|  | // SPDX-License-Identifier: GPL-2.0-only | 
|  | /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com | 
|  | * Copyright (c) 2016 Facebook | 
|  | * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io | 
|  | */ | 
|  | #include <uapi/linux/btf.h> | 
|  | #include <linux/bpf-cgroup.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/types.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/bpf.h> | 
|  | #include <linux/btf.h> | 
|  | #include <linux/bpf_verifier.h> | 
|  | #include <linux/filter.h> | 
|  | #include <net/netlink.h> | 
|  | #include <linux/file.h> | 
|  | #include <linux/vmalloc.h> | 
|  | #include <linux/stringify.h> | 
|  | #include <linux/bsearch.h> | 
|  | #include <linux/sort.h> | 
|  | #include <linux/perf_event.h> | 
|  | #include <linux/ctype.h> | 
|  | #include <linux/error-injection.h> | 
|  | #include <linux/bpf_lsm.h> | 
|  | #include <linux/btf_ids.h> | 
|  | #include <linux/poison.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/cpumask.h> | 
|  | #include <linux/bpf_mem_alloc.h> | 
|  | #include <net/xdp.h> | 
|  | #include <linux/trace_events.h> | 
|  | #include <linux/kallsyms.h> | 
|  |  | 
|  | #include "disasm.h" | 
|  |  | 
|  | static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { | 
|  | #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ | 
|  | [_id] = & _name ## _verifier_ops, | 
|  | #define BPF_MAP_TYPE(_id, _ops) | 
|  | #define BPF_LINK_TYPE(_id, _name) | 
|  | #include <linux/bpf_types.h> | 
|  | #undef BPF_PROG_TYPE | 
|  | #undef BPF_MAP_TYPE | 
|  | #undef BPF_LINK_TYPE | 
|  | }; | 
|  |  | 
|  | struct bpf_mem_alloc bpf_global_percpu_ma; | 
|  | static bool bpf_global_percpu_ma_set; | 
|  |  | 
|  | /* bpf_check() is a static code analyzer that walks eBPF program | 
|  | * instruction by instruction and updates register/stack state. | 
|  | * All paths of conditional branches are analyzed until 'bpf_exit' insn. | 
|  | * | 
|  | * The first pass is depth-first-search to check that the program is a DAG. | 
|  | * It rejects the following programs: | 
|  | * - larger than BPF_MAXINSNS insns | 
|  | * - if loop is present (detected via back-edge) | 
|  | * - unreachable insns exist (shouldn't be a forest. program = one function) | 
|  | * - out of bounds or malformed jumps | 
|  | * The second pass is all possible path descent from the 1st insn. | 
|  | * Since it's analyzing all paths through the program, the length of the | 
|  | * analysis is limited to 64k insn, which may be hit even if total number of | 
|  | * insn is less then 4K, but there are too many branches that change stack/regs. | 
|  | * Number of 'branches to be analyzed' is limited to 1k | 
|  | * | 
|  | * On entry to each instruction, each register has a type, and the instruction | 
|  | * changes the types of the registers depending on instruction semantics. | 
|  | * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is | 
|  | * copied to R1. | 
|  | * | 
|  | * All registers are 64-bit. | 
|  | * R0 - return register | 
|  | * R1-R5 argument passing registers | 
|  | * R6-R9 callee saved registers | 
|  | * R10 - frame pointer read-only | 
|  | * | 
|  | * At the start of BPF program the register R1 contains a pointer to bpf_context | 
|  | * and has type PTR_TO_CTX. | 
|  | * | 
|  | * Verifier tracks arithmetic operations on pointers in case: | 
|  | *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), | 
|  | *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), | 
|  | * 1st insn copies R10 (which has FRAME_PTR) type into R1 | 
|  | * and 2nd arithmetic instruction is pattern matched to recognize | 
|  | * that it wants to construct a pointer to some element within stack. | 
|  | * So after 2nd insn, the register R1 has type PTR_TO_STACK | 
|  | * (and -20 constant is saved for further stack bounds checking). | 
|  | * Meaning that this reg is a pointer to stack plus known immediate constant. | 
|  | * | 
|  | * Most of the time the registers have SCALAR_VALUE type, which | 
|  | * means the register has some value, but it's not a valid pointer. | 
|  | * (like pointer plus pointer becomes SCALAR_VALUE type) | 
|  | * | 
|  | * When verifier sees load or store instructions the type of base register | 
|  | * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are | 
|  | * four pointer types recognized by check_mem_access() function. | 
|  | * | 
|  | * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' | 
|  | * and the range of [ptr, ptr + map's value_size) is accessible. | 
|  | * | 
|  | * registers used to pass values to function calls are checked against | 
|  | * function argument constraints. | 
|  | * | 
|  | * ARG_PTR_TO_MAP_KEY is one of such argument constraints. | 
|  | * It means that the register type passed to this function must be | 
|  | * PTR_TO_STACK and it will be used inside the function as | 
|  | * 'pointer to map element key' | 
|  | * | 
|  | * For example the argument constraints for bpf_map_lookup_elem(): | 
|  | *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, | 
|  | *   .arg1_type = ARG_CONST_MAP_PTR, | 
|  | *   .arg2_type = ARG_PTR_TO_MAP_KEY, | 
|  | * | 
|  | * ret_type says that this function returns 'pointer to map elem value or null' | 
|  | * function expects 1st argument to be a const pointer to 'struct bpf_map' and | 
|  | * 2nd argument should be a pointer to stack, which will be used inside | 
|  | * the helper function as a pointer to map element key. | 
|  | * | 
|  | * On the kernel side the helper function looks like: | 
|  | * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) | 
|  | * { | 
|  | *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; | 
|  | *    void *key = (void *) (unsigned long) r2; | 
|  | *    void *value; | 
|  | * | 
|  | *    here kernel can access 'key' and 'map' pointers safely, knowing that | 
|  | *    [key, key + map->key_size) bytes are valid and were initialized on | 
|  | *    the stack of eBPF program. | 
|  | * } | 
|  | * | 
|  | * Corresponding eBPF program may look like: | 
|  | *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR | 
|  | *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK | 
|  | *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP | 
|  | *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), | 
|  | * here verifier looks at prototype of map_lookup_elem() and sees: | 
|  | * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, | 
|  | * Now verifier knows that this map has key of R1->map_ptr->key_size bytes | 
|  | * | 
|  | * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, | 
|  | * Now verifier checks that [R2, R2 + map's key_size) are within stack limits | 
|  | * and were initialized prior to this call. | 
|  | * If it's ok, then verifier allows this BPF_CALL insn and looks at | 
|  | * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets | 
|  | * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function | 
|  | * returns either pointer to map value or NULL. | 
|  | * | 
|  | * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' | 
|  | * insn, the register holding that pointer in the true branch changes state to | 
|  | * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false | 
|  | * branch. See check_cond_jmp_op(). | 
|  | * | 
|  | * After the call R0 is set to return type of the function and registers R1-R5 | 
|  | * are set to NOT_INIT to indicate that they are no longer readable. | 
|  | * | 
|  | * The following reference types represent a potential reference to a kernel | 
|  | * resource which, after first being allocated, must be checked and freed by | 
|  | * the BPF program: | 
|  | * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET | 
|  | * | 
|  | * When the verifier sees a helper call return a reference type, it allocates a | 
|  | * pointer id for the reference and stores it in the current function state. | 
|  | * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into | 
|  | * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type | 
|  | * passes through a NULL-check conditional. For the branch wherein the state is | 
|  | * changed to CONST_IMM, the verifier releases the reference. | 
|  | * | 
|  | * For each helper function that allocates a reference, such as | 
|  | * bpf_sk_lookup_tcp(), there is a corresponding release function, such as | 
|  | * bpf_sk_release(). When a reference type passes into the release function, | 
|  | * the verifier also releases the reference. If any unchecked or unreleased | 
|  | * reference remains at the end of the program, the verifier rejects it. | 
|  | */ | 
|  |  | 
|  | /* verifier_state + insn_idx are pushed to stack when branch is encountered */ | 
|  | struct bpf_verifier_stack_elem { | 
|  | /* verifier state is 'st' | 
|  | * before processing instruction 'insn_idx' | 
|  | * and after processing instruction 'prev_insn_idx' | 
|  | */ | 
|  | struct bpf_verifier_state st; | 
|  | int insn_idx; | 
|  | int prev_insn_idx; | 
|  | struct bpf_verifier_stack_elem *next; | 
|  | /* length of verifier log at the time this state was pushed on stack */ | 
|  | u32 log_pos; | 
|  | }; | 
|  |  | 
|  | #define BPF_COMPLEXITY_LIMIT_JMP_SEQ	8192 | 
|  | #define BPF_COMPLEXITY_LIMIT_STATES	64 | 
|  |  | 
|  | #define BPF_MAP_KEY_POISON	(1ULL << 63) | 
|  | #define BPF_MAP_KEY_SEEN	(1ULL << 62) | 
|  |  | 
|  | #define BPF_GLOBAL_PERCPU_MA_MAX_SIZE  512 | 
|  |  | 
|  | static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx); | 
|  | static int release_reference(struct bpf_verifier_env *env, int ref_obj_id); | 
|  | static void invalidate_non_owning_refs(struct bpf_verifier_env *env); | 
|  | static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env); | 
|  | static int ref_set_non_owning(struct bpf_verifier_env *env, | 
|  | struct bpf_reg_state *reg); | 
|  | static void specialize_kfunc(struct bpf_verifier_env *env, | 
|  | u32 func_id, u16 offset, unsigned long *addr); | 
|  | static bool is_trusted_reg(const struct bpf_reg_state *reg); | 
|  |  | 
|  | static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux) | 
|  | { | 
|  | return aux->map_ptr_state.poison; | 
|  | } | 
|  |  | 
|  | static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux) | 
|  | { | 
|  | return aux->map_ptr_state.unpriv; | 
|  | } | 
|  |  | 
|  | static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux, | 
|  | struct bpf_map *map, | 
|  | bool unpriv, bool poison) | 
|  | { | 
|  | unpriv |= bpf_map_ptr_unpriv(aux); | 
|  | aux->map_ptr_state.unpriv = unpriv; | 
|  | aux->map_ptr_state.poison = poison; | 
|  | aux->map_ptr_state.map_ptr = map; | 
|  | } | 
|  |  | 
|  | static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux) | 
|  | { | 
|  | return aux->map_key_state & BPF_MAP_KEY_POISON; | 
|  | } | 
|  |  | 
|  | static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux) | 
|  | { | 
|  | return !(aux->map_key_state & BPF_MAP_KEY_SEEN); | 
|  | } | 
|  |  | 
|  | static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux) | 
|  | { | 
|  | return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON); | 
|  | } | 
|  |  | 
|  | static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state) | 
|  | { | 
|  | bool poisoned = bpf_map_key_poisoned(aux); | 
|  |  | 
|  | aux->map_key_state = state | BPF_MAP_KEY_SEEN | | 
|  | (poisoned ? BPF_MAP_KEY_POISON : 0ULL); | 
|  | } | 
|  |  | 
|  | static bool bpf_helper_call(const struct bpf_insn *insn) | 
|  | { | 
|  | return insn->code == (BPF_JMP | BPF_CALL) && | 
|  | insn->src_reg == 0; | 
|  | } | 
|  |  | 
|  | static bool bpf_pseudo_call(const struct bpf_insn *insn) | 
|  | { | 
|  | return insn->code == (BPF_JMP | BPF_CALL) && | 
|  | insn->src_reg == BPF_PSEUDO_CALL; | 
|  | } | 
|  |  | 
|  | static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn) | 
|  | { | 
|  | return insn->code == (BPF_JMP | BPF_CALL) && | 
|  | insn->src_reg == BPF_PSEUDO_KFUNC_CALL; | 
|  | } | 
|  |  | 
|  | struct bpf_call_arg_meta { | 
|  | struct bpf_map *map_ptr; | 
|  | bool raw_mode; | 
|  | bool pkt_access; | 
|  | u8 release_regno; | 
|  | int regno; | 
|  | int access_size; | 
|  | int mem_size; | 
|  | u64 msize_max_value; | 
|  | int ref_obj_id; | 
|  | int dynptr_id; | 
|  | int map_uid; | 
|  | int func_id; | 
|  | struct btf *btf; | 
|  | u32 btf_id; | 
|  | struct btf *ret_btf; | 
|  | u32 ret_btf_id; | 
|  | u32 subprogno; | 
|  | struct btf_field *kptr_field; | 
|  | }; | 
|  |  | 
|  | struct bpf_kfunc_call_arg_meta { | 
|  | /* In parameters */ | 
|  | struct btf *btf; | 
|  | u32 func_id; | 
|  | u32 kfunc_flags; | 
|  | const struct btf_type *func_proto; | 
|  | const char *func_name; | 
|  | /* Out parameters */ | 
|  | u32 ref_obj_id; | 
|  | u8 release_regno; | 
|  | bool r0_rdonly; | 
|  | u32 ret_btf_id; | 
|  | u64 r0_size; | 
|  | u32 subprogno; | 
|  | struct { | 
|  | u64 value; | 
|  | bool found; | 
|  | } arg_constant; | 
|  |  | 
|  | /* arg_{btf,btf_id,owning_ref} are used by kfunc-specific handling, | 
|  | * generally to pass info about user-defined local kptr types to later | 
|  | * verification logic | 
|  | *   bpf_obj_drop/bpf_percpu_obj_drop | 
|  | *     Record the local kptr type to be drop'd | 
|  | *   bpf_refcount_acquire (via KF_ARG_PTR_TO_REFCOUNTED_KPTR arg type) | 
|  | *     Record the local kptr type to be refcount_incr'd and use | 
|  | *     arg_owning_ref to determine whether refcount_acquire should be | 
|  | *     fallible | 
|  | */ | 
|  | struct btf *arg_btf; | 
|  | u32 arg_btf_id; | 
|  | bool arg_owning_ref; | 
|  |  | 
|  | struct { | 
|  | struct btf_field *field; | 
|  | } arg_list_head; | 
|  | struct { | 
|  | struct btf_field *field; | 
|  | } arg_rbtree_root; | 
|  | struct { | 
|  | enum bpf_dynptr_type type; | 
|  | u32 id; | 
|  | u32 ref_obj_id; | 
|  | } initialized_dynptr; | 
|  | struct { | 
|  | u8 spi; | 
|  | u8 frameno; | 
|  | } iter; | 
|  | struct { | 
|  | struct bpf_map *ptr; | 
|  | int uid; | 
|  | } map; | 
|  | u64 mem_size; | 
|  | }; | 
|  |  | 
|  | struct btf *btf_vmlinux; | 
|  |  | 
|  | static const char *btf_type_name(const struct btf *btf, u32 id) | 
|  | { | 
|  | return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off); | 
|  | } | 
|  |  | 
|  | static DEFINE_MUTEX(bpf_verifier_lock); | 
|  | static DEFINE_MUTEX(bpf_percpu_ma_lock); | 
|  |  | 
|  | __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) | 
|  | { | 
|  | struct bpf_verifier_env *env = private_data; | 
|  | va_list args; | 
|  |  | 
|  | if (!bpf_verifier_log_needed(&env->log)) | 
|  | return; | 
|  |  | 
|  | va_start(args, fmt); | 
|  | bpf_verifier_vlog(&env->log, fmt, args); | 
|  | va_end(args); | 
|  | } | 
|  |  | 
|  | static void verbose_invalid_scalar(struct bpf_verifier_env *env, | 
|  | struct bpf_reg_state *reg, | 
|  | struct bpf_retval_range range, const char *ctx, | 
|  | const char *reg_name) | 
|  | { | 
|  | bool unknown = true; | 
|  |  | 
|  | verbose(env, "%s the register %s has", ctx, reg_name); | 
|  | if (reg->smin_value > S64_MIN) { | 
|  | verbose(env, " smin=%lld", reg->smin_value); | 
|  | unknown = false; | 
|  | } | 
|  | if (reg->smax_value < S64_MAX) { | 
|  | verbose(env, " smax=%lld", reg->smax_value); | 
|  | unknown = false; | 
|  | } | 
|  | if (unknown) | 
|  | verbose(env, " unknown scalar value"); | 
|  | verbose(env, " should have been in [%d, %d]\n", range.minval, range.maxval); | 
|  | } | 
|  |  | 
|  | static bool reg_not_null(const struct bpf_reg_state *reg) | 
|  | { | 
|  | enum bpf_reg_type type; | 
|  |  | 
|  | type = reg->type; | 
|  | if (type_may_be_null(type)) | 
|  | return false; | 
|  |  | 
|  | type = base_type(type); | 
|  | return type == PTR_TO_SOCKET || | 
|  | type == PTR_TO_TCP_SOCK || | 
|  | type == PTR_TO_MAP_VALUE || | 
|  | type == PTR_TO_MAP_KEY || | 
|  | type == PTR_TO_SOCK_COMMON || | 
|  | (type == PTR_TO_BTF_ID && is_trusted_reg(reg)) || | 
|  | type == PTR_TO_MEM; | 
|  | } | 
|  |  | 
|  | static struct btf_record *reg_btf_record(const struct bpf_reg_state *reg) | 
|  | { | 
|  | struct btf_record *rec = NULL; | 
|  | struct btf_struct_meta *meta; | 
|  |  | 
|  | if (reg->type == PTR_TO_MAP_VALUE) { | 
|  | rec = reg->map_ptr->record; | 
|  | } else if (type_is_ptr_alloc_obj(reg->type)) { | 
|  | meta = btf_find_struct_meta(reg->btf, reg->btf_id); | 
|  | if (meta) | 
|  | rec = meta->record; | 
|  | } | 
|  | return rec; | 
|  | } | 
|  |  | 
|  | static bool subprog_is_global(const struct bpf_verifier_env *env, int subprog) | 
|  | { | 
|  | struct bpf_func_info_aux *aux = env->prog->aux->func_info_aux; | 
|  |  | 
|  | return aux && aux[subprog].linkage == BTF_FUNC_GLOBAL; | 
|  | } | 
|  |  | 
|  | static const char *subprog_name(const struct bpf_verifier_env *env, int subprog) | 
|  | { | 
|  | struct bpf_func_info *info; | 
|  |  | 
|  | if (!env->prog->aux->func_info) | 
|  | return ""; | 
|  |  | 
|  | info = &env->prog->aux->func_info[subprog]; | 
|  | return btf_type_name(env->prog->aux->btf, info->type_id); | 
|  | } | 
|  |  | 
|  | static void mark_subprog_exc_cb(struct bpf_verifier_env *env, int subprog) | 
|  | { | 
|  | struct bpf_subprog_info *info = subprog_info(env, subprog); | 
|  |  | 
|  | info->is_cb = true; | 
|  | info->is_async_cb = true; | 
|  | info->is_exception_cb = true; | 
|  | } | 
|  |  | 
|  | static bool subprog_is_exc_cb(struct bpf_verifier_env *env, int subprog) | 
|  | { | 
|  | return subprog_info(env, subprog)->is_exception_cb; | 
|  | } | 
|  |  | 
|  | static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg) | 
|  | { | 
|  | return btf_record_has_field(reg_btf_record(reg), BPF_SPIN_LOCK); | 
|  | } | 
|  |  | 
|  | static bool type_is_rdonly_mem(u32 type) | 
|  | { | 
|  | return type & MEM_RDONLY; | 
|  | } | 
|  |  | 
|  | static bool is_acquire_function(enum bpf_func_id func_id, | 
|  | const struct bpf_map *map) | 
|  | { | 
|  | enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC; | 
|  |  | 
|  | if (func_id == BPF_FUNC_sk_lookup_tcp || | 
|  | func_id == BPF_FUNC_sk_lookup_udp || | 
|  | func_id == BPF_FUNC_skc_lookup_tcp || | 
|  | func_id == BPF_FUNC_ringbuf_reserve || | 
|  | func_id == BPF_FUNC_kptr_xchg) | 
|  | return true; | 
|  |  | 
|  | if (func_id == BPF_FUNC_map_lookup_elem && | 
|  | (map_type == BPF_MAP_TYPE_SOCKMAP || | 
|  | map_type == BPF_MAP_TYPE_SOCKHASH)) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool is_ptr_cast_function(enum bpf_func_id func_id) | 
|  | { | 
|  | return func_id == BPF_FUNC_tcp_sock || | 
|  | func_id == BPF_FUNC_sk_fullsock || | 
|  | func_id == BPF_FUNC_skc_to_tcp_sock || | 
|  | func_id == BPF_FUNC_skc_to_tcp6_sock || | 
|  | func_id == BPF_FUNC_skc_to_udp6_sock || | 
|  | func_id == BPF_FUNC_skc_to_mptcp_sock || | 
|  | func_id == BPF_FUNC_skc_to_tcp_timewait_sock || | 
|  | func_id == BPF_FUNC_skc_to_tcp_request_sock; | 
|  | } | 
|  |  | 
|  | static bool is_dynptr_ref_function(enum bpf_func_id func_id) | 
|  | { | 
|  | return func_id == BPF_FUNC_dynptr_data; | 
|  | } | 
|  |  | 
|  | static bool is_sync_callback_calling_kfunc(u32 btf_id); | 
|  | static bool is_async_callback_calling_kfunc(u32 btf_id); | 
|  | static bool is_callback_calling_kfunc(u32 btf_id); | 
|  | static bool is_bpf_throw_kfunc(struct bpf_insn *insn); | 
|  |  | 
|  | static bool is_bpf_wq_set_callback_impl_kfunc(u32 btf_id); | 
|  |  | 
|  | static bool is_sync_callback_calling_function(enum bpf_func_id func_id) | 
|  | { | 
|  | return func_id == BPF_FUNC_for_each_map_elem || | 
|  | func_id == BPF_FUNC_find_vma || | 
|  | func_id == BPF_FUNC_loop || | 
|  | func_id == BPF_FUNC_user_ringbuf_drain; | 
|  | } | 
|  |  | 
|  | static bool is_async_callback_calling_function(enum bpf_func_id func_id) | 
|  | { | 
|  | return func_id == BPF_FUNC_timer_set_callback; | 
|  | } | 
|  |  | 
|  | static bool is_callback_calling_function(enum bpf_func_id func_id) | 
|  | { | 
|  | return is_sync_callback_calling_function(func_id) || | 
|  | is_async_callback_calling_function(func_id); | 
|  | } | 
|  |  | 
|  | static bool is_sync_callback_calling_insn(struct bpf_insn *insn) | 
|  | { | 
|  | return (bpf_helper_call(insn) && is_sync_callback_calling_function(insn->imm)) || | 
|  | (bpf_pseudo_kfunc_call(insn) && is_sync_callback_calling_kfunc(insn->imm)); | 
|  | } | 
|  |  | 
|  | static bool is_async_callback_calling_insn(struct bpf_insn *insn) | 
|  | { | 
|  | return (bpf_helper_call(insn) && is_async_callback_calling_function(insn->imm)) || | 
|  | (bpf_pseudo_kfunc_call(insn) && is_async_callback_calling_kfunc(insn->imm)); | 
|  | } | 
|  |  | 
|  | static bool is_may_goto_insn(struct bpf_insn *insn) | 
|  | { | 
|  | return insn->code == (BPF_JMP | BPF_JCOND) && insn->src_reg == BPF_MAY_GOTO; | 
|  | } | 
|  |  | 
|  | static bool is_may_goto_insn_at(struct bpf_verifier_env *env, int insn_idx) | 
|  | { | 
|  | return is_may_goto_insn(&env->prog->insnsi[insn_idx]); | 
|  | } | 
|  |  | 
|  | static bool is_storage_get_function(enum bpf_func_id func_id) | 
|  | { | 
|  | return func_id == BPF_FUNC_sk_storage_get || | 
|  | func_id == BPF_FUNC_inode_storage_get || | 
|  | func_id == BPF_FUNC_task_storage_get || | 
|  | func_id == BPF_FUNC_cgrp_storage_get; | 
|  | } | 
|  |  | 
|  | static bool helper_multiple_ref_obj_use(enum bpf_func_id func_id, | 
|  | const struct bpf_map *map) | 
|  | { | 
|  | int ref_obj_uses = 0; | 
|  |  | 
|  | if (is_ptr_cast_function(func_id)) | 
|  | ref_obj_uses++; | 
|  | if (is_acquire_function(func_id, map)) | 
|  | ref_obj_uses++; | 
|  | if (is_dynptr_ref_function(func_id)) | 
|  | ref_obj_uses++; | 
|  |  | 
|  | return ref_obj_uses > 1; | 
|  | } | 
|  |  | 
|  | static bool is_cmpxchg_insn(const struct bpf_insn *insn) | 
|  | { | 
|  | return BPF_CLASS(insn->code) == BPF_STX && | 
|  | BPF_MODE(insn->code) == BPF_ATOMIC && | 
|  | insn->imm == BPF_CMPXCHG; | 
|  | } | 
|  |  | 
|  | static int __get_spi(s32 off) | 
|  | { | 
|  | return (-off - 1) / BPF_REG_SIZE; | 
|  | } | 
|  |  | 
|  | static struct bpf_func_state *func(struct bpf_verifier_env *env, | 
|  | const struct bpf_reg_state *reg) | 
|  | { | 
|  | struct bpf_verifier_state *cur = env->cur_state; | 
|  |  | 
|  | return cur->frame[reg->frameno]; | 
|  | } | 
|  |  | 
|  | static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots) | 
|  | { | 
|  | int allocated_slots = state->allocated_stack / BPF_REG_SIZE; | 
|  |  | 
|  | /* We need to check that slots between [spi - nr_slots + 1, spi] are | 
|  | * within [0, allocated_stack). | 
|  | * | 
|  | * Please note that the spi grows downwards. For example, a dynptr | 
|  | * takes the size of two stack slots; the first slot will be at | 
|  | * spi and the second slot will be at spi - 1. | 
|  | */ | 
|  | return spi - nr_slots + 1 >= 0 && spi < allocated_slots; | 
|  | } | 
|  |  | 
|  | static int stack_slot_obj_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, | 
|  | const char *obj_kind, int nr_slots) | 
|  | { | 
|  | int off, spi; | 
|  |  | 
|  | if (!tnum_is_const(reg->var_off)) { | 
|  | verbose(env, "%s has to be at a constant offset\n", obj_kind); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | off = reg->off + reg->var_off.value; | 
|  | if (off % BPF_REG_SIZE) { | 
|  | verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | spi = __get_spi(off); | 
|  | if (spi + 1 < nr_slots) { | 
|  | verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (!is_spi_bounds_valid(func(env, reg), spi, nr_slots)) | 
|  | return -ERANGE; | 
|  | return spi; | 
|  | } | 
|  |  | 
|  | static int dynptr_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg) | 
|  | { | 
|  | return stack_slot_obj_get_spi(env, reg, "dynptr", BPF_DYNPTR_NR_SLOTS); | 
|  | } | 
|  |  | 
|  | static int iter_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int nr_slots) | 
|  | { | 
|  | return stack_slot_obj_get_spi(env, reg, "iter", nr_slots); | 
|  | } | 
|  |  | 
|  | static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type) | 
|  | { | 
|  | switch (arg_type & DYNPTR_TYPE_FLAG_MASK) { | 
|  | case DYNPTR_TYPE_LOCAL: | 
|  | return BPF_DYNPTR_TYPE_LOCAL; | 
|  | case DYNPTR_TYPE_RINGBUF: | 
|  | return BPF_DYNPTR_TYPE_RINGBUF; | 
|  | case DYNPTR_TYPE_SKB: | 
|  | return BPF_DYNPTR_TYPE_SKB; | 
|  | case DYNPTR_TYPE_XDP: | 
|  | return BPF_DYNPTR_TYPE_XDP; | 
|  | default: | 
|  | return BPF_DYNPTR_TYPE_INVALID; | 
|  | } | 
|  | } | 
|  |  | 
|  | static enum bpf_type_flag get_dynptr_type_flag(enum bpf_dynptr_type type) | 
|  | { | 
|  | switch (type) { | 
|  | case BPF_DYNPTR_TYPE_LOCAL: | 
|  | return DYNPTR_TYPE_LOCAL; | 
|  | case BPF_DYNPTR_TYPE_RINGBUF: | 
|  | return DYNPTR_TYPE_RINGBUF; | 
|  | case BPF_DYNPTR_TYPE_SKB: | 
|  | return DYNPTR_TYPE_SKB; | 
|  | case BPF_DYNPTR_TYPE_XDP: | 
|  | return DYNPTR_TYPE_XDP; | 
|  | default: | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool dynptr_type_refcounted(enum bpf_dynptr_type type) | 
|  | { | 
|  | return type == BPF_DYNPTR_TYPE_RINGBUF; | 
|  | } | 
|  |  | 
|  | static void __mark_dynptr_reg(struct bpf_reg_state *reg, | 
|  | enum bpf_dynptr_type type, | 
|  | bool first_slot, int dynptr_id); | 
|  |  | 
|  | static void __mark_reg_not_init(const struct bpf_verifier_env *env, | 
|  | struct bpf_reg_state *reg); | 
|  |  | 
|  | static void mark_dynptr_stack_regs(struct bpf_verifier_env *env, | 
|  | struct bpf_reg_state *sreg1, | 
|  | struct bpf_reg_state *sreg2, | 
|  | enum bpf_dynptr_type type) | 
|  | { | 
|  | int id = ++env->id_gen; | 
|  |  | 
|  | __mark_dynptr_reg(sreg1, type, true, id); | 
|  | __mark_dynptr_reg(sreg2, type, false, id); | 
|  | } | 
|  |  | 
|  | static void mark_dynptr_cb_reg(struct bpf_verifier_env *env, | 
|  | struct bpf_reg_state *reg, | 
|  | enum bpf_dynptr_type type) | 
|  | { | 
|  | __mark_dynptr_reg(reg, type, true, ++env->id_gen); | 
|  | } | 
|  |  | 
|  | static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env, | 
|  | struct bpf_func_state *state, int spi); | 
|  |  | 
|  | static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg, | 
|  | enum bpf_arg_type arg_type, int insn_idx, int clone_ref_obj_id) | 
|  | { | 
|  | struct bpf_func_state *state = func(env, reg); | 
|  | enum bpf_dynptr_type type; | 
|  | int spi, i, err; | 
|  |  | 
|  | spi = dynptr_get_spi(env, reg); | 
|  | if (spi < 0) | 
|  | return spi; | 
|  |  | 
|  | /* We cannot assume both spi and spi - 1 belong to the same dynptr, | 
|  | * hence we need to call destroy_if_dynptr_stack_slot twice for both, | 
|  | * to ensure that for the following example: | 
|  | *	[d1][d1][d2][d2] | 
|  | * spi    3   2   1   0 | 
|  | * So marking spi = 2 should lead to destruction of both d1 and d2. In | 
|  | * case they do belong to same dynptr, second call won't see slot_type | 
|  | * as STACK_DYNPTR and will simply skip destruction. | 
|  | */ | 
|  | err = destroy_if_dynptr_stack_slot(env, state, spi); | 
|  | if (err) | 
|  | return err; | 
|  | err = destroy_if_dynptr_stack_slot(env, state, spi - 1); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | for (i = 0; i < BPF_REG_SIZE; i++) { | 
|  | state->stack[spi].slot_type[i] = STACK_DYNPTR; | 
|  | state->stack[spi - 1].slot_type[i] = STACK_DYNPTR; | 
|  | } | 
|  |  | 
|  | type = arg_to_dynptr_type(arg_type); | 
|  | if (type == BPF_DYNPTR_TYPE_INVALID) | 
|  | return -EINVAL; | 
|  |  | 
|  | mark_dynptr_stack_regs(env, &state->stack[spi].spilled_ptr, | 
|  | &state->stack[spi - 1].spilled_ptr, type); | 
|  |  | 
|  | if (dynptr_type_refcounted(type)) { | 
|  | /* The id is used to track proper releasing */ | 
|  | int id; | 
|  |  | 
|  | if (clone_ref_obj_id) | 
|  | id = clone_ref_obj_id; | 
|  | else | 
|  | id = acquire_reference_state(env, insn_idx); | 
|  |  | 
|  | if (id < 0) | 
|  | return id; | 
|  |  | 
|  | state->stack[spi].spilled_ptr.ref_obj_id = id; | 
|  | state->stack[spi - 1].spilled_ptr.ref_obj_id = id; | 
|  | } | 
|  |  | 
|  | state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; | 
|  | state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void invalidate_dynptr(struct bpf_verifier_env *env, struct bpf_func_state *state, int spi) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < BPF_REG_SIZE; i++) { | 
|  | state->stack[spi].slot_type[i] = STACK_INVALID; | 
|  | state->stack[spi - 1].slot_type[i] = STACK_INVALID; | 
|  | } | 
|  |  | 
|  | __mark_reg_not_init(env, &state->stack[spi].spilled_ptr); | 
|  | __mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr); | 
|  |  | 
|  | /* Why do we need to set REG_LIVE_WRITTEN for STACK_INVALID slot? | 
|  | * | 
|  | * While we don't allow reading STACK_INVALID, it is still possible to | 
|  | * do <8 byte writes marking some but not all slots as STACK_MISC. Then, | 
|  | * helpers or insns can do partial read of that part without failing, | 
|  | * but check_stack_range_initialized, check_stack_read_var_off, and | 
|  | * check_stack_read_fixed_off will do mark_reg_read for all 8-bytes of | 
|  | * the slot conservatively. Hence we need to prevent those liveness | 
|  | * marking walks. | 
|  | * | 
|  | * This was not a problem before because STACK_INVALID is only set by | 
|  | * default (where the default reg state has its reg->parent as NULL), or | 
|  | * in clean_live_states after REG_LIVE_DONE (at which point | 
|  | * mark_reg_read won't walk reg->parent chain), but not randomly during | 
|  | * verifier state exploration (like we did above). Hence, for our case | 
|  | * parentage chain will still be live (i.e. reg->parent may be | 
|  | * non-NULL), while earlier reg->parent was NULL, so we need | 
|  | * REG_LIVE_WRITTEN to screen off read marker propagation when it is | 
|  | * done later on reads or by mark_dynptr_read as well to unnecessary | 
|  | * mark registers in verifier state. | 
|  | */ | 
|  | state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; | 
|  | state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN; | 
|  | } | 
|  |  | 
|  | static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg) | 
|  | { | 
|  | struct bpf_func_state *state = func(env, reg); | 
|  | int spi, ref_obj_id, i; | 
|  |  | 
|  | spi = dynptr_get_spi(env, reg); | 
|  | if (spi < 0) | 
|  | return spi; | 
|  |  | 
|  | if (!dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) { | 
|  | invalidate_dynptr(env, state, spi); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | ref_obj_id = state->stack[spi].spilled_ptr.ref_obj_id; | 
|  |  | 
|  | /* If the dynptr has a ref_obj_id, then we need to invalidate | 
|  | * two things: | 
|  | * | 
|  | * 1) Any dynptrs with a matching ref_obj_id (clones) | 
|  | * 2) Any slices derived from this dynptr. | 
|  | */ | 
|  |  | 
|  | /* Invalidate any slices associated with this dynptr */ | 
|  | WARN_ON_ONCE(release_reference(env, ref_obj_id)); | 
|  |  | 
|  | /* Invalidate any dynptr clones */ | 
|  | for (i = 1; i < state->allocated_stack / BPF_REG_SIZE; i++) { | 
|  | if (state->stack[i].spilled_ptr.ref_obj_id != ref_obj_id) | 
|  | continue; | 
|  |  | 
|  | /* it should always be the case that if the ref obj id | 
|  | * matches then the stack slot also belongs to a | 
|  | * dynptr | 
|  | */ | 
|  | if (state->stack[i].slot_type[0] != STACK_DYNPTR) { | 
|  | verbose(env, "verifier internal error: misconfigured ref_obj_id\n"); | 
|  | return -EFAULT; | 
|  | } | 
|  | if (state->stack[i].spilled_ptr.dynptr.first_slot) | 
|  | invalidate_dynptr(env, state, i); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void __mark_reg_unknown(const struct bpf_verifier_env *env, | 
|  | struct bpf_reg_state *reg); | 
|  |  | 
|  | static void mark_reg_invalid(const struct bpf_verifier_env *env, struct bpf_reg_state *reg) | 
|  | { | 
|  | if (!env->allow_ptr_leaks) | 
|  | __mark_reg_not_init(env, reg); | 
|  | else | 
|  | __mark_reg_unknown(env, reg); | 
|  | } | 
|  |  | 
|  | static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env, | 
|  | struct bpf_func_state *state, int spi) | 
|  | { | 
|  | struct bpf_func_state *fstate; | 
|  | struct bpf_reg_state *dreg; | 
|  | int i, dynptr_id; | 
|  |  | 
|  | /* We always ensure that STACK_DYNPTR is never set partially, | 
|  | * hence just checking for slot_type[0] is enough. This is | 
