|  | &(union tlbi_info) { | 
|  | .range = { | 
|  | .start = base, | 
|  | .size = range, | 
|  | }, | 
|  | }, | 
|  | s2_mmu_unmap_range); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void s2_mmu_unmap_ipa(struct kvm_s2_mmu *mmu, | 
|  | const union tlbi_info *info) | 
|  | { | 
|  | unsigned long max_size; | 
|  | u64 base_addr; | 
|  |  | 
|  | /* | 
|  | * We drop a number of things from the supplied value: | 
|  | * | 
|  | * - NS bit: we're non-secure only. | 
|  | * | 
|  | * - IPA[51:48]: We don't support 52bit IPA just yet... | 
|  | * | 
|  | * And of course, adjust the IPA to be on an actual address. | 
|  | */ | 
|  | base_addr = (info->ipa.addr & GENMASK_ULL(35, 0)) << 12; | 
|  | max_size = compute_tlb_inval_range(mmu, info->ipa.addr); | 
|  | base_addr &= ~(max_size - 1); | 
|  |  | 
|  | /* | 
|  | * See comment in s2_mmu_unmap_range() for why this is allowed to | 
|  | * reschedule. | 
|  | */ | 
|  | kvm_stage2_unmap_range(mmu, base_addr, max_size, true); | 
|  | } | 
|  |  | 
|  | static bool handle_ipas2e1is(struct kvm_vcpu *vcpu, struct sys_reg_params *p, | 
|  | const struct sys_reg_desc *r) | 
|  | { | 
|  | u32 sys_encoding = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2); | 
|  | u64 vttbr = vcpu_read_sys_reg(vcpu, VTTBR_EL2); | 
|  |  | 
|  | if (!kvm_supported_tlbi_ipas2_op(vcpu, sys_encoding)) | 
|  | return undef_access(vcpu, p, r); | 
|  |  | 
|  | kvm_s2_mmu_iterate_by_vmid(vcpu->kvm, get_vmid(vttbr), | 
|  | &(union tlbi_info) { | 
|  | .ipa = { | 
|  | .addr = p->regval, | 
|  | }, | 
|  | }, | 
|  | s2_mmu_unmap_ipa); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void s2_mmu_tlbi_s1e1(struct kvm_s2_mmu *mmu, | 
|  | const union tlbi_info *info) | 
|  | { | 
|  | WARN_ON(__kvm_tlbi_s1e2(mmu, info->va.addr, info->va.encoding)); | 
|  | } | 
|  |  | 
|  | static bool handle_tlbi_el1(struct kvm_vcpu *vcpu, struct sys_reg_params *p, | 
|  | const struct sys_reg_desc *r) | 
|  | { | 
|  | u32 sys_encoding = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2); | 
|  | u64 vttbr = vcpu_read_sys_reg(vcpu, VTTBR_EL2); | 
|  |  | 
|  | /* | 
|  | * If we're here, this is because we've trapped on a EL1 TLBI | 
|  | * instruction that affects the EL1 translation regime while | 
|  | * we're running in a context that doesn't allow us to let the | 
|  | * HW do its thing (aka vEL2): | 
|  | * | 
|  | * - HCR_EL2.E2H == 0 : a non-VHE guest | 
|  | * - HCR_EL2.{E2H,TGE} == { 1, 0 } : a VHE guest in guest mode | 
|  | * | 
|  | * We don't expect these helpers to ever be called when running | 
|  | * in a vEL1 context. | 
|  | */ | 
|  |  | 
|  | WARN_ON(!vcpu_is_el2(vcpu)); | 
|  |  | 
|  | if (!kvm_supported_tlbi_s1e1_op(vcpu, sys_encoding)) | 
|  | return undef_access(vcpu, p, r); | 
|  |  | 
|  | kvm_s2_mmu_iterate_by_vmid(vcpu->kvm, get_vmid(vttbr), | 
|  | &(union tlbi_info) { | 
|  | .va = { | 
|  | .addr = p->regval, | 
|  | .encoding = sys_encoding, | 
|  | }, | 
|  | }, | 
|  | s2_mmu_tlbi_s1e1); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | #define SYS_INSN(insn, access_fn)					\ | 
|  | {								\ | 
|  | SYS_DESC(OP_##insn),					\ | 
|  | .access = (access_fn),					\ | 
|  | } | 
|  |  | 
|  | static struct sys_reg_desc sys_insn_descs[] = { | 
|  | { SYS_DESC(SYS_DC_ISW), access_dcsw }, | 
|  | { SYS_DESC(SYS_DC_IGSW), access_dcgsw }, | 
|  | { SYS_DESC(SYS_DC_IGDSW), access_dcgsw }, | 
|  |  | 
|  | SYS_INSN(AT_S1E1R, handle_at_s1e01), | 
|  | SYS_INSN(AT_S1E1W, handle_at_s1e01), | 
|  | SYS_INSN(AT_S1E0R, handle_at_s1e01), | 
|  | SYS_INSN(AT_S1E0W, handle_at_s1e01), | 
|  | SYS_INSN(AT_S1E1RP, handle_at_s1e01), | 
|  | SYS_INSN(AT_S1E1WP, handle_at_s1e01), | 
|  |  | 
|  | { SYS_DESC(SYS_DC_CSW), access_dcsw }, | 
|  | { SYS_DESC(SYS_DC_CGSW), access_dcgsw }, | 
|  | { SYS_DESC(SYS_DC_CGDSW), access_dcgsw }, | 
|  | { SYS_DESC(SYS_DC_CISW), access_dcsw }, | 
|  | { SYS_DESC(SYS_DC_CIGSW), access_dcgsw }, | 
|  | { SYS_DESC(SYS_DC_CIGDSW), access_dcgsw }, | 
|  |  | 
|  | SYS_INSN(TLBI_VMALLE1OS, handle_tlbi_el1), | 
|  | SYS_INSN(TLBI_VAE1OS, handle_tlbi_el1), | 
|  | SYS_INSN(TLBI_ASIDE1OS, handle_tlbi_el1), | 
|  | SYS_INSN(TLBI_VAAE1OS, handle_tlbi_el1), | 
|  | SYS_INSN(TLBI_VALE1OS, handle_tlbi_el1), | 
|  | SYS_INSN(TLBI_VAALE1OS, handle_tlbi_el1), | 
|  |  | 
|  | SYS_INSN(TLBI_RVAE1IS, handle_tlbi_el1), | 
|  | SYS_INSN(TLBI_RVAAE1IS, handle_tlbi_el1), | 
|  | SYS_INSN(TLBI_RVALE1IS, handle_tlbi_el1), | 
|  | SYS_INSN(TLBI_RVAALE1IS, handle_tlbi_el1), | 
|  |  | 
|  | SYS_INSN(TLBI_VMALLE1IS, handle_tlbi_el1), | 
|  | SYS_INSN(TLBI_VAE1IS, handle_tlbi_el1), | 
|  | SYS_INSN(TLBI_ASIDE1IS, handle_tlbi_el1), | 
|  | SYS_INSN(TLBI_VAAE1IS, handle_tlbi_el1), | 
|  | SYS_INSN(TLBI_VALE1IS, handle_tlbi_el1), | 
|  | SYS_INSN(TLBI_VAALE1IS, handle_tlbi_el1), | 
|  |  | 
|  | SYS_INSN(TLBI_RVAE1OS, handle_tlbi_el1), | 
|  | SYS_INSN(TLBI_RVAAE1OS, handle_tlbi_el1), | 
|  | SYS_INSN(TLBI_RVALE1OS, handle_tlbi_el1), | 
|  | SYS_INSN(TLBI_RVAALE1OS, handle_tlbi_el1), | 
|  |  | 
|  | SYS_INSN(TLBI_RVAE1, handle_tlbi_el1), | 
|  | SYS_INSN(TLBI_RVAAE1, handle_tlbi_el1), | 
|  | SYS_INSN(TLBI_RVALE1, handle_tlbi_el1), | 
|  | SYS_INSN(TLBI_RVAALE1, handle_tlbi_el1), | 
|  |  | 
|  | SYS_INSN(TLBI_VMALLE1, handle_tlbi_el1), | 
|  | SYS_INSN(TLBI_VAE1, handle_tlbi_el1), | 
|  | SYS_INSN(TLBI_ASIDE1, handle_tlbi_el1), | 
|  | SYS_INSN(TLBI_VAAE1, handle_tlbi_el1), | 
|  | SYS_INSN(TLBI_VALE1, handle_tlbi_el1), | 
|  | SYS_INSN(TLBI_VAALE1, handle_tlbi_el1), | 
|  |  | 
|  | SYS_INSN(TLBI_VMALLE1OSNXS, handle_tlbi_el1), | 
|  | SYS_INSN(TLBI_VAE1OSNXS, handle_tlbi_el1), | 
|  | SYS_INSN(TLBI_ASIDE1OSNXS, handle_tlbi_el1), | 
|  | SYS_INSN(TLBI_VAAE1OSNXS, handle_tlbi_el1), | 
|  | SYS_INSN(TLBI_VALE1OSNXS, handle_tlbi_el1), | 
|  | SYS_INSN(TLBI_VAALE1OSNXS, handle_tlbi_el1), | 
|  |  | 
|  | SYS_INSN(TLBI_RVAE1ISNXS, handle_tlbi_el1), | 
|  | SYS_INSN(TLBI_RVAAE1ISNXS, handle_tlbi_el1), | 
|  | SYS_INSN(TLBI_RVALE1ISNXS, handle_tlbi_el1), | 
|  | SYS_INSN(TLBI_RVAALE1ISNXS, handle_tlbi_el1), | 
|  |  | 
|  | SYS_INSN(TLBI_VMALLE1ISNXS, handle_tlbi_el1), | 
|  | SYS_INSN(TLBI_VAE1ISNXS, handle_tlbi_el1), | 
|  | SYS_INSN(TLBI_ASIDE1ISNXS, handle_tlbi_el1), | 
|  | SYS_INSN(TLBI_VAAE1ISNXS, handle_tlbi_el1), | 
|  | SYS_INSN(TLBI_VALE1ISNXS, handle_tlbi_el1), | 
|  | SYS_INSN(TLBI_VAALE1ISNXS, handle_tlbi_el1), | 
|  |  | 
|  | SYS_INSN(TLBI_RVAE1OSNXS, handle_tlbi_el1), | 
|  | SYS_INSN(TLBI_RVAAE1OSNXS, handle_tlbi_el1), | 
|  | SYS_INSN(TLBI_RVALE1OSNXS, handle_tlbi_el1), | 
|  | SYS_INSN(TLBI_RVAALE1OSNXS, handle_tlbi_el1), | 
|  |  | 
|  | SYS_INSN(TLBI_RVAE1NXS, handle_tlbi_el1), | 
|  | SYS_INSN(TLBI_RVAAE1NXS, handle_tlbi_el1), | 
|  | SYS_INSN(TLBI_RVALE1NXS, handle_tlbi_el1), | 
|  | SYS_INSN(TLBI_RVAALE1NXS, handle_tlbi_el1), | 
|  |  | 
|  | SYS_INSN(TLBI_VMALLE1NXS, handle_tlbi_el1), | 
|  | SYS_INSN(TLBI_VAE1NXS, handle_tlbi_el1), | 
|  | SYS_INSN(TLBI_ASIDE1NXS, handle_tlbi_el1), | 
|  | SYS_INSN(TLBI_VAAE1NXS, handle_tlbi_el1), | 
|  | SYS_INSN(TLBI_VALE1NXS, handle_tlbi_el1), | 
|  | SYS_INSN(TLBI_VAALE1NXS, handle_tlbi_el1), | 
|  |  | 
|  | SYS_INSN(AT_S1E2R, handle_at_s1e2), | 
|  | SYS_INSN(AT_S1E2W, handle_at_s1e2), | 
|  | SYS_INSN(AT_S12E1R, handle_at_s12), | 
|  | SYS_INSN(AT_S12E1W, handle_at_s12), | 
|  | SYS_INSN(AT_S12E0R, handle_at_s12), | 
|  | SYS_INSN(AT_S12E0W, handle_at_s12), | 
|  | SYS_INSN(AT_S1E2A, handle_at_s1e2), | 
|  |  | 
|  | SYS_INSN(TLBI_IPAS2E1IS, handle_ipas2e1is), | 
|  | SYS_INSN(TLBI_RIPAS2E1IS, handle_ripas2e1is), | 
|  | SYS_INSN(TLBI_IPAS2LE1IS, handle_ipas2e1is), | 
|  | SYS_INSN(TLBI_RIPAS2LE1IS, handle_ripas2e1is), | 
|  |  | 
|  | SYS_INSN(TLBI_ALLE2OS, undef_access), | 
|  | SYS_INSN(TLBI_VAE2OS, undef_access), | 