|  | * different for STACK_SPILL, where it may be only set for | 
|  | * 1 byte, so code has to use is_spilled_reg. | 
|  | */ | 
|  | if (state->stack[spi].slot_type[0] != STACK_DYNPTR) | 
|  | return 0; | 
|  |  | 
|  | /* Reposition spi to first slot */ | 
|  | if (!state->stack[spi].spilled_ptr.dynptr.first_slot) | 
|  | spi = spi + 1; | 
|  |  | 
|  | if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) { | 
|  | verbose(env, "cannot overwrite referenced dynptr\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | mark_stack_slot_scratched(env, spi); | 
|  | mark_stack_slot_scratched(env, spi - 1); | 
|  |  | 
|  | /* Writing partially to one dynptr stack slot destroys both. */ | 
|  | for (i = 0; i < BPF_REG_SIZE; i++) { | 
|  | state->stack[spi].slot_type[i] = STACK_INVALID; | 
|  | state->stack[spi - 1].slot_type[i] = STACK_INVALID; | 
|  | } | 
|  |  | 
|  | dynptr_id = state->stack[spi].spilled_ptr.id; | 
|  | /* Invalidate any slices associated with this dynptr */ | 
|  | bpf_for_each_reg_in_vstate(env->cur_state, fstate, dreg, ({ | 
|  | /* Dynptr slices are only PTR_TO_MEM_OR_NULL and PTR_TO_MEM */ | 
|  | if (dreg->type != (PTR_TO_MEM | PTR_MAYBE_NULL) && dreg->type != PTR_TO_MEM) | 
|  | continue; | 
|  | if (dreg->dynptr_id == dynptr_id) | 
|  | mark_reg_invalid(env, dreg); | 
|  | })); | 
|  |  | 
|  | /* Do not release reference state, we are destroying dynptr on stack, | 
|  | * not using some helper to release it. Just reset register. | 
|  | */ | 
|  | __mark_reg_not_init(env, &state->stack[spi].spilled_ptr); | 
|  | __mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr); | 
|  |  | 
|  | /* Same reason as unmark_stack_slots_dynptr above */ | 
|  | state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; | 
|  | state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg) | 
|  | { | 
|  | int spi; | 
|  |  | 
|  | if (reg->type == CONST_PTR_TO_DYNPTR) | 
|  | return false; | 
|  |  | 
|  | spi = dynptr_get_spi(env, reg); | 
|  |  | 
|  | /* -ERANGE (i.e. spi not falling into allocated stack slots) isn't an | 
|  | * error because this just means the stack state hasn't been updated yet. | 
|  | * We will do check_mem_access to check and update stack bounds later. | 
|  | */ | 
|  | if (spi < 0 && spi != -ERANGE) | 
|  | return false; | 
|  |  | 
|  | /* We don't need to check if the stack slots are marked by previous | 
|  | * dynptr initializations because we allow overwriting existing unreferenced | 
|  | * STACK_DYNPTR slots, see mark_stack_slots_dynptr which calls | 
|  | * destroy_if_dynptr_stack_slot to ensure dynptr objects at the slots we are | 
|  | * touching are completely destructed before we reinitialize them for a new | 
|  | * one. For referenced ones, destroy_if_dynptr_stack_slot returns an error early | 
|  | * instead of delaying it until the end where the user will get "Unreleased | 
|  | * reference" error. | 
|  | */ | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg) | 
|  | { | 
|  | struct bpf_func_state *state = func(env, reg); | 
|  | int i, spi; | 
|  |  | 
|  | /* This already represents first slot of initialized bpf_dynptr. | 
|  | * | 
|  | * CONST_PTR_TO_DYNPTR already has fixed and var_off as 0 due to | 
|  | * check_func_arg_reg_off's logic, so we don't need to check its | 
|  | * offset and alignment. | 
|  | */ | 
|  | if (reg->type == CONST_PTR_TO_DYNPTR) | 
|  | return true; | 
|  |  | 
|  | spi = dynptr_get_spi(env, reg); | 
|  | if (spi < 0) | 
|  | return false; | 
|  | if (!state->stack[spi].spilled_ptr.dynptr.first_slot) | 
|  | return false; | 
|  |  | 
|  | for (i = 0; i < BPF_REG_SIZE; i++) { | 
|  | if (state->stack[spi].slot_type[i] != STACK_DYNPTR || | 
|  | state->stack[spi - 1].slot_type[i] != STACK_DYNPTR) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool is_dynptr_type_expected(struct bpf_verifier_env *env, struct bpf_reg_state *reg, | 
|  | enum bpf_arg_type arg_type) | 
|  | { | 
|  | struct bpf_func_state *state = func(env, reg); | 
|  | enum bpf_dynptr_type dynptr_type; | 
|  | int spi; | 
|  |  | 
|  | /* ARG_PTR_TO_DYNPTR takes any type of dynptr */ | 
|  | if (arg_type == ARG_PTR_TO_DYNPTR) | 
|  | return true; | 
|  |  | 
|  | dynptr_type = arg_to_dynptr_type(arg_type); | 
|  | if (reg->type == CONST_PTR_TO_DYNPTR) { | 
|  | return reg->dynptr.type == dynptr_type; | 
|  | } else { | 
|  | spi = dynptr_get_spi(env, reg); | 
|  | if (spi < 0) | 
|  | return false; | 
|  | return state->stack[spi].spilled_ptr.dynptr.type == dynptr_type; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void __mark_reg_known_zero(struct bpf_reg_state *reg); | 
|  |  | 
|  | static bool in_rcu_cs(struct bpf_verifier_env *env); | 
|  |  | 
|  | static bool is_kfunc_rcu_protected(struct bpf_kfunc_call_arg_meta *meta); | 
|  |  | 
|  | static int mark_stack_slots_iter(struct bpf_verifier_env *env, | 
|  | struct bpf_kfunc_call_arg_meta *meta, | 
|  | struct bpf_reg_state *reg, int insn_idx, | 
|  | struct btf *btf, u32 btf_id, int nr_slots) | 
|  | { | 
|  | struct bpf_func_state *state = func(env, reg); | 
|  | int spi, i, j, id; | 
|  |  | 
|  | spi = iter_get_spi(env, reg, nr_slots); | 
|  | if (spi < 0) | 
|  | return spi; | 
|  |  | 
|  | id = acquire_reference_state(env, insn_idx); | 
|  | if (id < 0) | 
|  | return id; | 
|  |  | 
|  | for (i = 0; i < nr_slots; i++) { | 
|  | struct bpf_stack_state *slot = &state->stack[spi - i]; | 
|  | struct bpf_reg_state *st = &slot->spilled_ptr; | 
|  |  | 
|  | __mark_reg_known_zero(st); | 
|  | st->type = PTR_TO_STACK; /* we don't have dedicated reg type */ | 
|  | if (is_kfunc_rcu_protected(meta)) { | 
|  | if (in_rcu_cs(env)) | 
|  | st->type |= MEM_RCU; | 
|  | else | 
|  | st->type |= PTR_UNTRUSTED; | 
|  | } | 
|  | st->live |= REG_LIVE_WRITTEN; | 
|  | st->ref_obj_id = i == 0 ? id : 0; | 
|  | st->iter.btf = btf; | 
|  | st->iter.btf_id = btf_id; | 
|  | st->iter.state = BPF_ITER_STATE_ACTIVE; | 
|  | st->iter.depth = 0; | 
|  |  | 
|  | for (j = 0; j < BPF_REG_SIZE; j++) | 
|  | slot->slot_type[j] = STACK_ITER; | 
|  |  | 
|  | mark_stack_slot_scratched(env, spi - i); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int unmark_stack_slots_iter(struct bpf_verifier_env *env, | 
|  | struct bpf_reg_state *reg, int nr_slots) | 
|  | { | 
|  | struct bpf_func_state *state = func(env, reg); | 
|  | int spi, i, j; | 
|  |  | 
|  | spi = iter_get_spi(env, reg, nr_slots); | 
|  | if (spi < 0) | 
|  | return spi; | 
|  |  | 
|  | for (i = 0; i < nr_slots; i++) { | 
|  | struct bpf_stack_state *slot = &state->stack[spi - i]; | 
|  | struct bpf_reg_state *st = &slot->spilled_ptr; | 
|  |  | 
|  | if (i == 0) | 
|  | WARN_ON_ONCE(release_reference(env, st->ref_obj_id)); | 
|  |  | 
|  | __mark_reg_not_init(env, st); | 
|  |  | 
|  | /* see unmark_stack_slots_dynptr() for why we need to set REG_LIVE_WRITTEN */ | 
|  | st->live |= REG_LIVE_WRITTEN; | 
|  |  | 
|  | for (j = 0; j < BPF_REG_SIZE; j++) | 
|  | slot->slot_type[j] = STACK_INVALID; | 
|  |  | 
|  | mark_stack_slot_scratched(env, spi - i); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static bool is_iter_reg_valid_uninit(struct bpf_verifier_env *env, | 
|  | struct bpf_reg_state *reg, int nr_slots) | 
|  | { | 
|  | struct bpf_func_state *state = func(env, reg); | 
|  | int spi, i, j; | 
|  |  | 
|  | /* For -ERANGE (i.e. spi not falling into allocated stack slots), we | 
|  | * will do check_mem_access to check and update stack bounds later, so | 
|  | * return true for that case. | 
|  | */ | 
|  | spi = iter_get_spi(env, reg, nr_slots); | 
|  | if (spi == -ERANGE) | 
|  | return true; | 
|  | if (spi < 0) | 
|  | return false; | 
|  |  | 
|  | for (i = 0; i < nr_slots; i++) { | 
|  | struct bpf_stack_state *slot = &state->stack[spi - i]; | 
|  |  | 
|  | for (j = 0; j < BPF_REG_SIZE; j++) | 
|  | if (slot->slot_type[j] == STACK_ITER) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static int is_iter_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg, | 
|  | struct btf *btf, u32 btf_id, int nr_slots) | 
|  | { | 
|  | struct bpf_func_state *state = func(env, reg); | 
|  | int spi, i, j; | 
|  |  | 
|  | spi = iter_get_spi(env, reg, nr_slots); | 
|  | if (spi < 0) | 
|  | return -EINVAL; | 
|  |  | 
|  | for (i = 0; i < nr_slots; i++) { | 
|  | struct bpf_stack_state *slot = &state->stack[spi - i]; | 
|  | struct bpf_reg_state *st = &slot->spilled_ptr; | 
|  |  | 
|  | if (st->type & PTR_UNTRUSTED) | 
|  | return -EPROTO; | 
|  | /* only main (first) slot has ref_obj_id set */ | 
|  | if (i == 0 && !st->ref_obj_id) | 
|  | return -EINVAL; | 
|  | if (i != 0 && st->ref_obj_id) | 
|  | return -EINVAL; | 
|  | if (st->iter.btf != btf || st->iter.btf_id != btf_id) | 
|  | return -EINVAL; | 
|  |  | 
|  | for (j = 0; j < BPF_REG_SIZE; j++) | 
|  | if (slot->slot_type[j] != STACK_ITER) | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Check if given stack slot is "special": | 
|  | *   - spilled register state (STACK_SPILL); | 
|  | *   - dynptr state (STACK_DYNPTR); | 
|  | *   - iter state (STACK_ITER). | 
|  | */ | 
|  | static bool is_stack_slot_special(const struct bpf_stack_state *stack) | 
|  | { | 
|  | enum bpf_stack_slot_type type = stack->slot_type[BPF_REG_SIZE - 1]; | 
|  |  | 
|  | switch (type) { | 
|  | case STACK_SPILL: | 
|  | case STACK_DYNPTR: | 
|  | case STACK_ITER: | 
|  | return true; | 
|  | case STACK_INVALID: | 
|  | case STACK_MISC: | 
|  | case STACK_ZERO: | 
|  | return false; | 
|  | default: | 
|  | WARN_ONCE(1, "unknown stack slot type %d\n", type); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* The reg state of a pointer or a bounded scalar was saved when | 
|  | * it was spilled to the stack. | 
|  | */ | 
|  | static bool is_spilled_reg(const struct bpf_stack_state *stack) | 
|  | { | 
|  | return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL; | 
|  | } | 
|  |  | 
|  | static bool is_spilled_scalar_reg(const struct bpf_stack_state *stack) | 
|  | { | 
|  | return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL && | 
|  | stack->spilled_ptr.type == SCALAR_VALUE; | 
|  | } | 
|  |  | 
|  | static bool is_spilled_scalar_reg64(const struct bpf_stack_state *stack) | 
|  | { | 
|  | return stack->slot_type[0] == STACK_SPILL && | 
|  | stack->spilled_ptr.type == SCALAR_VALUE; | 
|  | } | 
|  |  | 
|  | /* Mark stack slot as STACK_MISC, unless it is already STACK_INVALID, in which | 
|  | * case they are equivalent, or it's STACK_ZERO, in which case we preserve | 
|  | * more precise STACK_ZERO. | 
|  | * Note, in uprivileged mode leaving STACK_INVALID is wrong, so we take | 
|  | * env->allow_ptr_leaks into account and force STACK_MISC, if necessary. | 
|  | */ | 
|  | static void mark_stack_slot_misc(struct bpf_verifier_env *env, u8 *stype) | 
|  | { | 
|  | if (*stype == STACK_ZERO) | 
|  | return; | 
|  | if (env->allow_ptr_leaks && *stype == STACK_INVALID) | 
|  | return; | 
|  | *stype = STACK_MISC; | 
|  | } | 
|  |  | 
|  | static void scrub_spilled_slot(u8 *stype) | 
|  | { | 
|  | if (*stype != STACK_INVALID) | 
|  | *stype = STACK_MISC; | 
|  | } | 
|  |  | 
|  | /* copy array src of length n * size bytes to dst. dst is reallocated if it's too | 
|  | * small to hold src. This is different from krealloc since we don't want to preserve | 
|  | * the contents of dst. | 
|  | * | 
|  | * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could | 
|  | * not be allocated. | 
|  | */ | 
|  | static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags) | 
|  | { | 
|  | size_t alloc_bytes; | 
|  | void *orig = dst; | 
|  | size_t bytes; | 
|  |  | 
|  | if (ZERO_OR_NULL_PTR(src)) | 
|  | goto out; | 
|  |  | 
|  | if (unlikely(check_mul_overflow(n, size, &bytes))) | 
|  | return NULL; | 
|  |  | 
|  | alloc_bytes = max(ksize(orig), kmalloc_size_roundup(bytes)); | 
|  | dst = krealloc(orig, alloc_bytes, flags); | 
|  | if (!dst) { | 
|  | kfree(orig); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | memcpy(dst, src, bytes); | 
|  | out: | 
|  | return dst ? dst : ZERO_SIZE_PTR; | 
|  | } | 
|  |  | 
|  | /* resize an array from old_n items to new_n items. the array is reallocated if it's too | 
|  | * small to hold new_n items. new items are zeroed out if the array grows. | 
|  | * | 
|  | * Contrary to krealloc_array, does not free arr if new_n is zero. | 
|  | */ | 
|  | static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size) | 
|  | { | 
|  | size_t alloc_size; | 
|  | void *new_arr; | 
|  |  | 
|  | if (!new_n || old_n == new_n) | 
|  | goto out; | 
|  |  | 
|  | alloc_size = kmalloc_size_roundup(size_mul(new_n, size)); | 
|  | new_arr = krealloc(arr, alloc_size, GFP_KERNEL); | 
|  | if (!new_arr) { | 
|  | kfree(arr); | 
|  | return NULL; | 
|  | } | 
|  | arr = new_arr; | 
|  |  | 
|  | if (new_n > old_n) | 
|  | memset(arr + old_n * size, 0, (new_n - old_n) * size); | 
|  |  | 
|  | out: | 
|  | return arr ? arr : ZERO_SIZE_PTR; | 
|  | } | 
|  |  | 
|  | static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src) | 
|  | { | 
|  | dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs, | 
|  | sizeof(struct bpf_reference_state), GFP_KERNEL); | 
|  | if (!dst->refs) | 
|  | return -ENOMEM; | 
|  |  | 
|  | dst->acquired_refs = src->acquired_refs; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src) | 
|  | { | 
|  | size_t n = src->allocated_stack / BPF_REG_SIZE; | 
|  |  | 
|  | dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state), | 
|  | GFP_KERNEL); | 
|  | if (!dst->stack) | 
|  | return -ENOMEM; | 
|  |  | 
|  | dst->allocated_stack = src->allocated_stack; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int resize_reference_state(struct bpf_func_state *state, size_t n) | 
|  | { | 
|  | state->refs = realloc_array(state->refs, state->acquired_refs, n, | 
|  | sizeof(struct bpf_reference_state)); | 
|  | if (!state->refs) | 
|  | return -ENOMEM; | 
|  |  | 
|  | state->acquired_refs = n; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Possibly update state->allocated_stack to be at least size bytes. Also | 
|  | * possibly update the function's high-water mark in its bpf_subprog_info. | 
|  | */ | 
|  | static int grow_stack_state(struct bpf_verifier_env *env, struct bpf_func_state *state, int size) | 
|  | { | 
|  | size_t old_n = state->allocated_stack / BPF_REG_SIZE, n; | 
|  |  | 
|  | /* The stack size is always a multiple of BPF_REG_SIZE. */ | 
|  | size = round_up(size, BPF_REG_SIZE); | 
|  | n = size / BPF_REG_SIZE; | 
|  |  | 
|  | if (old_n >= n) | 
|  | return 0; | 
|  |  | 
|  | state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state)); | 
|  | if (!state->stack) | 
|  | return -ENOMEM; | 
|  |  | 
|  | state->allocated_stack = size; | 
|  |  | 
|  | /* update known max for given subprogram */ | 
|  | if (env->subprog_info[state->subprogno].stack_depth < size) | 
|  | env->subprog_info[state->subprogno].stack_depth = size; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Acquire a pointer id from the env and update the state->refs to include | 
|  | * this new pointer reference. | 
|  | * On success, returns a valid pointer id to associate with the register | 
|  | * On failure, returns a negative errno. | 
|  | */ | 
|  | static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx) | 
|  | { | 
|  | struct bpf_func_state *state = cur_func(env); | 
|  | int new_ofs = state->acquired_refs; | 
|  | int id, err; | 
|  |  | 
|  | err = resize_reference_state(state, state->acquired_refs + 1); | 
|  | if (err) | 
|  | return err; | 
|  | id = ++env->id_gen; | 
|  | state->refs[new_ofs].id = id; | 
|  | state->refs[new_ofs].insn_idx = insn_idx; | 
|  | state->refs[new_ofs].callback_ref = state->in_callback_fn ? state->frameno : 0; | 
|  |  | 
|  | return id; | 
|  | } | 
|  |  | 
|  | /* release function corresponding to acquire_reference_state(). Idempotent. */ | 
|  | static int release_reference_state(struct bpf_func_state *state, int ptr_id) | 
|  | { | 
|  | int i, last_idx; | 
|  |  | 
|  | last_idx = state->acquired_refs - 1; | 
|  | for (i = 0; i < state->acquired_refs; i++) { | 
|  | if (state->refs[i].id == ptr_id) { | 
|  | /* Cannot release caller references in callbacks */ | 
|  | if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno) | 
|  | return -EINVAL; | 
|  | if (last_idx && i != last_idx) | 
|  | memcpy(&state->refs[i], &state->refs[last_idx], | 
|  | sizeof(*state->refs)); | 
|  | memset(&state->refs[last_idx], 0, sizeof(*state->refs)); | 
|  | state->acquired_refs--; | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | static void free_func_state(struct bpf_func_state *state) | 
|  | { | 
|  | if (!state) | 
|  | return; | 
|  | kfree(state->refs); | 
|  | kfree(state->stack); | 
|  | kfree(state); | 
|  | } | 
|  |  | 
|  | static void clear_jmp_history(struct bpf_verifier_state *state) | 
|  | { | 
|  | kfree(state->jmp_history); | 
|  | state->jmp_history = NULL; | 
|  | state->jmp_history_cnt = 0; | 
|  | } | 
|  |  | 
|  | static void free_verifier_state(struct bpf_verifier_state *state, | 
|  | bool free_self) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i <= state->curframe; i++) { | 
|  | free_func_state(state->frame[i]); | 
|  | state->frame[i] = NULL; | 
|  | } | 
|  | clear_jmp_history(state); | 
|  | if (free_self) | 
|  | kfree(state); | 
|  | } | 
|  |  | 
|  | /* copy verifier state from src to dst growing dst stack space | 
|  | * when necessary to accommodate larger src stack | 
|  | */ | 
|  | static int copy_func_state(struct bpf_func_state *dst, | 
|  | const struct bpf_func_state *src) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs)); | 
|  | err = copy_reference_state(dst, src); | 
|  | if (err) | 
|  | return err; | 
|  | return copy_stack_state(dst, src); | 
|  | } | 
|  |  | 
|  | static int copy_verifier_state(struct bpf_verifier_state *dst_state, | 
|  | const struct bpf_verifier_state *src) | 
|  | { | 
|  | struct bpf_func_state *dst; | 
|  | int i, err; | 
|  |  | 
|  | dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history, | 
|  | src->jmp_history_cnt, sizeof(*dst_state->jmp_history), | 
|  | GFP_USER); | 
|  | if (!dst_state->jmp_history) | 
|  | return -ENOMEM; | 
|  | dst_state->jmp_history_cnt = src->jmp_history_cnt; | 
|  |  | 
|  | /* if dst has more stack frames then src frame, free them, this is also | 
|  | * necessary in case of exceptional exits using bpf_throw. | 
|  | */ | 
|  | for (i = src->curframe + 1; i <= dst_state->curframe; i++) { | 
|  | free_func_state(dst_state->frame[i]); | 
|  | dst_state->frame[i] = NULL; | 
|  | } | 
|  | dst_state->speculative = src->speculative; | 
|  | dst_state->active_rcu_lock = src->active_rcu_lock; | 
|  | dst_state->active_preempt_lock = src->active_preempt_lock; | 
|  | dst_state->in_sleepable = src->in_sleepable; | 
|  | dst_state->curframe = src->curframe; | 
|  | dst_state->active_lock.ptr = src->active_lock.ptr; | 
|  | dst_state->active_lock.id = src->active_lock.id; | 
|  | dst_state->branches = src->branches; | 
|  | dst_state->parent = src->parent; | 
|  | dst_state->first_insn_idx = src->first_insn_idx; | 
|  | dst_state->last_insn_idx = src->last_insn_idx; | 
|  | dst_state->dfs_depth = src->dfs_depth; | 
|  | dst_state->callback_unroll_depth = src->callback_unroll_depth; | 
|  | dst_state->used_as_loop_entry = src->used_as_loop_entry; | 
|  | dst_state->may_goto_depth = src->may_goto_depth; | 
|  | for (i = 0; i <= src->curframe; i++) { | 
|  | dst = dst_state->frame[i]; | 
|  | if (!dst) { | 
|  | dst = kzalloc(sizeof(*dst), GFP_KERNEL); | 
|  | if (!dst) | 
|  | return -ENOMEM; | 
|  | dst_state->frame[i] = dst; | 
|  | } | 
|  | err = copy_func_state(dst, src->frame[i]); | 
|  | if (err) | 
|  | return err; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static u32 state_htab_size(struct bpf_verifier_env *env) | 
|  | { | 
|  | return env->prog->len; | 
|  | } | 
|  |  | 
|  | static struct bpf_verifier_state_list **explored_state(struct bpf_verifier_env *env, int idx) | 
|  | { | 
|  | struct bpf_verifier_state *cur = env->cur_state; | 
|  | struct bpf_func_state *state = cur->frame[cur->curframe]; | 
|  |  | 
|  | return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)]; | 
|  | } | 
|  |  | 
|  | static bool same_callsites(struct bpf_verifier_state *a, struct bpf_verifier_state *b) | 
|  | { | 
|  | int fr; | 
|  |  | 
|  | if (a->curframe != b->curframe) | 
|  | return false; | 
|  |  | 
|  | for (fr = a->curframe; fr >= 0; fr--) | 
|  | if (a->frame[fr]->callsite != b->frame[fr]->callsite) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Open coded iterators allow back-edges in the state graph in order to | 
|  | * check unbounded loops that iterators. | 
|  | * | 
|  | * In is_state_visited() it is necessary to know if explored states are | 
|  | * part of some loops in order to decide whether non-exact states | 
|  | * comparison could be used: | 
|  | * - non-exact states comparison establishes sub-state relation and uses | 
|  | *   read and precision marks to do so, these marks are propagated from | 
|  | *   children states and thus are not guaranteed to be final in a loop; | 
|  | * - exact states comparison just checks if current and explored states | 
|  | *   are identical (and thus form a back-edge). | 
|  | * | 
|  | * Paper "A New Algorithm for Identifying Loops in Decompilation" | 
|  | * by Tao Wei, Jian Mao, Wei Zou and Yu Chen [1] presents a convenient | 
|  | * algorithm for loop structure detection and gives an overview of | 
|  | * relevant terminology. It also has helpful illustrations. | 
|  | * | 
|  | * [1] https://api.semanticscholar.org/CorpusID:15784067 | 
|  | * | 
|  | * We use a similar algorithm but because loop nested structure is | 
|  | * irrelevant for verifier ours is significantly simpler and resembles | 
|  | * strongly connected components algorithm from Sedgewick's textbook. | 
|  | * | 
|  | * Define topmost loop entry as a first node of the loop traversed in a | 
|  | * depth first search starting from initial state. The goal of the loop | 
|  | * tracking algorithm is to associate topmost loop entries with states | 
|  | * derived from these entries. | 
|  | * | 
|  | * For each step in the DFS states traversal algorithm needs to identify | 
|  | * the following situations: | 
|  | * | 
|  | *          initial                     initial                   initial | 
|  | *            |                           |                         | | 
|  | *            V                           V                         V | 
|  | *           ...                         ...           .---------> hdr | 
|  | *            |                           |            |            | | 
|  | *            V                           V            |            V | 
|  | *           cur                     .-> succ          |    .------... | 
|  | *            |                      |    |            |    |       | | 
|  | *            V                      |    V            |    V       V | 
|  | *           succ                    '-- cur           |   ...     ... | 
|  | *                                                     |    |       | | 
|  | *                                                     |    V       V | 
|  | *                                                     |   succ <- cur | 
|  | *                                                     |    | | 
|  | *                                                     |    V | 
|  | *                                                     |   ... | 
|  | *                                                     |    | | 
|  | *                                                     '----' | 
|  | * | 
|  | *  (A) successor state of cur   (B) successor state of cur or it's entry | 
|  | *      not yet traversed            are in current DFS path, thus cur and succ | 
|  | *                                   are members of the same outermost loop | 
|  | * | 
|  | *                      initial                  initial | 
|  | *                        |                        | | 
|  | *                        V                        V | 
|  | *                       ...                      ... | 
|  | *                        |                        | | 
|  | *                        V                        V | 
|  | *                .------...               .------... | 
|  | *                |       |                |       | | 
|  | *                V       V                V       V | 
|  | *           .-> hdr     ...              ...     ... | 
|  | *           |    |       |                |       | | 
|  | *           |    V       V                V       V | 
|  | *           |   succ <- cur              succ <- cur | 
|  | *           |    |                        | | 
|  | *           |    V                        V | 
|  | *           |   ...                      ... | 
|  | *           |    |                        | | 
|  | *           '----'                       exit | 
|  | * | 
|  | * (C) successor state of cur is a part of some loop but this loop | 
|  | *     does not include cur or successor state is not in a loop at all. | 
|  | * | 
|  | * Algorithm could be described as the following python code: | 
|  | * | 
|  | *     traversed = set()   # Set of traversed nodes | 
|  | *     entries = {}        # Mapping from node to loop entry | 
|  | *     depths = {}         # Depth level assigned to graph node | 
|  | *     path = set()        # Current DFS path | 
|  | * | 
|  | *     # Find outermost loop entry known for n | 
|  | *     def get_loop_entry(n): | 
|  | *         h = entries.get(n, None) | 
|  | *         while h in entries and entries[h] != h: | 
|  | *             h = entries[h] | 
|  | *         return h | 
|  | * | 
|  | *     # Update n's loop entry if h's outermost entry comes | 
|  | *     # before n's outermost entry in current DFS path. | 
|  | *     def update_loop_entry(n, h): | 
|  | *         n1 = get_loop_entry(n) or n | 
|  | *         h1 = get_loop_entry(h) or h | 
|  | *         if h1 in path and depths[h1] <= depths[n1]: | 
|  | *             entries[n] = h1 | 
|  | * | 
|  | *     def dfs(n, depth): | 
|  | *         traversed.add(n) | 
|  | *         path.add(n) | 
|  | *         depths[n] = depth | 
|  | *         for succ in G.successors(n): | 
|  | *             if succ not in traversed: | 
|  | *                 # Case A: explore succ and update cur's loop entry | 
|  | *                 #         only if succ's entry is in current DFS path. | 
|  | *                 dfs(succ, depth + 1) | 
|  | *                 h = get_loop_entry(succ) | 
|  | *                 update_loop_entry(n, h) | 
|  | *             else: | 
|  | *                 # Case B or C depending on `h1 in path` check in update_loop_entry(). | 
|  | *                 update_loop_entry(n, succ) | 
|  | *         path.remove(n) | 
|  | * | 
|  | * To adapt this algorithm for use with verifier: | 
|  | * - use st->branch == 0 as a signal that DFS of succ had been finished | 
|  | *   and cur's loop entry has to be updated (case A), handle this in | 
|  | *   update_branch_counts(); | 
|  | * - use st->branch > 0 as a signal that st is in the current DFS path; | 
|  | * - handle cases B and C in is_state_visited(); | 
|  | * - update topmost loop entry for intermediate states in get_loop_entry(). | 
|  | */ | 
|  | static struct bpf_verifier_state *get_loop_entry(struct bpf_verifier_state *st) | 
|  | { | 
|  | struct bpf_verifier_state *topmost = st->loop_entry, *old; | 
|  |  | 
|  | while (topmost && topmost->loop_entry && topmost != topmost->loop_entry) | 
|  | topmost = topmost->loop_entry; | 
|  | /* Update loop entries for intermediate states to avoid this | 
|  | * traversal in future get_loop_entry() calls. | 
|  | */ | 
|  | while (st && st->loop_entry != topmost) { | 
|  | old = st->loop_entry; | 
|  | st->loop_entry = topmost; | 
|  | st = old; | 
|  | } | 
|  | return topmost; | 
|  | } | 
|  |  | 
|  | static void update_loop_entry(struct bpf_verifier_state *cur, struct bpf_verifier_state *hdr) | 
|  | { | 
|  | struct bpf_verifier_state *cur1, *hdr1; | 
|  |  | 
|  | cur1 = get_loop_entry(cur) ?: cur; | 
|  | hdr1 = get_loop_entry(hdr) ?: hdr; | 
|  | /* The head1->branches check decides between cases B and C in | 
|  | * comment for get_loop_entry(). If hdr1->branches == 0 then | 
|  | * head's topmost loop entry is not in current DFS path, | 
|  | * hence 'cur' and 'hdr' are not in the same loop and there is | 
|  | * no need to update cur->loop_entry. | 
|  | */ | 
|  | if (hdr1->branches && hdr1->dfs_depth <= cur1->dfs_depth) { | 
|  | cur->loop_entry = hdr; | 
|  | hdr->used_as_loop_entry = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st) | 
|  | { | 
|  | while (st) { | 
|  | u32 br = --st->branches; | 
|  |  | 
|  | /* br == 0 signals that DFS exploration for 'st' is finished, | 
|  | * thus it is necessary to update parent's loop entry if it | 
|  | * turned out that st is a part of some loop. | 
|  | * This is a part of 'case A' in get_loop_entry() comment. | 
|  | */ | 
|  | if (br == 0 && st->parent && st->loop_entry) | 
|  | update_loop_entry(st->parent, st->loop_entry); | 
|  |  | 
|  | /* WARN_ON(br > 1) technically makes sense here, | 
|  | * but see comment in push_stack(), hence: | 
|  | */ | 
|  | WARN_ONCE((int)br < 0, | 
|  | "BUG update_branch_counts:branches_to_explore=%d\n", | 
|  | br); | 
|  | if (br) | 
|  | break; | 
|  | st = st->parent; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, | 
|  | int *insn_idx, bool pop_log) | 
|  | { | 
|  | struct bpf_verifier_state *cur = env->cur_state; | 
|  | struct bpf_verifier_stack_elem *elem, *head = env->head; | 
|  | int err; | 
|  |  | 
|  | if (env->head == NULL) | 
|  | return -ENOENT; | 
|  |  | 
|  | if (cur) { | 
|  | err = copy_verifier_state(cur, &head->st); | 
|  | if (err) | 
|  | return err; | 
|  | } | 
|  | if (pop_log) | 
|  | bpf_vlog_reset(&env->log, head->log_pos); | 
|  | if (insn_idx) | 
|  | *insn_idx = head->insn_idx; | 
|  | if (prev_insn_idx) | 
|  | *prev_insn_idx = head->prev_insn_idx; | 
|  | elem = head->next; | 
|  | free_verifier_state(&head->st, false); | 
|  | kfree(head); | 
|  | env->head = elem; | 
|  | env->stack_size--; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, | 
|  | int insn_idx, int prev_insn_idx, | 
|  | bool speculative) | 
|  | { | 
|  | struct bpf_verifier_state *cur = env->cur_state; | 
|  | struct bpf_verifier_stack_elem *elem; | 
|  | int err; | 
|  |  | 
|  | elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); | 
|  | if (!elem) | 
|  | goto err; | 
|  |  | 
|  | elem->insn_idx = insn_idx; | 
|  | elem->prev_insn_idx = prev_insn_idx; | 
|  | elem->next = env->head; | 
|  | elem->log_pos = env->log.end_pos; | 
|  | env->head = elem; | 
|  | env->stack_size++; | 
|  | err = copy_verifier_state(&elem->st, cur); | 
|  | if (err) | 
|  | goto err; | 
|  | elem->st.speculative |= speculative; | 
|  | if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { | 
|  | verbose(env, "The sequence of %d jumps is too complex.\n", | 
|  | env->stack_size); | 
|  | goto err; | 
|  | } | 
|  | if (elem->st.parent) { | 
|  | ++elem->st.parent->branches; | 
|  | /* WARN_ON(branches > 2) technically makes sense here, | 
|  | * but | 
|  | * 1. speculative states will bump 'branches' for non-branch | 
|  | * instructions | 
|  | * 2. is_state_visited() heuristics may decide not to create | 
|  | * a new state for a sequence of branches and all such current | 
|  | * and cloned states will be pointing to a single parent state | 
|  | * which might have large 'branches' count. | 
|  | */ | 
|  | } | 
|  | return &elem->st; | 
|  | err: | 
|  | free_verifier_state(env->cur_state, true); | 
|  | env->cur_state = NULL; | 
|  | /* pop all elements and return */ | 
|  | while (!pop_stack(env, NULL, NULL, false)); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | #define CALLER_SAVED_REGS 6 | 
|  | static const int caller_saved[CALLER_SAVED_REGS] = { | 
|  | BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 | 
|  | }; | 
|  |  | 
|  | /* This helper doesn't clear reg->id */ | 
|  | static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm) | 