|  | SYS_INSN(TLBI_ALLE1OS, handle_alle1is), | 
|  | SYS_INSN(TLBI_VALE2OS, undef_access), | 
|  | SYS_INSN(TLBI_VMALLS12E1OS, handle_vmalls12e1is), | 
|  |  | 
|  | SYS_INSN(TLBI_RVAE2IS, undef_access), | 
|  | SYS_INSN(TLBI_RVALE2IS, undef_access), | 
|  |  | 
|  | SYS_INSN(TLBI_ALLE1IS, handle_alle1is), | 
|  | SYS_INSN(TLBI_VMALLS12E1IS, handle_vmalls12e1is), | 
|  | SYS_INSN(TLBI_IPAS2E1OS, handle_ipas2e1is), | 
|  | SYS_INSN(TLBI_IPAS2E1, handle_ipas2e1is), | 
|  | SYS_INSN(TLBI_RIPAS2E1, handle_ripas2e1is), | 
|  | SYS_INSN(TLBI_RIPAS2E1OS, handle_ripas2e1is), | 
|  | SYS_INSN(TLBI_IPAS2LE1OS, handle_ipas2e1is), | 
|  | SYS_INSN(TLBI_IPAS2LE1, handle_ipas2e1is), | 
|  | SYS_INSN(TLBI_RIPAS2LE1, handle_ripas2e1is), | 
|  | SYS_INSN(TLBI_RIPAS2LE1OS, handle_ripas2e1is), | 
|  | SYS_INSN(TLBI_RVAE2OS, undef_access), | 
|  | SYS_INSN(TLBI_RVALE2OS, undef_access), | 
|  | SYS_INSN(TLBI_RVAE2, undef_access), | 
|  | SYS_INSN(TLBI_RVALE2, undef_access), | 
|  | SYS_INSN(TLBI_ALLE1, handle_alle1is), | 
|  | SYS_INSN(TLBI_VMALLS12E1, handle_vmalls12e1is), | 
|  |  | 
|  | SYS_INSN(TLBI_IPAS2E1ISNXS, handle_ipas2e1is), | 
|  | SYS_INSN(TLBI_RIPAS2E1ISNXS, handle_ripas2e1is), | 
|  | SYS_INSN(TLBI_IPAS2LE1ISNXS, handle_ipas2e1is), | 
|  | SYS_INSN(TLBI_RIPAS2LE1ISNXS, handle_ripas2e1is), | 
|  |  | 
|  | SYS_INSN(TLBI_ALLE2OSNXS, undef_access), | 
|  | SYS_INSN(TLBI_VAE2OSNXS, undef_access), | 
|  | SYS_INSN(TLBI_ALLE1OSNXS, handle_alle1is), | 
|  | SYS_INSN(TLBI_VALE2OSNXS, undef_access), | 
|  | SYS_INSN(TLBI_VMALLS12E1OSNXS, handle_vmalls12e1is), | 
|  |  | 
|  | SYS_INSN(TLBI_RVAE2ISNXS, undef_access), | 
|  | SYS_INSN(TLBI_RVALE2ISNXS, undef_access), | 
|  | SYS_INSN(TLBI_ALLE2ISNXS, undef_access), | 
|  | SYS_INSN(TLBI_VAE2ISNXS, undef_access), | 
|  |  | 
|  | SYS_INSN(TLBI_ALLE1ISNXS, handle_alle1is), | 
|  | SYS_INSN(TLBI_VALE2ISNXS, undef_access), | 
|  | SYS_INSN(TLBI_VMALLS12E1ISNXS, handle_vmalls12e1is), | 
|  | SYS_INSN(TLBI_IPAS2E1OSNXS, handle_ipas2e1is), | 
|  | SYS_INSN(TLBI_IPAS2E1NXS, handle_ipas2e1is), | 
|  | SYS_INSN(TLBI_RIPAS2E1NXS, handle_ripas2e1is), | 
|  | SYS_INSN(TLBI_RIPAS2E1OSNXS, handle_ripas2e1is), | 
|  | SYS_INSN(TLBI_IPAS2LE1OSNXS, handle_ipas2e1is), | 
|  | SYS_INSN(TLBI_IPAS2LE1NXS, handle_ipas2e1is), | 
|  | SYS_INSN(TLBI_RIPAS2LE1NXS, handle_ripas2e1is), | 
|  | SYS_INSN(TLBI_RIPAS2LE1OSNXS, handle_ripas2e1is), | 
|  | SYS_INSN(TLBI_RVAE2OSNXS, undef_access), | 
|  | SYS_INSN(TLBI_RVALE2OSNXS, undef_access), | 
|  | SYS_INSN(TLBI_RVAE2NXS, undef_access), | 
|  | SYS_INSN(TLBI_RVALE2NXS, undef_access), | 
|  | SYS_INSN(TLBI_ALLE2NXS, undef_access), | 
|  | SYS_INSN(TLBI_VAE2NXS, undef_access), | 
|  | SYS_INSN(TLBI_ALLE1NXS, handle_alle1is), | 
|  | SYS_INSN(TLBI_VALE2NXS, undef_access), | 
|  | SYS_INSN(TLBI_VMALLS12E1NXS, handle_vmalls12e1is), | 
|  | }; | 
|  |  | 
|  | static bool trap_dbgdidr(struct kvm_vcpu *vcpu, | 
|  | struct sys_reg_params *p, | 
|  | const struct sys_reg_desc *r) | 
|  | { | 
|  | if (p->is_write) { | 
|  | return ignore_write(vcpu, p); | 
|  | } else { | 
|  | u64 dfr = kvm_read_vm_id_reg(vcpu->kvm, SYS_ID_AA64DFR0_EL1); | 
|  | u32 el3 = kvm_has_feat(vcpu->kvm, ID_AA64PFR0_EL1, EL3, IMP); | 
|  |  | 
|  | p->regval = ((SYS_FIELD_GET(ID_AA64DFR0_EL1, WRPs, dfr) << 28) | | 
|  | (SYS_FIELD_GET(ID_AA64DFR0_EL1, BRPs, dfr) << 24) | | 
|  | (SYS_FIELD_GET(ID_AA64DFR0_EL1, CTX_CMPs, dfr) << 20) | | 
|  | (SYS_FIELD_GET(ID_AA64DFR0_EL1, DebugVer, dfr) << 16) | | 
|  | (1 << 15) | (el3 << 14) | (el3 << 12)); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * AArch32 debug register mappings | 
|  | * | 
|  | * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0] | 
|  | * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32] | 
|  | * | 
|  | * None of the other registers share their location, so treat them as | 
|  | * if they were 64bit. | 
|  | */ | 
|  | #define DBG_BCR_BVR_WCR_WVR(n)						      \ | 
|  | /* DBGBVRn */							      \ | 
|  | { AA32(LO), Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n }, \ | 
|  | /* DBGBCRn */							      \ | 
|  | { Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n },	      \ | 
|  | /* DBGWVRn */							      \ | 
|  | { Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n },	      \ | 
|  | /* DBGWCRn */							      \ | 
|  | { Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n } | 
|  |  | 
|  | #define DBGBXVR(n)							      \ | 
|  | { AA32(HI), Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_bvr, NULL, n } | 
|  |  | 
|  | /* | 
|  | * Trapped cp14 registers. We generally ignore most of the external | 
|  | * debug, on the principle that they don't really make sense to a | 
|  | * guest. Revisit this one day, would this principle change. | 
|  | */ | 
|  | static const struct sys_reg_desc cp14_regs[] = { | 
|  | /* DBGDIDR */ | 
|  | { Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgdidr }, | 
|  | /* DBGDTRRXext */ | 
|  | { Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi }, | 
|  |  | 
|  | DBG_BCR_BVR_WCR_WVR(0), | 
|  | /* DBGDSCRint */ | 
|  | { Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi }, | 
|  | DBG_BCR_BVR_WCR_WVR(1), | 
|  | /* DBGDCCINT */ | 
|  | { Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug_regs, NULL, MDCCINT_EL1 }, | 
|  | /* DBGDSCRext */ | 
|  | { Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug_regs, NULL, MDSCR_EL1 }, | 
|  | DBG_BCR_BVR_WCR_WVR(2), | 
|  | /* DBGDTR[RT]Xint */ | 
|  | { Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi }, | 
|  | /* DBGDTR[RT]Xext */ | 
|  | { Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi }, | 
|  | DBG_BCR_BVR_WCR_WVR(3), | 
|  | DBG_BCR_BVR_WCR_WVR(4), | 
|  | DBG_BCR_BVR_WCR_WVR(5), | 
|  | /* DBGWFAR */ | 
|  | { Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi }, | 
|  | /* DBGOSECCR */ | 
|  | { Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi }, | 
|  | DBG_BCR_BVR_WCR_WVR(6), | 
|  | /* DBGVCR */ | 
|  | { Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug_regs, NULL, DBGVCR32_EL2 }, | 
|  | DBG_BCR_BVR_WCR_WVR(7), | 
|  | DBG_BCR_BVR_WCR_WVR(8), | 
|  | DBG_BCR_BVR_WCR_WVR(9), | 
|  | DBG_BCR_BVR_WCR_WVR(10), | 
|  | DBG_BCR_BVR_WCR_WVR(11), | 
|  | DBG_BCR_BVR_WCR_WVR(12), | 
|  | DBG_BCR_BVR_WCR_WVR(13), | 
|  | DBG_BCR_BVR_WCR_WVR(14), | 
|  | DBG_BCR_BVR_WCR_WVR(15), | 
|  |  | 
|  | /* DBGDRAR (32bit) */ | 
|  | { Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi }, | 
|  |  | 
|  | DBGBXVR(0), | 
|  | /* DBGOSLAR */ | 
|  | { Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_oslar_el1 }, | 
|  | DBGBXVR(1), | 
|  | /* DBGOSLSR */ | 
|  | { Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1, NULL, OSLSR_EL1 }, | 
|  | DBGBXVR(2), | 
|  | DBGBXVR(3), | 
|  | /* DBGOSDLR */ | 
|  | { Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi }, | 
|  | DBGBXVR(4), | 
|  | /* DBGPRCR */ | 
|  | { Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi }, | 
|  | DBGBXVR(5), | 
|  | DBGBXVR(6), | 
|  | DBGBXVR(7), | 
|  | DBGBXVR(8), | 
|  | DBGBXVR(9), | 
|  | DBGBXVR(10), | 
|  | DBGBXVR(11), | 
|  | DBGBXVR(12), | 
|  | DBGBXVR(13), | 
|  | DBGBXVR(14), | 
|  | DBGBXVR(15), | 
|  |  | 
|  | /* DBGDSAR (32bit) */ | 
|  | { Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi }, | 
|  |  | 
|  | /* DBGDEVID2 */ | 
|  | { Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi }, | 
|  | /* DBGDEVID1 */ | 
|  | { Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi }, | 
|  | /* DBGDEVID */ | 
|  | { Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi }, | 
|  | /* DBGCLAIMSET */ | 
|  | { Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi }, | 
|  | /* DBGCLAIMCLR */ | 
|  | { Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi }, | 
|  | /* DBGAUTHSTATUS */ | 
|  | { Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 }, | 
|  | }; | 
|  |  | 
|  | /* Trapped cp14 64bit registers */ | 
|  | static const struct sys_reg_desc cp14_64_regs[] = { | 
|  | /* DBGDRAR (64bit) */ | 
|  | { Op1( 0), CRm( 1), .access = trap_raz_wi }, | 
|  |  | 
|  | /* DBGDSAR (64bit) */ | 
|  | { Op1( 0), CRm( 2), .access = trap_raz_wi }, | 
|  | }; | 
|  |  | 
|  | #define CP15_PMU_SYS_REG(_map, _Op1, _CRn, _CRm, _Op2)			\ | 
|  | AA32(_map),							\ | 
|  | Op1(_Op1), CRn(_CRn), CRm(_CRm), Op2(_Op2),			\ | 
|  | .visibility = pmu_visibility | 
|  |  | 
|  | /* Macro to expand the PMEVCNTRn register */ | 
|  | #define PMU_PMEVCNTR(n)							\ | 
|  | { CP15_PMU_SYS_REG(DIRECT, 0, 0b1110,				\ | 
|  | (0b1000 | (((n) >> 3) & 0x3)), ((n) & 0x7)),			\ | 
|  | .access = access_pmu_evcntr } | 
|  |  | 
|  | /* Macro to expand the PMEVTYPERn register */ | 
|  | #define PMU_PMEVTYPER(n)						\ | 
|  | { CP15_PMU_SYS_REG(DIRECT, 0, 0b1110,				\ | 
|  | (0b1100 | (((n) >> 3) & 0x3)), ((n) & 0x7)),			\ | 
|  | .access = access_pmu_evtyper } | 
|  | /* | 
|  | * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding, | 
|  | * depending on the way they are accessed (as a 32bit or a 64bit | 
|  | * register). | 
|  | */ | 
|  | static const struct sys_reg_desc cp15_regs[] = { | 
|  | { Op1( 0), CRn( 0), CRm( 0), Op2( 1), access_ctr }, | 
|  | { Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, SCTLR_EL1 }, | 
|  | /* ACTLR */ | 
|  | { AA32(LO), Op1( 0), CRn( 1), CRm( 0), Op2( 1), access_actlr, NULL, ACTLR_EL1 }, | 
|  | /* ACTLR2 */ | 
|  | { AA32(HI), Op1( 0), CRn( 1), CRm( 0), Op2( 3), access_actlr, NULL, ACTLR_EL1 }, | 
|  | { Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 }, | 
|  | { Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, TTBR1_EL1 }, | 
|  | /* TTBCR */ | 
|  | { AA32(LO), Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, TCR_EL1 }, | 
|  | /* TTBCR2 */ | 
|  | { AA32(HI), Op1( 0), CRn( 2), CRm( 0), Op2( 3), access_vm_reg, NULL, TCR_EL1 }, | 
|  | { Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, DACR32_EL2 }, | 
|  | { CP15_SYS_DESC(SYS_ICC_PMR_EL1), undef_access }, | 
|  | /* DFSR */ | 
|  | { Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, ESR_EL1 }, | 
|  | { Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, IFSR32_EL2 }, | 
|  | /* ADFSR */ | 
|  | { Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, AFSR0_EL1 }, | 
|  | /* AIFSR */ | 
|  | { Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, AFSR1_EL1 }, | 
|  | /* DFAR */ | 
|  | { AA32(LO), Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, FAR_EL1 }, | 
|  | /* IFAR */ | 
|  | { AA32(HI), Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, FAR_EL1 }, | 
|  |  | 
|  | /* | 
|  | * DC{C,I,CI}SW operations: | 
|  | */ | 
|  | { Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw }, | 
|  | { Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw }, | 
|  | { Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw }, | 
|  |  | 
|  | /* PMU */ | 
|  | { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 0), .access = access_pmcr }, | 
|  | { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 1), .access = access_pmcnten }, | 
|  | { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 2), .access = access_pmcnten }, | 
|  | { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 3), .access = access_pmovs }, | 
|  | { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 4), .access = access_pmswinc }, | 
|  | { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 5), .access = access_pmselr }, | 
|  | { CP15_PMU_SYS_REG(LO,     0, 9, 12, 6), .access = access_pmceid }, | 
|  | { CP15_PMU_SYS_REG(LO,     0, 9, 12, 7), .access = access_pmceid }, | 
|  | { CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 0), .access = access_pmu_evcntr }, | 
|  | { CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 1), .access = access_pmu_evtyper }, | 
|  | { CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 2), .access = access_pmu_evcntr }, | 
|  | { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 0), .access = access_pmuserenr }, | 
|  | { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 1), .access = access_pminten }, | 
|  | { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 2), .access = access_pminten }, | 
|  | { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 3), .access = access_pmovs }, | 
|  | { CP15_PMU_SYS_REG(HI,     0, 9, 14, 4), .access = access_pmceid }, | 
|  | { CP15_PMU_SYS_REG(HI,     0, 9, 14, 5), .access = access_pmceid }, | 
|  | /* PMMIR */ | 
|  | { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 6), .access = trap_raz_wi }, | 
|  |  | 
|  | /* PRRR/MAIR0 */ | 
|  | { AA32(LO), Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, MAIR_EL1 }, | 
|  | /* NMRR/MAIR1 */ | 
|  | { AA32(HI), Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, MAIR_EL1 }, | 
|  | /* AMAIR0 */ | 
|  | { AA32(LO), Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, AMAIR_EL1 }, | 
|  | /* AMAIR1 */ | 
|  | { AA32(HI), Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, AMAIR_EL1 }, | 
|  |  | 
|  | { CP15_SYS_DESC(SYS_ICC_IAR0_EL1), undef_access }, | 
|  | { CP15_SYS_DESC(SYS_ICC_EOIR0_EL1), undef_access }, | 
|  | { CP15_SYS_DESC(SYS_ICC_HPPIR0_EL1), undef_access }, | 
|  | { CP15_SYS_DESC(SYS_ICC_BPR0_EL1), undef_access }, | 
|  | { CP15_SYS_DESC(SYS_ICC_AP0R0_EL1), undef_access }, | 
|  | { CP15_SYS_DESC(SYS_ICC_AP0R1_EL1), undef_access }, | 
|  | { CP15_SYS_DESC(SYS_ICC_AP0R2_EL1), undef_access }, | 
|  | { CP15_SYS_DESC(SYS_ICC_AP0R3_EL1), undef_access }, | 
|  | { CP15_SYS_DESC(SYS_ICC_AP1R0_EL1), undef_access }, | 
|  | { CP15_SYS_DESC(SYS_ICC_AP1R1_EL1), undef_access }, | 
|  | { CP15_SYS_DESC(SYS_ICC_AP1R2_EL1), undef_access }, | 
|  | { CP15_SYS_DESC(SYS_ICC_AP1R3_EL1), undef_access }, | 
|  | { CP15_SYS_DESC(SYS_ICC_DIR_EL1), undef_access }, | 
|  | { CP15_SYS_DESC(SYS_ICC_RPR_EL1), undef_access }, | 
|  | { CP15_SYS_DESC(SYS_ICC_IAR1_EL1), undef_access }, | 
|  | { CP15_SYS_DESC(SYS_ICC_EOIR1_EL1), undef_access }, | 
|  | { CP15_SYS_DESC(SYS_ICC_HPPIR1_EL1), undef_access }, | 
|  | { CP15_SYS_DESC(SYS_ICC_BPR1_EL1), undef_access }, | 
|  | { CP15_SYS_DESC(SYS_ICC_CTLR_EL1), undef_access }, | 
|  | { CP15_SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre }, | 
|  | { CP15_SYS_DESC(SYS_ICC_IGRPEN0_EL1), undef_access }, | 
|  | { CP15_SYS_DESC(SYS_ICC_IGRPEN1_EL1), undef_access }, | 
|  |  | 
|  | { Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, CONTEXTIDR_EL1 }, | 
|  |  | 
|  | /* Arch Tmers */ | 
|  | { SYS_DESC(SYS_AARCH32_CNTP_TVAL), access_arch_timer }, | 
|  | { SYS_DESC(SYS_AARCH32_CNTP_CTL), access_arch_timer }, | 
|  |  | 
|  | /* PMEVCNTRn */ | 
|  | PMU_PMEVCNTR(0), | 
|  | PMU_PMEVCNTR(1), | 
|  | PMU_PMEVCNTR(2), | 
|  | PMU_PMEVCNTR(3), | 
|  | PMU_PMEVCNTR(4), | 
|  | PMU_PMEVCNTR(5), | 
|  | PMU_PMEVCNTR(6), | 
|  | PMU_PMEVCNTR(7), | 
|  | PMU_PMEVCNTR(8), | 
|  | PMU_PMEVCNTR(9), | 
|  | PMU_PMEVCNTR(10), | 
|  | PMU_PMEVCNTR(11), | 
|  | PMU_PMEVCNTR(12), | 
|  | PMU_PMEVCNTR(13), | 
|  | PMU_PMEVCNTR(14), | 
|  | PMU_PMEVCNTR(15), | 
|  | PMU_PMEVCNTR(16), | 
|  | PMU_PMEVCNTR(17), | 
|  | PMU_PMEVCNTR(18), | 
|  | PMU_PMEVCNTR(19), | 
|  | PMU_PMEVCNTR(20), | 
|  | PMU_PMEVCNTR(21), | 
|  | PMU_PMEVCNTR(22), | 
|  | PMU_PMEVCNTR(23), | 
|  | PMU_PMEVCNTR(24), | 
|  | PMU_PMEVCNTR(25), | 
|  | PMU_PMEVCNTR(26), | 
|  | PMU_PMEVCNTR(27), | 
|  | PMU_PMEVCNTR(28), | 
|  | PMU_PMEVCNTR(29), | 
|  | PMU_PMEVCNTR(30), | 
|  | /* PMEVTYPERn */ | 
|  | PMU_PMEVTYPER(0), | 
|  | PMU_PMEVTYPER(1), | 
|  | PMU_PMEVTYPER(2), | 
|  | PMU_PMEVTYPER(3), | 
|  | PMU_PMEVTYPER(4), | 
|  | PMU_PMEVTYPER(5), | 
|  | PMU_PMEVTYPER(6), | 
|  | PMU_PMEVTYPER(7), | 
|  | PMU_PMEVTYPER(8), | 