|  | { | 
|  | reg->var_off = tnum_const(imm); | 
|  | reg->smin_value = (s64)imm; | 
|  | reg->smax_value = (s64)imm; | 
|  | reg->umin_value = imm; | 
|  | reg->umax_value = imm; | 
|  |  | 
|  | reg->s32_min_value = (s32)imm; | 
|  | reg->s32_max_value = (s32)imm; | 
|  | reg->u32_min_value = (u32)imm; | 
|  | reg->u32_max_value = (u32)imm; | 
|  | } | 
|  |  | 
|  | /* Mark the unknown part of a register (variable offset or scalar value) as | 
|  | * known to have the value @imm. | 
|  | */ | 
|  | static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) | 
|  | { | 
|  | /* Clear off and union(map_ptr, range) */ | 
|  | memset(((u8 *)reg) + sizeof(reg->type), 0, | 
|  | offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type)); | 
|  | reg->id = 0; | 
|  | reg->ref_obj_id = 0; | 
|  | ___mark_reg_known(reg, imm); | 
|  | } | 
|  |  | 
|  | static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm) | 
|  | { | 
|  | reg->var_off = tnum_const_subreg(reg->var_off, imm); | 
|  | reg->s32_min_value = (s32)imm; | 
|  | reg->s32_max_value = (s32)imm; | 
|  | reg->u32_min_value = (u32)imm; | 
|  | reg->u32_max_value = (u32)imm; | 
|  | } | 
|  |  | 
|  | /* Mark the 'variable offset' part of a register as zero.  This should be | 
|  | * used only on registers holding a pointer type. | 
|  | */ | 
|  | static void __mark_reg_known_zero(struct bpf_reg_state *reg) | 
|  | { | 
|  | __mark_reg_known(reg, 0); | 
|  | } | 
|  |  | 
|  | static void __mark_reg_const_zero(const struct bpf_verifier_env *env, struct bpf_reg_state *reg) | 
|  | { | 
|  | __mark_reg_known(reg, 0); | 
|  | reg->type = SCALAR_VALUE; | 
|  | /* all scalars are assumed imprecise initially (unless unprivileged, | 
|  | * in which case everything is forced to be precise) | 
|  | */ | 
|  | reg->precise = !env->bpf_capable; | 
|  | } | 
|  |  | 
|  | static void mark_reg_known_zero(struct bpf_verifier_env *env, | 
|  | struct bpf_reg_state *regs, u32 regno) | 
|  | { | 
|  | if (WARN_ON(regno >= MAX_BPF_REG)) { | 
|  | verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); | 
|  | /* Something bad happened, let's kill all regs */ | 
|  | for (regno = 0; regno < MAX_BPF_REG; regno++) | 
|  | __mark_reg_not_init(env, regs + regno); | 
|  | return; | 
|  | } | 
|  | __mark_reg_known_zero(regs + regno); | 
|  | } | 
|  |  | 
|  | static void __mark_dynptr_reg(struct bpf_reg_state *reg, enum bpf_dynptr_type type, | 
|  | bool first_slot, int dynptr_id) | 
|  | { | 
|  | /* reg->type has no meaning for STACK_DYNPTR, but when we set reg for | 
|  | * callback arguments, it does need to be CONST_PTR_TO_DYNPTR, so simply | 
|  | * set it unconditionally as it is ignored for STACK_DYNPTR anyway. | 
|  | */ | 
|  | __mark_reg_known_zero(reg); | 
|  | reg->type = CONST_PTR_TO_DYNPTR; | 
|  | /* Give each dynptr a unique id to uniquely associate slices to it. */ | 
|  | reg->id = dynptr_id; | 
|  | reg->dynptr.type = type; | 
|  | reg->dynptr.first_slot = first_slot; | 
|  | } | 
|  |  | 
|  | static void mark_ptr_not_null_reg(struct bpf_reg_state *reg) | 
|  | { | 
|  | if (base_type(reg->type) == PTR_TO_MAP_VALUE) { | 
|  | const struct bpf_map *map = reg->map_ptr; | 
|  |  | 
|  | if (map->inner_map_meta) { | 
|  | reg->type = CONST_PTR_TO_MAP; | 
|  | reg->map_ptr = map->inner_map_meta; | 
|  | /* transfer reg's id which is unique for every map_lookup_elem | 
|  | * as UID of the inner map. | 
|  | */ | 
|  | if (btf_record_has_field(map->inner_map_meta->record, BPF_TIMER)) | 
|  | reg->map_uid = reg->id; | 
|  | if (btf_record_has_field(map->inner_map_meta->record, BPF_WORKQUEUE)) | 
|  | reg->map_uid = reg->id; | 
|  | } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) { | 
|  | reg->type = PTR_TO_XDP_SOCK; | 
|  | } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP || | 
|  | map->map_type == BPF_MAP_TYPE_SOCKHASH) { | 
|  | reg->type = PTR_TO_SOCKET; | 
|  | } else { | 
|  | reg->type = PTR_TO_MAP_VALUE; | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | reg->type &= ~PTR_MAYBE_NULL; | 
|  | } | 
|  |  | 
|  | static void mark_reg_graph_node(struct bpf_reg_state *regs, u32 regno, | 
|  | struct btf_field_graph_root *ds_head) | 
|  | { | 
|  | __mark_reg_known_zero(®s[regno]); | 
|  | regs[regno].type = PTR_TO_BTF_ID | MEM_ALLOC; | 
|  | regs[regno].btf = ds_head->btf; | 
|  | regs[regno].btf_id = ds_head->value_btf_id; | 
|  | regs[regno].off = ds_head->node_offset; | 
|  | } | 
|  |  | 
|  | static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) | 
|  | { | 
|  | return type_is_pkt_pointer(reg->type); | 
|  | } | 
|  |  | 
|  | static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) | 
|  | { | 
|  | return reg_is_pkt_pointer(reg) || | 
|  | reg->type == PTR_TO_PACKET_END; | 
|  | } | 
|  |  | 
|  | static bool reg_is_dynptr_slice_pkt(const struct bpf_reg_state *reg) | 
|  | { | 
|  | return base_type(reg->type) == PTR_TO_MEM && | 
|  | (reg->type & DYNPTR_TYPE_SKB || reg->type & DYNPTR_TYPE_XDP); | 
|  | } | 
|  |  | 
|  | /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ | 
|  | static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, | 
|  | enum bpf_reg_type which) | 
|  | { | 
|  | /* The register can already have a range from prior markings. | 
|  | * This is fine as long as it hasn't been advanced from its | 
|  | * origin. | 
|  | */ | 
|  | return reg->type == which && | 
|  | reg->id == 0 && | 
|  | reg->off == 0 && | 
|  | tnum_equals_const(reg->var_off, 0); | 
|  | } | 
|  |  | 
|  | /* Reset the min/max bounds of a register */ | 
|  | static void __mark_reg_unbounded(struct bpf_reg_state *reg) | 
|  | { | 
|  | reg->smin_value = S64_MIN; | 
|  | reg->smax_value = S64_MAX; | 
|  | reg->umin_value = 0; | 
|  | reg->umax_value = U64_MAX; | 
|  |  | 
|  | reg->s32_min_value = S32_MIN; | 
|  | reg->s32_max_value = S32_MAX; | 
|  | reg->u32_min_value = 0; | 
|  | reg->u32_max_value = U32_MAX; | 
|  | } | 
|  |  | 
|  | static void __mark_reg64_unbounded(struct bpf_reg_state *reg) | 
|  | { | 
|  | reg->smin_value = S64_MIN; | 
|  | reg->smax_value = S64_MAX; | 
|  | reg->umin_value = 0; | 
|  | reg->umax_value = U64_MAX; | 
|  | } | 
|  |  | 
|  | static void __mark_reg32_unbounded(struct bpf_reg_state *reg) | 
|  | { | 
|  | reg->s32_min_value = S32_MIN; | 
|  | reg->s32_max_value = S32_MAX; | 
|  | reg->u32_min_value = 0; | 
|  | reg->u32_max_value = U32_MAX; | 
|  | } | 
|  |  | 
|  | static void __update_reg32_bounds(struct bpf_reg_state *reg) | 
|  | { | 
|  | struct tnum var32_off = tnum_subreg(reg->var_off); | 
|  |  | 
|  | /* min signed is max(sign bit) | min(other bits) */ | 
|  | reg->s32_min_value = max_t(s32, reg->s32_min_value, | 
|  | var32_off.value | (var32_off.mask & S32_MIN)); | 
|  | /* max signed is min(sign bit) | max(other bits) */ | 
|  | reg->s32_max_value = min_t(s32, reg->s32_max_value, | 
|  | var32_off.value | (var32_off.mask & S32_MAX)); | 
|  | reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value); | 
|  | reg->u32_max_value = min(reg->u32_max_value, | 
|  | (u32)(var32_off.value | var32_off.mask)); | 
|  | } | 
|  |  | 
|  | static void __update_reg64_bounds(struct bpf_reg_state *reg) | 
|  | { | 
|  | /* min signed is max(sign bit) | min(other bits) */ | 
|  | reg->smin_value = max_t(s64, reg->smin_value, | 
|  | reg->var_off.value | (reg->var_off.mask & S64_MIN)); | 
|  | /* max signed is min(sign bit) | max(other bits) */ | 
|  | reg->smax_value = min_t(s64, reg->smax_value, | 
|  | reg->var_off.value | (reg->var_off.mask & S64_MAX)); | 
|  | reg->umin_value = max(reg->umin_value, reg->var_off.value); | 
|  | reg->umax_value = min(reg->umax_value, | 
|  | reg->var_off.value | reg->var_off.mask); | 
|  | } | 
|  |  | 
|  | static void __update_reg_bounds(struct bpf_reg_state *reg) | 
|  | { | 
|  | __update_reg32_bounds(reg); | 
|  | __update_reg64_bounds(reg); | 
|  | } | 
|  |  | 
|  | /* Uses signed min/max values to inform unsigned, and vice-versa */ | 
|  | static void __reg32_deduce_bounds(struct bpf_reg_state *reg) | 
|  | { | 
|  | /* If upper 32 bits of u64/s64 range don't change, we can use lower 32 | 
|  | * bits to improve our u32/s32 boundaries. | 
|  | * | 
|  | * E.g., the case where we have upper 32 bits as zero ([10, 20] in | 
|  | * u64) is pretty trivial, it's obvious that in u32 we'll also have | 
|  | * [10, 20] range. But this property holds for any 64-bit range as | 
|  | * long as upper 32 bits in that entire range of values stay the same. | 
|  | * | 
|  | * E.g., u64 range [0x10000000A, 0x10000000F] ([4294967306, 4294967311] | 
|  | * in decimal) has the same upper 32 bits throughout all the values in | 
|  | * that range. As such, lower 32 bits form a valid [0xA, 0xF] ([10, 15]) | 
|  | * range. | 
|  | * | 
|  | * Note also, that [0xA, 0xF] is a valid range both in u32 and in s32, | 
|  | * following the rules outlined below about u64/s64 correspondence | 
|  | * (which equally applies to u32 vs s32 correspondence). In general it | 
|  | * depends on actual hexadecimal values of 32-bit range. They can form | 
|  | * only valid u32, or only valid s32 ranges in some cases. | 
|  | * | 
|  | * So we use all these insights to derive bounds for subregisters here. | 
|  | */ | 
|  | if ((reg->umin_value >> 32) == (reg->umax_value >> 32)) { | 
|  | /* u64 to u32 casting preserves validity of low 32 bits as | 
|  | * a range, if upper 32 bits are the same | 
|  | */ | 
|  | reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)reg->umin_value); | 
|  | reg->u32_max_value = min_t(u32, reg->u32_max_value, (u32)reg->umax_value); | 
|  |  | 
|  | if ((s32)reg->umin_value <= (s32)reg->umax_value) { | 
|  | reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->umin_value); | 
|  | reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->umax_value); | 
|  | } | 
|  | } | 
|  | if ((reg->smin_value >> 32) == (reg->smax_value >> 32)) { | 
|  | /* low 32 bits should form a proper u32 range */ | 
|  | if ((u32)reg->smin_value <= (u32)reg->smax_value) { | 
|  | reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)reg->smin_value); | 
|  | reg->u32_max_value = min_t(u32, reg->u32_max_value, (u32)reg->smax_value); | 
|  | } | 
|  | /* low 32 bits should form a proper s32 range */ | 
|  | if ((s32)reg->smin_value <= (s32)reg->smax_value) { | 
|  | reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->smin_value); | 
|  | reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->smax_value); | 
|  | } | 
|  | } | 
|  | /* Special case where upper bits form a small sequence of two | 
|  | * sequential numbers (in 32-bit unsigned space, so 0xffffffff to | 
|  | * 0x00000000 is also valid), while lower bits form a proper s32 range | 
|  | * going from negative numbers to positive numbers. E.g., let's say we | 
|  | * have s64 range [-1, 1] ([0xffffffffffffffff, 0x0000000000000001]). | 
|  | * Possible s64 values are {-1, 0, 1} ({0xffffffffffffffff, | 
|  | * 0x0000000000000000, 0x00000000000001}). Ignoring upper 32 bits, | 
|  | * we still get a valid s32 range [-1, 1] ([0xffffffff, 0x00000001]). | 
|  | * Note that it doesn't have to be 0xffffffff going to 0x00000000 in | 
|  | * upper 32 bits. As a random example, s64 range | 
|  | * [0xfffffff0fffffff0; 0xfffffff100000010], forms a valid s32 range | 
|  | * [-16, 16] ([0xfffffff0; 0x00000010]) in its 32 bit subregister. | 
|  | */ | 
|  | if ((u32)(reg->umin_value >> 32) + 1 == (u32)(reg->umax_value >> 32) && | 
|  | (s32)reg->umin_value < 0 && (s32)reg->umax_value >= 0) { | 
|  | reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->umin_value); | 
|  | reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->umax_value); | 
|  | } | 
|  | if ((u32)(reg->smin_value >> 32) + 1 == (u32)(reg->smax_value >> 32) && | 
|  | (s32)reg->smin_value < 0 && (s32)reg->smax_value >= 0) { | 
|  | reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->smin_value); | 
|  | reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->smax_value); | 
|  | } | 
|  | /* if u32 range forms a valid s32 range (due to matching sign bit), | 
|  | * try to learn from that | 
|  | */ | 
|  | if ((s32)reg->u32_min_value <= (s32)reg->u32_max_value) { | 
|  | reg->s32_min_value = max_t(s32, reg->s32_min_value, reg->u32_min_value); | 
|  | reg->s32_max_value = min_t(s32, reg->s32_max_value, reg->u32_max_value); | 
|  | } | 
|  | /* If we cannot cross the sign boundary, then signed and unsigned bounds | 
|  | * are the same, so combine.  This works even in the negative case, e.g. | 
|  | * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. | 
|  | */ | 
|  | if ((u32)reg->s32_min_value <= (u32)reg->s32_max_value) { | 
|  | reg->u32_min_value = max_t(u32, reg->s32_min_value, reg->u32_min_value); | 
|  | reg->u32_max_value = min_t(u32, reg->s32_max_value, reg->u32_max_value); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void __reg64_deduce_bounds(struct bpf_reg_state *reg) | 
|  | { | 
|  | /* If u64 range forms a valid s64 range (due to matching sign bit), | 
|  | * try to learn from that. Let's do a bit of ASCII art to see when | 
|  | * this is happening. Let's take u64 range first: | 
|  | * | 
|  | * 0             0x7fffffffffffffff 0x8000000000000000        U64_MAX | 
|  | * |-------------------------------|--------------------------------| | 
|  | * | 
|  | * Valid u64 range is formed when umin and umax are anywhere in the | 
|  | * range [0, U64_MAX], and umin <= umax. u64 case is simple and | 
|  | * straightforward. Let's see how s64 range maps onto the same range | 
|  | * of values, annotated below the line for comparison: | 
|  | * | 
|  | * 0             0x7fffffffffffffff 0x8000000000000000        U64_MAX | 
|  | * |-------------------------------|--------------------------------| | 
|  | * 0                        S64_MAX S64_MIN                        -1 | 
|  | * | 
|  | * So s64 values basically start in the middle and they are logically | 
|  | * contiguous to the right of it, wrapping around from -1 to 0, and | 
|  | * then finishing as S64_MAX (0x7fffffffffffffff) right before | 
|  | * S64_MIN. We can try drawing the continuity of u64 vs s64 values | 
|  | * more visually as mapped to sign-agnostic range of hex values. | 
|  | * | 
|  | *  u64 start                                               u64 end | 
|  | *  _______________________________________________________________ | 
|  | * /                                                               \ | 
|  | * 0             0x7fffffffffffffff 0x8000000000000000        U64_MAX | 
|  | * |-------------------------------|--------------------------------| | 
|  | * 0                        S64_MAX S64_MIN                        -1 | 
|  | *                                / \ | 
|  | * >------------------------------   -------------------------------> | 
|  | * s64 continues...        s64 end   s64 start          s64 "midpoint" | 
|  | * | 
|  | * What this means is that, in general, we can't always derive | 
|  | * something new about u64 from any random s64 range, and vice versa. | 
|  | * | 
|  | * But we can do that in two particular cases. One is when entire | 
|  | * u64/s64 range is *entirely* contained within left half of the above | 
|  | * diagram or when it is *entirely* contained in the right half. I.e.: | 
|  | * | 
|  | * |-------------------------------|--------------------------------| | 
|  | *     ^                   ^            ^                 ^ | 
|  | *     A                   B            C                 D | 
|  | * | 
|  | * [A, B] and [C, D] are contained entirely in their respective halves | 
|  | * and form valid contiguous ranges as both u64 and s64 values. [A, B] | 
|  | * will be non-negative both as u64 and s64 (and in fact it will be | 
|  | * identical ranges no matter the signedness). [C, D] treated as s64 | 
|  | * will be a range of negative values, while in u64 it will be | 
|  | * non-negative range of values larger than 0x8000000000000000. | 
|  | * | 
|  | * Now, any other range here can't be represented in both u64 and s64 | 
|  | * simultaneously. E.g., [A, C], [A, D], [B, C], [B, D] are valid | 
|  | * contiguous u64 ranges, but they are discontinuous in s64. [B, C] | 
|  | * in s64 would be properly presented as [S64_MIN, C] and [B, S64_MAX], | 
|  | * for example. Similarly, valid s64 range [D, A] (going from negative | 
|  | * to positive values), would be two separate [D, U64_MAX] and [0, A] | 
|  | * ranges as u64. Currently reg_state can't represent two segments per | 
|  | * numeric domain, so in such situations we can only derive maximal | 
|  | * possible range ([0, U64_MAX] for u64, and [S64_MIN, S64_MAX] for s64). | 
|  | * | 
|  | * So we use these facts to derive umin/umax from smin/smax and vice | 
|  | * versa only if they stay within the same "half". This is equivalent | 
|  | * to checking sign bit: lower half will have sign bit as zero, upper | 
|  | * half have sign bit 1. Below in code we simplify this by just | 
|  | * casting umin/umax as smin/smax and checking if they form valid | 
|  | * range, and vice versa. Those are equivalent checks. | 
|  | */ | 
|  | if ((s64)reg->umin_value <= (s64)reg->umax_value) { | 
|  | reg->smin_value = max_t(s64, reg->smin_value, reg->umin_value); | 
|  | reg->smax_value = min_t(s64, reg->smax_value, reg->umax_value); | 
|  | } | 
|  | /* If we cannot cross the sign boundary, then signed and unsigned bounds | 
|  | * are the same, so combine.  This works even in the negative case, e.g. | 
|  | * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. | 
|  | */ | 
|  | if ((u64)reg->smin_value <= (u64)reg->smax_value) { | 
|  | reg->umin_value = max_t(u64, reg->smin_value, reg->umin_value); | 
|  | reg->umax_value = min_t(u64, reg->smax_value, reg->umax_value); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void __reg_deduce_mixed_bounds(struct bpf_reg_state *reg) | 
|  | { | 
|  | /* Try to tighten 64-bit bounds from 32-bit knowledge, using 32-bit | 
|  | * values on both sides of 64-bit range in hope to have tighter range. | 
|  | * E.g., if r1 is [0x1'00000000, 0x3'80000000], and we learn from | 
|  | * 32-bit signed > 0 operation that s32 bounds are now [1; 0x7fffffff]. | 
|  | * With this, we can substitute 1 as low 32-bits of _low_ 64-bit bound | 
|  | * (0x100000000 -> 0x100000001) and 0x7fffffff as low 32-bits of | 
|  | * _high_ 64-bit bound (0x380000000 -> 0x37fffffff) and arrive at a | 
|  | * better overall bounds for r1 as [0x1'000000001; 0x3'7fffffff]. | 
|  | * We just need to make sure that derived bounds we are intersecting | 
|  | * with are well-formed ranges in respective s64 or u64 domain, just | 
|  | * like we do with similar kinds of 32-to-64 or 64-to-32 adjustments. | 
|  | */ | 
|  | __u64 new_umin, new_umax; | 
|  | __s64 new_smin, new_smax; | 
|  |  | 
|  | /* u32 -> u64 tightening, it's always well-formed */ | 
|  | new_umin = (reg->umin_value & ~0xffffffffULL) | reg->u32_min_value; | 
|  | new_umax = (reg->umax_value & ~0xffffffffULL) | reg->u32_max_value; | 
|  | reg->umin_value = max_t(u64, reg->umin_value, new_umin); | 
|  | reg->umax_value = min_t(u64, reg->umax_value, new_umax); | 
|  | /* u32 -> s64 tightening, u32 range embedded into s64 preserves range validity */ | 
|  | new_smin = (reg->smin_value & ~0xffffffffULL) | reg->u32_min_value; | 
|  | new_smax = (reg->smax_value & ~0xffffffffULL) | reg->u32_max_value; | 
|  | reg->smin_value = max_t(s64, reg->smin_value, new_smin); | 
|  | reg->smax_value = min_t(s64, reg->smax_value, new_smax); | 
|  |  | 
|  | /* if s32 can be treated as valid u32 range, we can use it as well */ | 
|  | if ((u32)reg->s32_min_value <= (u32)reg->s32_max_value) { | 
|  | /* s32 -> u64 tightening */ | 
|  | new_umin = (reg->umin_value & ~0xffffffffULL) | (u32)reg->s32_min_value; | 
|  | new_umax = (reg->umax_value & ~0xffffffffULL) | (u32)reg->s32_max_value; | 
|  | reg->umin_value = max_t(u64, reg->umin_value, new_umin); | 
|  | reg->umax_value = min_t(u64, reg->umax_value, new_umax); | 
|  | /* s32 -> s64 tightening */ | 
|  | new_smin = (reg->smin_value & ~0xffffffffULL) | (u32)reg->s32_min_value; | 
|  | new_smax = (reg->smax_value & ~0xffffffffULL) | (u32)reg->s32_max_value; | 
|  | reg->smin_value = max_t(s64, reg->smin_value, new_smin); | 
|  | reg->smax_value = min_t(s64, reg->smax_value, new_smax); | 
|  | } | 
|  |  | 
|  | /* Here we would like to handle a special case after sign extending load, | 
|  | * when upper bits for a 64-bit range are all 1s or all 0s. | 
|  | * | 
|  | * Upper bits are all 1s when register is in a range: | 
|  | *   [0xffff_ffff_0000_0000, 0xffff_ffff_ffff_ffff] | 
|  | * Upper bits are all 0s when register is in a range: | 
|  | *   [0x0000_0000_0000_0000, 0x0000_0000_ffff_ffff] | 
|  | * Together this forms are continuous range: | 
|  | *   [0xffff_ffff_0000_0000, 0x0000_0000_ffff_ffff] | 
|  | * | 
|  | * Now, suppose that register range is in fact tighter: | 
|  | *   [0xffff_ffff_8000_0000, 0x0000_0000_ffff_ffff] (R) | 
|  | * Also suppose that it's 32-bit range is positive, | 
|  | * meaning that lower 32-bits of the full 64-bit register | 
|  | * are in the range: | 
|  | *   [0x0000_0000, 0x7fff_ffff] (W) | 
|  | * | 
|  | * If this happens, then any value in a range: | 
|  | *   [0xffff_ffff_0000_0000, 0xffff_ffff_7fff_ffff] | 
|  | * is smaller than a lowest bound of the range (R): | 
|  | *   0xffff_ffff_8000_0000 | 
|  | * which means that upper bits of the full 64-bit register | 
|  | * can't be all 1s, when lower bits are in range (W). | 
|  | * | 
|  | * Note that: | 
|  | *  - 0xffff_ffff_8000_0000 == (s64)S32_MIN | 
|  | *  - 0x0000_0000_7fff_ffff == (s64)S32_MAX | 
|  | * These relations are used in the conditions below. | 
|  | */ | 
|  | if (reg->s32_min_value >= 0 && reg->smin_value >= S32_MIN && reg->smax_value <= S32_MAX) { | 
|  | reg->smin_value = reg->s32_min_value; | 
|  | reg->smax_value = reg->s32_max_value; | 
|  | reg->umin_value = reg->s32_min_value; | 
|  | reg->umax_value = reg->s32_max_value; | 
|  | reg->var_off = tnum_intersect(reg->var_off, | 
|  | tnum_range(reg->smin_value, reg->smax_value)); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void __reg_deduce_bounds(struct bpf_reg_state *reg) | 
|  | { | 
|  | __reg32_deduce_bounds(reg); | 
|  | __reg64_deduce_bounds(reg); | 
|  | __reg_deduce_mixed_bounds(reg); | 
|  | } | 
|  |  | 
|  | /* Attempts to improve var_off based on unsigned min/max information */ | 
|  | static void __reg_bound_offset(struct bpf_reg_state *reg) | 
|  | { | 
|  | struct tnum var64_off = tnum_intersect(reg->var_off, | 
|  | tnum_range(reg->umin_value, | 
|  | reg->umax_value)); | 
|  | struct tnum var32_off = tnum_intersect(tnum_subreg(var64_off), | 
|  | tnum_range(reg->u32_min_value, | 
|  | reg->u32_max_value)); | 
|  |  | 
|  | reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off); | 
|  | } | 
|  |  | 
|  | static void reg_bounds_sync(struct bpf_reg_state *reg) | 
|  | { | 
|  | /* We might have learned new bounds from the var_off. */ | 
|  | __update_reg_bounds(reg); | 
|  | /* We might have learned something about the sign bit. */ | 
|  | __reg_deduce_bounds(reg); | 
|  | __reg_deduce_bounds(reg); | 
|  | /* We might have learned some bits from the bounds. */ | 
|  | __reg_bound_offset(reg); | 
|  | /* Intersecting with the old var_off might have improved our bounds | 
|  | * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), | 
|  | * then new var_off is (0; 0x7f...fc) which improves our umax. | 
|  | */ | 
|  | __update_reg_bounds(reg); | 
|  | } | 
|  |  | 
|  | static int reg_bounds_sanity_check(struct bpf_verifier_env *env, | 
|  | struct bpf_reg_state *reg, const char *ctx) | 
|  | { | 
|  | const char *msg; | 
|  |  | 
|  | if (reg->umin_value > reg->umax_value || | 
|  | reg->smin_value > reg->smax_value || | 
|  | reg->u32_min_value > reg->u32_max_value || | 
|  | reg->s32_min_value > reg->s32_max_value) { | 
|  | msg = "range bounds violation"; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (tnum_is_const(reg->var_off)) { | 
|  | u64 uval = reg->var_off.value; | 
|  | s64 sval = (s64)uval; | 
|  |  | 
|  | if (reg->umin_value != uval || reg->umax_value != uval || | 
|  | reg->smin_value != sval || reg->smax_value != sval) { | 
|  | msg = "const tnum out of sync with range bounds"; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (tnum_subreg_is_const(reg->var_off)) { | 
|  | u32 uval32 = tnum_subreg(reg->var_off).value; | 
|  | s32 sval32 = (s32)uval32; | 
|  |  | 
|  | if (reg->u32_min_value != uval32 || reg->u32_max_value != uval32 || | 
|  | reg->s32_min_value != sval32 || reg->s32_max_value != sval32) { | 
|  | msg = "const subreg tnum out of sync with range bounds"; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | out: | 
|  | verbose(env, "REG INVARIANTS VIOLATION (%s): %s u64=[%#llx, %#llx] " | 
|  | "s64=[%#llx, %#llx] u32=[%#x, %#x] s32=[%#x, %#x] var_off=(%#llx, %#llx)\n", | 
|  | ctx, msg, reg->umin_value, reg->umax_value, | 
|  | reg->smin_value, reg->smax_value, | 
|  | reg->u32_min_value, reg->u32_max_value, | 
|  | reg->s32_min_value, reg->s32_max_value, | 
|  | reg->var_off.value, reg->var_off.mask); | 
|  | if (env->test_reg_invariants) | 
|  | return -EFAULT; | 
|  | __mark_reg_unbounded(reg); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static bool __reg32_bound_s64(s32 a) | 
|  | { | 
|  | return a >= 0 && a <= S32_MAX; | 
|  | } | 
|  |  | 
|  | static void __reg_assign_32_into_64(struct bpf_reg_state *reg) | 
|  | { | 
|  | reg->umin_value = reg->u32_min_value; | 
|  | reg->umax_value = reg->u32_max_value; | 
|  |  | 
|  | /* Attempt to pull 32-bit signed bounds into 64-bit bounds but must | 
|  | * be positive otherwise set to worse case bounds and refine later | 
|  | * from tnum. | 
|  | */ | 
|  | if (__reg32_bound_s64(reg->s32_min_value) && | 
|  | __reg32_bound_s64(reg->s32_max_value)) { | 
|  | reg->smin_value = reg->s32_min_value; | 
|  | reg->smax_value = reg->s32_max_value; | 
|  | } else { | 
|  | reg->smin_value = 0; | 
|  | reg->smax_value = U32_MAX; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Mark a register as having a completely unknown (scalar) value. */ | 
|  | static void __mark_reg_unknown_imprecise(struct bpf_reg_state *reg) | 
|  | { | 
|  | /* | 
|  | * Clear type, off, and union(map_ptr, range) and | 
|  | * padding between 'type' and union | 
|  | */ | 
|  | memset(reg, 0, offsetof(struct bpf_reg_state, var_off)); | 
|  | reg->type = SCALAR_VALUE; | 
|  | reg->id = 0; | 
|  | reg->ref_obj_id = 0; | 
|  | reg->var_off = tnum_unknown; | 
|  | reg->frameno = 0; | 
|  | reg->precise = false; | 
|  | __mark_reg_unbounded(reg); | 
|  | } | 
|  |  | 
|  | /* Mark a register as having a completely unknown (scalar) value, | 
|  | * initialize .precise as true when not bpf capable. | 
|  | */ | 
|  | static void __mark_reg_unknown(const struct bpf_verifier_env *env, | 
|  | struct bpf_reg_state *reg) | 
|  | { | 
|  | __mark_reg_unknown_imprecise(reg); | 
|  | reg->precise = !env->bpf_capable; | 
|  | } | 
|  |  | 
|  | static void mark_reg_unknown(struct bpf_verifier_env *env, | 
|  | struct bpf_reg_state *regs, u32 regno) | 
|  | { | 
|  | if (WARN_ON(regno >= MAX_BPF_REG)) { | 
|  | verbose(env, "mark_reg_unknown(regs, %u)\n", regno); | 
|  | /* Something bad happened, let's kill all regs except FP */ | 
|  | for (regno = 0; regno < BPF_REG_FP; regno++) | 
|  | __mark_reg_not_init(env, regs + regno); | 
|  | return; | 
|  | } | 
|  | __mark_reg_unknown(env, regs + regno); | 
|  | } | 
|  |  | 
|  | static int __mark_reg_s32_range(struct bpf_verifier_env *env, | 
|  | struct bpf_reg_state *regs, | 
|  | u32 regno, | 
|  | s32 s32_min, | 
|  | s32 s32_max) | 
|  | { | 
|  | struct bpf_reg_state *reg = regs + regno; | 
|  |  | 
|  | reg->s32_min_value = max_t(s32, reg->s32_min_value, s32_min); | 
|  | reg->s32_max_value = min_t(s32, reg->s32_max_value, s32_max); | 
|  |  | 
|  | reg->smin_value = max_t(s64, reg->smin_value, s32_min); | 
|  | reg->smax_value = min_t(s64, reg->smax_value, s32_max); | 
|  |  | 
|  | reg_bounds_sync(reg); | 
|  |  | 
|  | return reg_bounds_sanity_check(env, reg, "s32_range"); | 
|  | } | 
|  |  | 
|  | static void __mark_reg_not_init(const struct bpf_verifier_env *env, | 
|  | struct bpf_reg_state *reg) | 
|  | { | 
|  | __mark_reg_unknown(env, reg); | 
|  | reg->type = NOT_INIT; | 
|  | } | 
|  |  | 
|  | static void mark_reg_not_init(struct bpf_verifier_env *env, | 
|  | struct bpf_reg_state *regs, u32 regno) | 
|  | { | 
|  | if (WARN_ON(regno >= MAX_BPF_REG)) { | 
|  | verbose(env, "mark_reg_not_init(regs, %u)\n", regno); | 
|  | /* Something bad happened, let's kill all regs except FP */ | 
|  | for (regno = 0; regno < BPF_REG_FP; regno++) | 
|  | __mark_reg_not_init(env, regs + regno); | 
|  | return; | 
|  | } | 
|  | __mark_reg_not_init(env, regs + regno); | 
|  | } | 
|  |  | 
|  | static void mark_btf_ld_reg(struct bpf_verifier_env *env, | 
|  | struct bpf_reg_state *regs, u32 regno, | 
|  | enum bpf_reg_type reg_type, | 
|  | struct btf *btf, u32 btf_id, | 
|  | enum bpf_type_flag flag) | 
|  | { | 
|  | if (reg_type == SCALAR_VALUE) { | 
|  | mark_reg_unknown(env, regs, regno); | 
|  | return; | 
|  | } | 
|  | mark_reg_known_zero(env, regs, regno); | 
|  | regs[regno].type = PTR_TO_BTF_ID | flag; | 
|  | regs[regno].btf = btf; | 
|  | regs[regno].btf_id = btf_id; | 
|  | if (type_may_be_null(flag)) | 
|  | regs[regno].id = ++env->id_gen; | 
|  | } | 
|  |  | 
|  | #define DEF_NOT_SUBREG	(0) | 
|  | static void init_reg_state(struct bpf_verifier_env *env, | 
|  | struct bpf_func_state *state) | 
|  | { | 
|  | struct bpf_reg_state *regs = state->regs; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < MAX_BPF_REG; i++) { | 
|  | mark_reg_not_init(env, regs, i); | 
|  | regs[i].live = REG_LIVE_NONE; | 
|  | regs[i].parent = NULL; | 
|  | regs[i].subreg_def = DEF_NOT_SUBREG; | 
|  | } | 
|  |  | 
|  | /* frame pointer */ | 
|  | regs[BPF_REG_FP].type = PTR_TO_STACK; | 
|  | mark_reg_known_zero(env, regs, BPF_REG_FP); | 
|  | regs[BPF_REG_FP].frameno = state->frameno; | 
|  | } | 
|  |  | 
|  | static struct bpf_retval_range retval_range(s32 minval, s32 maxval) | 
|  | { | 
|  | return (struct bpf_retval_range){ minval, maxval }; | 
|  | } | 
|  |  | 
|  | #define BPF_MAIN_FUNC (-1) | 
|  | static void init_func_state(struct bpf_verifier_env *env, | 
|  | struct bpf_func_state *state, | 
|  | int callsite, int frameno, int subprogno) | 
|  | { | 
|  | state->callsite = callsite; | 
|  | state->frameno = frameno; | 
|  | state->subprogno = subprogno; | 
|  | state->callback_ret_range = retval_range(0, 0); | 
|  | init_reg_state(env, state); | 
|  | mark_verifier_state_scratched(env); | 
|  | } | 
|  |  | 
|  | /* Similar to push_stack(), but for async callbacks */ | 
|  | static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env, | 
|  | int insn_idx, int prev_insn_idx, | 
|  | int subprog, bool is_sleepable) | 
|  | { | 
|  | struct bpf_verifier_stack_elem *elem; | 
|  | struct bpf_func_state *frame; | 
|  |  | 
|  | elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); | 
|  | if (!elem) | 
|  | goto err; | 
|  |  | 
|  | elem->insn_idx = insn_idx; | 
|  | elem->prev_insn_idx = prev_insn_idx; | 
|  | elem->next = env->head; | 
|  | elem->log_pos = env->log.end_pos; | 
|  | env->head = elem; | 
|  | env->stack_size++; | 
|  | if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { | 
|  | verbose(env, | 
|  | "The sequence of %d jumps is too complex for async cb.\n", | 
|  | env->stack_size); | 
|  | goto err; | 
|  | } | 
|  | /* Unlike push_stack() do not copy_verifier_state(). | 
|  | * The caller state doesn't matter. | 
|  | * This is async callback. It starts in a fresh stack. | 
|  | * Initialize it similar to do_check_common(). | 
|  | */ | 
|  | elem->st.branches = 1; | 
|  | elem->st.in_sleepable = is_sleepable; | 
|  | frame = kzalloc(sizeof(*frame), GFP_KERNEL); | 
|  | if (!frame) | 
|  | goto err; | 
|  | init_func_state(env, frame, | 
|  | BPF_MAIN_FUNC /* callsite */, | 
|  | 0 /* frameno within this callchain */, | 
|  | subprog /* subprog number within this prog */); | 
|  | elem->st.frame[0] = frame; | 
|  | return &elem->st; | 
|  | err: | 