|  | PMU_PMEVTYPER(9), | 
|  | PMU_PMEVTYPER(10), | 
|  | PMU_PMEVTYPER(11), | 
|  | PMU_PMEVTYPER(12), | 
|  | PMU_PMEVTYPER(13), | 
|  | PMU_PMEVTYPER(14), | 
|  | PMU_PMEVTYPER(15), | 
|  | PMU_PMEVTYPER(16), | 
|  | PMU_PMEVTYPER(17), | 
|  | PMU_PMEVTYPER(18), | 
|  | PMU_PMEVTYPER(19), | 
|  | PMU_PMEVTYPER(20), | 
|  | PMU_PMEVTYPER(21), | 
|  | PMU_PMEVTYPER(22), | 
|  | PMU_PMEVTYPER(23), | 
|  | PMU_PMEVTYPER(24), | 
|  | PMU_PMEVTYPER(25), | 
|  | PMU_PMEVTYPER(26), | 
|  | PMU_PMEVTYPER(27), | 
|  | PMU_PMEVTYPER(28), | 
|  | PMU_PMEVTYPER(29), | 
|  | PMU_PMEVTYPER(30), | 
|  | /* PMCCFILTR */ | 
|  | { CP15_PMU_SYS_REG(DIRECT, 0, 14, 15, 7), .access = access_pmu_evtyper }, | 
|  |  | 
|  | { Op1(1), CRn( 0), CRm( 0), Op2(0), access_ccsidr }, | 
|  | { Op1(1), CRn( 0), CRm( 0), Op2(1), access_clidr }, | 
|  |  | 
|  | /* CCSIDR2 */ | 
|  | { Op1(1), CRn( 0), CRm( 0),  Op2(2), undef_access }, | 
|  |  | 
|  | { Op1(2), CRn( 0), CRm( 0), Op2(0), access_csselr, NULL, CSSELR_EL1 }, | 
|  | }; | 
|  |  | 
|  | static const struct sys_reg_desc cp15_64_regs[] = { | 
|  | { Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 }, | 
|  | { CP15_PMU_SYS_REG(DIRECT, 0, 0, 9, 0), .access = access_pmu_evcntr }, | 
|  | { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI1R */ | 
|  | { SYS_DESC(SYS_AARCH32_CNTPCT),	      access_arch_timer }, | 
|  | { Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR1_EL1 }, | 
|  | { Op1( 1), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_ASGI1R */ | 
|  | { Op1( 2), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI0R */ | 
|  | { SYS_DESC(SYS_AARCH32_CNTP_CVAL),    access_arch_timer }, | 
|  | { SYS_DESC(SYS_AARCH32_CNTPCTSS),     access_arch_timer }, | 
|  | }; | 
|  |  | 
|  | static bool check_sysreg_table(const struct sys_reg_desc *table, unsigned int n, | 
|  | bool is_32) | 
|  | { | 
|  | unsigned int i; | 
|  |  | 
|  | for (i = 0; i < n; i++) { | 
|  | if (!is_32 && table[i].reg && !table[i].reset) { | 
|  | kvm_err("sys_reg table %pS entry %d (%s) lacks reset\n", | 
|  | &table[i], i, table[i].name); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (i && cmp_sys_reg(&table[i-1], &table[i]) >= 0) { | 
|  | kvm_err("sys_reg table %pS entry %d (%s -> %s) out of order\n", | 
|  | &table[i], i, table[i - 1].name, table[i].name); | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | kvm_inject_undefined(vcpu); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static void perform_access(struct kvm_vcpu *vcpu, | 
|  | struct sys_reg_params *params, | 
|  | const struct sys_reg_desc *r) | 
|  | { | 
|  | trace_kvm_sys_access(*vcpu_pc(vcpu), params, r); | 
|  |  | 
|  | /* Check for regs disabled by runtime config */ | 
|  | if (sysreg_hidden(vcpu, r)) { | 
|  | kvm_inject_undefined(vcpu); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Not having an accessor means that we have configured a trap | 
|  | * that we don't know how to handle. This certainly qualifies | 
|  | * as a gross bug that should be fixed right away. | 
|  | */ | 
|  | BUG_ON(!r->access); | 
|  |  | 
|  | /* Skip instruction if instructed so */ | 
|  | if (likely(r->access(vcpu, params, r))) | 
|  | kvm_incr_pc(vcpu); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * emulate_cp --  tries to match a sys_reg access in a handling table, and | 
|  | *                call the corresponding trap handler. | 
|  | * | 
|  | * @params: pointer to the descriptor of the access | 
|  | * @table: array of trap descriptors | 
|  | * @num: size of the trap descriptor array | 
|  | * | 
|  | * Return true if the access has been handled, false if not. | 
|  | */ | 
|  | static bool emulate_cp(struct kvm_vcpu *vcpu, | 
|  | struct sys_reg_params *params, | 
|  | const struct sys_reg_desc *table, | 
|  | size_t num) | 
|  | { | 
|  | const struct sys_reg_desc *r; | 
|  |  | 
|  | if (!table) | 
|  | return false;	/* Not handled */ | 
|  |  | 
|  | r = find_reg(params, table, num); | 
|  |  | 
|  | if (r) { | 
|  | perform_access(vcpu, params, r); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Not handled */ | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static void unhandled_cp_access(struct kvm_vcpu *vcpu, | 
|  | struct sys_reg_params *params) | 
|  | { | 
|  | u8 esr_ec = kvm_vcpu_trap_get_class(vcpu); | 
|  | int cp = -1; | 
|  |  | 
|  | switch (esr_ec) { | 
|  | case ESR_ELx_EC_CP15_32: | 
|  | case ESR_ELx_EC_CP15_64: | 
|  | cp = 15; | 
|  | break; | 
|  | case ESR_ELx_EC_CP14_MR: | 
|  | case ESR_ELx_EC_CP14_64: | 
|  | cp = 14; | 
|  | break; | 
|  | default: | 
|  | WARN_ON(1); | 
|  | } | 
|  |  | 
|  | print_sys_reg_msg(params, | 
|  | "Unsupported guest CP%d access at: %08lx [%08lx]\n", | 
|  | cp, *vcpu_pc(vcpu), *vcpu_cpsr(vcpu)); | 
|  | kvm_inject_undefined(vcpu); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access | 
|  | * @vcpu: The VCPU pointer | 
|  | * @global: &struct sys_reg_desc | 
|  | * @nr_global: size of the @global array | 
|  | */ | 
|  | static int kvm_handle_cp_64(struct kvm_vcpu *vcpu, | 
|  | const struct sys_reg_desc *global, | 
|  | size_t nr_global) | 
|  | { | 
|  | struct sys_reg_params params; | 
|  | u64 esr = kvm_vcpu_get_esr(vcpu); | 
|  | int Rt = kvm_vcpu_sys_get_rt(vcpu); | 
|  | int Rt2 = (esr >> 10) & 0x1f; | 
|  |  | 
|  | params.CRm = (esr >> 1) & 0xf; | 
|  | params.is_write = ((esr & 1) == 0); | 
|  |  | 
|  | params.Op0 = 0; | 
|  | params.Op1 = (esr >> 16) & 0xf; | 
|  | params.Op2 = 0; | 
|  | params.CRn = 0; | 
|  |  | 
|  | /* | 
|  | * Make a 64-bit value out of Rt and Rt2. As we use the same trap | 
|  | * backends between AArch32 and AArch64, we get away with it. | 
|  | */ | 
|  | if (params.is_write) { | 
|  | params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff; | 
|  | params.regval |= vcpu_get_reg(vcpu, Rt2) << 32; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If the table contains a handler, handle the | 
|  | * potential register operation in the case of a read and return | 
|  | * with success. | 
|  | */ | 
|  | if (emulate_cp(vcpu, ¶ms, global, nr_global)) { | 
|  | /* Split up the value between registers for the read side */ | 
|  | if (!params.is_write) { | 
|  | vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval)); | 
|  | vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval)); | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | unhandled_cp_access(vcpu, ¶ms); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static bool emulate_sys_reg(struct kvm_vcpu *vcpu, struct sys_reg_params *params); | 
|  |  | 
|  | /* | 
|  | * The CP10 ID registers are architecturally mapped to AArch64 feature | 
|  | * registers. Abuse that fact so we can rely on the AArch64 handler for accesses | 
|  | * from AArch32. | 
|  | */ | 
|  | static bool kvm_esr_cp10_id_to_sys64(u64 esr, struct sys_reg_params *params) | 
|  | { | 
|  | u8 reg_id = (esr >> 10) & 0xf; | 
|  | bool valid; | 
|  |  | 
|  | params->is_write = ((esr & 1) == 0); | 
|  | params->Op0 = 3; | 
|  | params->Op1 = 0; | 
|  | params->CRn = 0; | 
|  | params->CRm = 3; | 
|  |  | 
|  | /* CP10 ID registers are read-only */ | 
|  | valid = !params->is_write; | 
|  |  | 
|  | switch (reg_id) { | 
|  | /* MVFR0 */ | 
|  | case 0b0111: | 
|  | params->Op2 = 0; | 
|  | break; | 
|  | /* MVFR1 */ | 
|  | case 0b0110: | 
|  | params->Op2 = 1; | 
|  | break; | 
|  | /* MVFR2 */ | 
|  | case 0b0101: | 
|  | params->Op2 = 2; | 
|  | break; | 
|  | default: | 
|  | valid = false; | 
|  | } | 
|  |  | 
|  | if (valid) | 
|  | return true; | 
|  |  | 
|  | kvm_pr_unimpl("Unhandled cp10 register %s: %u\n", | 
|  | params->is_write ? "write" : "read", reg_id); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * kvm_handle_cp10_id() - Handles a VMRS trap on guest access to a 'Media and | 