|  | free_verifier_state(env->cur_state, true); | 
|  | env->cur_state = NULL; | 
|  | /* pop all elements and return */ | 
|  | while (!pop_stack(env, NULL, NULL, false)); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  |  | 
|  | enum reg_arg_type { | 
|  | SRC_OP,		/* register is used as source operand */ | 
|  | DST_OP,		/* register is used as destination operand */ | 
|  | DST_OP_NO_MARK	/* same as above, check only, don't mark */ | 
|  | }; | 
|  |  | 
|  | static int cmp_subprogs(const void *a, const void *b) | 
|  | { | 
|  | return ((struct bpf_subprog_info *)a)->start - | 
|  | ((struct bpf_subprog_info *)b)->start; | 
|  | } | 
|  |  | 
|  | static int find_subprog(struct bpf_verifier_env *env, int off) | 
|  | { | 
|  | struct bpf_subprog_info *p; | 
|  |  | 
|  | p = bsearch(&off, env->subprog_info, env->subprog_cnt, | 
|  | sizeof(env->subprog_info[0]), cmp_subprogs); | 
|  | if (!p) | 
|  | return -ENOENT; | 
|  | return p - env->subprog_info; | 
|  |  | 
|  | } | 
|  |  | 
|  | static int add_subprog(struct bpf_verifier_env *env, int off) | 
|  | { | 
|  | int insn_cnt = env->prog->len; | 
|  | int ret; | 
|  |  | 
|  | if (off >= insn_cnt || off < 0) { | 
|  | verbose(env, "call to invalid destination\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | ret = find_subprog(env, off); | 
|  | if (ret >= 0) | 
|  | return ret; | 
|  | if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { | 
|  | verbose(env, "too many subprograms\n"); | 
|  | return -E2BIG; | 
|  | } | 
|  | /* determine subprog starts. The end is one before the next starts */ | 
|  | env->subprog_info[env->subprog_cnt++].start = off; | 
|  | sort(env->subprog_info, env->subprog_cnt, | 
|  | sizeof(env->subprog_info[0]), cmp_subprogs, NULL); | 
|  | return env->subprog_cnt - 1; | 
|  | } | 
|  |  | 
|  | static int bpf_find_exception_callback_insn_off(struct bpf_verifier_env *env) | 
|  | { | 
|  | struct bpf_prog_aux *aux = env->prog->aux; | 
|  | struct btf *btf = aux->btf; | 
|  | const struct btf_type *t; | 
|  | u32 main_btf_id, id; | 
|  | const char *name; | 
|  | int ret, i; | 
|  |  | 
|  | /* Non-zero func_info_cnt implies valid btf */ | 
|  | if (!aux->func_info_cnt) | 
|  | return 0; | 
|  | main_btf_id = aux->func_info[0].type_id; | 
|  |  | 
|  | t = btf_type_by_id(btf, main_btf_id); | 
|  | if (!t) { | 
|  | verbose(env, "invalid btf id for main subprog in func_info\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | name = btf_find_decl_tag_value(btf, t, -1, "exception_callback:"); | 
|  | if (IS_ERR(name)) { | 
|  | ret = PTR_ERR(name); | 
|  | /* If there is no tag present, there is no exception callback */ | 
|  | if (ret == -ENOENT) | 
|  | ret = 0; | 
|  | else if (ret == -EEXIST) | 
|  | verbose(env, "multiple exception callback tags for main subprog\n"); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | ret = btf_find_by_name_kind(btf, name, BTF_KIND_FUNC); | 
|  | if (ret < 0) { | 
|  | verbose(env, "exception callback '%s' could not be found in BTF\n", name); | 
|  | return ret; | 
|  | } | 
|  | id = ret; | 
|  | t = btf_type_by_id(btf, id); | 
|  | if (btf_func_linkage(t) != BTF_FUNC_GLOBAL) { | 
|  | verbose(env, "exception callback '%s' must have global linkage\n", name); | 
|  | return -EINVAL; | 
|  | } | 
|  | ret = 0; | 
|  | for (i = 0; i < aux->func_info_cnt; i++) { | 
|  | if (aux->func_info[i].type_id != id) | 
|  | continue; | 
|  | ret = aux->func_info[i].insn_off; | 
|  | /* Further func_info and subprog checks will also happen | 
|  | * later, so assume this is the right insn_off for now. | 
|  | */ | 
|  | if (!ret) { | 
|  | verbose(env, "invalid exception callback insn_off in func_info: 0\n"); | 
|  | ret = -EINVAL; | 
|  | } | 
|  | } | 
|  | if (!ret) { | 
|  | verbose(env, "exception callback type id not found in func_info\n"); | 
|  | ret = -EINVAL; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #define MAX_KFUNC_DESCS 256 | 
|  | #define MAX_KFUNC_BTFS	256 | 
|  |  | 
|  | struct bpf_kfunc_desc { | 
|  | struct btf_func_model func_model; | 
|  | u32 func_id; | 
|  | s32 imm; | 
|  | u16 offset; | 
|  | unsigned long addr; | 
|  | }; | 
|  |  | 
|  | struct bpf_kfunc_btf { | 
|  | struct btf *btf; | 
|  | struct module *module; | 
|  | u16 offset; | 
|  | }; | 
|  |  | 
|  | struct bpf_kfunc_desc_tab { | 
|  | /* Sorted by func_id (BTF ID) and offset (fd_array offset) during | 
|  | * verification. JITs do lookups by bpf_insn, where func_id may not be | 
|  | * available, therefore at the end of verification do_misc_fixups() | 
|  | * sorts this by imm and offset. | 
|  | */ | 
|  | struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS]; | 
|  | u32 nr_descs; | 
|  | }; | 
|  |  | 
|  | struct bpf_kfunc_btf_tab { | 
|  | struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS]; | 
|  | u32 nr_descs; | 
|  | }; | 
|  |  | 
|  | static int kfunc_desc_cmp_by_id_off(const void *a, const void *b) | 
|  | { | 
|  | const struct bpf_kfunc_desc *d0 = a; | 
|  | const struct bpf_kfunc_desc *d1 = b; | 
|  |  | 
|  | /* func_id is not greater than BTF_MAX_TYPE */ | 
|  | return d0->func_id - d1->func_id ?: d0->offset - d1->offset; | 
|  | } | 
|  |  | 
|  | static int kfunc_btf_cmp_by_off(const void *a, const void *b) | 
|  | { | 
|  | const struct bpf_kfunc_btf *d0 = a; | 
|  | const struct bpf_kfunc_btf *d1 = b; | 
|  |  | 
|  | return d0->offset - d1->offset; | 
|  | } | 
|  |  | 
|  | static const struct bpf_kfunc_desc * | 
|  | find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset) | 
|  | { | 
|  | struct bpf_kfunc_desc desc = { | 
|  | .func_id = func_id, | 
|  | .offset = offset, | 
|  | }; | 
|  | struct bpf_kfunc_desc_tab *tab; | 
|  |  | 
|  | tab = prog->aux->kfunc_tab; | 
|  | return bsearch(&desc, tab->descs, tab->nr_descs, | 
|  | sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off); | 
|  | } | 
|  |  | 
|  | int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id, | 
|  | u16 btf_fd_idx, u8 **func_addr) | 
|  | { | 
|  | const struct bpf_kfunc_desc *desc; | 
|  |  | 
|  | desc = find_kfunc_desc(prog, func_id, btf_fd_idx); | 
|  | if (!desc) | 
|  | return -EFAULT; | 
|  |  | 
|  | *func_addr = (u8 *)desc->addr; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env, | 
|  | s16 offset) | 
|  | { | 
|  | struct bpf_kfunc_btf kf_btf = { .offset = offset }; | 
|  | struct bpf_kfunc_btf_tab *tab; | 
|  | struct bpf_kfunc_btf *b; | 
|  | struct module *mod; | 
|  | struct btf *btf; | 
|  | int btf_fd; | 
|  |  | 
|  | tab = env->prog->aux->kfunc_btf_tab; | 
|  | b = bsearch(&kf_btf, tab->descs, tab->nr_descs, | 
|  | sizeof(tab->descs[0]), kfunc_btf_cmp_by_off); | 
|  | if (!b) { | 
|  | if (tab->nr_descs == MAX_KFUNC_BTFS) { | 
|  | verbose(env, "too many different module BTFs\n"); | 
|  | return ERR_PTR(-E2BIG); | 
|  | } | 
|  |  | 
|  | if (bpfptr_is_null(env->fd_array)) { | 
|  | verbose(env, "kfunc offset > 0 without fd_array is invalid\n"); | 
|  | return ERR_PTR(-EPROTO); | 
|  | } | 
|  |  | 
|  | if (copy_from_bpfptr_offset(&btf_fd, env->fd_array, | 
|  | offset * sizeof(btf_fd), | 
|  | sizeof(btf_fd))) | 
|  | return ERR_PTR(-EFAULT); | 
|  |  | 
|  | btf = btf_get_by_fd(btf_fd); | 
|  | if (IS_ERR(btf)) { | 
|  | verbose(env, "invalid module BTF fd specified\n"); | 
|  | return btf; | 
|  | } | 
|  |  | 
|  | if (!btf_is_module(btf)) { | 
|  | verbose(env, "BTF fd for kfunc is not a module BTF\n"); | 
|  | btf_put(btf); | 
|  | return ERR_PTR(-EINVAL); | 
|  | } | 
|  |  | 
|  | mod = btf_try_get_module(btf); | 
|  | if (!mod) { | 
|  | btf_put(btf); | 
|  | return ERR_PTR(-ENXIO); | 
|  | } | 
|  |  | 
|  | b = &tab->descs[tab->nr_descs++]; | 
|  | b->btf = btf; | 
|  | b->module = mod; | 
|  | b->offset = offset; | 
|  |  | 
|  | sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), | 
|  | kfunc_btf_cmp_by_off, NULL); | 
|  | } | 
|  | return b->btf; | 
|  | } | 
|  |  | 
|  | void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab) | 
|  | { | 
|  | if (!tab) | 
|  | return; | 
|  |  | 
|  | while (tab->nr_descs--) { | 
|  | module_put(tab->descs[tab->nr_descs].module); | 
|  | btf_put(tab->descs[tab->nr_descs].btf); | 
|  | } | 
|  | kfree(tab); | 
|  | } | 
|  |  | 
|  | static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, s16 offset) | 
|  | { | 
|  | if (offset) { | 
|  | if (offset < 0) { | 
|  | /* In the future, this can be allowed to increase limit | 
|  | * of fd index into fd_array, interpreted as u16. | 
|  | */ | 
|  | verbose(env, "negative offset disallowed for kernel module function call\n"); | 
|  | return ERR_PTR(-EINVAL); | 
|  | } | 
|  |  | 
|  | return __find_kfunc_desc_btf(env, offset); | 
|  | } | 
|  | return btf_vmlinux ?: ERR_PTR(-ENOENT); | 
|  | } | 
|  |  | 
|  | static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset) | 
|  | { | 
|  | const struct btf_type *func, *func_proto; | 
|  | struct bpf_kfunc_btf_tab *btf_tab; | 
|  | struct bpf_kfunc_desc_tab *tab; | 
|  | struct bpf_prog_aux *prog_aux; | 
|  | struct bpf_kfunc_desc *desc; | 
|  | const char *func_name; | 
|  | struct btf *desc_btf; | 
|  | unsigned long call_imm; | 
|  | unsigned long addr; | 
|  | int err; | 
|  |  | 
|  | prog_aux = env->prog->aux; | 
|  | tab = prog_aux->kfunc_tab; | 
|  | btf_tab = prog_aux->kfunc_btf_tab; | 
|  | if (!tab) { | 
|  | if (!btf_vmlinux) { | 
|  | verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n"); | 
|  | return -ENOTSUPP; | 
|  | } | 
|  |  | 
|  | if (!env->prog->jit_requested) { | 
|  | verbose(env, "JIT is required for calling kernel function\n"); | 
|  | return -ENOTSUPP; | 
|  | } | 
|  |  | 
|  | if (!bpf_jit_supports_kfunc_call()) { | 
|  | verbose(env, "JIT does not support calling kernel function\n"); | 
|  | return -ENOTSUPP; | 
|  | } | 
|  |  | 
|  | if (!env->prog->gpl_compatible) { | 
|  | verbose(env, "cannot call kernel function from non-GPL compatible program\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | tab = kzalloc(sizeof(*tab), GFP_KERNEL); | 
|  | if (!tab) | 
|  | return -ENOMEM; | 
|  | prog_aux->kfunc_tab = tab; | 
|  | } | 
|  |  | 
|  | /* func_id == 0 is always invalid, but instead of returning an error, be | 
|  | * conservative and wait until the code elimination pass before returning | 
|  | * error, so that invalid calls that get pruned out can be in BPF programs | 
|  | * loaded from userspace.  It is also required that offset be untouched | 
|  | * for such calls. | 
|  | */ | 
|  | if (!func_id && !offset) | 
|  | return 0; | 
|  |  | 
|  | if (!btf_tab && offset) { | 
|  | btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL); | 
|  | if (!btf_tab) | 
|  | return -ENOMEM; | 
|  | prog_aux->kfunc_btf_tab = btf_tab; | 
|  | } | 
|  |  | 
|  | desc_btf = find_kfunc_desc_btf(env, offset); | 
|  | if (IS_ERR(desc_btf)) { | 
|  | verbose(env, "failed to find BTF for kernel function\n"); | 
|  | return PTR_ERR(desc_btf); | 
|  | } | 
|  |  | 
|  | if (find_kfunc_desc(env->prog, func_id, offset)) | 
|  | return 0; | 
|  |  | 
|  | if (tab->nr_descs == MAX_KFUNC_DESCS) { | 
|  | verbose(env, "too many different kernel function calls\n"); | 
|  | return -E2BIG; | 
|  | } | 
|  |  | 
|  | func = btf_type_by_id(desc_btf, func_id); | 
|  | if (!func || !btf_type_is_func(func)) { | 
|  | verbose(env, "kernel btf_id %u is not a function\n", | 
|  | func_id); | 
|  | return -EINVAL; | 
|  | } | 
|  | func_proto = btf_type_by_id(desc_btf, func->type); | 
|  | if (!func_proto || !btf_type_is_func_proto(func_proto)) { | 
|  | verbose(env, "kernel function btf_id %u does not have a valid func_proto\n", | 
|  | func_id); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | func_name = btf_name_by_offset(desc_btf, func->name_off); | 
|  | addr = kallsyms_lookup_name(func_name); | 
|  | if (!addr) { | 
|  | verbose(env, "cannot find address for kernel function %s\n", | 
|  | func_name); | 
|  | return -EINVAL; | 
|  | } | 
|  | specialize_kfunc(env, func_id, offset, &addr); | 
|  |  | 
|  | if (bpf_jit_supports_far_kfunc_call()) { | 
|  | call_imm = func_id; | 
|  | } else { | 
|  | call_imm = BPF_CALL_IMM(addr); | 
|  | /* Check whether the relative offset overflows desc->imm */ | 
|  | if ((unsigned long)(s32)call_imm != call_imm) { | 
|  | verbose(env, "address of kernel function %s is out of range\n", | 
|  | func_name); | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (bpf_dev_bound_kfunc_id(func_id)) { | 
|  | err = bpf_dev_bound_kfunc_check(&env->log, prog_aux); | 
|  | if (err) | 
|  | return err; | 
|  | } | 
|  |  | 
|  | desc = &tab->descs[tab->nr_descs++]; | 
|  | desc->func_id = func_id; | 
|  | desc->imm = call_imm; | 
|  | desc->offset = offset; | 
|  | desc->addr = addr; | 
|  | err = btf_distill_func_proto(&env->log, desc_btf, | 
|  | func_proto, func_name, | 
|  | &desc->func_model); | 
|  | if (!err) | 
|  | sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), | 
|  | kfunc_desc_cmp_by_id_off, NULL); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int kfunc_desc_cmp_by_imm_off(const void *a, const void *b) | 
|  | { | 
|  | const struct bpf_kfunc_desc *d0 = a; | 
|  | const struct bpf_kfunc_desc *d1 = b; | 
|  |  | 
|  | if (d0->imm != d1->imm) | 
|  | return d0->imm < d1->imm ? -1 : 1; | 
|  | if (d0->offset != d1->offset) | 
|  | return d0->offset < d1->offset ? -1 : 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void sort_kfunc_descs_by_imm_off(struct bpf_prog *prog) | 
|  | { | 
|  | struct bpf_kfunc_desc_tab *tab; | 
|  |  | 
|  | tab = prog->aux->kfunc_tab; | 
|  | if (!tab) | 
|  | return; | 
|  |  | 
|  | sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), | 
|  | kfunc_desc_cmp_by_imm_off, NULL); | 
|  | } | 
|  |  | 
|  | bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog) | 
|  | { | 
|  | return !!prog->aux->kfunc_tab; | 
|  | } | 
|  |  | 
|  | const struct btf_func_model * | 
|  | bpf_jit_find_kfunc_model(const struct bpf_prog *prog, | 
|  | const struct bpf_insn *insn) | 
|  | { | 
|  | const struct bpf_kfunc_desc desc = { | 
|  | .imm = insn->imm, | 
|  | .offset = insn->off, | 
|  | }; | 
|  | const struct bpf_kfunc_desc *res; | 
|  | struct bpf_kfunc_desc_tab *tab; | 
|  |  | 
|  | tab = prog->aux->kfunc_tab; | 
|  | res = bsearch(&desc, tab->descs, tab->nr_descs, | 
|  | sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm_off); | 
|  |  | 
|  | return res ? &res->func_model : NULL; | 
|  | } | 
|  |  | 
|  | static int add_subprog_and_kfunc(struct bpf_verifier_env *env) | 
|  | { | 
|  | struct bpf_subprog_info *subprog = env->subprog_info; | 
|  | int i, ret, insn_cnt = env->prog->len, ex_cb_insn; | 
|  | struct bpf_insn *insn = env->prog->insnsi; | 
|  |  | 
|  | /* Add entry function. */ | 
|  | ret = add_subprog(env, 0); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | for (i = 0; i < insn_cnt; i++, insn++) { | 
|  | if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) && | 
|  | !bpf_pseudo_kfunc_call(insn)) | 
|  | continue; | 
|  |  | 
|  | if (!env->bpf_capable) { | 
|  | verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n"); | 
|  | return -EPERM; | 
|  | } | 
|  |  | 
|  | if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn)) | 
|  | ret = add_subprog(env, i + insn->imm + 1); | 
|  | else | 
|  | ret = add_kfunc_call(env, insn->imm, insn->off); | 
|  |  | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | ret = bpf_find_exception_callback_insn_off(env); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | ex_cb_insn = ret; | 
|  |  | 
|  | /* If ex_cb_insn > 0, this means that the main program has a subprog | 
|  | * marked using BTF decl tag to serve as the exception callback. | 
|  | */ | 
|  | if (ex_cb_insn) { | 
|  | ret = add_subprog(env, ex_cb_insn); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | for (i = 1; i < env->subprog_cnt; i++) { | 
|  | if (env->subprog_info[i].start != ex_cb_insn) | 
|  | continue; | 
|  | env->exception_callback_subprog = i; | 
|  | mark_subprog_exc_cb(env, i); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Add a fake 'exit' subprog which could simplify subprog iteration | 
|  | * logic. 'subprog_cnt' should not be increased. | 
|  | */ | 
|  | subprog[env->subprog_cnt].start = insn_cnt; | 
|  |  | 
|  | if (env->log.level & BPF_LOG_LEVEL2) | 
|  | for (i = 0; i < env->subprog_cnt; i++) | 
|  | verbose(env, "func#%d @%d\n", i, subprog[i].start); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int check_subprogs(struct bpf_verifier_env *env) | 
|  | { | 
|  | int i, subprog_start, subprog_end, off, cur_subprog = 0; | 
|  | struct bpf_subprog_info *subprog = env->subprog_info; | 
|  | struct bpf_insn *insn = env->prog->insnsi; | 
|  | int insn_cnt = env->prog->len; | 
|  |  | 
|  | /* now check that all jumps are within the same subprog */ | 
|  | subprog_start = subprog[cur_subprog].start; | 
|  | subprog_end = subprog[cur_subprog + 1].start; | 
|  | for (i = 0; i < insn_cnt; i++) { | 
|  | u8 code = insn[i].code; | 
|  |  | 
|  | if (code == (BPF_JMP | BPF_CALL) && | 
|  | insn[i].src_reg == 0 && | 
|  | insn[i].imm == BPF_FUNC_tail_call) { | 
|  | subprog[cur_subprog].has_tail_call = true; | 
|  | subprog[cur_subprog].tail_call_reachable = true; | 
|  | } | 
|  | if (BPF_CLASS(code) == BPF_LD && | 
|  | (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND)) | 
|  | subprog[cur_subprog].has_ld_abs = true; | 
|  | if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) | 
|  | goto next; | 
|  | if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) | 
|  | goto next; | 
|  | if (code == (BPF_JMP32 | BPF_JA)) | 
|  | off = i + insn[i].imm + 1; | 
|  | else | 
|  | off = i + insn[i].off + 1; | 
|  | if (off < subprog_start || off >= subprog_end) { | 
|  | verbose(env, "jump out of range from insn %d to %d\n", i, off); | 
|  | return -EINVAL; | 
|  | } | 
|  | next: | 
|  | if (i == subprog_end - 1) { | 
|  | /* to avoid fall-through from one subprog into another | 
|  | * the last insn of the subprog should be either exit | 
|  | * or unconditional jump back or bpf_throw call | 
|  | */ | 
|  | if (code != (BPF_JMP | BPF_EXIT) && | 
|  | code != (BPF_JMP32 | BPF_JA) && | 
|  | code != (BPF_JMP | BPF_JA)) { | 
|  | verbose(env, "last insn is not an exit or jmp\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | subprog_start = subprog_end; | 
|  | cur_subprog++; | 
|  | if (cur_subprog < env->subprog_cnt) | 
|  | subprog_end = subprog[cur_subprog + 1].start; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Parentage chain of this register (or stack slot) should take care of all | 
|  | * issues like callee-saved registers, stack slot allocation time, etc. | 
|  | */ | 
|  | static int mark_reg_read(struct bpf_verifier_env *env, | 
|  | const struct bpf_reg_state *state, | 
|  | struct bpf_reg_state *parent, u8 flag) | 
|  | { | 
|  | bool writes = parent == state->parent; /* Observe write marks */ | 
|  | int cnt = 0; | 
|  |  | 
|  | while (parent) { | 
|  | /* if read wasn't screened by an earlier write ... */ | 
|  | if (writes && state->live & REG_LIVE_WRITTEN) | 
|  | break; | 
|  | if (parent->live & REG_LIVE_DONE) { | 
|  | verbose(env, "verifier BUG type %s var_off %lld off %d\n", | 
|  | reg_type_str(env, parent->type), | 
|  | parent->var_off.value, parent->off); | 
|  | return -EFAULT; | 
|  | } | 
|  | /* The first condition is more likely to be true than the | 
|  | * second, checked it first. | 
|  | */ | 
|  | if ((parent->live & REG_LIVE_READ) == flag || | 
|  | parent->live & REG_LIVE_READ64) | 
|  | /* The parentage chain never changes and | 
|  | * this parent was already marked as LIVE_READ. | 
|  | * There is no need to keep walking the chain again and | 
|  | * keep re-marking all parents as LIVE_READ. | 
|  | * This case happens when the same register is read | 
|  | * multiple times without writes into it in-between. | 
|  | * Also, if parent has the stronger REG_LIVE_READ64 set, | 
|  | * then no need to set the weak REG_LIVE_READ32. | 
|  | */ | 
|  | break; | 
|  | /* ... then we depend on parent's value */ | 
|  | parent->live |= flag; | 
|  | /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */ | 
|  | if (flag == REG_LIVE_READ64) | 
|  | parent->live &= ~REG_LIVE_READ32; | 
|  | state = parent; | 
|  | parent = state->parent; | 
|  | writes = true; | 
|  | cnt++; | 
|  | } | 
|  |  | 
|  | if (env->longest_mark_read_walk < cnt) | 
|  | env->longest_mark_read_walk = cnt; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int mark_dynptr_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg) | 
|  | { | 
|  | struct bpf_func_state *state = func(env, reg); | 
|  | int spi, ret; | 
|  |  | 
|  | /* For CONST_PTR_TO_DYNPTR, it must have already been done by | 
|  | * check_reg_arg in check_helper_call and mark_btf_func_reg_size in | 
|  | * check_kfunc_call. | 
|  | */ | 
|  | if (reg->type == CONST_PTR_TO_DYNPTR) | 
|  | return 0; | 
|  | spi = dynptr_get_spi(env, reg); | 
|  | if (spi < 0) | 
|  | return spi; | 
|  | /* Caller ensures dynptr is valid and initialized, which means spi is in | 
|  | * bounds and spi is the first dynptr slot. Simply mark stack slot as | 
|  | * read. | 
|  | */ | 
|  | ret = mark_reg_read(env, &state->stack[spi].spilled_ptr, | 
|  | state->stack[spi].spilled_ptr.parent, REG_LIVE_READ64); | 
|  | if (ret) | 
|  | return ret; | 
|  | return mark_reg_read(env, &state->stack[spi - 1].spilled_ptr, | 
|  | state->stack[spi - 1].spilled_ptr.parent, REG_LIVE_READ64); | 
|  | } | 
|  |  | 
|  | static int mark_iter_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg, | 
|  | int spi, int nr_slots) | 
|  | { | 
|  | struct bpf_func_state *state = func(env, reg); | 
|  | int err, i; | 
|  |  | 
|  | for (i = 0; i < nr_slots; i++) { | 
|  | struct bpf_reg_state *st = &state->stack[spi - i].spilled_ptr; | 
|  |  | 
|  | err = mark_reg_read(env, st, st->parent, REG_LIVE_READ64); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | mark_stack_slot_scratched(env, spi - i); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* This function is supposed to be used by the following 32-bit optimization | 
|  | * code only. It returns TRUE if the source or destination register operates | 
|  | * on 64-bit, otherwise return FALSE. | 
|  | */ | 
|  | static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn, | 
|  | u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t) | 
|  | { | 
|  | u8 code, class, op; | 
|  |  | 
|  | code = insn->code; | 
|  | class = BPF_CLASS(code); | 
|  | op = BPF_OP(code); | 
|  | if (class == BPF_JMP) { | 
|  | /* BPF_EXIT for "main" will reach here. Return TRUE | 
|  | * conservatively. | 
|  | */ | 
|  | if (op == BPF_EXIT) | 
|  | return true; | 
|  | if (op == BPF_CALL) { | 
|  | /* BPF to BPF call will reach here because of marking | 
|  | * caller saved clobber with DST_OP_NO_MARK for which we | 
|  | * don't care the register def because they are anyway | 
|  | * marked as NOT_INIT already. | 
|  | */ | 
|  | if (insn->src_reg == BPF_PSEUDO_CALL) | 
|  | return false; | 
|  | /* Helper call will reach here because of arg type | 
|  | * check, conservatively return TRUE. | 
|  | */ | 
|  | if (t == SRC_OP) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (class == BPF_ALU64 && op == BPF_END && (insn->imm == 16 || insn->imm == 32)) | 
|  | return false; | 
|  |  | 
|  | if (class == BPF_ALU64 || class == BPF_JMP || | 
|  | (class == BPF_ALU && op == BPF_END && insn->imm == 64)) | 
|  | return true; | 
|  |  | 
|  | if (class == BPF_ALU || class == BPF_JMP32) | 
|  | return false; | 
|  |  | 
|  | if (class == BPF_LDX) { | 
|  | if (t != SRC_OP) | 
|  | return BPF_SIZE(code) == BPF_DW || BPF_MODE(code) == BPF_MEMSX; | 
|  | /* LDX source must be ptr. */ | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (class == BPF_STX) { | 
|  | /* BPF_STX (including atomic variants) has multiple source | 
|  | * operands, one of which is a ptr. Check whether the caller is | 
|  | * asking about it. | 
|  | */ | 
|  | if (t == SRC_OP && reg->type != SCALAR_VALUE) | 
|  | return true; | 
|  | return BPF_SIZE(code) == BPF_DW; | 
|  | } | 
|  |  | 
|  | if (class == BPF_LD) { | 
|  | u8 mode = BPF_MODE(code); | 
|  |  | 
|  | /* LD_IMM64 */ | 
|  | if (mode == BPF_IMM) | 
|  | return true; | 
|  |  | 
|  | /* Both LD_IND and LD_ABS return 32-bit data. */ | 
|  | if (t != SRC_OP) | 
|  | return  false; | 
|  |  | 
|  | /* Implicit ctx ptr. */ | 
|  | if (regno == BPF_REG_6) | 
|  | return true; | 
|  |  | 
|  | /* Explicit source could be any width. */ | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (class == BPF_ST) | 
|  | /* The only source register for BPF_ST is a ptr. */ | 
|  | return true; | 
|  |  | 
|  | /* Conservatively return true at default. */ | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Return the regno defined by the insn, or -1. */ | 
|  | static int insn_def_regno(const struct bpf_insn *insn) | 
|  | { | 
|  | switch (BPF_CLASS(insn->code)) { | 
|  | case BPF_JMP: | 
|  | case BPF_JMP32: | 
|  | case BPF_ST: | 
|  | return -1; | 
|  | case BPF_STX: | 
|  | if ((BPF_MODE(insn->code) == BPF_ATOMIC || | 
|  | BPF_MODE(insn->code) == BPF_PROBE_ATOMIC) && | 
|  | (insn->imm & BPF_FETCH)) { | 
|  | if (insn->imm == BPF_CMPXCHG) | 
|  | return BPF_REG_0; | 
|  | else | 
|  | return insn->src_reg; | 
|  | } else { | 
|  | return -1; | 
|  | } | 
|  | default: | 
|  | return insn->dst_reg; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Return TRUE if INSN has defined any 32-bit value explicitly. */ | 
|  | static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn) | 
|  | { | 
|  | int dst_reg = insn_def_regno(insn); | 
|  |  | 
|  | if (dst_reg == -1) | 
|  | return false; | 
|  |  | 
|  | return !is_reg64(env, insn, dst_reg, NULL, DST_OP); | 
|  | } | 
|  |  | 
|  | static void mark_insn_zext(struct bpf_verifier_env *env, | 
|  | struct bpf_reg_state *reg) | 
|  | { | 
|  | s32 def_idx = reg->subreg_def; | 
|  |  | 
|  | if (def_idx == DEF_NOT_SUBREG) | 
|  | return; | 
|  |  | 
|  | env->insn_aux_data[def_idx - 1].zext_dst = true; | 
|  | /* The dst will be zero extended, so won't be sub-register anymore. */ | 
|  | reg->subreg_def = DEF_NOT_SUBREG; | 
|  | } | 
|  |  | 
|  | static int __check_reg_arg(struct bpf_verifier_env *env, struct bpf_reg_state *regs, u32 regno, | 
|  | enum reg_arg_type t) | 
|  | { | 
|  | struct bpf_insn *insn = env->prog->insnsi + env->insn_idx; | 
|  | struct bpf_reg_state *reg; | 
|  | bool rw64; | 
|  |  | 
|  | if (regno >= MAX_BPF_REG) { | 
|  | verbose(env, "R%d is invalid\n", regno); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | mark_reg_scratched(env, regno); | 
|  |  | 
|  | reg = ®s[regno]; | 
|  | rw64 = is_reg64(env, insn, regno, reg, t); | 
|  | if (t == SRC_OP) { | 
|  | /* check whether register used as source operand can be read */ | 
|  | if (reg->type == NOT_INIT) { | 
|  | verbose(env, "R%d !read_ok\n", regno); | 
|  | return -EACCES; | 
|  | } | 
|  | /* We don't need to worry about FP liveness because it's read-only */ | 
|  | if (regno == BPF_REG_FP) | 
|  | return 0; | 
|  |  | 
|  | if (rw64) | 
|  | mark_insn_zext(env, reg); | 
|  |  | 
|  | return mark_reg_read(env, reg, reg->parent, | 
|  | rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32); | 
|  | } else { | 
|  | /* check whether register used as dest operand can be written to */ | 
|  | if (regno == BPF_REG_FP) { | 
|  | verbose(env, "frame pointer is read only\n"); | 
|  | return -EACCES; | 
|  | } | 
|  | reg->live |= REG_LIVE_WRITTEN; | 
|  | reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1; | 
|  | if (t == DST_OP) | 
|  | mark_reg_unknown(env, regs, regno); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, | 
|  | enum reg_arg_type t) | 
|  | { | 
|  | struct bpf_verifier_state *vstate = env->cur_state; | 
|  | struct bpf_func_state *state = vstate->frame[vstate->curframe]; | 
|  |  | 
|  | return __check_reg_arg(env, state->regs, regno, t); | 
|  | } | 
|  |  | 
|  | static int insn_stack_access_flags(int frameno, int spi) | 
|  | { | 
|  | return INSN_F_STACK_ACCESS | (spi << INSN_F_SPI_SHIFT) | frameno; | 
|  | } | 
|  |  | 
|  | static int insn_stack_access_spi(int insn_flags) | 
|  | { | 
|  | return (insn_flags >> INSN_F_SPI_SHIFT) & INSN_F_SPI_MASK; | 
|  | } | 
|  |  | 
|  | static int insn_stack_access_frameno(int insn_flags) | 
|  | { | 
|  | return insn_flags & INSN_F_FRAMENO_MASK; | 
|  | } | 
|  |  | 
|  | static void mark_jmp_point(struct bpf_verifier_env *env, int idx) | 
|  | { | 
|  | env->insn_aux_data[idx].jmp_point = true; | 
|  | } | 
|  |  | 
|  | static bool is_jmp_point(struct bpf_verifier_env *env, int insn_idx) | 
|  | { | 
|  | return env->insn_aux_data[insn_idx].jmp_point; | 
|  | } | 
|  |  | 
|  | #define LR_FRAMENO_BITS	3 | 
|  | #define LR_SPI_BITS	6 | 
|  | #define LR_ENTRY_BITS	(LR_SPI_BITS + LR_FRAMENO_BITS + 1) | 
|  | #define LR_SIZE_BITS	4 | 
|  | #define LR_FRAMENO_MASK	((1ull << LR_FRAMENO_BITS) - 1) | 
|  | #define LR_SPI_MASK	((1ull << LR_SPI_BITS)     - 1) | 
|  | #define LR_SIZE_MASK	((1ull << LR_SIZE_BITS)    - 1) | 
|  | #define LR_SPI_OFF	LR_FRAMENO_BITS | 
|  | #define LR_IS_REG_OFF	(LR_SPI_BITS + LR_FRAMENO_BITS) | 
|  | #define LINKED_REGS_MAX	6 | 
|  |  | 
|  | struct linked_reg { | 
|  | u8 frameno; | 
|  | union { | 
|  | u8 spi; | 
|  | u8 regno; | 
|  | }; | 
|  | bool is_reg; | 
|  | }; | 
|  |  | 
|  | struct linked_regs { | 
|  | int cnt; | 
|  | struct linked_reg entries[LINKED_REGS_MAX]; | 
|  | }; | 
|  |  | 
|  | static struct linked_reg *linked_regs_push(struct linked_regs *s) | 
|  | { | 
|  | if (s->cnt < LINKED_REGS_MAX) | 
|  | return &s->entries[s->cnt++]; | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* Use u64 as a vector of 6 10-bit values, use first 4-bits to track | 
|  | * number of elements currently in stack. | 
|  | * Pack one history entry for linked registers as 10 bits in the following format: | 
|  | * - 3-bits frameno | 
|  | * - 6-bits spi_or_reg | 
|  | * - 1-bit  is_reg | 
|  | */ | 
|  | static u64 linked_regs_pack(struct linked_regs *s) | 
|  | { | 
|  | u64 val = 0; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < s->cnt; ++i) { | 
|  | struct linked_reg *e = &s->entries[i]; | 
|  | u64 tmp = 0; | 
|  |  | 
|  | tmp |= e->frameno; | 
|  | tmp |= e->spi << LR_SPI_OFF; | 
|  | tmp |= (e->is_reg ? 1 : 0) << LR_IS_REG_OFF; | 
|  |  | 
|  | val <<= LR_ENTRY_BITS; | 
|  | val |= tmp; | 
|  | } | 
|  | val <<= LR_SIZE_BITS; | 
|  | val |= s->cnt; | 
|  | return val; | 
|  | } | 
|  |  | 
|  | static void linked_regs_unpack(u64 val, struct linked_regs *s) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | s->cnt = val & LR_SIZE_MASK; | 
|  | val >>= LR_SIZE_BITS; | 
|  |  | 
|  | for (i = 0; i < s->cnt; ++i) { | 
|  | struct linked_reg *e = &s->entries[i]; | 
|  |  | 
|  | e->frameno =  val & LR_FRAMENO_MASK; | 
|  | e->spi     = (val >> LR_SPI_OFF) & LR_SPI_MASK; | 
|  | e->is_reg  = (val >> LR_IS_REG_OFF) & 0x1; | 
|  | val >>= LR_ENTRY_BITS; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* for any branch, call, exit record the history of jmps in the given state */ | 
|  | static int push_jmp_history(struct bpf_verifier_env *env, struct bpf_verifier_state *cur, | 
|  | int insn_flags, u64 linked_regs) | 
|  | { | 
|  | u32 cnt = cur->jmp_history_cnt; | 
|  | struct bpf_jmp_history_entry *p; | 
|  | size_t alloc_size; | 
|  |  | 
|  | /* combine instruction flags if we already recorded this instruction */ | 
|  | if (env->cur_hist_ent) { | 
|  | /* atomic instructions push insn_flags twice, for READ and | 
|  | * WRITE sides, but they should agree on stack slot | 
|  | */ | 
|  | WARN_ONCE((env->cur_hist_ent->flags & insn_flags) && | 
|  | (env->cur_hist_ent->flags & insn_flags) != insn_flags, | 
|  | "verifier insn history bug: insn_idx %d cur flags %x new flags %x\n", | 
|  | env->insn_idx, env->cur_hist_ent->flags, insn_flags); | 
|  | env->cur_hist_ent->flags |= insn_flags; | 
|  | WARN_ONCE(env->cur_hist_ent->linked_regs != 0, | 
|  | "verifier insn history bug: insn_idx %d linked_regs != 0: %#llx\n", | 
|  | env->insn_idx, env->cur_hist_ent->linked_regs); | 
|  | env->cur_hist_ent->linked_regs = linked_regs; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | cnt++; | 