|  | *			  VFP Register' from AArch32. | 
|  | * @vcpu: The vCPU pointer | 
|  | * | 
|  | * MVFR{0-2} are architecturally mapped to the AArch64 MVFR{0-2}_EL1 registers. | 
|  | * Work out the correct AArch64 system register encoding and reroute to the | 
|  | * AArch64 system register emulation. | 
|  | */ | 
|  | int kvm_handle_cp10_id(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | int Rt = kvm_vcpu_sys_get_rt(vcpu); | 
|  | u64 esr = kvm_vcpu_get_esr(vcpu); | 
|  | struct sys_reg_params params; | 
|  |  | 
|  | /* UNDEF on any unhandled register access */ | 
|  | if (!kvm_esr_cp10_id_to_sys64(esr, ¶ms)) { | 
|  | kvm_inject_undefined(vcpu); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | if (emulate_sys_reg(vcpu, ¶ms)) | 
|  | vcpu_set_reg(vcpu, Rt, params.regval); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * kvm_emulate_cp15_id_reg() - Handles an MRC trap on a guest CP15 access where | 
|  | *			       CRn=0, which corresponds to the AArch32 feature | 
|  | *			       registers. | 
|  | * @vcpu: the vCPU pointer | 
|  | * @params: the system register access parameters. | 
|  | * | 
|  | * Our cp15 system register tables do not enumerate the AArch32 feature | 
|  | * registers. Conveniently, our AArch64 table does, and the AArch32 system | 
|  | * register encoding can be trivially remapped into the AArch64 for the feature | 
|  | * registers: Append op0=3, leaving op1, CRn, CRm, and op2 the same. | 
|  | * | 
|  | * According to DDI0487G.b G7.3.1, paragraph "Behavior of VMSAv8-32 32-bit | 
|  | * System registers with (coproc=0b1111, CRn==c0)", read accesses from this | 
|  | * range are either UNKNOWN or RES0. Rerouting remains architectural as we | 
|  | * treat undefined registers in this range as RAZ. | 
|  | */ | 
|  | static int kvm_emulate_cp15_id_reg(struct kvm_vcpu *vcpu, | 
|  | struct sys_reg_params *params) | 
|  | { | 
|  | int Rt = kvm_vcpu_sys_get_rt(vcpu); | 
|  |  | 
|  | /* Treat impossible writes to RO registers as UNDEFINED */ | 
|  | if (params->is_write) { | 
|  | unhandled_cp_access(vcpu, params); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | params->Op0 = 3; | 
|  |  | 
|  | /* | 
|  | * All registers where CRm > 3 are known to be UNKNOWN/RAZ from AArch32. | 
|  | * Avoid conflicting with future expansion of AArch64 feature registers | 
|  | * and simply treat them as RAZ here. | 
|  | */ | 
|  | if (params->CRm > 3) | 
|  | params->regval = 0; | 
|  | else if (!emulate_sys_reg(vcpu, params)) | 
|  | return 1; | 
|  |  | 
|  | vcpu_set_reg(vcpu, Rt, params->regval); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access | 
|  | * @vcpu: The VCPU pointer | 
|  | * @params: &struct sys_reg_params | 
|  | * @global: &struct sys_reg_desc | 
|  | * @nr_global: size of the @global array | 
|  | */ | 
|  | static int kvm_handle_cp_32(struct kvm_vcpu *vcpu, | 
|  | struct sys_reg_params *params, | 
|  | const struct sys_reg_desc *global, | 
|  | size_t nr_global) | 
|  | { | 
|  | int Rt  = kvm_vcpu_sys_get_rt(vcpu); | 
|  |  | 
|  | params->regval = vcpu_get_reg(vcpu, Rt); | 
|  |  | 
|  | if (emulate_cp(vcpu, params, global, nr_global)) { | 
|  | if (!params->is_write) | 
|  | vcpu_set_reg(vcpu, Rt, params->regval); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | unhandled_cp_access(vcpu, params); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int kvm_handle_cp15_64(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | return kvm_handle_cp_64(vcpu, cp15_64_regs, ARRAY_SIZE(cp15_64_regs)); | 
|  | } | 
|  |  | 
|  | int kvm_handle_cp15_32(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct sys_reg_params params; | 
|  |  | 
|  | params = esr_cp1x_32_to_params(kvm_vcpu_get_esr(vcpu)); | 
|  |  | 
|  | /* | 
|  | * Certain AArch32 ID registers are handled by rerouting to the AArch64 | 
|  | * system register table. Registers in the ID range where CRm=0 are | 
|  | * excluded from this scheme as they do not trivially map into AArch64 | 
|  | * system register encodings. | 
|  | */ | 
|  | if (params.Op1 == 0 && params.CRn == 0 && params.CRm) | 
|  | return kvm_emulate_cp15_id_reg(vcpu, ¶ms); | 
|  |  | 
|  | return kvm_handle_cp_32(vcpu, ¶ms, cp15_regs, ARRAY_SIZE(cp15_regs)); | 
|  | } | 
|  |  | 
|  | int kvm_handle_cp14_64(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | return kvm_handle_cp_64(vcpu, cp14_64_regs, ARRAY_SIZE(cp14_64_regs)); | 
|  | } | 
|  |  | 
|  | int kvm_handle_cp14_32(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct sys_reg_params params; | 
|  |  | 
|  | params = esr_cp1x_32_to_params(kvm_vcpu_get_esr(vcpu)); | 
|  |  | 
|  | return kvm_handle_cp_32(vcpu, ¶ms, cp14_regs, ARRAY_SIZE(cp14_regs)); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * emulate_sys_reg - Emulate a guest access to an AArch64 system register | 
|  | * @vcpu: The VCPU pointer | 
|  | * @params: Decoded system register parameters | 
|  | * | 
|  | * Return: true if the system register access was successful, false otherwise. | 
|  | */ | 
|  | static bool emulate_sys_reg(struct kvm_vcpu *vcpu, | 
|  | struct sys_reg_params *params) | 
|  | { | 
|  | const struct sys_reg_desc *r; | 
|  |  | 
|  | r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs)); | 
|  | if (likely(r)) { | 
|  | perform_access(vcpu, params, r); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | print_sys_reg_msg(params, | 
|  | "Unsupported guest sys_reg access at: %lx [%08lx]\n", | 
|  | *vcpu_pc(vcpu), *vcpu_cpsr(vcpu)); | 
|  | kvm_inject_undefined(vcpu); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static const struct sys_reg_desc *idregs_debug_find(struct kvm *kvm, u8 pos) | 
|  | { | 
|  | unsigned long i, idreg_idx = 0; | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(sys_reg_descs); i++) { | 
|  | const struct sys_reg_desc *r = &sys_reg_descs[i]; | 
|  |  | 
|  | if (!is_vm_ftr_id_reg(reg_to_encoding(r))) | 
|  | continue; | 
|  |  | 
|  | if (idreg_idx == pos) | 
|  | return r; | 
|  |  | 
|  | idreg_idx++; | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static void *idregs_debug_start(struct seq_file *s, loff_t *pos) | 
|  | { | 
|  | struct kvm *kvm = s->private; | 
|  | u8 *iter; | 
|  |  | 
|  | mutex_lock(&kvm->arch.config_lock); | 
|  |  | 
|  | iter = &kvm->arch.idreg_debugfs_iter; | 
|  | if (test_bit(KVM_ARCH_FLAG_ID_REGS_INITIALIZED, &kvm->arch.flags) && | 
|  | *iter == (u8)~0) { | 
|  | *iter = *pos; | 
|  | if (!idregs_debug_find(kvm, *iter)) | 
|  | iter = NULL; | 
|  | } else { | 
|  | iter = ERR_PTR(-EBUSY); | 
|  | } | 
|  |  | 
|  | mutex_unlock(&kvm->arch.config_lock); | 
|  |  | 
|  | return iter; | 
|  | } | 
|  |  | 
|  | static void *idregs_debug_next(struct seq_file *s, void *v, loff_t *pos) | 
|  | { | 
|  | struct kvm *kvm = s->private; | 
|  |  | 
|  | (*pos)++; | 
|  |  | 
|  | if (idregs_debug_find(kvm, kvm->arch.idreg_debugfs_iter + 1)) { | 
|  | kvm->arch.idreg_debugfs_iter++; | 
|  |  | 
|  | return &kvm->arch.idreg_debugfs_iter; | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static void idregs_debug_stop(struct seq_file *s, void *v) | 
|  | { | 
|  | struct kvm *kvm = s->private; | 
|  |  | 
|  | if (IS_ERR(v)) | 
|  | return; | 
|  |  | 
|  | mutex_lock(&kvm->arch.config_lock); | 
|  |  | 
|  | kvm->arch.idreg_debugfs_iter = ~0; | 
|  |  | 
|  | mutex_unlock(&kvm->arch.config_lock); | 
|  | } | 
|  |  | 
|  | static int idregs_debug_show(struct seq_file *s, void *v) | 
|  | { | 
|  | const struct sys_reg_desc *desc; | 
|  | struct kvm *kvm = s->private; | 
|  |  | 
|  | desc = idregs_debug_find(kvm, kvm->arch.idreg_debugfs_iter); | 
|  |  | 
|  | if (!desc->name) | 
|  | return 0; | 
|  |  | 
|  | seq_printf(s, "%20s:\t%016llx\n", | 