|  | alloc_size = kmalloc_size_roundup(size_mul(cnt, sizeof(*p))); | 
|  | p = krealloc(cur->jmp_history, alloc_size, GFP_USER); | 
|  | if (!p) | 
|  | return -ENOMEM; | 
|  | cur->jmp_history = p; | 
|  |  | 
|  | p = &cur->jmp_history[cnt - 1]; | 
|  | p->idx = env->insn_idx; | 
|  | p->prev_idx = env->prev_insn_idx; | 
|  | p->flags = insn_flags; | 
|  | p->linked_regs = linked_regs; | 
|  | cur->jmp_history_cnt = cnt; | 
|  | env->cur_hist_ent = p; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct bpf_jmp_history_entry *get_jmp_hist_entry(struct bpf_verifier_state *st, | 
|  | u32 hist_end, int insn_idx) | 
|  | { | 
|  | if (hist_end > 0 && st->jmp_history[hist_end - 1].idx == insn_idx) | 
|  | return &st->jmp_history[hist_end - 1]; | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* Backtrack one insn at a time. If idx is not at the top of recorded | 
|  | * history then previous instruction came from straight line execution. | 
|  | * Return -ENOENT if we exhausted all instructions within given state. | 
|  | * | 
|  | * It's legal to have a bit of a looping with the same starting and ending | 
|  | * insn index within the same state, e.g.: 3->4->5->3, so just because current | 
|  | * instruction index is the same as state's first_idx doesn't mean we are | 
|  | * done. If there is still some jump history left, we should keep going. We | 
|  | * need to take into account that we might have a jump history between given | 
|  | * state's parent and itself, due to checkpointing. In this case, we'll have | 
|  | * history entry recording a jump from last instruction of parent state and | 
|  | * first instruction of given state. | 
|  | */ | 
|  | static int get_prev_insn_idx(struct bpf_verifier_state *st, int i, | 
|  | u32 *history) | 
|  | { | 
|  | u32 cnt = *history; | 
|  |  | 
|  | if (i == st->first_insn_idx) { | 
|  | if (cnt == 0) | 
|  | return -ENOENT; | 
|  | if (cnt == 1 && st->jmp_history[0].idx == i) | 
|  | return -ENOENT; | 
|  | } | 
|  |  | 
|  | if (cnt && st->jmp_history[cnt - 1].idx == i) { | 
|  | i = st->jmp_history[cnt - 1].prev_idx; | 
|  | (*history)--; | 
|  | } else { | 
|  | i--; | 
|  | } | 
|  | return i; | 
|  | } | 
|  |  | 
|  | static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn) | 
|  | { | 
|  | const struct btf_type *func; | 
|  | struct btf *desc_btf; | 
|  |  | 
|  | if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL) | 
|  | return NULL; | 
|  |  | 
|  | desc_btf = find_kfunc_desc_btf(data, insn->off); | 
|  | if (IS_ERR(desc_btf)) | 
|  | return "<error>"; | 
|  |  | 
|  | func = btf_type_by_id(desc_btf, insn->imm); | 
|  | return btf_name_by_offset(desc_btf, func->name_off); | 
|  | } | 
|  |  | 
|  | static inline void bt_init(struct backtrack_state *bt, u32 frame) | 
|  | { | 
|  | bt->frame = frame; | 
|  | } | 
|  |  | 
|  | static inline void bt_reset(struct backtrack_state *bt) | 
|  | { | 
|  | struct bpf_verifier_env *env = bt->env; | 
|  |  | 
|  | memset(bt, 0, sizeof(*bt)); | 
|  | bt->env = env; | 
|  | } | 
|  |  | 
|  | static inline u32 bt_empty(struct backtrack_state *bt) | 
|  | { | 
|  | u64 mask = 0; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i <= bt->frame; i++) | 
|  | mask |= bt->reg_masks[i] | bt->stack_masks[i]; | 
|  |  | 
|  | return mask == 0; | 
|  | } | 
|  |  | 
|  | static inline int bt_subprog_enter(struct backtrack_state *bt) | 
|  | { | 
|  | if (bt->frame == MAX_CALL_FRAMES - 1) { | 
|  | verbose(bt->env, "BUG subprog enter from frame %d\n", bt->frame); | 
|  | WARN_ONCE(1, "verifier backtracking bug"); | 
|  | return -EFAULT; | 
|  | } | 
|  | bt->frame++; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline int bt_subprog_exit(struct backtrack_state *bt) | 
|  | { | 
|  | if (bt->frame == 0) { | 
|  | verbose(bt->env, "BUG subprog exit from frame 0\n"); | 
|  | WARN_ONCE(1, "verifier backtracking bug"); | 
|  | return -EFAULT; | 
|  | } | 
|  | bt->frame--; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline void bt_set_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg) | 
|  | { | 
|  | bt->reg_masks[frame] |= 1 << reg; | 
|  | } | 
|  |  | 
|  | static inline void bt_clear_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg) | 
|  | { | 
|  | bt->reg_masks[frame] &= ~(1 << reg); | 
|  | } | 
|  |  | 
|  | static inline void bt_set_reg(struct backtrack_state *bt, u32 reg) | 
|  | { | 
|  | bt_set_frame_reg(bt, bt->frame, reg); | 
|  | } | 
|  |  | 
|  | static inline void bt_clear_reg(struct backtrack_state *bt, u32 reg) | 
|  | { | 
|  | bt_clear_frame_reg(bt, bt->frame, reg); | 
|  | } | 
|  |  | 
|  | static inline void bt_set_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot) | 
|  | { | 
|  | bt->stack_masks[frame] |= 1ull << slot; | 
|  | } | 
|  |  | 
|  | static inline void bt_clear_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot) | 
|  | { | 
|  | bt->stack_masks[frame] &= ~(1ull << slot); | 
|  | } | 
|  |  | 
|  | static inline u32 bt_frame_reg_mask(struct backtrack_state *bt, u32 frame) | 
|  | { | 
|  | return bt->reg_masks[frame]; | 
|  | } | 
|  |  | 
|  | static inline u32 bt_reg_mask(struct backtrack_state *bt) | 
|  | { | 
|  | return bt->reg_masks[bt->frame]; | 
|  | } | 
|  |  | 
|  | static inline u64 bt_frame_stack_mask(struct backtrack_state *bt, u32 frame) | 
|  | { | 
|  | return bt->stack_masks[frame]; | 
|  | } | 
|  |  | 
|  | static inline u64 bt_stack_mask(struct backtrack_state *bt) | 
|  | { | 
|  | return bt->stack_masks[bt->frame]; | 
|  | } | 
|  |  | 
|  | static inline bool bt_is_reg_set(struct backtrack_state *bt, u32 reg) | 
|  | { | 
|  | return bt->reg_masks[bt->frame] & (1 << reg); | 
|  | } | 
|  |  | 
|  | static inline bool bt_is_frame_reg_set(struct backtrack_state *bt, u32 frame, u32 reg) | 
|  | { | 
|  | return bt->reg_masks[frame] & (1 << reg); | 
|  | } | 
|  |  | 
|  | static inline bool bt_is_frame_slot_set(struct backtrack_state *bt, u32 frame, u32 slot) | 
|  | { | 
|  | return bt->stack_masks[frame] & (1ull << slot); | 
|  | } | 
|  |  | 
|  | /* format registers bitmask, e.g., "r0,r2,r4" for 0x15 mask */ | 
|  | static void fmt_reg_mask(char *buf, ssize_t buf_sz, u32 reg_mask) | 
|  | { | 
|  | DECLARE_BITMAP(mask, 64); | 
|  | bool first = true; | 
|  | int i, n; | 
|  |  | 
|  | buf[0] = '\0'; | 
|  |  | 
|  | bitmap_from_u64(mask, reg_mask); | 
|  | for_each_set_bit(i, mask, 32) { | 
|  | n = snprintf(buf, buf_sz, "%sr%d", first ? "" : ",", i); | 
|  | first = false; | 
|  | buf += n; | 
|  | buf_sz -= n; | 
|  | if (buf_sz < 0) | 
|  | break; | 
|  | } | 
|  | } | 
|  | /* format stack slots bitmask, e.g., "-8,-24,-40" for 0x15 mask */ | 
|  | static void fmt_stack_mask(char *buf, ssize_t buf_sz, u64 stack_mask) | 
|  | { | 
|  | DECLARE_BITMAP(mask, 64); | 
|  | bool first = true; | 
|  | int i, n; | 
|  |  | 
|  | buf[0] = '\0'; | 
|  |  | 
|  | bitmap_from_u64(mask, stack_mask); | 
|  | for_each_set_bit(i, mask, 64) { | 
|  | n = snprintf(buf, buf_sz, "%s%d", first ? "" : ",", -(i + 1) * 8); | 
|  | first = false; | 
|  | buf += n; | 
|  | buf_sz -= n; | 
|  | if (buf_sz < 0) | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* If any register R in hist->linked_regs is marked as precise in bt, | 
|  | * do bt_set_frame_{reg,slot}(bt, R) for all registers in hist->linked_regs. | 
|  | */ | 
|  | static void bt_sync_linked_regs(struct backtrack_state *bt, struct bpf_jmp_history_entry *hist) | 
|  | { | 
|  | struct linked_regs linked_regs; | 
|  | bool some_precise = false; | 
|  | int i; | 
|  |  | 
|  | if (!hist || hist->linked_regs == 0) | 
|  | return; | 
|  |  | 
|  | linked_regs_unpack(hist->linked_regs, &linked_regs); | 
|  | for (i = 0; i < linked_regs.cnt; ++i) { | 
|  | struct linked_reg *e = &linked_regs.entries[i]; | 
|  |  | 
|  | if ((e->is_reg && bt_is_frame_reg_set(bt, e->frameno, e->regno)) || | 
|  | (!e->is_reg && bt_is_frame_slot_set(bt, e->frameno, e->spi))) { | 
|  | some_precise = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!some_precise) | 
|  | return; | 
|  |  | 
|  | for (i = 0; i < linked_regs.cnt; ++i) { | 
|  | struct linked_reg *e = &linked_regs.entries[i]; | 
|  |  | 
|  | if (e->is_reg) | 
|  | bt_set_frame_reg(bt, e->frameno, e->regno); | 
|  | else | 
|  | bt_set_frame_slot(bt, e->frameno, e->spi); | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool calls_callback(struct bpf_verifier_env *env, int insn_idx); | 
|  |  | 
|  | /* For given verifier state backtrack_insn() is called from the last insn to | 
|  | * the first insn. Its purpose is to compute a bitmask of registers and | 
|  | * stack slots that needs precision in the parent verifier state. | 
|  | * | 
|  | * @idx is an index of the instruction we are currently processing; | 
|  | * @subseq_idx is an index of the subsequent instruction that: | 
|  | *   - *would be* executed next, if jump history is viewed in forward order; | 
|  | *   - *was* processed previously during backtracking. | 
|  | */ | 
|  | static int backtrack_insn(struct bpf_verifier_env *env, int idx, int subseq_idx, | 
|  | struct bpf_jmp_history_entry *hist, struct backtrack_state *bt) | 
|  | { | 
|  | const struct bpf_insn_cbs cbs = { | 
|  | .cb_call	= disasm_kfunc_name, | 
|  | .cb_print	= verbose, | 
|  | .private_data	= env, | 
|  | }; | 
|  | struct bpf_insn *insn = env->prog->insnsi + idx; | 
|  | u8 class = BPF_CLASS(insn->code); | 
|  | u8 opcode = BPF_OP(insn->code); | 
|  | u8 mode = BPF_MODE(insn->code); | 
|  | u32 dreg = insn->dst_reg; | 
|  | u32 sreg = insn->src_reg; | 
|  | u32 spi, i, fr; | 
|  |  | 
|  | if (insn->code == 0) | 
|  | return 0; | 
|  | if (env->log.level & BPF_LOG_LEVEL2) { | 
|  | fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_reg_mask(bt)); | 
|  | verbose(env, "mark_precise: frame%d: regs=%s ", | 
|  | bt->frame, env->tmp_str_buf); | 
|  | fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_stack_mask(bt)); | 
|  | verbose(env, "stack=%s before ", env->tmp_str_buf); | 
|  | verbose(env, "%d: ", idx); | 
|  | print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); | 
|  | } | 
|  |  | 
|  | /* If there is a history record that some registers gained range at this insn, | 
|  | * propagate precision marks to those registers, so that bt_is_reg_set() | 
|  | * accounts for these registers. | 
|  | */ | 
|  | bt_sync_linked_regs(bt, hist); | 
|  |  | 
|  | if (class == BPF_ALU || class == BPF_ALU64) { | 
|  | if (!bt_is_reg_set(bt, dreg)) | 
|  | return 0; | 
|  | if (opcode == BPF_END || opcode == BPF_NEG) { | 
|  | /* sreg is reserved and unused | 
|  | * dreg still need precision before this insn | 
|  | */ | 
|  | return 0; | 
|  | } else if (opcode == BPF_MOV) { | 
|  | if (BPF_SRC(insn->code) == BPF_X) { | 
|  | /* dreg = sreg or dreg = (s8, s16, s32)sreg | 
|  | * dreg needs precision after this insn | 
|  | * sreg needs precision before this insn | 
|  | */ | 
|  | bt_clear_reg(bt, dreg); | 
|  | if (sreg != BPF_REG_FP) | 
|  | bt_set_reg(bt, sreg); | 
|  | } else { | 
|  | /* dreg = K | 
|  | * dreg needs precision after this insn. | 
|  | * Corresponding register is already marked | 
|  | * as precise=true in this verifier state. | 
|  | * No further markings in parent are necessary | 
|  | */ | 
|  | bt_clear_reg(bt, dreg); | 
|  | } | 
|  | } else { | 
|  | if (BPF_SRC(insn->code) == BPF_X) { | 
|  | /* dreg += sreg | 
|  | * both dreg and sreg need precision | 
|  | * before this insn | 
|  | */ | 
|  | if (sreg != BPF_REG_FP) | 
|  | bt_set_reg(bt, sreg); | 
|  | } /* else dreg += K | 
|  | * dreg still needs precision before this insn | 
|  | */ | 
|  | } | 
|  | } else if (class == BPF_LDX) { | 
|  | if (!bt_is_reg_set(bt, dreg)) | 
|  | return 0; | 
|  | bt_clear_reg(bt, dreg); | 
|  |  | 
|  | /* scalars can only be spilled into stack w/o losing precision. | 
|  | * Load from any other memory can be zero extended. | 
|  | * The desire to keep that precision is already indicated | 
|  | * by 'precise' mark in corresponding register of this state. | 
|  | * No further tracking necessary. | 
|  | */ | 
|  | if (!hist || !(hist->flags & INSN_F_STACK_ACCESS)) | 
|  | return 0; | 
|  | /* dreg = *(u64 *)[fp - off] was a fill from the stack. | 
|  | * that [fp - off] slot contains scalar that needs to be | 
|  | * tracked with precision | 
|  | */ | 
|  | spi = insn_stack_access_spi(hist->flags); | 
|  | fr = insn_stack_access_frameno(hist->flags); | 
|  | bt_set_frame_slot(bt, fr, spi); | 
|  | } else if (class == BPF_STX || class == BPF_ST) { | 
|  | if (bt_is_reg_set(bt, dreg)) | 
|  | /* stx & st shouldn't be using _scalar_ dst_reg | 
|  | * to access memory. It means backtracking | 
|  | * encountered a case of pointer subtraction. | 
|  | */ | 
|  | return -ENOTSUPP; | 
|  | /* scalars can only be spilled into stack */ | 
|  | if (!hist || !(hist->flags & INSN_F_STACK_ACCESS)) | 
|  | return 0; | 
|  | spi = insn_stack_access_spi(hist->flags); | 
|  | fr = insn_stack_access_frameno(hist->flags); | 
|  | if (!bt_is_frame_slot_set(bt, fr, spi)) | 
|  | return 0; | 
|  | bt_clear_frame_slot(bt, fr, spi); | 
|  | if (class == BPF_STX) | 
|  | bt_set_reg(bt, sreg); | 
|  | } else if (class == BPF_JMP || class == BPF_JMP32) { | 
|  | if (bpf_pseudo_call(insn)) { | 
|  | int subprog_insn_idx, subprog; | 
|  |  | 
|  | subprog_insn_idx = idx + insn->imm + 1; | 
|  | subprog = find_subprog(env, subprog_insn_idx); | 
|  | if (subprog < 0) | 
|  | return -EFAULT; | 
|  |  | 
|  | if (subprog_is_global(env, subprog)) { | 
|  | /* check that jump history doesn't have any | 
|  | * extra instructions from subprog; the next | 
|  | * instruction after call to global subprog | 
|  | * should be literally next instruction in | 
|  | * caller program | 
|  | */ | 
|  | WARN_ONCE(idx + 1 != subseq_idx, "verifier backtracking bug"); | 
|  | /* r1-r5 are invalidated after subprog call, | 
|  | * so for global func call it shouldn't be set | 
|  | * anymore | 
|  | */ | 
|  | if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) { | 
|  | verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); | 
|  | WARN_ONCE(1, "verifier backtracking bug"); | 
|  | return -EFAULT; | 
|  | } | 
|  | /* global subprog always sets R0 */ | 
|  | bt_clear_reg(bt, BPF_REG_0); | 
|  | return 0; | 
|  | } else { | 
|  | /* static subprog call instruction, which | 
|  | * means that we are exiting current subprog, | 
|  | * so only r1-r5 could be still requested as | 
|  | * precise, r0 and r6-r10 or any stack slot in | 
|  | * the current frame should be zero by now | 
|  | */ | 
|  | if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) { | 
|  | verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); | 
|  | WARN_ONCE(1, "verifier backtracking bug"); | 
|  | return -EFAULT; | 
|  | } | 
|  | /* we are now tracking register spills correctly, | 
|  | * so any instance of leftover slots is a bug | 
|  | */ | 
|  | if (bt_stack_mask(bt) != 0) { | 
|  | verbose(env, "BUG stack slots %llx\n", bt_stack_mask(bt)); | 
|  | WARN_ONCE(1, "verifier backtracking bug (subprog leftover stack slots)"); | 
|  | return -EFAULT; | 
|  | } | 
|  | /* propagate r1-r5 to the caller */ | 
|  | for (i = BPF_REG_1; i <= BPF_REG_5; i++) { | 
|  | if (bt_is_reg_set(bt, i)) { | 
|  | bt_clear_reg(bt, i); | 
|  | bt_set_frame_reg(bt, bt->frame - 1, i); | 
|  | } | 
|  | } | 
|  | if (bt_subprog_exit(bt)) | 
|  | return -EFAULT; | 
|  | return 0; | 
|  | } | 
|  | } else if (is_sync_callback_calling_insn(insn) && idx != subseq_idx - 1) { | 
|  | /* exit from callback subprog to callback-calling helper or | 
|  | * kfunc call. Use idx/subseq_idx check to discern it from | 
|  | * straight line code backtracking. | 
|  | * Unlike the subprog call handling above, we shouldn't | 
|  | * propagate precision of r1-r5 (if any requested), as they are | 
|  | * not actually arguments passed directly to callback subprogs | 
|  | */ | 
|  | if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) { | 
|  | verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); | 
|  | WARN_ONCE(1, "verifier backtracking bug"); | 
|  | return -EFAULT; | 
|  | } | 
|  | if (bt_stack_mask(bt) != 0) { | 
|  | verbose(env, "BUG stack slots %llx\n", bt_stack_mask(bt)); | 
|  | WARN_ONCE(1, "verifier backtracking bug (callback leftover stack slots)"); | 
|  | return -EFAULT; | 
|  | } | 
|  | /* clear r1-r5 in callback subprog's mask */ | 
|  | for (i = BPF_REG_1; i <= BPF_REG_5; i++) | 
|  | bt_clear_reg(bt, i); | 
|  | if (bt_subprog_exit(bt)) | 
|  | return -EFAULT; | 
|  | return 0; | 
|  | } else if (opcode == BPF_CALL) { | 
|  | /* kfunc with imm==0 is invalid and fixup_kfunc_call will | 
|  | * catch this error later. Make backtracking conservative | 
|  | * with ENOTSUPP. | 
|  | */ | 
|  | if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && insn->imm == 0) | 
|  | return -ENOTSUPP; | 
|  | /* regular helper call sets R0 */ | 
|  | bt_clear_reg(bt, BPF_REG_0); | 
|  | if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) { | 
|  | /* if backtracing was looking for registers R1-R5 | 
|  | * they should have been found already. | 
|  | */ | 
|  | verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); | 
|  | WARN_ONCE(1, "verifier backtracking bug"); | 
|  | return -EFAULT; | 
|  | } | 
|  | } else if (opcode == BPF_EXIT) { | 
|  | bool r0_precise; | 
|  |  | 
|  | /* Backtracking to a nested function call, 'idx' is a part of | 
|  | * the inner frame 'subseq_idx' is a part of the outer frame. | 
|  | * In case of a regular function call, instructions giving | 
|  | * precision to registers R1-R5 should have been found already. | 
|  | * In case of a callback, it is ok to have R1-R5 marked for | 
|  | * backtracking, as these registers are set by the function | 
|  | * invoking callback. | 
|  | */ | 
|  | if (subseq_idx >= 0 && calls_callback(env, subseq_idx)) | 
|  | for (i = BPF_REG_1; i <= BPF_REG_5; i++) | 
|  | bt_clear_reg(bt, i); | 
|  | if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) { | 
|  | verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); | 
|  | WARN_ONCE(1, "verifier backtracking bug"); | 
|  | return -EFAULT; | 
|  | } | 
|  |  | 
|  | /* BPF_EXIT in subprog or callback always returns | 
|  | * right after the call instruction, so by checking | 
|  | * whether the instruction at subseq_idx-1 is subprog | 
|  | * call or not we can distinguish actual exit from | 
|  | * *subprog* from exit from *callback*. In the former | 
|  | * case, we need to propagate r0 precision, if | 
|  | * necessary. In the former we never do that. | 
|  | */ | 
|  | r0_precise = subseq_idx - 1 >= 0 && | 
|  | bpf_pseudo_call(&env->prog->insnsi[subseq_idx - 1]) && | 
|  | bt_is_reg_set(bt, BPF_REG_0); | 
|  |  | 
|  | bt_clear_reg(bt, BPF_REG_0); | 
|  | if (bt_subprog_enter(bt)) | 
|  | return -EFAULT; | 
|  |  | 
|  | if (r0_precise) | 
|  | bt_set_reg(bt, BPF_REG_0); | 
|  | /* r6-r9 and stack slots will stay set in caller frame | 
|  | * bitmasks until we return back from callee(s) | 
|  | */ | 
|  | return 0; | 
|  | } else if (BPF_SRC(insn->code) == BPF_X) { | 
|  | if (!bt_is_reg_set(bt, dreg) && !bt_is_reg_set(bt, sreg)) | 
|  | return 0; | 
|  | /* dreg <cond> sreg | 
|  | * Both dreg and sreg need precision before | 
|  | * this insn. If only sreg was marked precise | 
|  | * before it would be equally necessary to | 
|  | * propagate it to dreg. | 
|  | */ | 
|  | bt_set_reg(bt, dreg); | 
|  | bt_set_reg(bt, sreg); | 
|  | } else if (BPF_SRC(insn->code) == BPF_K) { | 
|  | /* dreg <cond> K | 
|  | * Only dreg still needs precision before | 
|  | * this insn, so for the K-based conditional | 
|  | * there is nothing new to be marked. | 
|  | */ | 
|  | } | 
|  | } else if (class == BPF_LD) { | 
|  | if (!bt_is_reg_set(bt, dreg)) | 
|  | return 0; | 
|  | bt_clear_reg(bt, dreg); | 
|  | /* It's ld_imm64 or ld_abs or ld_ind. | 
|  | * For ld_imm64 no further tracking of precision | 
|  | * into parent is necessary | 
|  | */ | 
|  | if (mode == BPF_IND || mode == BPF_ABS) | 
|  | /* to be analyzed */ | 
|  | return -ENOTSUPP; | 
|  | } | 
|  | /* Propagate precision marks to linked registers, to account for | 
|  | * registers marked as precise in this function. | 
|  | */ | 
|  | bt_sync_linked_regs(bt, hist); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* the scalar precision tracking algorithm: | 
|  | * . at the start all registers have precise=false. | 
|  | * . scalar ranges are tracked as normal through alu and jmp insns. | 
|  | * . once precise value of the scalar register is used in: | 
|  | *   .  ptr + scalar alu | 
|  | *   . if (scalar cond K|scalar) | 
|  | *   .  helper_call(.., scalar, ...) where ARG_CONST is expected | 
|  | *   backtrack through the verifier states and mark all registers and | 
|  | *   stack slots with spilled constants that these scalar regisers | 
|  | *   should be precise. | 
|  | * . during state pruning two registers (or spilled stack slots) | 
|  | *   are equivalent if both are not precise. | 
|  | * | 
|  | * Note the verifier cannot simply walk register parentage chain, | 
|  | * since many different registers and stack slots could have been | 
|  | * used to compute single precise scalar. | 
|  | * | 
|  | * The approach of starting with precise=true for all registers and then | 
|  | * backtrack to mark a register as not precise when the verifier detects | 
|  | * that program doesn't care about specific value (e.g., when helper | 
|  | * takes register as ARG_ANYTHING parameter) is not safe. | 
|  | * | 
|  | * It's ok to walk single parentage chain of the verifier states. | 
|  | * It's possible that this backtracking will go all the way till 1st insn. | 
|  | * All other branches will be explored for needing precision later. | 
|  | * | 
|  | * The backtracking needs to deal with cases like: | 
|  | *   R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0) | 
|  | * r9 -= r8 | 
|  | * r5 = r9 | 
|  | * if r5 > 0x79f goto pc+7 | 
|  | *    R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff)) | 
|  | * r5 += 1 | 
|  | * ... | 
|  | * call bpf_perf_event_output#25 | 
|  | *   where .arg5_type = ARG_CONST_SIZE_OR_ZERO | 
|  | * | 
|  | * and this case: | 
|  | * r6 = 1 | 
|  | * call foo // uses callee's r6 inside to compute r0 | 
|  | * r0 += r6 | 
|  | * if r0 == 0 goto | 
|  | * | 
|  | * to track above reg_mask/stack_mask needs to be independent for each frame. | 
|  | * | 
|  | * Also if parent's curframe > frame where backtracking started, | 
|  | * the verifier need to mark registers in both frames, otherwise callees | 
|  | * may incorrectly prune callers. This is similar to | 
|  | * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences") | 
|  | * | 
|  | * For now backtracking falls back into conservative marking. | 
|  | */ | 
|  | static void mark_all_scalars_precise(struct bpf_verifier_env *env, | 
|  | struct bpf_verifier_state *st) | 
|  | { | 
|  | struct bpf_func_state *func; | 
|  | struct bpf_reg_state *reg; | 
|  | int i, j; | 
|  |  | 
|  | if (env->log.level & BPF_LOG_LEVEL2) { | 
|  | verbose(env, "mark_precise: frame%d: falling back to forcing all scalars precise\n", | 
|  | st->curframe); | 
|  | } | 
|  |  | 
|  | /* big hammer: mark all scalars precise in this path. | 
|  | * pop_stack may still get !precise scalars. | 
|  | * We also skip current state and go straight to first parent state, | 
|  | * because precision markings in current non-checkpointed state are | 
|  | * not needed. See why in the comment in __mark_chain_precision below. | 
|  | */ | 
|  | for (st = st->parent; st; st = st->parent) { | 
|  | for (i = 0; i <= st->curframe; i++) { | 
|  | func = st->frame[i]; | 
|  | for (j = 0; j < BPF_REG_FP; j++) { | 
|  | reg = &func->regs[j]; | 
|  | if (reg->type != SCALAR_VALUE || reg->precise) | 
|  | continue; | 
|  | reg->precise = true; | 
|  | if (env->log.level & BPF_LOG_LEVEL2) { | 
|  | verbose(env, "force_precise: frame%d: forcing r%d to be precise\n", | 
|  | i, j); | 
|  | } | 
|  | } | 
|  | for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { | 
|  | if (!is_spilled_reg(&func->stack[j])) | 
|  | continue; | 
|  | reg = &func->stack[j].spilled_ptr; | 
|  | if (reg->type != SCALAR_VALUE || reg->precise) | 
|  | continue; | 
|  | reg->precise = true; | 
|  | if (env->log.level & BPF_LOG_LEVEL2) { | 
|  | verbose(env, "force_precise: frame%d: forcing fp%d to be precise\n", | 
|  | i, -(j + 1) * 8); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void mark_all_scalars_imprecise(struct bpf_verifier_env *env, struct bpf_verifier_state *st) | 
|  | { | 
|  | struct bpf_func_state *func; | 
|  | struct bpf_reg_state *reg; | 
|  | int i, j; | 
|  |  | 
|  | for (i = 0; i <= st->curframe; i++) { | 
|  | func = st->frame[i]; | 
|  | for (j = 0; j < BPF_REG_FP; j++) { | 
|  | reg = &func->regs[j]; | 
|  | if (reg->type != SCALAR_VALUE) | 
|  | continue; | 
|  | reg->precise = false; | 
|  | } | 
|  | for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { | 
|  | if (!is_spilled_reg(&func->stack[j])) | 
|  | continue; | 
|  | reg = &func->stack[j].spilled_ptr; | 
|  | if (reg->type != SCALAR_VALUE) | 
|  | continue; | 
|  | reg->precise = false; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * __mark_chain_precision() backtracks BPF program instruction sequence and | 
|  | * chain of verifier states making sure that register *regno* (if regno >= 0) | 
|  | * and/or stack slot *spi* (if spi >= 0) are marked as precisely tracked | 
|  | * SCALARS, as well as any other registers and slots that contribute to | 
|  | * a tracked state of given registers/stack slots, depending on specific BPF | 
|  | * assembly instructions (see backtrack_insns() for exact instruction handling | 
|  | * logic). This backtracking relies on recorded jmp_history and is able to | 
|  | * traverse entire chain of parent states. This process ends only when all the | 
|  | * necessary registers/slots and their transitive dependencies are marked as | 
|  | * precise. | 
|  | * | 
|  | * One important and subtle aspect is that precise marks *do not matter* in | 
|  | * the currently verified state (current state). It is important to understand | 
|  | * why this is the case. | 
|  | * | 
|  | * First, note that current state is the state that is not yet "checkpointed", | 
|  | * i.e., it is not yet put into env->explored_states, and it has no children | 
|  | * states as well. It's ephemeral, and can end up either a) being discarded if | 
|  | * compatible explored state is found at some point or BPF_EXIT instruction is | 
|  | * reached or b) checkpointed and put into env->explored_states, branching out | 
|  | * into one or more children states. | 
|  | * | 
|  | * In the former case, precise markings in current state are completely | 
|  | * ignored by state comparison code (see regsafe() for details). Only | 
|  | * checkpointed ("old") state precise markings are important, and if old | 
|  | * state's register/slot is precise, regsafe() assumes current state's | 
|  | * register/slot as precise and checks value ranges exactly and precisely. If | 
|  | * states turn out to be compatible, current state's necessary precise | 
|  | * markings and any required parent states' precise markings are enforced | 
|  | * after the fact with propagate_precision() logic, after the fact. But it's | 
|  | * important to realize that in this case, even after marking current state | 
|  | * registers/slots as precise, we immediately discard current state. So what | 
|  | * actually matters is any of the precise markings propagated into current | 
|  | * state's parent states, which are always checkpointed (due to b) case above). | 
|  | * As such, for scenario a) it doesn't matter if current state has precise | 
|  | * markings set or not. | 
|  | * | 
|  | * Now, for the scenario b), checkpointing and forking into child(ren) | 
|  | * state(s). Note that before current state gets to checkpointing step, any | 
|  | * processed instruction always assumes precise SCALAR register/slot | 
|  | * knowledge: if precise value or range is useful to prune jump branch, BPF | 
|  | * verifier takes this opportunity enthusiastically. Similarly, when | 
|  | * register's value is used to calculate offset or memory address, exact | 
|  | * knowledge of SCALAR range is assumed, checked, and enforced. So, similar to | 
|  | * what we mentioned above about state comparison ignoring precise markings | 
|  | * during state comparison, BPF verifier ignores and also assumes precise | 
|  | * markings *at will* during instruction verification process. But as verifier | 
|  | * assumes precision, it also propagates any precision dependencies across | 
|  | * parent states, which are not yet finalized, so can be further restricted | 
|  | * based on new knowledge gained from restrictions enforced by their children | 
|  | * states. This is so that once those parent states are finalized, i.e., when | 
|  | * they have no more active children state, state comparison logic in | 
|  | * is_state_visited() would enforce strict and precise SCALAR ranges, if | 
|  | * required for correctness. | 
|  | * | 
|  | * To build a bit more intuition, note also that once a state is checkpointed, | 
|  | * the path we took to get to that state is not important. This is crucial | 
|  | * property for state pruning. When state is checkpointed and finalized at | 
|  | * some instruction index, it can be correctly and safely used to "short | 
|  | * circuit" any *compatible* state that reaches exactly the same instruction | 
|  | * index. I.e., if we jumped to that instruction from a completely different | 
|  | * code path than original finalized state was derived from, it doesn't | 
|  | * matter, current state can be discarded because from that instruction | 
|  | * forward having a compatible state will ensure we will safely reach the | 
|  | * exit. States describe preconditions for further exploration, but completely | 
|  | * forget the history of how we got here. | 
|  | * | 
|  | * This also means that even if we needed precise SCALAR range to get to | 
|  | * finalized state, but from that point forward *that same* SCALAR register is | 
|  | * never used in a precise context (i.e., it's precise value is not needed for | 
|  | * correctness), it's correct and safe to mark such register as "imprecise" | 
|  | * (i.e., precise marking set to false). This is what we rely on when we do | 
|  | * not set precise marking in current state. If no child state requires | 
|  | * precision for any given SCALAR register, it's safe to dictate that it can | 
|  | * be imprecise. If any child state does require this register to be precise, | 
|  | * we'll mark it precise later retroactively during precise markings | 
|  | * propagation from child state to parent states. | 
|  | * | 
|  | * Skipping precise marking setting in current state is a mild version of | 
|  | * relying on the above observation. But we can utilize this property even | 
|  | * more aggressively by proactively forgetting any precise marking in the | 
|  | * current state (which we inherited from the parent state), right before we | 
|  | * checkpoint it and branch off into new child state. This is done by | 
|  | * mark_all_scalars_imprecise() to hopefully get more permissive and generic | 
|  | * finalized states which help in short circuiting more future states. | 
|  | */ | 
|  | static int __mark_chain_precision(struct bpf_verifier_env *env, int regno) | 
|  | { | 
|  | struct backtrack_state *bt = &env->bt; | 
|  | struct bpf_verifier_state *st = env->cur_state; | 
|  | int first_idx = st->first_insn_idx; | 
|  | int last_idx = env->insn_idx; | 
|  | int subseq_idx = -1; | 
|  | struct bpf_func_state *func; | 
|  | struct bpf_reg_state *reg; | 
|  | bool skip_first = true; | 
|  | int i, fr, err; | 
|  |  | 
|  | if (!env->bpf_capable) | 
|  | return 0; | 
|  |  | 
|  | /* set frame number from which we are starting to backtrack */ | 
|  | bt_init(bt, env->cur_state->curframe); | 
|  |  | 
|  | /* Do sanity checks against current state of register and/or stack | 
|  | * slot, but don't set precise flag in current state, as precision | 
|  | * tracking in the current state is unnecessary. | 
|  | */ | 
|  | func = st->frame[bt->frame]; | 
|  | if (regno >= 0) { | 
|  | reg = &func->regs[regno]; | 
|  | if (reg->type != SCALAR_VALUE) { | 
|  | WARN_ONCE(1, "backtracing misuse"); | 
|  | return -EFAULT; | 
|  | } | 
|  | bt_set_reg(bt, regno); | 
|  | } | 
|  |  | 
|  | if (bt_empty(bt)) | 
|  | return 0; | 
|  |  | 
|  | for (;;) { | 
|  | DECLARE_BITMAP(mask, 64); | 
|  | u32 history = st->jmp_history_cnt; | 
|  | struct bpf_jmp_history_entry *hist; | 
|  |  | 
|  | if (env->log.level & BPF_LOG_LEVEL2) { | 
|  | verbose(env, "mark_precise: frame%d: last_idx %d first_idx %d subseq_idx %d \n", | 
|  | bt->frame, last_idx, first_idx, subseq_idx); | 
|  | } | 
|  |  | 
|  | if (last_idx < 0) { | 
|  | /* we are at the entry into subprog, which | 
|  | * is expected for global funcs, but only if | 
|  | * requested precise registers are R1-R5 | 
|  | * (which are global func's input arguments) | 
|  | */ | 
|  | if (st->curframe == 0 && | 
|  | st->frame[0]->subprogno > 0 && | 
|  | st->frame[0]->callsite == BPF_MAIN_FUNC && | 
|  | bt_stack_mask(bt) == 0 && | 
|  | (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) == 0) { | 
|  | bitmap_from_u64(mask, bt_reg_mask(bt)); | 
|  | for_each_set_bit(i, mask, 32) { | 
|  | reg = &st->frame[0]->regs[i]; | 
|  | bt_clear_reg(bt, i); | 
|  | if (reg->type == SCALAR_VALUE) | 
|  | reg->precise = true; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | verbose(env, "BUG backtracking func entry subprog %d reg_mask %x stack_mask %llx\n", | 
|  | st->frame[0]->subprogno, bt_reg_mask(bt), bt_stack_mask(bt)); | 
|  | WARN_ONCE(1, "verifier backtracking bug"); | 
|  | return -EFAULT; | 
|  | } | 
|  |  | 
|  | for (i = last_idx;;) { | 
|  | if (skip_first) { | 
|  | err = 0; | 
|  | skip_first = false; | 
|  | } else { | 
|  | hist = get_jmp_hist_entry(st, history, i); | 
|  | err = backtrack_insn(env, i, subseq_idx, hist, bt); | 
|  | } | 
|  | if (err == -ENOTSUPP) { | 
|  | mark_all_scalars_precise(env, env->cur_state); | 
|  | bt_reset(bt); | 
|  | return 0; | 
|  | } else if (err) { | 
|  | return err; | 
|  | } | 
|  | if (bt_empty(bt)) | 
|  | /* Found assignment(s) into tracked register in this state. | 
|  | * Since this state is already marked, just return. | 
|  | * Nothing to be tracked further in the parent state. | 
|  | */ | 
|  | return 0; | 
|  | subseq_idx = i; | 
|  | i = get_prev_insn_idx(st, i, &history); | 
|  | if (i == -ENOENT) | 
|  | break; | 
|  | if (i >= env->prog->len) { | 
|  | /* This can happen if backtracking reached insn 0 | 
|  | * and there are still reg_mask or stack_mask | 
|  | * to backtrack. | 
|  | * It means the backtracking missed the spot where | 
|  | * particular register was initialized with a constant. | 
|  | */ | 
|  | verbose(env, "BUG backtracking idx %d\n", i); | 
|  | WARN_ONCE(1, "verifier backtracking bug"); | 
|  | return -EFAULT; | 
|  | } | 
|  | } | 
|  | st = st->parent; | 
|  | if (!st) | 
|  | break; | 
|  |  | 
|  | for (fr = bt->frame; fr >= 0; fr--) { | 
|  | func = st->frame[fr]; | 
|  | bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr)); | 
|  | for_each_set_bit(i, mask, 32) { | 
|  | reg = &func->regs[i]; | 
|  | if (reg->type != SCALAR_VALUE) { | 
|  | bt_clear_frame_reg(bt, fr, i); | 
|  | continue; | 
|  | } | 
|  | if (reg->precise) | 
|  | bt_clear_frame_reg(bt, fr, i); | 
|  | else | 
|  | reg->precise = true; | 
|  | } | 
|  |  | 
|  | bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr)); | 
|  | for_each_set_bit(i, mask, 64) { | 
|  | if (i >= func->allocated_stack / BPF_REG_SIZE) { | 
|  | verbose(env, "BUG backtracking (stack slot %d, total slots %d)\n", | 
|  | i, func->allocated_stack / BPF_REG_SIZE); | 
|  | WARN_ONCE(1, "verifier backtracking bug (stack slot out of bounds)"); | 
|  | return -EFAULT; | 
|  | } | 
|  |  | 
|  | if (!is_spilled_scalar_reg(&func->stack[i])) { | 
|  | bt_clear_frame_slot(bt, fr, i); | 
|  | continue; | 
|  | } | 
|  | reg = &func->stack[i].spilled_ptr; | 
|  | if (reg->precise) | 
|  | bt_clear_frame_slot(bt, fr, i); | 
|  | else | 
|  | reg->precise = true; | 
|  | } | 
|  | if (env->log.level & BPF_LOG_LEVEL2) { | 
|  | fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, | 
|  | bt_frame_reg_mask(bt, fr)); | 
|  | verbose(env, "mark_precise: frame%d: parent state regs=%s ", | 
|  | fr, env->tmp_str_buf); | 
|  | fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, | 
|  | bt_frame_stack_mask(bt, fr)); | 
|  | verbose(env, "stack=%s: ", env->tmp_str_buf); | 
|  | print_verifier_state(env, func, true); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (bt_empty(bt)) | 
|  | return 0; | 
|  |  | 
|  | subseq_idx = first_idx; | 
|  | last_idx = st->last_insn_idx; | 
|  | first_idx = st->first_insn_idx; | 
|  | } | 
|  |  | 
|  | /* if we still have requested precise regs or slots, we missed | 
|  | * something (e.g., stack access through non-r10 register), so | 
|  | * fallback to marking all precise | 
|  | */ | 
|  | if (!bt_empty(bt)) { | 
|  | mark_all_scalars_precise(env, env->cur_state); | 
|  | bt_reset(bt); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int mark_chain_precision(struct bpf_verifier_env *env, int regno) | 
|  | { | 
|  | return __mark_chain_precision(env, regno); | 
|  | } | 
|  |  | 
|  | /* mark_chain_precision_batch() assumes that env->bt is set in the caller to | 
|  | * desired reg and stack masks across all relevant frames | 
|  | */ | 
|  | static int mark_chain_precision_batch(struct bpf_verifier_env *env) | 
|  | { | 
|  | return __mark_chain_precision(env, -1); | 
|  | } | 
|  |  | 
|  | static bool is_spillable_regtype(enum bpf_reg_type type) | 
|  | { | 
|  | switch (base_type(type)) { | 
|  | case PTR_TO_MAP_VALUE: | 
|  | case PTR_TO_STACK: | 
|  | case PTR_TO_CTX: | 
|  | case PTR_TO_PACKET: | 
|  | case PTR_TO_PACKET_META: | 
|  | case PTR_TO_PACKET_END: | 
|  | case PTR_TO_FLOW_KEYS: | 
|  | case CONST_PTR_TO_MAP: | 
|  | case PTR_TO_SOCKET: | 
|  | case PTR_TO_SOCK_COMMON: | 
|  | case PTR_TO_TCP_SOCK: | 
|  | case PTR_TO_XDP_SOCK: | 
|  | case PTR_TO_BTF_ID: | 
|  | case PTR_TO_BUF: | 
|  | case PTR_TO_MEM: | 
|  | case PTR_TO_FUNC: | 
|  | case PTR_TO_MAP_KEY: | 
|  | case PTR_TO_ARENA: | 
|  | return true; | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Does this register contain a constant zero? */ | 
|  | static bool register_is_null(struct bpf_reg_state *reg) | 
|  | { | 
|  | return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); | 
|  | } | 
|  |  | 
|  | /* check if register is a constant scalar value */ | 
|  | static bool is_reg_const(struct bpf_reg_state *reg, bool subreg32) | 
|  | { | 
|  | return reg->type == SCALAR_VALUE && | 
|  | tnum_is_const(subreg32 ? tnum_subreg(reg->var_off) : reg->var_off); | 
|  | } | 
|  |  | 
|  | /* assuming is_reg_const() is true, return constant value of a register */ | 
|  | static u64 reg_const_value(struct bpf_reg_state *reg, bool subreg32) | 
|  | { | 
|  | return subreg32 ? tnum_subreg(reg->var_off).value : reg->var_off.value; | 
|  | } | 
|  |  | 
|  | static bool __is_pointer_value(bool allow_ptr_leaks, | 
|  | const struct bpf_reg_state *reg) | 
|  | { | 
|  | if (allow_ptr_leaks) | 
|  | return false; | 
|  |  | 
|  | return reg->type != SCALAR_VALUE; | 
|  | } | 
|  |  | 
|  | static void assign_scalar_id_before_mov(struct bpf_verifier_env *env, | 
|  | struct bpf_reg_state *src_reg) | 
|  | { | 
|  | if (src_reg->type != SCALAR_VALUE) | 
|  | return; | 
|  |  | 
|  | if (src_reg->id & BPF_ADD_CONST) { | 
|  | /* | 
|  | * The verifier is processing rX = rY insn and | 
|  | * rY->id has special linked register already. | 
|  | * Cleared it, since multiple rX += const are not supported. | 
|  | */ | 
|  | src_reg->id = 0; | 
|  | src_reg->off = 0; | 
|  | } | 
|  |  | 
|  | if (!src_reg->id && !tnum_is_const(src_reg->var_off)) | 
|  | /* Ensure that src_reg has a valid ID that will be copied to | 
|  | * dst_reg and then will be used by sync_linked_regs() to | 
|  | * propagate min/max range. | 
|  | */ | 
|  | src_reg->id = ++env->id_gen; | 
|  | } | 
|  |  | 
|  | /* Copy src state preserving dst->parent and dst->live fields */ | 
|  | static void copy_register_state(struct bpf_reg_state *dst, const struct bpf_reg_state *src) | 
|  | { | 
|  | struct bpf_reg_state *parent = dst->parent; | 
|  | enum bpf_reg_liveness live = dst->live; | 
|  |  | 
|  | *dst = *src; | 
|  | dst->parent = parent; | 
|  | dst->live = live; | 
|  | } | 
|  |  | 
|  | static void save_register_state(struct bpf_verifier_env *env, | 
|  | struct bpf_func_state *state, | 
|  | int spi, struct bpf_reg_state *reg, | 
|  | int size) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | copy_register_state(&state->stack[spi].spilled_ptr, reg); | 
|  | if (size == BPF_REG_SIZE) | 
|  | state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; | 
|  |  | 
|  | for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--) | 
|  | state->stack[spi].slot_type[i - 1] = STACK_SPILL; | 
|  |  | 
|  | /* size < 8 bytes spill */ | 
|  | for (; i; i--) | 
|  | mark_stack_slot_misc(env, &state->stack[spi].slot_type[i - 1]); | 
|  | } | 
|  |  | 
|  | static bool is_bpf_st_mem(struct bpf_insn *insn) | 
|  | { | 
|  | return BPF_CLASS(insn->code) == BPF_ST && BPF_MODE(insn->code) == BPF_MEM; | 
|  | } | 
|  |  | 
|  | static int get_reg_width(struct bpf_reg_state *reg) | 
|  | { | 
|  | return fls64(reg->umax_value); | 
|  | } | 
|  |  | 
|  | /* See comment for mark_fastcall_pattern_for_call() */ | 
|  | static void check_fastcall_stack_contract(struct bpf_verifier_env *env, | 
|  | struct bpf_func_state *state, int insn_idx, int off) | 
|  | { | 
|  | struct bpf_subprog_info *subprog = &env->subprog_info[state->subprogno]; | 
|  | struct bpf_insn_aux_data *aux = env->insn_aux_data; | 
|  | int i; | 
|  |  | 
|  | if (subprog->fastcall_stack_off <= off || aux[insn_idx].fastcall_pattern) | 
|  | return; | 
|  | /* access to the region [max_stack_depth .. fastcall_stack_off) | 
|  | * from something that is not a part of the fastcall pattern, | 
|  | * disable fastcall rewrites for current subprogram by setting | 
|  | * fastcall_stack_off to a value smaller than any possible offset. | 
|  | */ | 
|  | subprog->fastcall_stack_off = S16_MIN; | 
|  | /* reset fastcall aux flags within subprogram, | 
|  | * happens at most once per subprogram | 
|  | */ | 
|  | for (i = subprog->start; i < (subprog + 1)->start; ++i) { | 
|  | aux[i].fastcall_spills_num = 0; | 
|  | aux[i].fastcall_pattern = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* check_stack_{read,write}_fixed_off functions track spill/fill of registers, | 
|  | * stack boundary and alignment are checked in check_mem_access() | 
|  | */ | 
|  | static int check_stack_write_fixed_off(struct bpf_verifier_env *env, | 
|  | /* stack frame we're writing to */ | 
|  | struct bpf_func_state *state, | 
|  | int off, int size, int value_regno, | 
|  | int insn_idx) | 
|  | { | 
|  | struct bpf_func_state *cur; /* state of the current function */ | 
|  | int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; | 
|  | struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; | 
|  | struct bpf_reg_state *reg = NULL; | 
|  | int insn_flags = insn_stack_access_flags(state->frameno, spi); | 
|  |  | 
|  | /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, | 
|  | * so it's aligned access and [off, off + size) are within stack limits | 
|  | */ | 
|  | if (!env->allow_ptr_leaks && | 
|  | is_spilled_reg(&state->stack[spi]) && | 
|  | size != BPF_REG_SIZE) { | 
|  | verbose(env, "attempt to corrupt spilled pointer on stack\n"); | 
|  | return -EACCES; | 
|  | } | 
|  |  | 
|  | cur = env->cur_state->frame[env->cur_state->curframe]; | 
|  | if (value_regno >= 0) | 
|  | reg = &cur->regs[value_regno]; | 
|  | if (!env->bypass_spec_v4) { | 
|  | bool sanitize = reg && is_spillable_regtype(reg->type); | 
|  |  | 
|  | for (i = 0; i < size; i++) { | 
|  | u8 type = state->stack[spi].slot_type[i]; | 
|  |  | 
|  | if (type != STACK_MISC && type != STACK_ZERO) { | 
|  | sanitize = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (sanitize) | 
|  | env->insn_aux_data[insn_idx].sanitize_stack_spill = true; | 
|  | } | 
|  |  | 
|  | err = destroy_if_dynptr_stack_slot(env, state, spi); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | check_fastcall_stack_contract(env, state, insn_idx, off); | 
|  | mark_stack_slot_scratched(env, spi); | 
|  | if (reg && !(off % BPF_REG_SIZE) && reg->type == SCALAR_VALUE && env->bpf_capable) { | 
|  | bool reg_value_fits; | 
|  |  | 
|  | reg_value_fits = get_reg_width(reg) <= BITS_PER_BYTE * size; | 
|  | /* Make sure that reg had an ID to build a relation on spill. */ | 
|  | if (reg_value_fits) | 
|  | assign_scalar_id_before_mov(env, reg); | 
|  | save_register_state(env, state, spi, reg, size); | 
|  | /* Break the relation on a narrowing spill. */ | 
|  | if (!reg_value_fits) | 
|  | state->stack[spi].spilled_ptr.id = 0; | 
|  | } else if (!reg && !(off % BPF_REG_SIZE) && is_bpf_st_mem(insn) && | 
|  | env->bpf_capable) { | 
|  | struct bpf_reg_state *tmp_reg = &env->fake_reg[0]; | 
|  |  | 
|  | memset(tmp_reg, 0, sizeof(*tmp_reg)); | 
|  | __mark_reg_known(tmp_reg, insn->imm); | 
|  | tmp_reg->type = SCALAR_VALUE; | 
|  | save_register_state(env, state, spi, tmp_reg, size); | 
|  | } else if (reg && is_spillable_regtype(reg->type)) { | 
|  | /* register containing pointer is being spilled into stack */ | 
|  | if (size != BPF_REG_SIZE) { | 
|  | verbose_linfo(env, insn_idx, "; "); | 
|  | verbose(env, "invalid size of register spill\n"); | 
|  | return -EACCES; | 
|  | } | 
|  | if (state != cur && reg->type == PTR_TO_STACK) { | 
|  | verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | save_register_state(env, state, spi, reg, size); | 
|  | } else { | 
|  | u8 type = STACK_MISC; | 
|  |  | 
|  | /* regular write of data into stack destroys any spilled ptr */ | 
|  | state->stack[spi].spilled_ptr.type = NOT_INIT; | 
|  | /* Mark slots as STACK_MISC if they belonged to spilled ptr/dynptr/iter. */ | 
|  | if (is_stack_slot_special(&state->stack[spi])) | 
|  | for (i = 0; i < BPF_REG_SIZE; i++) | 
|  | scrub_spilled_slot(&state->stack[spi].slot_type[i]); | 
|  |  | 
|  | /* only mark the slot as written if all 8 bytes were written | 
|  | * otherwise read propagation may incorrectly stop too soon | 
|  | * when stack slots are partially written. | 
|  | * This heuristic means that read propagation will be | 
|  | * conservative, since it will add reg_live_read marks | 
|  | * to stack slots all the way to first state when programs | 
|  | * writes+reads less than 8 bytes | 
|  | */ | 
|  | if (size == BPF_REG_SIZE) | 
|  | state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; | 
|  |  | 
|  | /* when we zero initialize stack slots mark them as such */ | 
|  | if ((reg && register_is_null(reg)) || | 
|  | (!reg && is_bpf_st_mem(insn) && insn->imm == 0)) { | 
|  | /* STACK_ZERO case happened because register spill | 
|  | * wasn't properly aligned at the stack slot boundary, | 
|  | * so it's not a register spill anymore; force | 
|  | * originating register to be precise to make | 
|  | * STACK_ZERO correct for subsequent states | 
|  | */ | 
|  | err = mark_chain_precision(env, value_regno); | 
|  | if (err) | 
|  | return err; | 
|  | type = STACK_ZERO; | 
|  | } | 
|  |  | 
|  | /* Mark slots affected by this stack write. */ | 
|  | for (i = 0; i < size; i++) | 
|  | state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = type; | 
|  | insn_flags = 0; /* not a register spill */ | 
|  | } | 
|  |  | 
|  | if (insn_flags) | 
|  | return push_jmp_history(env, env->cur_state, insn_flags, 0); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is | 
|  | * known to contain a variable offset. | 
|  | * This function checks whether the write is permitted and conservatively | 
|  | * tracks the effects of the write, considering that each stack slot in the | 
|  | * dynamic range is potentially written to. | 
|  | * | 
|  | * 'off' includes 'regno->off'. | 
|  | * 'value_regno' can be -1, meaning that an unknown value is being written to | 
|  | * the stack. | 
|  | * | 
|  | * Spilled pointers in range are not marked as written because we don't know | 
|  | * what's going to be actually written. This means that read propagation for | 
|  | * future reads cannot be terminated by this write. | 
|  | * | 
|  | * For privileged programs, uninitialized stack slots are considered | 
|  | * initialized by this write (even though we don't know exactly what offsets | 
|  | * are going to be written to). The idea is that we don't want the verifier to | 
|  | * reject future reads that access slots written to through variable offsets. | 
|  | */ | 
|  | static int check_stack_write_var_off(struct bpf_verifier_env *env, | 
|  | /* func where register points to */ | 
|  | struct bpf_func_state *state, | 
|  | int ptr_regno, int off, int size, | 
|  | int value_regno, int insn_idx) | 
|  | { | 
|  | struct bpf_func_state *cur; /* state of the current function */ | 
|  | int min_off, max_off; | 
|  | int i, err; | 
|  | struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL; | 
|  | struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; | 
|  | bool writing_zero = false; | 
|  | /* set if the fact that we're writing a zero is used to let any | 
|  | * stack slots remain STACK_ZERO | 
|  | */ | 
|  | bool zero_used = false; | 
|  |  | 
|  | cur = env->cur_state->frame[env->cur_state->curframe]; | 
|  | ptr_reg = &cur->regs[ptr_regno]; | 
|  | min_off = ptr_reg->smin_value + off; | 
|  | max_off = ptr_reg->smax_value + off + size; | 
|  | if (value_regno >= 0) | 
|  | value_reg = &cur->regs[value_regno]; | 
|  | if ((value_reg && register_is_null(value_reg)) || | 
|  | (!value_reg && is_bpf_st_mem(insn) && insn->imm == 0)) | 
|  | writing_zero = true; | 
|  |  | 
|  | for (i = min_off; i < max_off; i++) { | 
|  | int spi; | 
|  |  | 
|  | spi = __get_spi(i); | 
|  | err = destroy_if_dynptr_stack_slot(env, state, spi); | 
|  | if (err) | 
|  | return err; | 
|  | } | 
|  |  | 
|  | check_fastcall_stack_contract(env, state, insn_idx, min_off); | 
|  | /* Variable offset writes destroy any spilled pointers in range. */ | 
|  | for (i = min_off; i < max_off; i++) { | 
|  | u8 new_type, *stype; | 
|  | int slot, spi; | 
|  |  | 
|  | slot = -i - 1; | 
|  | spi = slot / BPF_REG_SIZE; | 
|  | stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; | 
|  | mark_stack_slot_scratched(env, spi); | 
|  |  | 
|  | if (!env->allow_ptr_leaks && *stype != STACK_MISC && *stype != STACK_ZERO) { | 
|  | /* Reject the write if range we may write to has not | 
|  | * been initialized beforehand. If we didn't reject | 
|  | * here, the ptr status would be erased below (even | 
|  | * though not all slots are actually overwritten), | 
|  | * possibly opening the door to leaks. | 
|  | * | 
|  | * We do however catch STACK_INVALID case below, and | 
|  | * only allow reading possibly uninitialized memory | 
|  | * later for CAP_PERFMON, as the write may not happen to | 
|  | * that slot. | 
|  | */ | 
|  | verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d", | 
|  | insn_idx, i); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* If writing_zero and the spi slot contains a spill of value 0, | 
|  | * maintain the spill type. | 
|  | */ | 
|  | if (writing_zero && *stype == STACK_SPILL && | 
|  | is_spilled_scalar_reg(&state->stack[spi])) { | 
|  | struct bpf_reg_state *spill_reg = &state->stack[spi].spilled_ptr; | 
|  |  | 
|  | if (tnum_is_const(spill_reg->var_off) && spill_reg->var_off.value == 0) { | 
|  | zero_used = true; | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Erase all other spilled pointers. */ | 
|  | state->stack[spi].spilled_ptr.type = NOT_INIT; | 
|  |  | 
|  | /* Update the slot type. */ | 
|  | new_type = STACK_MISC; | 
|  | if (writing_zero && *stype == STACK_ZERO) { | 
|  | new_type = STACK_ZERO; | 
|  | zero_used = true; | 
|  | } | 
|  | /* If the slot is STACK_INVALID, we check whether it's OK to | 
|  | * pretend that it will be initialized by this write. The slot | 
|  | * might not actually be written to, and so if we mark it as | 
|  | * initialized future reads might leak uninitialized memory. | 
|  | * For privileged programs, we will accept such reads to slots | 
|  | * that may or may not be written because, if we're reject | 
|  | * them, the error would be too confusing. | 
|  | */ | 
|  | if (*stype == STACK_INVALID && !env->allow_uninit_stack) { | 
|  | verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d", | 
|  | insn_idx, i); | 
|  | return -EINVAL; | 
|  | } | 
|  | *stype = new_type; | 
|  | } | 
|  | if (zero_used) { | 
|  | /* backtracking doesn't work for STACK_ZERO yet. */ | 
|  | err = mark_chain_precision(env, value_regno); | 
|  | if (err) | 
|  | return err; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* When register 'dst_regno' is assigned some values from stack[min_off, | 
|  | * max_off), we set the register's type according to the types of the | 
|  | * respective stack slots. If all the stack values are known to be zeros, then | 
|  | * so is the destination reg. Otherwise, the register is considered to be | 
|  | * SCALAR. This function does not deal with register filling; the caller must | 
|  | * ensure that all spilled registers in the stack range have been marked as | 
|  | * read. | 
|  | */ | 
|  | static void mark_reg_stack_read(struct bpf_verifier_env *env, | 
|  | /* func where src register points to */ | 
|  | struct bpf_func_state *ptr_state, | 
|  | int min_off, int max_off, int dst_regno) | 
|  | { | 
|  | struct bpf_verifier_state *vstate = env->cur_state; | 
|  | struct bpf_func_state *state = vstate->frame[vstate->curframe]; | 
|  | int i, slot, spi; | 
|  | u8 *stype; | 
|  | int zeros = 0; | 
|  |  | 
|  | for (i = min_off; i < max_off; i++) { | 
|  | slot = -i - 1; | 
|  | spi = slot / BPF_REG_SIZE; | 
|  | mark_stack_slot_scratched(env, spi); | 
|  | stype = ptr_state->stack[spi].slot_type; | 
|  | if (stype[slot % BPF_REG_SIZE] != STACK_ZERO) | 
|  | break; | 
|  | zeros++; | 
|  | } | 
|  | if (zeros == max_off - min_off) { | 
|  | /* Any access_size read into register is zero extended, | 
|  | * so the whole register == const_zero. | 
|  | */ | 
|  | __mark_reg_const_zero(env, &state->regs[dst_regno]); | 
|  | } else { | 
|  | /* have read misc data from the stack */ | 
|  | mark_reg_unknown(env, state->regs, dst_regno); | 
|  | } | 
|  | state->regs[dst_regno].live |= REG_LIVE_WRITTEN; | 
|  | } | 
|  |  | 
|  | /* Read the stack at 'off' and put the results into the register indicated by | 
|  | * 'dst_regno'. It handles reg filling if the addressed stack slot is a | 
|  | * spilled reg. | 
|  | * | 
|  | * 'dst_regno' can be -1, meaning that the read value is not going to a | 
|  | * register. | 
|  | * | 
|  | * The access is assumed to be within the current stack bounds. | 
|  | */ | 
|  | static int check_stack_read_fixed_off(struct bpf_verifier_env *env, | 
|  | /* func where src register points to */ | 
|  | struct bpf_func_state *reg_state, | 
|  | int off, int size, int dst_regno) | 
|  | { | 
|  | struct bpf_verifier_state *vstate = env->cur_state; | 
|  | struct bpf_func_state *state = vstate->frame[vstate->curframe]; | 
|  | int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; | 
|  | struct bpf_reg_state *reg; | 
|  | u8 *stype, type; | 
|  | int insn_flags = insn_stack_access_flags(reg_state->frameno, spi); | 
|  |  | 
|  | stype = reg_state->stack[spi].slot_type; | 
|  | reg = ®_state->stack[spi].spilled_ptr; | 
|  |  | 
|  | mark_stack_slot_scratched(env, spi); | 
|  | check_fastcall_stack_contract(env, state, env->insn_idx, off); | 
|  |  | 
|  | if (is_spilled_reg(®_state->stack[spi])) { | 
|  | u8 spill_size = 1; | 
|  |  | 
|  | for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--) | 
|  | spill_size++; | 
|  |  | 
|  | if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) { | 
|  | if (reg->type != SCALAR_VALUE) { | 
|  | verbose_linfo(env, env->insn_idx, "; "); | 
|  | verbose(env, "invalid size of register fill\n"); | 
|  | return -EACCES; | 
|  | } | 
|  |  | 
|  | mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); | 
|  | if (dst_regno < 0) | 
|  | return 0; | 
|  |  | 
|  | if (size <= spill_size && | 
|  | bpf_stack_narrow_access_ok(off, size, spill_size)) { | 
|  | /* The earlier check_reg_arg() has decided the | 
|  | * subreg_def for this insn.  Save it first. | 
|  | */ | 
|  | s32 subreg_def = state->regs[dst_regno].subreg_def; | 
|  |  | 
|  | copy_register_state(&state->regs[dst_regno], reg); | 
|  | state->regs[dst_regno].subreg_def = subreg_def; | 
|  |  | 
|  | /* Break the relation on a narrowing fill. | 
|  | * coerce_reg_to_size will adjust the boundaries. | 
|  | */ | 
|  | if (get_reg_width(reg) > size * BITS_PER_BYTE) | 
|  | state->regs[dst_regno].id = 0; | 
|  | } else { | 
|  | int spill_cnt = 0, zero_cnt = 0; | 
|  |  | 
|  | for (i = 0; i < size; i++) { | 
|  | type = stype[(slot - i) % BPF_REG_SIZE]; | 
|  | if (type == STACK_SPILL) { | 
|  | spill_cnt++; | 
|  | continue; | 
|  | } | 
|  | if (type == STACK_MISC) | 
|  | continue; | 
|  | if (type == STACK_ZERO) { | 
|  | zero_cnt++; | 
|  | continue; | 
|  | } | 
|  | if (type == STACK_INVALID && env->allow_uninit_stack) | 
|  | continue; | 
|  | verbose(env, "invalid read from stack off %d+%d size %d\n", | 
|  | off, i, size); | 
|  | return -EACCES; | 
|  | } | 
|  |  | 
|  | if (spill_cnt == size && | 
|  | tnum_is_const(reg->var_off) && reg->var_off.value == 0) { | 
|  | __mark_reg_const_zero(env, &state->regs[dst_regno]); | 
|  | /* this IS register fill, so keep insn_flags */ | 
|  | } else if (zero_cnt == size) { | 
|  | /* similarly to mark_reg_stack_read(), preserve zeroes */ | 
|  | __mark_reg_const_zero(env, &state->regs[dst_regno]); | 
|  | insn_flags = 0; /* not restoring original register state */ | 
|  | } else { | 
|  | mark_reg_unknown(env, state->regs, dst_regno); | 
|  | insn_flags = 0; /* not restoring original register state */ | 
|  | } | 
|  | } | 
|  | state->regs[dst_regno].live |= REG_LIVE_WRITTEN; | 
|  | } else if (dst_regno >= 0) { | 
|  | /* restore register state from stack */ | 
|  | copy_register_state(&state->regs[dst_regno], reg); | 
|  | /* mark reg as written since spilled pointer state likely | 
|  | * has its liveness marks cleared by is_state_visited() | 
|  | * which resets stack/reg liveness for state transitions | 
|  | */ | 
|  | state->regs[dst_regno].live |= REG_LIVE_WRITTEN; | 
|  | } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) { | 
|  | /* If dst_regno==-1, the caller is asking us whether | 
|  | * it is acceptable to use this value as a SCALAR_VALUE | 
|  | * (e.g. for XADD). | 
|  | * We must not allow unprivileged callers to do that | 
|  | * with spilled pointers. | 
|  | */ | 
|  | verbose(env, "leaking pointer from stack off %d\n", | 
|  | off); | 
|  | return -EACCES; | 
|  | } | 
|  | mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); | 
|  | } else { | 
|  | for (i = 0; i < size; i++) { | 
|  | type = stype[(slot - i) % BPF_REG_SIZE]; | 
|  | if (type == STACK_MISC) | 
|  | continue; | 
|  | if (type == STACK_ZERO) | 
|  | continue; | 
|  | if (type == STACK_INVALID && env->allow_uninit_stack) | 
|  | continue; | 
|  | verbose(env, "invalid read from stack off %d+%d size %d\n", | 
|  | off, i, size); | 
|  | return -EACCES; | 
|  | } | 
|  | mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); | 
|  | if (dst_regno >= 0) | 
|  | mark_reg_stack_read(env, reg_state, off, off + size, dst_regno); | 
|  | insn_flags = 0; /* we are not restoring spilled register */ | 
|  | } | 
|  | if (insn_flags) | 
|  | return push_jmp_history(env, env->cur_state, insn_flags, 0); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | enum bpf_access_src { | 
|  | ACCESS_DIRECT = 1,  /* the access is performed by an instruction */ | 
|  | ACCESS_HELPER = 2,  /* the access is performed by a helper */ | 
|  | }; | 
|  |  | 
|  | static int check_stack_range_initialized(struct bpf_verifier_env *env, | 
|  | int regno, int off, int access_size, | 
|  | bool zero_size_allowed, | 
|  | enum bpf_access_src type, | 
|  | struct bpf_call_arg_meta *meta); | 
|  |  | 
|  | static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno) | 
|  | { | 
|  | return cur_regs(env) + regno; | 
|  | } | 
|  |  | 
|  | /* Read the stack at 'ptr_regno + off' and put the result into the register | 
|  | * 'dst_regno'. | 
|  | * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'), | 
|  | * but not its variable offset. | 
|  | * 'size' is assumed to be <= reg size and the access is assumed to be aligned. | 
|  | * | 
|  | * As opposed to check_stack_read_fixed_off, this function doesn't deal with | 
|  | * filling registers (i.e. reads of spilled register cannot be detected when | 
|  | * the offset is not fixed). We conservatively mark 'dst_regno' as containing | 
|  | * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable | 
|  | * offset; for a fixed offset check_stack_read_fixed_off should be used | 
|  | * instead. | 
|  | */ | 
|  | static int check_stack_read_var_off(struct bpf_verifier_env *env, | 
|  | int ptr_regno, int off, int size, int dst_regno) | 
|  | { | 
|  | /* The state of the source register. */ | 
|  | struct bpf_reg_state *reg = reg_state(env, ptr_regno); | 
|  | struct bpf_func_state *ptr_state = func(env, reg); | 
|  | int err; | 
|  | int min_off, max_off; | 
|  |  | 
|  | /* Note that we pass a NULL meta, so raw access will not be permitted. | 
|  | */ | 
|  | err = check_stack_range_initialized(env, ptr_regno, off, size, | 
|  | false, ACCESS_DIRECT, NULL); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | min_off = reg->smin_value + off; | 
|  | max_off = reg->smax_value + off; | 
|  | mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno); | 
|  | check_fastcall_stack_contract(env, ptr_state, env->insn_idx, min_off); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* check_stack_read dispatches to check_stack_read_fixed_off or | 
|  | * check_stack_read_var_off. | 
|  | * | 
|  | * The caller must ensure that the offset falls within the allocated stack | 
|  | * bounds. | 
|  | * | 
|  | * 'dst_regno' is a register which will receive the value from the stack. It | 
|  | * can be -1, meaning that the read value is not going to a register. | 
|  | */ | 
|  | static int check_stack_read(struct bpf_verifier_env *env, | 
|  | int ptr_regno, int off, int size, | 
|  | int dst_regno) | 
|  | { | 
|  | struct bpf_reg_state *reg = reg_state(env, ptr_regno); | 
|  | struct bpf_func_state *state = func(env, reg); | 
|  | int err; | 
|  | /* Some accesses are only permitted with a static offset. */ | 
|  | bool var_off = !tnum_is_const(reg->var_off); | 
|  |  | 
|  | /* The offset is required to be static when reads don't go to a | 
|  | * register, in order to not leak pointers (see | 
|  | * check_stack_read_fixed_off). | 
|  | */ | 
|  | if (dst_regno < 0 && var_off) { | 
|  | char tn_buf[48]; | 
|  |  | 
|  | tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); | 
|  | verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n", | 
|  | tn_buf, off, size); | 
|  | return -EACCES; | 
|  | } | 
|  | /* Variable offset is prohibited for unprivileged mode for simplicity | 
|  | * since it requires corresponding support in Spectre masking for stack | 
|  | * ALU. See also retrieve_ptr_limit(). The check in | 
|  | * check_stack_access_for_ptr_arithmetic() called by | 
|  | * adjust_ptr_min_max_vals() prevents users from creating stack pointers | 
|  | * with variable offsets, therefore no check is required here. Further, | 
|  | * just checking it here would be insufficient as speculative stack | 
|  | * writes could still lead to unsafe speculative behaviour. | 
|  | */ | 
|  | if (!var_off) { | 
|  | off += reg->var_off.value; | 
|  | err = check_stack_read_fixed_off(env, state, off, size, | 
|  | dst_regno); | 
|  | } else { | 
|  | /* Variable offset stack reads need more conservative handling | 