|  | desc->name, kvm_read_vm_id_reg(kvm, reg_to_encoding(desc))); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const struct seq_operations idregs_debug_sops = { | 
|  | .start	= idregs_debug_start, | 
|  | .next	= idregs_debug_next, | 
|  | .stop	= idregs_debug_stop, | 
|  | .show	= idregs_debug_show, | 
|  | }; | 
|  |  | 
|  | DEFINE_SEQ_ATTRIBUTE(idregs_debug); | 
|  |  | 
|  | void kvm_sys_regs_create_debugfs(struct kvm *kvm) | 
|  | { | 
|  | kvm->arch.idreg_debugfs_iter = ~0; | 
|  |  | 
|  | debugfs_create_file("idregs", 0444, kvm->debugfs_dentry, kvm, | 
|  | &idregs_debug_fops); | 
|  | } | 
|  |  | 
|  | static void reset_vm_ftr_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *reg) | 
|  | { | 
|  | u32 id = reg_to_encoding(reg); | 
|  | struct kvm *kvm = vcpu->kvm; | 
|  |  | 
|  | if (test_bit(KVM_ARCH_FLAG_ID_REGS_INITIALIZED, &kvm->arch.flags)) | 
|  | return; | 
|  |  | 
|  | kvm_set_vm_id_reg(kvm, id, reg->reset(vcpu, reg)); | 
|  | } | 
|  |  | 
|  | static void reset_vcpu_ftr_id_reg(struct kvm_vcpu *vcpu, | 
|  | const struct sys_reg_desc *reg) | 
|  | { | 
|  | if (kvm_vcpu_initialized(vcpu)) | 
|  | return; | 
|  |  | 
|  | reg->reset(vcpu, reg); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * kvm_reset_sys_regs - sets system registers to reset value | 
|  | * @vcpu: The VCPU pointer | 
|  | * | 
|  | * This function finds the right table above and sets the registers on the | 
|  | * virtual CPU struct to their architecturally defined reset values. | 
|  | */ | 
|  | void kvm_reset_sys_regs(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct kvm *kvm = vcpu->kvm; | 
|  | unsigned long i; | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(sys_reg_descs); i++) { | 
|  | const struct sys_reg_desc *r = &sys_reg_descs[i]; | 
|  |  | 
|  | if (!r->reset) | 
|  | continue; | 
|  |  | 
|  | if (is_vm_ftr_id_reg(reg_to_encoding(r))) | 
|  | reset_vm_ftr_id_reg(vcpu, r); | 
|  | else if (is_vcpu_ftr_id_reg(reg_to_encoding(r))) | 
|  | reset_vcpu_ftr_id_reg(vcpu, r); | 
|  | else | 
|  | r->reset(vcpu, r); | 
|  | } | 
|  |  | 
|  | set_bit(KVM_ARCH_FLAG_ID_REGS_INITIALIZED, &kvm->arch.flags); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * kvm_handle_sys_reg -- handles a system instruction or mrs/msr instruction | 
|  | *			 trap on a guest execution | 
|  | * @vcpu: The VCPU pointer | 
|  | */ | 
|  | int kvm_handle_sys_reg(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | const struct sys_reg_desc *desc = NULL; | 
|  | struct sys_reg_params params; | 
|  | unsigned long esr = kvm_vcpu_get_esr(vcpu); | 
|  | int Rt = kvm_vcpu_sys_get_rt(vcpu); | 
|  | int sr_idx; | 
|  |  | 
|  | trace_kvm_handle_sys_reg(esr); | 
|  |  | 
|  | if (triage_sysreg_trap(vcpu, &sr_idx)) | 
|  | return 1; | 
|  |  | 
|  | params = esr_sys64_to_params(esr); | 
|  | params.regval = vcpu_get_reg(vcpu, Rt); | 
|  |  | 
|  | /* System registers have Op0=={2,3}, as per DDI487 J.a C5.1.2 */ | 
|  | if (params.Op0 == 2 || params.Op0 == 3) | 
|  | desc = &sys_reg_descs[sr_idx]; | 
|  | else | 
|  | desc = &sys_insn_descs[sr_idx]; | 
|  |  | 
|  | perform_access(vcpu, ¶ms, desc); | 
|  |  | 
|  | /* Read from system register? */ | 
|  | if (!params.is_write && | 
|  | (params.Op0 == 2 || params.Op0 == 3)) | 
|  | vcpu_set_reg(vcpu, Rt, params.regval); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /****************************************************************************** | 
|  | * Userspace API | 
|  | *****************************************************************************/ | 
|  |  | 
|  | static bool index_to_params(u64 id, struct sys_reg_params *params) | 
|  | { | 
|  | switch (id & KVM_REG_SIZE_MASK) { | 
|  | case KVM_REG_SIZE_U64: | 
|  | /* Any unused index bits means it's not valid. */ | 
|  | if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK | 
|  | | KVM_REG_ARM_COPROC_MASK | 
|  | | KVM_REG_ARM64_SYSREG_OP0_MASK | 
|  | | KVM_REG_ARM64_SYSREG_OP1_MASK | 
|  | | KVM_REG_ARM64_SYSREG_CRN_MASK | 
|  | | KVM_REG_ARM64_SYSREG_CRM_MASK | 
|  | | KVM_REG_ARM64_SYSREG_OP2_MASK)) | 
|  | return false; | 
|  | params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK) | 
|  | >> KVM_REG_ARM64_SYSREG_OP0_SHIFT); | 
|  | params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK) | 
|  | >> KVM_REG_ARM64_SYSREG_OP1_SHIFT); | 
|  | params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK) | 
|  | >> KVM_REG_ARM64_SYSREG_CRN_SHIFT); | 
|  | params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK) | 
|  | >> KVM_REG_ARM64_SYSREG_CRM_SHIFT); | 
|  | params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK) | 
|  | >> KVM_REG_ARM64_SYSREG_OP2_SHIFT); | 
|  | return true; | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | const struct sys_reg_desc *get_reg_by_id(u64 id, | 
|  | const struct sys_reg_desc table[], | 
|  | unsigned int num) | 
|  | { | 
|  | struct sys_reg_params params; | 
|  |  | 
|  | if (!index_to_params(id, ¶ms)) | 
|  | return NULL; | 
|  |  | 
|  | return find_reg(¶ms, table, num); | 
|  | } | 
|  |  | 
|  | /* Decode an index value, and find the sys_reg_desc entry. */ | 
|  | static const struct sys_reg_desc * | 
|  | id_to_sys_reg_desc(struct kvm_vcpu *vcpu, u64 id, | 
|  | const struct sys_reg_desc table[], unsigned int num) | 
|  |  | 
|  | { | 
|  | const struct sys_reg_desc *r; | 
|  |  | 
|  | /* We only do sys_reg for now. */ | 
|  | if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG) | 
|  | return NULL; | 
|  |  | 
|  | r = get_reg_by_id(id, table, num); | 
|  |  | 
|  | /* Not saved in the sys_reg array and not otherwise accessible? */ | 
|  | if (r && (!(r->reg || r->get_user) || sysreg_hidden(vcpu, r))) | 
|  | r = NULL; | 
|  |  | 
|  | return r; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * These are the invariant sys_reg registers: we let the guest see the | 
|  | * host versions of these, so they're part of the guest state. | 
|  | * | 
|  | * A future CPU may provide a mechanism to present different values to | 
|  | * the guest, or a future kvm may trap them. | 
|  | */ | 
|  |  | 
|  | #define FUNCTION_INVARIANT(reg)						\ | 
|  | static u64 reset_##reg(struct kvm_vcpu *v,			\ | 
|  | const struct sys_reg_desc *r)		\ | 
|  | {								\ | 
|  | ((struct sys_reg_desc *)r)->val = read_sysreg(reg);	\ | 
|  | return ((struct sys_reg_desc *)r)->val;			\ | 
|  | } | 
|  |  | 
|  | FUNCTION_INVARIANT(midr_el1) | 
|  | FUNCTION_INVARIANT(revidr_el1) | 
|  | FUNCTION_INVARIANT(aidr_el1) | 
|  |  | 
|  | /* ->val is filled in by kvm_sys_reg_table_init() */ | 
|  | static struct sys_reg_desc invariant_sys_regs[] __ro_after_init = { | 
|  | { SYS_DESC(SYS_MIDR_EL1), NULL, reset_midr_el1 }, | 
|  | { SYS_DESC(SYS_REVIDR_EL1), NULL, reset_revidr_el1 }, | 
|  | { SYS_DESC(SYS_AIDR_EL1), NULL, reset_aidr_el1 }, | 
|  | }; | 
|  |  | 
|  | static int get_invariant_sys_reg(u64 id, u64 __user *uaddr) | 
|  | { | 
|  | const struct sys_reg_desc *r; | 
|  |  | 
|  | r = get_reg_by_id(id, invariant_sys_regs, | 
|  | ARRAY_SIZE(invariant_sys_regs)); | 
|  | if (!r) | 
|  | return -ENOENT; | 
|  |  | 
|  | return put_user(r->val, uaddr); | 
|  | } | 
|  |  | 
|  | static int set_invariant_sys_reg(u64 id, u64 __user *uaddr) | 
|  | { | 
|  | const struct sys_reg_desc *r; | 
|  | u64 val; | 
|  |  | 
|  | r = get_reg_by_id(id, invariant_sys_regs, | 
|  | ARRAY_SIZE(invariant_sys_regs)); | 
|  | if (!r) | 
|  | return -ENOENT; | 
|  |  | 
|  | if (get_user(val, uaddr)) | 
|  | return -EFAULT; | 
|  |  | 
|  | /* This is what we mean by invariant: you can't change it. */ | 
|  | if (r->val != val) | 
|  | return -EINVAL; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int demux_c15_get(struct kvm_vcpu *vcpu, u64 id, void __user *uaddr) | 
|  | { | 
|  | u32 val; | 
|  | u32 __user *uval = uaddr; | 
|  |  | 