|  | * than fixed offset ones. Note that dst_regno >= 0 on this | 
|  | * branch. | 
|  | */ | 
|  | err = check_stack_read_var_off(env, ptr_regno, off, size, | 
|  | dst_regno); | 
|  | } | 
|  | return err; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* check_stack_write dispatches to check_stack_write_fixed_off or | 
|  | * check_stack_write_var_off. | 
|  | * | 
|  | * 'ptr_regno' is the register used as a pointer into the stack. | 
|  | * 'off' includes 'ptr_regno->off', but not its variable offset (if any). | 
|  | * 'value_regno' is the register whose value we're writing to the stack. It can | 
|  | * be -1, meaning that we're not writing from a register. | 
|  | * | 
|  | * The caller must ensure that the offset falls within the maximum stack size. | 
|  | */ | 
|  | static int check_stack_write(struct bpf_verifier_env *env, | 
|  | int ptr_regno, int off, int size, | 
|  | int value_regno, int insn_idx) | 
|  | { | 
|  | struct bpf_reg_state *reg = reg_state(env, ptr_regno); | 
|  | struct bpf_func_state *state = func(env, reg); | 
|  | int err; | 
|  |  | 
|  | if (tnum_is_const(reg->var_off)) { | 
|  | off += reg->var_off.value; | 
|  | err = check_stack_write_fixed_off(env, state, off, size, | 
|  | value_regno, insn_idx); | 
|  | } else { | 
|  | /* Variable offset stack reads need more conservative handling | 
|  | * than fixed offset ones. | 
|  | */ | 
|  | err = check_stack_write_var_off(env, state, | 
|  | ptr_regno, off, size, | 
|  | value_regno, insn_idx); | 
|  | } | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int check_map_access_type(struct bpf_verifier_env *env, u32 regno, | 
|  | int off, int size, enum bpf_access_type type) | 
|  | { | 
|  | struct bpf_reg_state *regs = cur_regs(env); | 
|  | struct bpf_map *map = regs[regno].map_ptr; | 
|  | u32 cap = bpf_map_flags_to_cap(map); | 
|  |  | 
|  | if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) { | 
|  | verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n", | 
|  | map->value_size, off, size); | 
|  | return -EACCES; | 
|  | } | 
|  |  | 
|  | if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) { | 
|  | verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n", | 
|  | map->value_size, off, size); | 
|  | return -EACCES; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */ | 
|  | static int __check_mem_access(struct bpf_verifier_env *env, int regno, | 
|  | int off, int size, u32 mem_size, | 
|  | bool zero_size_allowed) | 
|  | { | 
|  | bool size_ok = size > 0 || (size == 0 && zero_size_allowed); | 
|  | struct bpf_reg_state *reg; | 
|  |  | 
|  | if (off >= 0 && size_ok && (u64)off + size <= mem_size) | 
|  | return 0; | 
|  |  | 
|  | reg = &cur_regs(env)[regno]; | 
|  | switch (reg->type) { | 
|  | case PTR_TO_MAP_KEY: | 
|  | verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n", | 
|  | mem_size, off, size); | 
|  | break; | 
|  | case PTR_TO_MAP_VALUE: | 
|  | verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", | 
|  | mem_size, off, size); | 
|  | break; | 
|  | case PTR_TO_PACKET: | 
|  | case PTR_TO_PACKET_META: | 
|  | case PTR_TO_PACKET_END: | 
|  | verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", | 
|  | off, size, regno, reg->id, off, mem_size); | 
|  | break; | 
|  | case PTR_TO_MEM: | 
|  | default: | 
|  | verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n", | 
|  | mem_size, off, size); | 
|  | } | 
|  |  | 
|  | return -EACCES; | 
|  | } | 
|  |  | 
|  | /* check read/write into a memory region with possible variable offset */ | 
|  | static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno, | 
|  | int off, int size, u32 mem_size, | 
|  | bool zero_size_allowed) | 
|  | { | 
|  | struct bpf_verifier_state *vstate = env->cur_state; | 
|  | struct bpf_func_state *state = vstate->frame[vstate->curframe]; | 
|  | struct bpf_reg_state *reg = &state->regs[regno]; | 
|  | int err; | 
|  |  | 
|  | /* We may have adjusted the register pointing to memory region, so we | 
|  | * need to try adding each of min_value and max_value to off | 
|  | * to make sure our theoretical access will be safe. | 
|  | * | 
|  | * The minimum value is only important with signed | 
|  | * comparisons where we can't assume the floor of a | 
|  | * value is 0.  If we are using signed variables for our | 
|  | * index'es we need to make sure that whatever we use | 
|  | * will have a set floor within our range. | 
|  | */ | 
|  | if (reg->smin_value < 0 && | 
|  | (reg->smin_value == S64_MIN || | 
|  | (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) || | 
|  | reg->smin_value + off < 0)) { | 
|  | verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", | 
|  | regno); | 
|  | return -EACCES; | 
|  | } | 
|  | err = __check_mem_access(env, regno, reg->smin_value + off, size, | 
|  | mem_size, zero_size_allowed); | 
|  | if (err) { | 
|  | verbose(env, "R%d min value is outside of the allowed memory range\n", | 
|  | regno); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* If we haven't set a max value then we need to bail since we can't be | 
|  | * sure we won't do bad things. | 
|  | * If reg->umax_value + off could overflow, treat that as unbounded too. | 
|  | */ | 
|  | if (reg->umax_value >= BPF_MAX_VAR_OFF) { | 
|  | verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n", | 
|  | regno); | 
|  | return -EACCES; | 
|  | } | 
|  | err = __check_mem_access(env, regno, reg->umax_value + off, size, | 
|  | mem_size, zero_size_allowed); | 
|  | if (err) { | 
|  | verbose(env, "R%d max value is outside of the allowed memory range\n", | 
|  | regno); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int __check_ptr_off_reg(struct bpf_verifier_env *env, | 
|  | const struct bpf_reg_state *reg, int regno, | 
|  | bool fixed_off_ok) | 
|  | { | 
|  | /* Access to this pointer-typed register or passing it to a helper | 
|  | * is only allowed in its original, unmodified form. | 
|  | */ | 
|  |  | 
|  | if (reg->off < 0) { | 
|  | verbose(env, "negative offset %s ptr R%d off=%d disallowed\n", | 
|  | reg_type_str(env, reg->type), regno, reg->off); | 
|  | return -EACCES; | 
|  | } | 
|  |  | 
|  | if (!fixed_off_ok && reg->off) { | 
|  | verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n", | 
|  | reg_type_str(env, reg->type), regno, reg->off); | 
|  | return -EACCES; | 
|  | } | 
|  |  | 
|  | if (!tnum_is_const(reg->var_off) || reg->var_off.value) { | 
|  | char tn_buf[48]; | 
|  |  | 
|  | tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); | 
|  | verbose(env, "variable %s access var_off=%s disallowed\n", | 
|  | reg_type_str(env, reg->type), tn_buf); | 
|  | return -EACCES; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int check_ptr_off_reg(struct bpf_verifier_env *env, | 
|  | const struct bpf_reg_state *reg, int regno) | 
|  | { | 
|  | return __check_ptr_off_reg(env, reg, regno, false); | 
|  | } | 
|  |  | 
|  | static int map_kptr_match_type(struct bpf_verifier_env *env, | 
|  | struct btf_field *kptr_field, | 
|  | struct bpf_reg_state *reg, u32 regno) | 
|  | { | 
|  | const char *targ_name = btf_type_name(kptr_field->kptr.btf, kptr_field->kptr.btf_id); | 
|  | int perm_flags; | 
|  | const char *reg_name = ""; | 
|  |  | 
|  | if (btf_is_kernel(reg->btf)) { | 
|  | perm_flags = PTR_MAYBE_NULL | PTR_TRUSTED | MEM_RCU; | 
|  |  | 
|  | /* Only unreferenced case accepts untrusted pointers */ | 
|  | if (kptr_field->type == BPF_KPTR_UNREF) | 
|  | perm_flags |= PTR_UNTRUSTED; | 
|  | } else { | 
|  | perm_flags = PTR_MAYBE_NULL | MEM_ALLOC; | 
|  | if (kptr_field->type == BPF_KPTR_PERCPU) | 
|  | perm_flags |= MEM_PERCPU; | 
|  | } | 
|  |  | 
|  | if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags)) | 
|  | goto bad_type; | 
|  |  | 
|  | /* We need to verify reg->type and reg->btf, before accessing reg->btf */ | 
|  | reg_name = btf_type_name(reg->btf, reg->btf_id); | 
|  |  | 
|  | /* For ref_ptr case, release function check should ensure we get one | 
|  | * referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the | 
|  | * normal store of unreferenced kptr, we must ensure var_off is zero. | 
|  | * Since ref_ptr cannot be accessed directly by BPF insns, checks for | 
|  | * reg->off and reg->ref_obj_id are not needed here. | 
|  | */ | 
|  | if (__check_ptr_off_reg(env, reg, regno, true)) | 
|  | return -EACCES; | 
|  |  | 
|  | /* A full type match is needed, as BTF can be vmlinux, module or prog BTF, and | 
|  | * we also need to take into account the reg->off. | 
|  | * | 
|  | * We want to support cases like: | 
|  | * | 
|  | * struct foo { | 
|  | *         struct bar br; | 
|  | *         struct baz bz; | 
|  | * }; | 
|  | * | 
|  | * struct foo *v; | 
|  | * v = func();	      // PTR_TO_BTF_ID | 
|  | * val->foo = v;      // reg->off is zero, btf and btf_id match type | 
|  | * val->bar = &v->br; // reg->off is still zero, but we need to retry with | 
|  | *                    // first member type of struct after comparison fails | 
|  | * val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked | 
|  | *                    // to match type | 
|  | * | 
|  | * In the kptr_ref case, check_func_arg_reg_off already ensures reg->off | 
|  | * is zero. We must also ensure that btf_struct_ids_match does not walk | 
|  | * the struct to match type against first member of struct, i.e. reject | 
|  | * second case from above. Hence, when type is BPF_KPTR_REF, we set | 
|  | * strict mode to true for type match. | 
|  | */ | 
|  | if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, | 
|  | kptr_field->kptr.btf, kptr_field->kptr.btf_id, | 
|  | kptr_field->type != BPF_KPTR_UNREF)) | 
|  | goto bad_type; | 
|  | return 0; | 
|  | bad_type: | 
|  | verbose(env, "invalid kptr access, R%d type=%s%s ", regno, | 
|  | reg_type_str(env, reg->type), reg_name); | 
|  | verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name); | 
|  | if (kptr_field->type == BPF_KPTR_UNREF) | 
|  | verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED), | 
|  | targ_name); | 
|  | else | 
|  | verbose(env, "\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | static bool in_sleepable(struct bpf_verifier_env *env) | 
|  | { | 
|  | return env->prog->sleepable || | 
|  | (env->cur_state && env->cur_state->in_sleepable); | 
|  | } | 
|  |  | 
|  | /* The non-sleepable programs and sleepable programs with explicit bpf_rcu_read_lock() | 
|  | * can dereference RCU protected pointers and result is PTR_TRUSTED. | 
|  | */ | 
|  | static bool in_rcu_cs(struct bpf_verifier_env *env) | 
|  | { | 
|  | return env->cur_state->active_rcu_lock || | 
|  | env->cur_state->active_lock.ptr || | 
|  | !in_sleepable(env); | 
|  | } | 
|  |  | 
|  | /* Once GCC supports btf_type_tag the following mechanism will be replaced with tag check */ | 
|  | BTF_SET_START(rcu_protected_types) | 
|  | BTF_ID(struct, prog_test_ref_kfunc) | 
|  | #ifdef CONFIG_CGROUPS | 
|  | BTF_ID(struct, cgroup) | 
|  | #endif | 
|  | #ifdef CONFIG_BPF_JIT | 
|  | BTF_ID(struct, bpf_cpumask) | 
|  | #endif | 
|  | BTF_ID(struct, task_struct) | 
|  | BTF_ID(struct, bpf_crypto_ctx) | 
|  | BTF_SET_END(rcu_protected_types) | 
|  |  | 
|  | static bool rcu_protected_object(const struct btf *btf, u32 btf_id) | 
|  | { | 
|  | if (!btf_is_kernel(btf)) | 
|  | return true; | 
|  | return btf_id_set_contains(&rcu_protected_types, btf_id); | 
|  | } | 
|  |  | 
|  | static struct btf_record *kptr_pointee_btf_record(struct btf_field *kptr_field) | 
|  | { | 
|  | struct btf_struct_meta *meta; | 
|  |  | 
|  | if (btf_is_kernel(kptr_field->kptr.btf)) | 
|  | return NULL; | 
|  |  | 
|  | meta = btf_find_struct_meta(kptr_field->kptr.btf, | 
|  | kptr_field->kptr.btf_id); | 
|  |  | 
|  | return meta ? meta->record : NULL; | 
|  | } | 
|  |  | 
|  | static bool rcu_safe_kptr(const struct btf_field *field) | 
|  | { | 
|  | const struct btf_field_kptr *kptr = &field->kptr; | 
|  |  | 
|  | return field->type == BPF_KPTR_PERCPU || | 
|  | (field->type == BPF_KPTR_REF && rcu_protected_object(kptr->btf, kptr->btf_id)); | 
|  | } | 
|  |  | 
|  | static u32 btf_ld_kptr_type(struct bpf_verifier_env *env, struct btf_field *kptr_field) | 
|  | { | 
|  | struct btf_record *rec; | 
|  | u32 ret; | 
|  |  | 
|  | ret = PTR_MAYBE_NULL; | 
|  | if (rcu_safe_kptr(kptr_field) && in_rcu_cs(env)) { | 
|  | ret |= MEM_RCU; | 
|  | if (kptr_field->type == BPF_KPTR_PERCPU) | 
|  | ret |= MEM_PERCPU; | 
|  | else if (!btf_is_kernel(kptr_field->kptr.btf)) | 
|  | ret |= MEM_ALLOC; | 
|  |  | 
|  | rec = kptr_pointee_btf_record(kptr_field); | 
|  | if (rec && btf_record_has_field(rec, BPF_GRAPH_NODE)) | 
|  | ret |= NON_OWN_REF; | 
|  | } else { | 
|  | ret |= PTR_UNTRUSTED; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno, | 
|  | int value_regno, int insn_idx, | 
|  | struct btf_field *kptr_field) | 
|  | { | 
|  | struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; | 
|  | int class = BPF_CLASS(insn->code); | 
|  | struct bpf_reg_state *val_reg; | 
|  |  | 
|  | /* Things we already checked for in check_map_access and caller: | 
|  | *  - Reject cases where variable offset may touch kptr | 
|  | *  - size of access (must be BPF_DW) | 
|  | *  - tnum_is_const(reg->var_off) | 
|  | *  - kptr_field->offset == off + reg->var_off.value | 
|  | */ | 
|  | /* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */ | 
|  | if (BPF_MODE(insn->code) != BPF_MEM) { | 
|  | verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n"); | 
|  | return -EACCES; | 
|  | } | 
|  |  | 
|  | /* We only allow loading referenced kptr, since it will be marked as | 
|  | * untrusted, similar to unreferenced kptr. | 
|  | */ | 
|  | if (class != BPF_LDX && | 
|  | (kptr_field->type == BPF_KPTR_REF || kptr_field->type == BPF_KPTR_PERCPU)) { | 
|  | verbose(env, "store to referenced kptr disallowed\n"); | 
|  | return -EACCES; | 
|  | } | 
|  |  | 
|  | if (class == BPF_LDX) { | 
|  | val_reg = reg_state(env, value_regno); | 
|  | /* We can simply mark the value_regno receiving the pointer | 
|  | * value from map as PTR_TO_BTF_ID, with the correct type. | 
|  | */ | 
|  | mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID, kptr_field->kptr.btf, | 
|  | kptr_field->kptr.btf_id, btf_ld_kptr_type(env, kptr_field)); | 
|  | } else if (class == BPF_STX) { | 
|  | val_reg = reg_state(env, value_regno); | 
|  | if (!register_is_null(val_reg) && | 
|  | map_kptr_match_type(env, kptr_field, val_reg, value_regno)) | 
|  | return -EACCES; | 
|  | } else if (class == BPF_ST) { | 
|  | if (insn->imm) { | 
|  | verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n", | 
|  | kptr_field->offset); | 
|  | return -EACCES; | 
|  | } | 
|  | } else { | 
|  | verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n"); | 
|  | return -EACCES; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* check read/write into a map element with possible variable offset */ | 
|  | static int check_map_access(struct bpf_verifier_env *env, u32 regno, | 
|  | int off, int size, bool zero_size_allowed, | 
|  | enum bpf_access_src src) | 
|  | { | 
|  | struct bpf_verifier_state *vstate = env->cur_state; | 
|  | struct bpf_func_state *state = vstate->frame[vstate->curframe]; | 
|  | struct bpf_reg_state *reg = &state->regs[regno]; | 
|  | struct bpf_map *map = reg->map_ptr; | 
|  | struct btf_record *rec; | 
|  | int err, i; | 
|  |  | 
|  | err = check_mem_region_access(env, regno, off, size, map->value_size, | 
|  | zero_size_allowed); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | if (IS_ERR_OR_NULL(map->record)) | 
|  | return 0; | 
|  | rec = map->record; | 
|  | for (i = 0; i < rec->cnt; i++) { | 
|  | struct btf_field *field = &rec->fields[i]; | 
|  | u32 p = field->offset; | 
|  |  | 
|  | /* If any part of a field  can be touched by load/store, reject | 
|  | * this program. To check that [x1, x2) overlaps with [y1, y2), | 
|  | * it is sufficient to check x1 < y2 && y1 < x2. | 
|  | */ | 
|  | if (reg->smin_value + off < p + field->size && | 
|  | p < reg->umax_value + off + size) { | 
|  | switch (field->type) { | 
|  | case BPF_KPTR_UNREF: | 
|  | case BPF_KPTR_REF: | 
|  | case BPF_KPTR_PERCPU: | 
|  | if (src != ACCESS_DIRECT) { | 
|  | verbose(env, "kptr cannot be accessed indirectly by helper\n"); | 
|  | return -EACCES; | 
|  | } | 
|  | if (!tnum_is_const(reg->var_off)) { | 
|  | verbose(env, "kptr access cannot have variable offset\n"); | 
|  | return -EACCES; | 
|  | } | 
|  | if (p != off + reg->var_off.value) { | 
|  | verbose(env, "kptr access misaligned expected=%u off=%llu\n", | 
|  | p, off + reg->var_off.value); | 
|  | return -EACCES; | 
|  | } | 
|  | if (size != bpf_size_to_bytes(BPF_DW)) { | 
|  | verbose(env, "kptr access size must be BPF_DW\n"); | 
|  | return -EACCES; | 
|  | } | 
|  | break; | 
|  | default: | 
|  | verbose(env, "%s cannot be accessed directly by load/store\n", | 
|  | btf_field_type_name(field->type)); | 
|  | return -EACCES; | 
|  | } | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #define MAX_PACKET_OFF 0xffff | 
|  |  | 
|  | static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, | 
|  | const struct bpf_call_arg_meta *meta, | 
|  | enum bpf_access_type t) | 
|  | { | 
|  | enum bpf_prog_type prog_type = resolve_prog_type(env->prog); | 
|  |  | 
|  | switch (prog_type) { | 
|  | /* Program types only with direct read access go here! */ | 
|  | case BPF_PROG_TYPE_LWT_IN: | 
|  | case BPF_PROG_TYPE_LWT_OUT: | 
|  | case BPF_PROG_TYPE_LWT_SEG6LOCAL: | 
|  | case BPF_PROG_TYPE_SK_REUSEPORT: | 
|  | case BPF_PROG_TYPE_FLOW_DISSECTOR: | 
|  | case BPF_PROG_TYPE_CGROUP_SKB: | 
|  | if (t == BPF_WRITE) | 
|  | return false; | 
|  | fallthrough; | 
|  |  | 
|  | /* Program types with direct read + write access go here! */ | 
|  | case BPF_PROG_TYPE_SCHED_CLS: | 
|  | case BPF_PROG_TYPE_SCHED_ACT: | 
|  | case BPF_PROG_TYPE_XDP: | 
|  | case BPF_PROG_TYPE_LWT_XMIT: | 
|  | case BPF_PROG_TYPE_SK_SKB: | 
|  | case BPF_PROG_TYPE_SK_MSG: | 
|  | if (meta) | 
|  | return meta->pkt_access; | 
|  |  | 
|  | env->seen_direct_write = true; | 
|  | return true; | 
|  |  | 
|  | case BPF_PROG_TYPE_CGROUP_SOCKOPT: | 
|  | if (t == BPF_WRITE) | 
|  | env->seen_direct_write = true; | 
|  |  | 
|  | return true; | 
|  |  | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, | 
|  | int size, bool zero_size_allowed) | 
|  | { | 
|  | struct bpf_reg_state *regs = cur_regs(env); | 
|  | struct bpf_reg_state *reg = ®s[regno]; | 
|  | int err; | 
|  |  | 
|  | /* We may have added a variable offset to the packet pointer; but any | 
|  | * reg->range we have comes after that.  We are only checking the fixed | 
|  | * offset. | 
|  | */ | 
|  |  | 
|  | /* We don't allow negative numbers, because we aren't tracking enough | 
|  | * detail to prove they're safe. | 
|  | */ | 
|  | if (reg->smin_value < 0) { | 
|  | verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", | 
|  | regno); | 
|  | return -EACCES; | 
|  | } | 
|  |  | 
|  | err = reg->range < 0 ? -EINVAL : | 
|  | __check_mem_access(env, regno, off, size, reg->range, | 
|  | zero_size_allowed); | 
|  | if (err) { | 
|  | verbose(env, "R%d offset is outside of the packet\n", regno); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* __check_mem_access has made sure "off + size - 1" is within u16. | 
|  | * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff, | 
|  | * otherwise find_good_pkt_pointers would have refused to set range info | 
|  | * that __check_mem_access would have rejected this pkt access. | 
|  | * Therefore, "off + reg->umax_value + size - 1" won't overflow u32. | 
|  | */ | 
|  | env->prog->aux->max_pkt_offset = | 
|  | max_t(u32, env->prog->aux->max_pkt_offset, | 
|  | off + reg->umax_value + size - 1); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* check access to 'struct bpf_context' fields.  Supports fixed offsets only */ | 
|  | static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, | 
|  | enum bpf_access_type t, enum bpf_reg_type *reg_type, | 
|  | struct btf **btf, u32 *btf_id, bool *is_retval, bool is_ldsx) | 
|  | { | 
|  | struct bpf_insn_access_aux info = { | 
|  | .reg_type = *reg_type, | 
|  | .log = &env->log, | 
|  | .is_retval = false, | 
|  | .is_ldsx = is_ldsx, | 
|  | }; | 
|  |  | 
|  | if (env->ops->is_valid_access && | 
|  | env->ops->is_valid_access(off, size, t, env->prog, &info)) { | 
|  | /* A non zero info.ctx_field_size indicates that this field is a | 
|  | * candidate for later verifier transformation to load the whole | 
|  | * field and then apply a mask when accessed with a narrower | 
|  | * access than actual ctx access size. A zero info.ctx_field_size | 
|  | * will only allow for whole field access and rejects any other | 
|  | * type of narrower access. | 
|  | */ | 
|  | *reg_type = info.reg_type; | 
|  | *is_retval = info.is_retval; | 
|  |  | 
|  | if (base_type(*reg_type) == PTR_TO_BTF_ID) { | 
|  | *btf = info.btf; | 
|  | *btf_id = info.btf_id; | 
|  | } else { | 
|  | env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; | 
|  | } | 
|  | /* remember the offset of last byte accessed in ctx */ | 
|  | if (env->prog->aux->max_ctx_offset < off + size) | 
|  | env->prog->aux->max_ctx_offset = off + size; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); | 
|  | return -EACCES; | 
|  | } | 
|  |  | 
|  | static int check_flow_keys_access(struct bpf_verifier_env *env, int off, | 
|  | int size) | 
|  | { | 
|  | if (size < 0 || off < 0 || | 
|  | (u64)off + size > sizeof(struct bpf_flow_keys)) { | 
|  | verbose(env, "invalid access to flow keys off=%d size=%d\n", | 
|  | off, size); | 
|  | return -EACCES; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int check_sock_access(struct bpf_verifier_env *env, int insn_idx, | 
|  | u32 regno, int off, int size, | 
|  | enum bpf_access_type t) | 
|  | { | 
|  | struct bpf_reg_state *regs = cur_regs(env); | 
|  | struct bpf_reg_state *reg = ®s[regno]; | 
|  | struct bpf_insn_access_aux info = {}; | 
|  | bool valid; | 
|  |  | 
|  | if (reg->smin_value < 0) { | 
|  | verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", | 
|  | regno); | 
|  | return -EACCES; | 
|  | } | 
|  |  | 
|  | switch (reg->type) { | 
|  | case PTR_TO_SOCK_COMMON: | 
|  | valid = bpf_sock_common_is_valid_access(off, size, t, &info); | 
|  | break; | 
|  | case PTR_TO_SOCKET: | 
|  | valid = bpf_sock_is_valid_access(off, size, t, &info); | 
|  | break; | 
|  | case PTR_TO_TCP_SOCK: | 
|  | valid = bpf_tcp_sock_is_valid_access(off, size, t, &info); | 
|  | break; | 
|  | case PTR_TO_XDP_SOCK: | 
|  | valid = bpf_xdp_sock_is_valid_access(off, size, t, &info); | 
|  | break; | 
|  | default: | 
|  | valid = false; | 
|  | } | 
|  |  | 
|  |  | 
|  | if (valid) { | 
|  | env->insn_aux_data[insn_idx].ctx_field_size = | 
|  | info.ctx_field_size; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | verbose(env, "R%d invalid %s access off=%d size=%d\n", | 
|  | regno, reg_type_str(env, reg->type), off, size); | 
|  |  | 
|  | return -EACCES; | 
|  | } | 
|  |  | 
|  | static bool is_pointer_value(struct bpf_verifier_env *env, int regno) | 
|  | { | 
|  | return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno)); | 
|  | } | 
|  |  | 
|  | static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) | 
|  | { | 
|  | const struct bpf_reg_state *reg = reg_state(env, regno); | 
|  |  | 
|  | return reg->type == PTR_TO_CTX; | 
|  | } | 
|  |  | 
|  | static bool is_sk_reg(struct bpf_verifier_env *env, int regno) | 
|  | { | 
|  | const struct bpf_reg_state *reg = reg_state(env, regno); | 
|  |  | 
|  | return type_is_sk_pointer(reg->type); | 
|  | } | 
|  |  | 
|  | static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) | 
|  | { | 
|  | const struct bpf_reg_state *reg = reg_state(env, regno); | 
|  |  | 
|  | return type_is_pkt_pointer(reg->type); | 
|  | } | 
|  |  | 
|  | static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno) | 
|  | { | 
|  | const struct bpf_reg_state *reg = reg_state(env, regno); | 
|  |  | 
|  | /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */ | 
|  | return reg->type == PTR_TO_FLOW_KEYS; | 
|  | } | 
|  |  | 
|  | static bool is_arena_reg(struct bpf_verifier_env *env, int regno) | 
|  | { | 
|  | const struct bpf_reg_state *reg = reg_state(env, regno); | 
|  |  | 
|  | return reg->type == PTR_TO_ARENA; | 
|  | } | 
|  |  | 
|  | static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = { | 
|  | #ifdef CONFIG_NET | 
|  | [PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK], | 
|  | [PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], | 
|  | [PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP], | 
|  | #endif | 
|  | [CONST_PTR_TO_MAP] = btf_bpf_map_id, | 
|  | }; | 
|  |  | 
|  | static bool is_trusted_reg(const struct bpf_reg_state *reg) | 
|  | { | 
|  | /* A referenced register is always trusted. */ | 
|  | if (reg->ref_obj_id) | 
|  | return true; | 
|  |  | 
|  | /* Types listed in the reg2btf_ids are always trusted */ | 
|  | if (reg2btf_ids[base_type(reg->type)] && | 
|  | !bpf_type_has_unsafe_modifiers(reg->type)) | 
|  | return true; | 
|  |  | 
|  | /* If a register is not referenced, it is trusted if it has the | 
|  | * MEM_ALLOC or PTR_TRUSTED type modifiers, and no others. Some of the | 
|  | * other type modifiers may be safe, but we elect to take an opt-in | 
|  | * approach here as some (e.g. PTR_UNTRUSTED and PTR_MAYBE_NULL) are | 
|  | * not. | 
|  | * | 
|  | * Eventually, we should make PTR_TRUSTED the single source of truth | 
|  | * for whether a register is trusted. | 
|  | */ | 
|  | return type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS && | 
|  | !bpf_type_has_unsafe_modifiers(reg->type); | 
|  | } | 
|  |  | 
|  | static bool is_rcu_reg(const struct bpf_reg_state *reg) | 
|  | { | 
|  | return reg->type & MEM_RCU; | 
|  | } | 
|  |  | 
|  | static void clear_trusted_flags(enum bpf_type_flag *flag) | 
|  | { | 
|  | *flag &= ~(BPF_REG_TRUSTED_MODIFIERS | MEM_RCU); | 
|  | } | 
|  |  | 
|  | static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, | 
|  | const struct bpf_reg_state *reg, | 
|  | int off, int size, bool strict) | 
|  | { | 
|  | struct tnum reg_off; | 
|  | int ip_align; | 
|  |  | 
|  | /* Byte size accesses are always allowed. */ | 
|  | if (!strict || size == 1) | 
|  | return 0; | 
|  |  | 
|  | /* For platforms that do not have a Kconfig enabling | 
|  | * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of | 
|  | * NET_IP_ALIGN is universally set to '2'.  And on platforms | 
|  | * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get | 
|  | * to this code only in strict mode where we want to emulate | 
|  | * the NET_IP_ALIGN==2 checking.  Therefore use an | 
|  | * unconditional IP align value of '2'. | 
|  | */ | 
|  | ip_align = 2; | 
|  |  | 
|  | reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); | 
|  | if (!tnum_is_aligned(reg_off, size)) { | 
|  | char tn_buf[48]; | 
|  |  | 
|  | tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); | 
|  | verbose(env, | 
|  | "misaligned packet access off %d+%s+%d+%d size %d\n", | 
|  | ip_align, tn_buf, reg->off, off, size); | 
|  | return -EACCES; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int check_generic_ptr_alignment(struct bpf_verifier_env *env, | 
|  | const struct bpf_reg_state *reg, | 
|  | const char *pointer_desc, | 
|  | int off, int size, bool strict) | 
|  | { | 
|  | struct tnum reg_off; | 
|  |  | 
|  | /* Byte size accesses are always allowed. */ | 
|  | if (!strict || size == 1) | 
|  | return 0; | 
|  |  | 
|  | reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); | 
|  | if (!tnum_is_aligned(reg_off, size)) { | 
|  | char tn_buf[48]; | 
|  |  | 
|  | tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); | 
|  | verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", | 
|  | pointer_desc, tn_buf, reg->off, off, size); | 
|  | return -EACCES; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int check_ptr_alignment(struct bpf_verifier_env *env, | 
|  | const struct bpf_reg_state *reg, int off, | 
|  | int size, bool strict_alignment_once) | 
|  | { | 
|  | bool strict = env->strict_alignment || strict_alignment_once; | 
|  | const char *pointer_desc = ""; | 
|  |  | 
|  | switch (reg->type) { | 
|  | case PTR_TO_PACKET: | 
|  | case PTR_TO_PACKET_META: | 
|  | /* Special case, because of NET_IP_ALIGN. Given metadata sits | 
|  | * right in front, treat it the very same way. | 
|  | */ | 
|  | return check_pkt_ptr_alignment(env, reg, off, size, strict); | 
|  | case PTR_TO_FLOW_KEYS: | 
|  | pointer_desc = "flow keys "; | 
|  | break; | 
|  | case PTR_TO_MAP_KEY: | 
|  | pointer_desc = "key "; | 
|  | break; | 
|  | case PTR_TO_MAP_VALUE: | 
|  | pointer_desc = "value "; | 
|  | break; | 
|  | case PTR_TO_CTX: | 
|  | pointer_desc = "context "; | 
|  | break; | 
|  | case PTR_TO_STACK: | 
|  | pointer_desc = "stack "; | 
|  | /* The stack spill tracking logic in check_stack_write_fixed_off() | 
|  | * and check_stack_read_fixed_off() relies on stack accesses being | 
|  | * aligned. | 
|  | */ | 
|  | strict = true; | 
|  | break; | 
|  | case PTR_TO_SOCKET: | 
|  | pointer_desc = "sock "; | 
|  | break; | 
|  | case PTR_TO_SOCK_COMMON: | 
|  | pointer_desc = "sock_common "; | 
|  | break; | 
|  | case PTR_TO_TCP_SOCK: | 
|  | pointer_desc = "tcp_sock "; | 
|  | break; | 
|  | case PTR_TO_XDP_SOCK: | 
|  | pointer_desc = "xdp_sock "; | 
|  | break; | 
|  | case PTR_TO_ARENA: | 
|  | return 0; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, | 
|  | strict); | 
|  | } | 
|  |  | 
|  | static int round_up_stack_depth(struct bpf_verifier_env *env, int stack_depth) | 
|  | { | 
|  | if (env->prog->jit_requested) | 
|  | return round_up(stack_depth, 16); | 
|  |  | 
|  | /* round up to 32-bytes, since this is granularity | 
|  | * of interpreter stack size | 
|  | */ | 
|  | return round_up(max_t(u32, stack_depth, 1), 32); | 
|  | } | 
|  |  | 
|  | /* starting from main bpf function walk all instructions of the function | 
|  | * and recursively walk all callees that given function can call. | 
|  | * Ignore jump and exit insns. | 
|  | * Since recursion is prevented by check_cfg() this algorithm | 
|  | * only needs a local stack of MAX_CALL_FRAMES to remember callsites | 
|  | */ | 
|  | static int check_max_stack_depth_subprog(struct bpf_verifier_env *env, int idx) | 
|  | { | 
|  | struct bpf_subprog_info *subprog = env->subprog_info; | 
|  | struct bpf_insn *insn = env->prog->insnsi; | 
|  | int depth = 0, frame = 0, i, subprog_end; | 
|  | bool tail_call_reachable = false; | 
|  | int ret_insn[MAX_CALL_FRAMES]; | 
|  | int ret_prog[MAX_CALL_FRAMES]; | 
|  | int j; | 
|  |  | 
|  | i = subprog[idx].start; | 
|  | process_func: | 
|  | /* protect against potential stack overflow that might happen when | 
|  | * bpf2bpf calls get combined with tailcalls. Limit the caller's stack | 
|  | * depth for such case down to 256 so that the worst case scenario | 
|  | * would result in 8k stack size (32 which is tailcall limit * 256 = | 
|  | * 8k). | 
|  | * | 
|  | * To get the idea what might happen, see an example: | 
|  | * func1 -> sub rsp, 128 | 
|  | *  subfunc1 -> sub rsp, 256 | 
|  | *  tailcall1 -> add rsp, 256 | 
|  | *   func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320) | 
|  | *   subfunc2 -> sub rsp, 64 | 
|  | *   subfunc22 -> sub rsp, 128 | 
|  | *   tailcall2 -> add rsp, 128 | 
|  | *    func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416) | 
|  | * | 
|  | * tailcall will unwind the current stack frame but it will not get rid | 
|  | * of caller's stack as shown on the example above. | 
|  | */ | 
|  | if (idx && subprog[idx].has_tail_call && depth >= 256) { | 
|  | verbose(env, | 
|  | "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n", | 
|  | depth); | 
|  | return -EACCES; | 
|  | } | 
|  | depth += round_up_stack_depth(env, subprog[idx].stack_depth); | 
|  | if (depth > MAX_BPF_STACK) { | 
|  | verbose(env, "combined stack size of %d calls is %d. Too large\n", | 
|  | frame + 1, depth); | 
|  | return -EACCES; | 
|  | } | 
|  | continue_func: | 
|  | subprog_end = subprog[idx + 1].start; | 