|  | /* Fail if we have unknown bits set. */ | 
|  | if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK | 
|  | | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1))) | 
|  | return -ENOENT; | 
|  |  | 
|  | switch (id & KVM_REG_ARM_DEMUX_ID_MASK) { | 
|  | case KVM_REG_ARM_DEMUX_ID_CCSIDR: | 
|  | if (KVM_REG_SIZE(id) != 4) | 
|  | return -ENOENT; | 
|  | val = (id & KVM_REG_ARM_DEMUX_VAL_MASK) | 
|  | >> KVM_REG_ARM_DEMUX_VAL_SHIFT; | 
|  | if (val >= CSSELR_MAX) | 
|  | return -ENOENT; | 
|  |  | 
|  | return put_user(get_ccsidr(vcpu, val), uval); | 
|  | default: | 
|  | return -ENOENT; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int demux_c15_set(struct kvm_vcpu *vcpu, u64 id, void __user *uaddr) | 
|  | { | 
|  | u32 val, newval; | 
|  | u32 __user *uval = uaddr; | 
|  |  | 
|  | /* Fail if we have unknown bits set. */ | 
|  | if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK | 
|  | | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1))) | 
|  | return -ENOENT; | 
|  |  | 
|  | switch (id & KVM_REG_ARM_DEMUX_ID_MASK) { | 
|  | case KVM_REG_ARM_DEMUX_ID_CCSIDR: | 
|  | if (KVM_REG_SIZE(id) != 4) | 
|  | return -ENOENT; | 
|  | val = (id & KVM_REG_ARM_DEMUX_VAL_MASK) | 
|  | >> KVM_REG_ARM_DEMUX_VAL_SHIFT; | 
|  | if (val >= CSSELR_MAX) | 
|  | return -ENOENT; | 
|  |  | 
|  | if (get_user(newval, uval)) | 
|  | return -EFAULT; | 
|  |  | 
|  | return set_ccsidr(vcpu, val, newval); | 
|  | default: | 
|  | return -ENOENT; | 
|  | } | 
|  | } | 
|  |  | 
|  | int kvm_sys_reg_get_user(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg, | 
|  | const struct sys_reg_desc table[], unsigned int num) | 
|  | { | 
|  | u64 __user *uaddr = (u64 __user *)(unsigned long)reg->addr; | 
|  | const struct sys_reg_desc *r; | 
|  | u64 val; | 
|  | int ret; | 
|  |  | 
|  | r = id_to_sys_reg_desc(vcpu, reg->id, table, num); | 
|  | if (!r || sysreg_hidden(vcpu, r)) | 
|  | return -ENOENT; | 
|  |  | 
|  | if (r->get_user) { | 
|  | ret = (r->get_user)(vcpu, r, &val); | 
|  | } else { | 
|  | val = __vcpu_sys_reg(vcpu, r->reg); | 
|  | ret = 0; | 
|  | } | 
|  |  | 
|  | if (!ret) | 
|  | ret = put_user(val, uaddr); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) | 
|  | { | 
|  | void __user *uaddr = (void __user *)(unsigned long)reg->addr; | 
|  | int err; | 
|  |  | 
|  | if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX) | 
|  | return demux_c15_get(vcpu, reg->id, uaddr); | 
|  |  | 
|  | err = get_invariant_sys_reg(reg->id, uaddr); | 
|  | if (err != -ENOENT) | 
|  | return err; | 
|  |  | 
|  | return kvm_sys_reg_get_user(vcpu, reg, | 
|  | sys_reg_descs, ARRAY_SIZE(sys_reg_descs)); | 
|  | } | 
|  |  | 
|  | int kvm_sys_reg_set_user(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg, | 
|  | const struct sys_reg_desc table[], unsigned int num) | 
|  | { | 
|  | u64 __user *uaddr = (u64 __user *)(unsigned long)reg->addr; | 
|  | const struct sys_reg_desc *r; | 
|  | u64 val; | 
|  | int ret; | 
|  |  | 
|  | if (get_user(val, uaddr)) | 
|  | return -EFAULT; | 
|  |  | 
|  | r = id_to_sys_reg_desc(vcpu, reg->id, table, num); | 
|  | if (!r || sysreg_hidden(vcpu, r)) | 
|  | return -ENOENT; | 
|  |  | 
|  | if (sysreg_user_write_ignore(vcpu, r)) | 
|  | return 0; | 
|  |  | 
|  | if (r->set_user) { | 
|  | ret = (r->set_user)(vcpu, r, val); | 
|  | } else { | 
|  | __vcpu_sys_reg(vcpu, r->reg) = val; | 
|  | ret = 0; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) | 
|  | { | 
|  | void __user *uaddr = (void __user *)(unsigned long)reg->addr; | 
|  | int err; | 
|  |  | 
|  | if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX) | 
|  | return demux_c15_set(vcpu, reg->id, uaddr); | 
|  |  | 
|  | err = set_invariant_sys_reg(reg->id, uaddr); | 
|  | if (err != -ENOENT) | 
|  | return err; | 
|  |  | 
|  | return kvm_sys_reg_set_user(vcpu, reg, | 
|  | sys_reg_descs, ARRAY_SIZE(sys_reg_descs)); | 
|  | } | 
|  |  | 
|  | static unsigned int num_demux_regs(void) | 
|  | { | 
|  | return CSSELR_MAX; | 
|  | } | 
|  |  | 
|  | static int write_demux_regids(u64 __user *uindices) | 
|  | { | 
|  | u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX; | 
|  | unsigned int i; | 
|  |  | 
|  | val |= KVM_REG_ARM_DEMUX_ID_CCSIDR; | 
|  | for (i = 0; i < CSSELR_MAX; i++) { | 
|  | if (put_user(val | i, uindices)) | 
|  | return -EFAULT; | 
|  | uindices++; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static u64 sys_reg_to_index(const struct sys_reg_desc *reg) | 
|  | { | 
|  | return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 | | 
|  | KVM_REG_ARM64_SYSREG | | 
|  | (reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) | | 
|  | (reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) | | 
|  | (reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) | | 
|  | (reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) | | 
|  | (reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT)); | 
|  | } | 
|  |  | 
|  | static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind) | 
|  | { | 
|  | if (!*uind) | 
|  | return true; | 
|  |  | 
|  | if (put_user(sys_reg_to_index(reg), *uind)) | 
|  | return false; | 
|  |  | 
|  | (*uind)++; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static int walk_one_sys_reg(const struct kvm_vcpu *vcpu, | 
|  | const struct sys_reg_desc *rd, | 
|  | u64 __user **uind, | 
|  | unsigned int *total) | 
|  | { | 
|  | /* | 
|  | * Ignore registers we trap but don't save, | 
|  | * and for which no custom user accessor is provided. | 
|  | */ | 
|  | if (!(rd->reg || rd->get_user)) | 
|  | return 0; | 
|  |  | 
|  | if (sysreg_hidden(vcpu, rd)) | 
|  | return 0; | 
|  |  | 
|  | if (!copy_reg_to_user(rd, uind)) | 
|  | return -EFAULT; | 
|  |  | 
|  | (*total)++; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Assumed ordered tables, see kvm_sys_reg_table_init. */ | 
|  | static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind) | 
|  | { | 
|  | const struct sys_reg_desc *i2, *end2; | 
|  | unsigned int total = 0; | 
|  | int err; | 
|  |  | 
|  | i2 = sys_reg_descs; | 
|  | end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs); | 
|  |  | 
|  | while (i2 != end2) { | 
|  | err = walk_one_sys_reg(vcpu, i2++, &uind, &total); | 
|  | if (err) | 
|  | return err; | 
|  | } | 
|  | return total; | 
|  | } | 
|  |  | 
|  | unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | return ARRAY_SIZE(invariant_sys_regs) | 
|  | + num_demux_regs() | 
|  | + walk_sys_regs(vcpu, (u64 __user *)NULL); | 
|  | } | 
|  |  | 
|  | int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices) | 
|  | { | 
|  | unsigned int i; | 
|  | int err; | 
|  |  | 
|  | /* Then give them all the invariant registers' indices. */ | 
|  | for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) { | 
|  | if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices)) | 
|  | return -EFAULT; | 
|  | uindices++; | 
|  | } | 
|  |  | 
|  | err = walk_sys_regs(vcpu, uindices); | 
|  | if (err < 0) | 
|  | return err; | 
|  | uindices += err; | 
|  |  | 
|  | return write_demux_regids(uindices); | 
|  | } | 
|  |  | 
|  | #define KVM_ARM_FEATURE_ID_RANGE_INDEX(r)			\ | 
|  | KVM_ARM_FEATURE_ID_RANGE_IDX(sys_reg_Op0(r),		\ | 
|  | sys_reg_Op1(r),					\ | 
|  | sys_reg_CRn(r),					\ | 
|  | sys_reg_CRm(r),					\ | 
|  | sys_reg_Op2(r)) | 
|  |  | 
|  | int kvm_vm_ioctl_get_reg_writable_masks(struct kvm *kvm, struct reg_mask_range *range) | 
|  | { | 
|  | const void *zero_page = page_to_virt(ZERO_PAGE(0)); | 
|  | u64 __user *masks = (u64 __user *)range->addr; | 
|  |  | 
|  | /* Only feature id range is supported, reserved[13] must be zero. */ | 
|  | if (range->range || | 
|  | memcmp(range->reserved, zero_page, sizeof(range->reserved))) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* Wipe the whole thing first */ | 
|  | if (clear_user(masks, KVM_ARM_FEATURE_ID_RANGE_SIZE * sizeof(__u64))) | 
|  | return -EFAULT; | 
|  |  | 
|  | for (int i = 0; i < ARRAY_SIZE(sys_reg_descs); i++) { | 
|  | const struct sys_reg_desc *reg = &sys_reg_descs[i]; | 
|  | u32 encoding = reg_to_encoding(reg); | 
|  | u64 val; | 
|  |  | 
|  | if (!is_feature_id_reg(encoding) || !reg->set_user) | 
|  | continue; | 
|  |  | 
|  | if (!reg->val || | 
|  | (is_aa32_id_reg(encoding) && !kvm_supports_32bit_el0())) { | 
|  | continue; | 
|  | } | 
|  | val = reg->val; | 
|  |  | 
|  | if (put_user(val, (masks + KVM_ARM_FEATURE_ID_RANGE_INDEX(encoding)))) | 
|  | return -EFAULT; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void vcpu_set_hcr(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct kvm *kvm = vcpu->kvm; | 
|  |  | 
|  | if (has_vhe() || has_hvhe()) | 
|  | vcpu->arch.hcr_el2 |= HCR_E2H; | 
|  | if (cpus_have_final_cap(ARM64_HAS_RAS_EXTN)) { | 
|  | /* route synchronous external abort exceptions to EL2 */ | 
|  | vcpu->arch.hcr_el2 |= HCR_TEA; | 
|  | /* trap error record accesses */ | 
|  | vcpu->arch.hcr_el2 |= HCR_TERR; | 
|  | } | 
|  |  | 
|  | if (cpus_have_final_cap(ARM64_HAS_STAGE2_FWB)) | 
|  | vcpu->arch.hcr_el2 |= HCR_FWB; | 
|  |  | 
|  | if (cpus_have_final_cap(ARM64_HAS_EVT) && | 
|  | !cpus_have_final_cap(ARM64_MISMATCHED_CACHE_TYPE) && | 
|  | kvm_read_vm_id_reg(kvm, SYS_CTR_EL0) == read_sanitised_ftr_reg(SYS_CTR_EL0)) | 
|  | vcpu->arch.hcr_el2 |= HCR_TID4; | 
|  | else | 
|  | vcpu->arch.hcr_el2 |= HCR_TID2; | 
|  |  | 
|  | if (vcpu_el1_is_32bit(vcpu)) | 
|  | vcpu->arch.hcr_el2 &= ~HCR_RW; | 
|  |  | 
|  | if (kvm_has_mte(vcpu->kvm)) | 
|  | vcpu->arch.hcr_el2 |= HCR_ATA; | 
|  |  | 
|  | /* | 
|  | * In the absence of FGT, we cannot independently trap TLBI | 
|  | * Range instructions. This isn't great, but trapping all | 
|  | * TLBIs would be far worse. Live with it... | 
|  | */ | 
|  | if (!kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, OS)) | 
|  | vcpu->arch.hcr_el2 |= HCR_TTLBOS; | 
|  | } | 
|  |  | 
|  | void kvm_calculate_traps(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct kvm *kvm = vcpu->kvm; | 
|  |  | 
|  | mutex_lock(&kvm->arch.config_lock); | 
|  | vcpu_set_hcr(vcpu); | 
|  | vcpu_set_ich_hcr(vcpu); | 
|  |  | 
|  | if (cpus_have_final_cap(ARM64_HAS_HCX)) { | 
|  | /* | 
|  | * In general, all HCRX_EL2 bits are gated by a feature. | 
|  | * The only reason we can set SMPME without checking any | 
|  | * feature is that its effects are not directly observable | 
|  | * from the guest. | 
|  | */ | 
|  | vcpu->arch.hcrx_el2 = HCRX_EL2_SMPME; | 
|  |  | 
|  | if (kvm_has_feat(kvm, ID_AA64ISAR2_EL1, MOPS, IMP)) | 
|  | vcpu->arch.hcrx_el2 |= (HCRX_EL2_MSCEn | HCRX_EL2_MCE2); | 
|  |  | 
|  | if (kvm_has_feat(kvm, ID_AA64MMFR3_EL1, TCRX, IMP)) | 
|  | vcpu->arch.hcrx_el2 |= HCRX_EL2_TCR2En; | 
|  |  | 
|  | if (kvm_has_fpmr(kvm)) | 
|  | vcpu->arch.hcrx_el2 |= HCRX_EL2_EnFPM; | 
|  | } | 
|  |  | 
|  | if (test_bit(KVM_ARCH_FLAG_FGU_INITIALIZED, &kvm->arch.flags)) | 
|  | goto out; | 
|  |  | 
|  | kvm->arch.fgu[HFGxTR_GROUP] = (HFGxTR_EL2_nAMAIR2_EL1		| | 
|  | HFGxTR_EL2_nMAIR2_EL1		| | 
|  | HFGxTR_EL2_nS2POR_EL1		| | 
|  | HFGxTR_EL2_nACCDATA_EL1		| | 
|  | HFGxTR_EL2_nSMPRI_EL1_MASK	| | 
|  | HFGxTR_EL2_nTPIDR2_EL0_MASK); | 
|  |  | 
|  | if (!kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, OS)) | 
|  | kvm->arch.fgu[HFGITR_GROUP] |= (HFGITR_EL2_TLBIRVAALE1OS| | 
|  | HFGITR_EL2_TLBIRVALE1OS	| | 
|  | HFGITR_EL2_TLBIRVAAE1OS	| | 
|  | HFGITR_EL2_TLBIRVAE1OS	| | 
|  | HFGITR_EL2_TLBIVAALE1OS	| | 
|  | HFGITR_EL2_TLBIVALE1OS	| | 
|  | HFGITR_EL2_TLBIVAAE1OS	| | 
|  | HFGITR_EL2_TLBIASIDE1OS	| | 
|  | HFGITR_EL2_TLBIVAE1OS	| | 
|  | HFGITR_EL2_TLBIVMALLE1OS); | 
|  |  | 
|  | if (!kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, RANGE)) | 
|  | kvm->arch.fgu[HFGITR_GROUP] |= (HFGITR_EL2_TLBIRVAALE1	| | 
|  | HFGITR_EL2_TLBIRVALE1	| | 
|  | HFGITR_EL2_TLBIRVAAE1	| | 
|  | HFGITR_EL2_TLBIRVAE1	| | 
|  | HFGITR_EL2_TLBIRVAALE1IS| | 
|  | HFGITR_EL2_TLBIRVALE1IS	| | 
|  | HFGITR_EL2_TLBIRVAAE1IS	| | 
|  | HFGITR_EL2_TLBIRVAE1IS	| | 
|  | HFGITR_EL2_TLBIRVAALE1OS| | 
|  | HFGITR_EL2_TLBIRVALE1OS	| | 
|  | HFGITR_EL2_TLBIRVAAE1OS	| | 
|  | HFGITR_EL2_TLBIRVAE1OS); | 
|  |  | 
|  | if (!kvm_has_feat(kvm, ID_AA64ISAR2_EL1, ATS1A, IMP)) | 
|  | kvm->arch.fgu[HFGITR_GROUP] |= HFGITR_EL2_ATS1E1A; | 
|  |  | 
|  | if (!kvm_has_feat(kvm, ID_AA64MMFR1_EL1, PAN, PAN2)) | 
|  | kvm->arch.fgu[HFGITR_GROUP] |= (HFGITR_EL2_ATS1E1RP | | 
|  | HFGITR_EL2_ATS1E1WP); | 
|  |  | 
|  | if (!kvm_has_feat(kvm, ID_AA64MMFR3_EL1, S1PIE, IMP)) | 
|  | kvm->arch.fgu[HFGxTR_GROUP] |= (HFGxTR_EL2_nPIRE0_EL1 | | 
|  | HFGxTR_EL2_nPIR_EL1); | 
|  |  | 
|  | if (!kvm_has_feat(kvm, ID_AA64MMFR3_EL1, S1POE, IMP)) | 
|  | kvm->arch.fgu[HFGxTR_GROUP] |= (HFGxTR_EL2_nPOR_EL1 | | 
|  | HFGxTR_EL2_nPOR_EL0); | 
|  |  | 
|  | if (!kvm_has_feat(kvm, ID_AA64PFR0_EL1, AMU, IMP)) | 
|  | kvm->arch.fgu[HAFGRTR_GROUP] |= ~(HAFGRTR_EL2_RES0 | | 
|  | HAFGRTR_EL2_RES1); | 
|  |  | 
|  | set_bit(KVM_ARCH_FLAG_FGU_INITIALIZED, &kvm->arch.flags); | 
|  | out: | 
|  | mutex_unlock(&kvm->arch.config_lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Perform last adjustments to the ID registers that are implied by the | 
|  | * configuration outside of the ID regs themselves, as well as any | 
|  | * initialisation that directly depend on these ID registers (such as | 
|  | * RES0/RES1 behaviours). This is not the place to configure traps though. | 
|  | * | 
|  | * Because this can be called once per CPU, changes must be idempotent. | 
|  | */ | 
|  | int kvm_finalize_sys_regs(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct kvm *kvm = vcpu->kvm; | 
|  |  | 
|  | guard(mutex)(&kvm->arch.config_lock); | 
|  |  | 
|  | if (!(static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif) && | 
|  | irqchip_in_kernel(kvm) && | 
|  | kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3)) { | 
|  | kvm->arch.id_regs[IDREG_IDX(SYS_ID_AA64PFR0_EL1)] &= ~ID_AA64PFR0_EL1_GIC_MASK; | 
|  | kvm->arch.id_regs[IDREG_IDX(SYS_ID_PFR1_EL1)] &= ~ID_PFR1_EL1_GIC_MASK; | 
|  | } | 
|  |  | 
|  | if (vcpu_has_nv(vcpu)) { | 
|  | int ret = kvm_init_nv_sysregs(kvm); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int __init kvm_sys_reg_table_init(void) | 
|  | { | 
|  | bool valid = true; | 
|  | unsigned int i; | 
|  | int ret = 0; | 
|  |  | 
|  | /* Make sure tables are unique and in order. */ | 
|  | valid &= check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs), false); | 
|  | valid &= check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs), true); | 
|  | valid &= check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs), true); | 
|  | valid &= check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs), true); | 
|  | valid &= check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs), true); | 
|  | valid &= check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs), false); | 
|  | valid &= check_sysreg_table(sys_insn_descs, ARRAY_SIZE(sys_insn_descs), false); | 
|  |  | 
|  | if (!valid) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* We abuse the reset function to overwrite the table itself. */ | 
|  | for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) | 
|  | invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]); | 
|  |  | 
|  | ret = populate_nv_trap_config(); | 
|  |  | 
|  | for (i = 0; !ret && i < ARRAY_SIZE(sys_reg_descs); i++) | 
|  | ret = populate_sysreg_config(sys_reg_descs + i, i); | 
|  |  | 
|  | for (i = 0; !ret && i < ARRAY_SIZE(sys_insn_descs); i++) | 
|  | ret = populate_sysreg_config(sys_insn_descs + i, i); | 
|  |  | 
|  | return ret; | 
|  | } |