|  | for (; i < subprog_end; i++) { | 
|  | int next_insn, sidx; | 
|  |  | 
|  | if (bpf_pseudo_kfunc_call(insn + i) && !insn[i].off) { | 
|  | bool err = false; | 
|  |  | 
|  | if (!is_bpf_throw_kfunc(insn + i)) | 
|  | continue; | 
|  | if (subprog[idx].is_cb) | 
|  | err = true; | 
|  | for (int c = 0; c < frame && !err; c++) { | 
|  | if (subprog[ret_prog[c]].is_cb) { | 
|  | err = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (!err) | 
|  | continue; | 
|  | verbose(env, | 
|  | "bpf_throw kfunc (insn %d) cannot be called from callback subprog %d\n", | 
|  | i, idx); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i)) | 
|  | continue; | 
|  | /* remember insn and function to return to */ | 
|  | ret_insn[frame] = i + 1; | 
|  | ret_prog[frame] = idx; | 
|  |  | 
|  | /* find the callee */ | 
|  | next_insn = i + insn[i].imm + 1; | 
|  | sidx = find_subprog(env, next_insn); | 
|  | if (sidx < 0) { | 
|  | WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", | 
|  | next_insn); | 
|  | return -EFAULT; | 
|  | } | 
|  | if (subprog[sidx].is_async_cb) { | 
|  | if (subprog[sidx].has_tail_call) { | 
|  | verbose(env, "verifier bug. subprog has tail_call and async cb\n"); | 
|  | return -EFAULT; | 
|  | } | 
|  | /* async callbacks don't increase bpf prog stack size unless called directly */ | 
|  | if (!bpf_pseudo_call(insn + i)) | 
|  | continue; | 
|  | if (subprog[sidx].is_exception_cb) { | 
|  | verbose(env, "insn %d cannot call exception cb directly\n", i); | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  | i = next_insn; | 
|  | idx = sidx; | 
|  |  | 
|  | if (subprog[idx].has_tail_call) | 
|  | tail_call_reachable = true; | 
|  |  | 
|  | frame++; | 
|  | if (frame >= MAX_CALL_FRAMES) { | 
|  | verbose(env, "the call stack of %d frames is too deep !\n", | 
|  | frame); | 
|  | return -E2BIG; | 
|  | } | 
|  | goto process_func; | 
|  | } | 
|  | /* if tail call got detected across bpf2bpf calls then mark each of the | 
|  | * currently present subprog frames as tail call reachable subprogs; | 
|  | * this info will be utilized by JIT so that we will be preserving the | 
|  | * tail call counter throughout bpf2bpf calls combined with tailcalls | 
|  | */ | 
|  | if (tail_call_reachable) | 
|  | for (j = 0; j < frame; j++) { | 
|  | if (subprog[ret_prog[j]].is_exception_cb) { | 
|  | verbose(env, "cannot tail call within exception cb\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | subprog[ret_prog[j]].tail_call_reachable = true; | 
|  | } | 
|  | if (subprog[0].tail_call_reachable) | 
|  | env->prog->aux->tail_call_reachable = true; | 
|  |  | 
|  | /* end of for() loop means the last insn of the 'subprog' | 
|  | * was reached. Doesn't matter whether it was JA or EXIT | 
|  | */ | 
|  | if (frame == 0) | 
|  | return 0; | 
|  | depth -= round_up_stack_depth(env, subprog[idx].stack_depth); | 
|  | frame--; | 
|  | i = ret_insn[frame]; | 
|  | idx = ret_prog[frame]; | 
|  | goto continue_func; | 
|  | } | 
|  |  | 
|  | static int check_max_stack_depth(struct bpf_verifier_env *env) | 
|  | { | 
|  | struct bpf_subprog_info *si = env->subprog_info; | 
|  | int ret; | 
|  |  | 
|  | for (int i = 0; i < env->subprog_cnt; i++) { | 
|  | if (!i || si[i].is_async_cb) { | 
|  | ret = check_max_stack_depth_subprog(env, i); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | } | 
|  | continue; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #ifndef CONFIG_BPF_JIT_ALWAYS_ON | 
|  | static int get_callee_stack_depth(struct bpf_verifier_env *env, | 
|  | const struct bpf_insn *insn, int idx) | 
|  | { | 
|  | int start = idx + insn->imm + 1, subprog; | 
|  |  | 
|  | subprog = find_subprog(env, start); | 
|  | if (subprog < 0) { | 
|  | WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", | 
|  | start); | 
|  | return -EFAULT; | 
|  | } | 
|  | return env->subprog_info[subprog].stack_depth; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static int __check_buffer_access(struct bpf_verifier_env *env, | 
|  | const char *buf_info, | 
|  | const struct bpf_reg_state *reg, | 
|  | int regno, int off, int size) | 
|  | { | 
|  | if (off < 0) { | 
|  | verbose(env, | 
|  | "R%d invalid %s buffer access: off=%d, size=%d\n", | 
|  | regno, buf_info, off, size); | 
|  | return -EACCES; | 
|  | } | 
|  | if (!tnum_is_const(reg->var_off) || reg->var_off.value) { | 
|  | char tn_buf[48]; | 
|  |  | 
|  | tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); | 
|  | verbose(env, | 
|  | "R%d invalid variable buffer offset: off=%d, var_off=%s\n", | 
|  | regno, off, tn_buf); | 
|  | return -EACCES; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int check_tp_buffer_access(struct bpf_verifier_env *env, | 
|  | const struct bpf_reg_state *reg, | 
|  | int regno, int off, int size) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | err = __check_buffer_access(env, "tracepoint", reg, regno, off, size); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | if (off + size > env->prog->aux->max_tp_access) | 
|  | env->prog->aux->max_tp_access = off + size; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int check_buffer_access(struct bpf_verifier_env *env, | 
|  | const struct bpf_reg_state *reg, | 
|  | int regno, int off, int size, | 
|  | bool zero_size_allowed, | 
|  | u32 *max_access) | 
|  | { | 
|  | const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr"; | 
|  | int err; | 
|  |  | 
|  | err = __check_buffer_access(env, buf_info, reg, regno, off, size); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | if (off + size > *max_access) | 
|  | *max_access = off + size; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* BPF architecture zero extends alu32 ops into 64-bit registesr */ | 
|  | static void zext_32_to_64(struct bpf_reg_state *reg) | 
|  | { | 
|  | reg->var_off = tnum_subreg(reg->var_off); | 
|  | __reg_assign_32_into_64(reg); | 
|  | } | 
|  |  | 
|  | /* truncate register to smaller size (in bytes) | 
|  | * must be called with size < BPF_REG_SIZE | 
|  | */ | 
|  | static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) | 
|  | { | 
|  | u64 mask; | 
|  |  | 
|  | /* clear high bits in bit representation */ | 
|  | reg->var_off = tnum_cast(reg->var_off, size); | 
|  |  | 
|  | /* fix arithmetic bounds */ | 
|  | mask = ((u64)1 << (size * 8)) - 1; | 
|  | if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { | 
|  | reg->umin_value &= mask; | 
|  | reg->umax_value &= mask; | 
|  | } else { | 
|  | reg->umin_value = 0; | 
|  | reg->umax_value = mask; | 
|  | } | 
|  | reg->smin_value = reg->umin_value; | 
|  | reg->smax_value = reg->umax_value; | 
|  |  | 
|  | /* If size is smaller than 32bit register the 32bit register | 
|  | * values are also truncated so we push 64-bit bounds into | 
|  | * 32-bit bounds. Above were truncated < 32-bits already. | 
|  | */ | 
|  | if (size < 4) | 
|  | __mark_reg32_unbounded(reg); | 
|  |  | 
|  | reg_bounds_sync(reg); | 
|  | } | 
|  |  | 
|  | static void set_sext64_default_val(struct bpf_reg_state *reg, int size) | 
|  | { | 
|  | if (size == 1) { | 
|  | reg->smin_value = reg->s32_min_value = S8_MIN; | 
|  | reg->smax_value = reg->s32_max_value = S8_MAX; | 
|  | } else if (size == 2) { | 
|  | reg->smin_value = reg->s32_min_value = S16_MIN; | 
|  | reg->smax_value = reg->s32_max_value = S16_MAX; | 
|  | } else { | 
|  | /* size == 4 */ | 
|  | reg->smin_value = reg->s32_min_value = S32_MIN; | 
|  | reg->smax_value = reg->s32_max_value = S32_MAX; | 
|  | } | 
|  | reg->umin_value = reg->u32_min_value = 0; | 
|  | reg->umax_value = U64_MAX; | 
|  | reg->u32_max_value = U32_MAX; | 
|  | reg->var_off = tnum_unknown; | 
|  | } | 
|  |  | 
|  | static void coerce_reg_to_size_sx(struct bpf_reg_state *reg, int size) | 
|  | { | 
|  | s64 init_s64_max, init_s64_min, s64_max, s64_min, u64_cval; | 
|  | u64 top_smax_value, top_smin_value; | 
|  | u64 num_bits = size * 8; | 
|  |  | 
|  | if (tnum_is_const(reg->var_off)) { | 
|  | u64_cval = reg->var_off.value; | 
|  | if (size == 1) | 
|  | reg->var_off = tnum_const((s8)u64_cval); | 
|  | else if (size == 2) | 
|  | reg->var_off = tnum_const((s16)u64_cval); | 
|  | else | 
|  | /* size == 4 */ | 
|  | reg->var_off = tnum_const((s32)u64_cval); | 
|  |  | 
|  | u64_cval = reg->var_off.value; | 
|  | reg->smax_value = reg->smin_value = u64_cval; | 
|  | reg->umax_value = reg->umin_value = u64_cval; | 
|  | reg->s32_max_value = reg->s32_min_value = u64_cval; | 
|  | reg->u32_max_value = reg->u32_min_value = u64_cval; | 
|  | return; | 
|  | } | 
|  |  | 
|  | top_smax_value = ((u64)reg->smax_value >> num_bits) << num_bits; | 
|  | top_smin_value = ((u64)reg->smin_value >> num_bits) << num_bits; | 
|  |  | 
|  | if (top_smax_value != top_smin_value) | 
|  | goto out; | 
|  |  | 
|  | /* find the s64_min and s64_min after sign extension */ | 
|  | if (size == 1) { | 
|  | init_s64_max = (s8)reg->smax_value; | 
|  | init_s64_min = (s8)reg->smin_value; | 
|  | } else if (size == 2) { | 
|  | init_s64_max = (s16)reg->smax_value; | 
|  | init_s64_min = (s16)reg->smin_value; | 
|  | } else { | 
|  | init_s64_max = (s32)reg->smax_value; | 
|  | init_s64_min = (s32)reg->smin_value; | 
|  | } | 
|  |  | 
|  | s64_max = max(init_s64_max, init_s64_min); | 
|  | s64_min = min(init_s64_max, init_s64_min); | 
|  |  | 
|  | /* both of s64_max/s64_min positive or negative */ | 
|  | if ((s64_max >= 0) == (s64_min >= 0)) { | 
|  | reg->smin_value = reg->s32_min_value = s64_min; | 
|  | reg->smax_value = reg->s32_max_value = s64_max; | 
|  | reg->umin_value = reg->u32_min_value = s64_min; | 
|  | reg->umax_value = reg->u32_max_value = s64_max; | 
|  | reg->var_off = tnum_range(s64_min, s64_max); | 
|  | return; | 
|  | } | 
|  |  | 
|  | out: | 
|  | set_sext64_default_val(reg, size); | 
|  | } | 
|  |  | 
|  | static void set_sext32_default_val(struct bpf_reg_state *reg, int size) | 
|  | { | 
|  | if (size == 1) { | 
|  | reg->s32_min_value = S8_MIN; | 
|  | reg->s32_max_value = S8_MAX; | 
|  | } else { | 
|  | /* size == 2 */ | 
|  | reg->s32_min_value = S16_MIN; | 
|  | reg->s32_max_value = S16_MAX; | 
|  | } | 
|  | reg->u32_min_value = 0; | 
|  | reg->u32_max_value = U32_MAX; | 
|  | reg->var_off = tnum_subreg(tnum_unknown); | 
|  | } | 
|  |  | 
|  | static void coerce_subreg_to_size_sx(struct bpf_reg_state *reg, int size) | 
|  | { | 
|  | s32 init_s32_max, init_s32_min, s32_max, s32_min, u32_val; | 
|  | u32 top_smax_value, top_smin_value; | 
|  | u32 num_bits = size * 8; | 
|  |  | 
|  | if (tnum_is_const(reg->var_off)) { | 
|  | u32_val = reg->var_off.value; | 
|  | if (size == 1) | 
|  | reg->var_off = tnum_const((s8)u32_val); | 
|  | else | 
|  | reg->var_off = tnum_const((s16)u32_val); | 
|  |  | 
|  | u32_val = reg->var_off.value; | 
|  | reg->s32_min_value = reg->s32_max_value = u32_val; | 
|  | reg->u32_min_value = reg->u32_max_value = u32_val; | 
|  | return; | 
|  | } | 
|  |  | 
|  | top_smax_value = ((u32)reg->s32_max_value >> num_bits) << num_bits; | 
|  | top_smin_value = ((u32)reg->s32_min_value >> num_bits) << num_bits; | 
|  |  | 
|  | if (top_smax_value != top_smin_value) | 
|  | goto out; | 
|  |  | 
|  | /* find the s32_min and s32_min after sign extension */ | 
|  | if (size == 1) { | 
|  | init_s32_max = (s8)reg->s32_max_value; | 
|  | init_s32_min = (s8)reg->s32_min_value; | 
|  | } else { | 
|  | /* size == 2 */ | 
|  | init_s32_max = (s16)reg->s32_max_value; | 
|  | init_s32_min = (s16)reg->s32_min_value; | 
|  | } | 
|  | s32_max = max(init_s32_max, init_s32_min); | 
|  | s32_min = min(init_s32_max, init_s32_min); | 
|  |  | 
|  | if ((s32_min >= 0) == (s32_max >= 0)) { | 
|  | reg->s32_min_value = s32_min; | 
|  | reg->s32_max_value = s32_max; | 
|  | reg->u32_min_value = (u32)s32_min; | 
|  | reg->u32_max_value = (u32)s32_max; | 
|  | reg->var_off = tnum_subreg(tnum_range(s32_min, s32_max)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | out: | 
|  | set_sext32_default_val(reg, size); | 
|  | } | 
|  |  | 
|  | static bool bpf_map_is_rdonly(const struct bpf_map *map) | 
|  | { | 
|  | /* A map is considered read-only if the following condition are true: | 
|  | * | 
|  | * 1) BPF program side cannot change any of the map content. The | 
|  | *    BPF_F_RDONLY_PROG flag is throughout the lifetime of a map | 
|  | *    and was set at map creation time. | 
|  | * 2) The map value(s) have been initialized from user space by a | 
|  | *    loader and then "frozen", such that no new map update/delete | 
|  | *    operations from syscall side are possible for the rest of | 
|  | *    the map's lifetime from that point onwards. | 
|  | * 3) Any parallel/pending map update/delete operations from syscall | 
|  | *    side have been completed. Only after that point, it's safe to | 
|  | *    assume that map value(s) are immutable. | 
|  | */ | 
|  | return (map->map_flags & BPF_F_RDONLY_PROG) && | 
|  | READ_ONCE(map->frozen) && | 
|  | !bpf_map_write_active(map); | 
|  | } | 
|  |  | 
|  | static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val, | 
|  | bool is_ldsx) | 
|  | { | 
|  | void *ptr; | 
|  | u64 addr; | 
|  | int err; | 
|  |  | 
|  | err = map->ops->map_direct_value_addr(map, &addr, off); | 
|  | if (err) | 
|  | return err; | 
|  | ptr = (void *)(long)addr + off; | 
|  |  | 
|  | switch (size) { | 
|  | case sizeof(u8): | 
|  | *val = is_ldsx ? (s64)*(s8 *)ptr : (u64)*(u8 *)ptr; | 
|  | break; | 
|  | case sizeof(u16): | 
|  | *val = is_ldsx ? (s64)*(s16 *)ptr : (u64)*(u16 *)ptr; | 
|  | break; | 
|  | case sizeof(u32): | 
|  | *val = is_ldsx ? (s64)*(s32 *)ptr : (u64)*(u32 *)ptr; | 
|  | break; | 
|  | case sizeof(u64): | 
|  | *val = *(u64 *)ptr; | 
|  | break; | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #define BTF_TYPE_SAFE_RCU(__type)  __PASTE(__type, __safe_rcu) | 
|  | #define BTF_TYPE_SAFE_RCU_OR_NULL(__type)  __PASTE(__type, __safe_rcu_or_null) | 
|  | #define BTF_TYPE_SAFE_TRUSTED(__type)  __PASTE(__type, __safe_trusted) | 
|  | #define BTF_TYPE_SAFE_TRUSTED_OR_NULL(__type)  __PASTE(__type, __safe_trusted_or_null) | 
|  |  | 
|  | /* | 
|  | * Allow list few fields as RCU trusted or full trusted. | 
|  | * This logic doesn't allow mix tagging and will be removed once GCC supports | 
|  | * btf_type_tag. | 
|  | */ | 
|  |  | 
|  | /* RCU trusted: these fields are trusted in RCU CS and never NULL */ | 
|  | BTF_TYPE_SAFE_RCU(struct task_struct) { | 
|  | const cpumask_t *cpus_ptr; | 
|  | struct css_set __rcu *cgroups; | 
|  | struct task_struct __rcu *real_parent; | 
|  | struct task_struct *group_leader; | 
|  | }; | 
|  |  | 
|  | BTF_TYPE_SAFE_RCU(struct cgroup) { | 
|  | /* cgrp->kn is always accessible as documented in kernel/cgroup/cgroup.c */ | 
|  | struct kernfs_node *kn; | 
|  | }; | 
|  |  | 
|  | BTF_TYPE_SAFE_RCU(struct css_set) { | 
|  | struct cgroup *dfl_cgrp; | 
|  | }; | 
|  |  | 
|  | /* RCU trusted: these fields are trusted in RCU CS and can be NULL */ | 
|  | BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct) { | 
|  | struct file __rcu *exe_file; | 
|  | }; | 
|  |  | 
|  | /* skb->sk, req->sk are not RCU protected, but we mark them as such | 
|  | * because bpf prog accessible sockets are SOCK_RCU_FREE. | 
|  | */ | 
|  | BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff) { | 
|  | struct sock *sk; | 
|  | }; | 
|  |  | 
|  | BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock) { | 
|  | struct sock *sk; | 
|  | }; | 
|  |  | 
|  | /* full trusted: these fields are trusted even outside of RCU CS and never NULL */ | 
|  | BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta) { | 
|  | struct seq_file *seq; | 
|  | }; | 
|  |  | 
|  | BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task) { | 
|  | struct bpf_iter_meta *meta; | 
|  | struct task_struct *task; | 
|  | }; | 
|  |  | 
|  | BTF_TYPE_SAFE_TRUSTED(struct linux_binprm) { | 
|  | struct file *file; | 
|  | }; | 
|  |  | 
|  | BTF_TYPE_SAFE_TRUSTED(struct file) { | 
|  | struct inode *f_inode; | 
|  | }; | 
|  |  | 
|  | BTF_TYPE_SAFE_TRUSTED(struct dentry) { | 
|  | /* no negative dentry-s in places where bpf can see it */ | 
|  | struct inode *d_inode; | 
|  | }; | 
|  |  | 
|  | BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct socket) { | 
|  | struct sock *sk; | 
|  | }; | 
|  |  | 
|  | static bool type_is_rcu(struct bpf_verifier_env *env, | 
|  | struct bpf_reg_state *reg, | 
|  | const char *field_name, u32 btf_id) | 
|  | { | 
|  | BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct task_struct)); | 
|  | BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct cgroup)); | 
|  | BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct css_set)); | 
|  |  | 
|  | return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu"); | 
|  | } | 
|  |  | 
|  | static bool type_is_rcu_or_null(struct bpf_verifier_env *env, | 
|  | struct bpf_reg_state *reg, | 
|  | const char *field_name, u32 btf_id) | 
|  | { | 
|  | BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct)); | 
|  | BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff)); | 
|  | BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock)); | 
|  |  | 
|  | return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu_or_null"); | 
|  | } | 
|  |  | 
|  | static bool type_is_trusted(struct bpf_verifier_env *env, | 
|  | struct bpf_reg_state *reg, | 
|  | const char *field_name, u32 btf_id) | 
|  | { | 
|  | BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta)); | 
|  | BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task)); | 
|  | BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct linux_binprm)); | 
|  | BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct file)); | 
|  | BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct dentry)); | 
|  |  | 
|  | return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_trusted"); | 
|  | } | 
|  |  | 
|  | static bool type_is_trusted_or_null(struct bpf_verifier_env *env, | 
|  | struct bpf_reg_state *reg, | 
|  | const char *field_name, u32 btf_id) | 
|  | { | 
|  | BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct socket)); | 
|  |  | 
|  | return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, | 
|  | "__safe_trusted_or_null"); | 
|  | } | 
|  |  | 
|  | static int check_ptr_to_btf_access(struct bpf_verifier_env *env, | 
|  | struct bpf_reg_state *regs, | 
|  | int regno, int off, int size, | 
|  | enum bpf_access_type atype, | 
|  | int value_regno) | 
|  | { | 
|  | struct bpf_reg_state *reg = regs + regno; | 
|  | const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id); | 
|  | const char *tname = btf_name_by_offset(reg->btf, t->name_off); | 
|  | const char *field_name = NULL; | 
|  | enum bpf_type_flag flag = 0; | 
|  | u32 btf_id = 0; | 
|  | int ret; | 
|  |  | 
|  | if (!env->allow_ptr_leaks) { | 
|  | verbose(env, | 
|  | "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", | 
|  | tname); | 
|  | return -EPERM; | 
|  | } | 
|  | if (!env->prog->gpl_compatible && btf_is_kernel(reg->btf)) { | 
|  | verbose(env, | 
|  | "Cannot access kernel 'struct %s' from non-GPL compatible program\n", | 
|  | tname); | 
|  | return -EINVAL; | 
|  | } | 
|  | if (off < 0) { | 
|  | verbose(env, | 
|  | "R%d is ptr_%s invalid negative access: off=%d\n", | 
|  | regno, tname, off); | 
|  | return -EACCES; | 
|  | } | 
|  | if (!tnum_is_const(reg->var_off) || reg->var_off.value) { | 
|  | char tn_buf[48]; | 
|  |  | 
|  | tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); | 
|  | verbose(env, | 
|  | "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n", | 
|  | regno, tname, off, tn_buf); | 
|  | return -EACCES; | 
|  | } | 
|  |  | 
|  | if (reg->type & MEM_USER) { | 
|  | verbose(env, | 
|  | "R%d is ptr_%s access user memory: off=%d\n", | 
|  | regno, tname, off); | 
|  | return -EACCES; | 
|  | } | 
|  |  | 
|  | if (reg->type & MEM_PERCPU) { | 
|  | verbose(env, | 
|  | "R%d is ptr_%s access percpu memory: off=%d\n", | 
|  | regno, tname, off); | 
|  | return -EACCES; | 
|  | } | 
|  |  | 
|  | if (env->ops->btf_struct_access && !type_is_alloc(reg->type) && atype == BPF_WRITE) { | 
|  | if (!btf_is_kernel(reg->btf)) { | 
|  | verbose(env, "verifier internal error: reg->btf must be kernel btf\n"); | 
|  | return -EFAULT; | 
|  | } | 
|  | ret = env->ops->btf_struct_access(&env->log, reg, off, size); | 
|  | } else { | 
|  | /* Writes are permitted with default btf_struct_access for | 
|  | * program allocated objects (which always have ref_obj_id > 0), | 
|  | * but not for untrusted PTR_TO_BTF_ID | MEM_ALLOC. | 
|  | */ | 
|  | if (atype != BPF_READ && !type_is_ptr_alloc_obj(reg->type)) { | 
|  | verbose(env, "only read is supported\n"); | 
|  | return -EACCES; | 
|  | } | 
|  |  | 
|  | if (type_is_alloc(reg->type) && !type_is_non_owning_ref(reg->type) && | 
|  | !(reg->type & MEM_RCU) && !reg->ref_obj_id) { | 
|  | verbose(env, "verifier internal error: ref_obj_id for allocated object must be non-zero\n"); | 
|  | return -EFAULT; | 
|  | } | 
|  |  | 
|  | ret = btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag, &field_name); | 
|  | } | 
|  |  | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | if (ret != PTR_TO_BTF_ID) { | 
|  | /* just mark; */ | 
|  |  | 
|  | } else if (type_flag(reg->type) & PTR_UNTRUSTED) { | 
|  | /* If this is an untrusted pointer, all pointers formed by walking it | 
|  | * also inherit the untrusted flag. | 
|  | */ | 
|  | flag = PTR_UNTRUSTED; | 
|  |  | 
|  | } else if (is_trusted_reg(reg) || is_rcu_reg(reg)) { | 
|  | /* By default any pointer obtained from walking a trusted pointer is no | 
|  | * longer trusted, unless the field being accessed has explicitly been | 
|  | * marked as inheriting its parent's state of trust (either full or RCU). | 
|  | * For example: | 
|  | * 'cgroups' pointer is untrusted if task->cgroups dereference | 
|  | * happened in a sleepable program outside of bpf_rcu_read_lock() | 
|  | * section. In a non-sleepable program it's trusted while in RCU CS (aka MEM_RCU). | 
|  | * Note bpf_rcu_read_unlock() converts MEM_RCU pointers to PTR_UNTRUSTED. | 
|  | * | 
|  | * A regular RCU-protected pointer with __rcu tag can also be deemed | 
|  | * trusted if we are in an RCU CS. Such pointer can be NULL. | 
|  | */ | 
|  | if (type_is_trusted(env, reg, field_name, btf_id)) { | 
|  | flag |= PTR_TRUSTED; | 
|  | } else if (type_is_trusted_or_null(env, reg, field_name, btf_id)) { | 
|  | flag |= PTR_TRUSTED | PTR_MAYBE_NULL; | 
|  | } else if (in_rcu_cs(env) && !type_may_be_null(reg->type)) { | 
|  | if (type_is_rcu(env, reg, field_name, btf_id)) { | 
|  | /* ignore __rcu tag and mark it MEM_RCU */ | 
|  | flag |= MEM_RCU; | 
|  | } else if (flag & MEM_RCU || | 
|  | type_is_rcu_or_null(env, reg, field_name, btf_id)) { | 
|  | /* __rcu tagged pointers can be NULL */ | 
|  | flag |= MEM_RCU | PTR_MAYBE_NULL; | 
|  |  | 
|  | /* We always trust them */ | 
|  | if (type_is_rcu_or_null(env, reg, field_name, btf_id) && | 
|  | flag & PTR_UNTRUSTED) | 
|  | flag &= ~PTR_UNTRUSTED; | 
|  | } else if (flag & (MEM_PERCPU | MEM_USER)) { | 
|  | /* keep as-is */ | 
|  | } else { | 
|  | /* walking unknown pointers yields old deprecated PTR_TO_BTF_ID */ | 
|  | clear_trusted_flags(&flag); | 
|  | } | 
|  | } else { | 
|  | /* | 
|  | * If not in RCU CS or MEM_RCU pointer can be NULL then | 
|  | * aggressively mark as untrusted otherwise such | 
|  | * pointers will be plain PTR_TO_BTF_ID without flags | 
|  | * and will be allowed to be passed into helpers for | 
|  | * compat reasons. | 
|  | */ | 
|  | flag = PTR_UNTRUSTED; | 
|  | } | 
|  | } else { | 
|  | /* Old compat. Deprecated */ | 
|  | clear_trusted_flags(&flag); | 
|  | } | 
|  |  | 
|  | if (atype == BPF_READ && value_regno >= 0) | 
|  | mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int check_ptr_to_map_access(struct bpf_verifier_env *env, | 
|  | struct bpf_reg_state *regs, | 
|  | int regno, int off, int size, | 
|  | enum bpf_access_type atype, | 
|  | int value_regno) | 
|  | { | 
|  | struct bpf_reg_state *reg = regs + regno; | 
|  | struct bpf_map *map = reg->map_ptr; | 
|  | struct bpf_reg_state map_reg; | 
|  | enum bpf_type_flag flag = 0; | 
|  | const struct btf_type *t; | 
|  | const char *tname; | 
|  | u32 btf_id; | 
|  | int ret; | 
|  |  | 
|  | if (!btf_vmlinux) { | 
|  | verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n"); | 
|  | return -ENOTSUPP; | 
|  | } | 
|  |  | 
|  | if (!map->ops->map_btf_id || !*map->ops->map_btf_id) { | 
|  | verbose(env, "map_ptr access not supported for map type %d\n", | 
|  | map->map_type); | 
|  | return -ENOTSUPP; | 
|  | } | 
|  |  | 
|  | t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id); | 
|  | tname = btf_name_by_offset(btf_vmlinux, t->name_off); | 
|  |  | 
|  | if (!env->allow_ptr_leaks) { | 
|  | verbose(env, | 
|  | "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", | 
|  | tname); | 
|  | return -EPERM; | 
|  | } | 
|  |  | 
|  | if (off < 0) { | 
|  | verbose(env, "R%d is %s invalid negative access: off=%d\n", | 
|  | regno, tname, off); | 
|  | return -EACCES; | 
|  | } | 
|  |  | 
|  | if (atype != BPF_READ) { | 
|  | verbose(env, "only read from %s is supported\n", tname); | 
|  | return -EACCES; | 
|  | } | 
|  |  | 
|  | /* Simulate access to a PTR_TO_BTF_ID */ | 
|  | memset(&map_reg, 0, sizeof(map_reg)); | 
|  | mark_btf_ld_reg(env, &map_reg, 0, PTR_TO_BTF_ID, btf_vmlinux, *map->ops->map_btf_id, 0); | 
|  | ret = btf_struct_access(&env->log, &map_reg, off, size, atype, &btf_id, &flag, NULL); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | if (value_regno >= 0) | 
|  | mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Check that the stack access at the given offset is within bounds. The | 
|  | * maximum valid offset is -1. | 
|  | * | 
|  | * The minimum valid offset is -MAX_BPF_STACK for writes, and | 
|  | * -state->allocated_stack for reads. | 
|  | */ | 
|  | static int check_stack_slot_within_bounds(struct bpf_verifier_env *env, | 
|  | s64 off, | 
|  | struct bpf_func_state *state, | 
|  | enum bpf_access_type t) | 
|  | { | 
|  | struct bpf_insn_aux_data *aux = &env->insn_aux_data[env->insn_idx]; | 
|  | int min_valid_off, max_bpf_stack; | 
|  |  | 
|  | /* If accessing instruction is a spill/fill from bpf_fastcall pattern, | 
|  | * add room for all caller saved registers below MAX_BPF_STACK. | 
|  | * In case if bpf_fastcall rewrite won't happen maximal stack depth | 
|  | * would be checked by check_max_stack_depth_subprog(). | 
|  | */ | 
|  | max_bpf_stack = MAX_BPF_STACK; | 
|  | if (aux->fastcall_pattern) | 
|  | max_bpf_stack += CALLER_SAVED_REGS * BPF_REG_SIZE; | 
|  |  | 
|  | if (t == BPF_WRITE || env->allow_uninit_stack) | 
|  | min_valid_off = -max_bpf_stack; | 
|  | else | 
|  | min_valid_off = -state->allocated_stack; | 
|  |  | 
|  | if (off < min_valid_off || off > -1) | 
|  | return -EACCES; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Check that the stack access at 'regno + off' falls within the maximum stack | 
|  | * bounds. | 
|  | * | 
|  | * 'off' includes `regno->offset`, but not its dynamic part (if any). | 
|  | */ | 
|  | static int check_stack_access_within_bounds( | 
|  | struct bpf_verifier_env *env, | 
|  | int regno, int off, int access_size, | 
|  | enum bpf_access_src src, enum bpf_access_type type) | 
|  | { | 
|  | struct bpf_reg_state *regs = cur_regs(env); | 
|  | struct bpf_reg_state *reg = regs + regno; | 
|  | struct bpf_func_state *state = func(env, reg); | 
|  | s64 min_off, max_off; | 
|  | int err; | 
|  | char *err_extra; | 
|  |  | 
|  | if (src == ACCESS_HELPER) | 
|  | /* We don't know if helpers are reading or writing (or both). */ | 
|  | err_extra = " indirect access to"; | 
|  | else if (type == BPF_READ) | 
|  | err_extra = " read from"; | 
|  | else | 
|  | err_extra = " write to"; | 
|  |  | 
|  | if (tnum_is_const(reg->var_off)) { | 
|  | min_off = (s64)reg->var_off.value + off; | 
|  | max_off = min_off + access_size; | 
|  | } else { | 
|  | if (reg->smax_value >= BPF_MAX_VAR_OFF || | 
|  | reg->smin_value <= -BPF_MAX_VAR_OFF) { | 
|  | verbose(env, "invalid unbounded variable-offset%s stack R%d\n", | 
|  | err_extra, regno); | 
|  | return -EACCES; | 
|  | } | 
|  | min_off = reg->smin_value + off; | 
|  | max_off = reg->smax_value + off + access_size; | 
|  | } | 
|  |  | 
|  | err = check_stack_slot_within_bounds(env, min_off, state, type); | 
|  | if (!err && max_off > 0) | 
|  | err = -EINVAL; /* out of stack access into non-negative offsets */ | 
|  | if (!err && access_size < 0) | 
|  | /* access_size should not be negative (or overflow an int); others checks | 
|  | * along the way should have prevented such an access. | 
|  | */ | 
|  | err = -EFAULT; /* invalid negative access size; integer overflow? */ | 
|  |  | 
|  | if (err) { | 
|  | if (tnum_is_const(reg->var_off)) { | 
|  | verbose(env, "invalid%s stack R%d off=%d size=%d\n", | 
|  | err_extra, regno, off, access_size); | 
|  | } else { | 
|  | char tn_buf[48]; | 
|  |  | 
|  | tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); | 
|  | verbose(env, "invalid variable-offset%s stack R%d var_off=%s off=%d size=%d\n", | 
|  | err_extra, regno, tn_buf, off, access_size); | 
|  | } | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* Note that there is no stack access with offset zero, so the needed stack | 
|  | * size is -min_off, not -min_off+1. | 
|  | */ | 
|  | return grow_stack_state(env, state, -min_off /* size */); | 
|  | } | 
|  |  | 
|  | static bool get_func_retval_range(struct bpf_prog *prog, | 
|  | struct bpf_retval_range *range) | 
|  | { | 
|  | if (prog->type == BPF_PROG_TYPE_LSM && | 
|  | prog->expected_attach_type == BPF_LSM_MAC && | 
|  | !bpf_lsm_get_retval_range(prog, range)) { | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* check whether memory at (regno + off) is accessible for t = (read | write) | 
|  | * if t==write, value_regno is a register which value is stored into memory | 
|  | * if t==read, value_regno is a register which will receive the value from memory | 
|  | * if t==write && value_regno==-1, some unknown value is stored into memory | 
|  | * if t==read && value_regno==-1, don't care what we read from memory | 
|  | */ | 
|  | static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, | 
|  | int off, int bpf_size, enum bpf_access_type t, | 
|  | int value_regno, bool strict_alignment_once, bool is_ldsx) | 
|  | { | 
|  | struct bpf_reg_state *regs = cur_regs(env); | 
|  | struct bpf_reg_state *reg = regs + regno; | 
|  | int size, err = 0; | 
|  |  | 
|  | size = bpf_size_to_bytes(bpf_size); | 
|  | if (size < 0) | 
|  | return size; | 
|  |  | 
|  | /* alignment checks will add in reg->off themselves */ | 
|  | err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | /* for access checks, reg->off is just part of off */ | 
|  | off += reg->off; | 
|  |  | 
|  | if (reg->type == PTR_TO_MAP_KEY) { | 
|  | if (t == BPF_WRITE) { | 
|  | verbose(env, "write to change key R%d not allowed\n", regno); | 
|  | return -EACCES; | 
|  | } | 
|  |  | 
|  | err = check_mem_region_access(env, regno, off, size, | 
|  | reg->map_ptr->key_size, false); | 
|  | if (err) | 
|  | return err; | 
|  | if (value_regno >= 0) | 
|  | mark_reg_unknown(env, regs, value_regno); | 
|  | } else if (reg->type == PTR_TO_MAP_VALUE) { | 
|  | struct btf_field *kptr_field = NULL; | 
|  |  | 
|  | if (t == BPF_WRITE && value_regno >= 0 && | 
|  | is_pointer_value(env, value_regno)) { | 
|  | verbose(env, "R%d leaks addr into map\n", value_regno); | 
|  | return -EACCES; | 
|  | } | 
|  | err = check_map_access_type(env, regno, off, size, t); | 
|  | if (err) | 
|  | return err; | 
|  | err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT); | 
|  | if (err) | 
|  | return err; | 
|  | if (tnum_is_const(reg->var_off)) | 
|  | kptr_field = btf_record_find(reg->map_ptr->record, | 
|  | off + reg->var_off.value, BPF_KPTR); | 
|  | if (kptr_field) { | 
|  | err = check_map_kptr_access(env, regno, value_regno, insn_idx, kptr_field); | 
|  | } else if (t == BPF_READ && value_regno >= 0) { | 
|  | struct bpf_map *map = reg->map_ptr; | 
|  |  | 
|  | /* if map is read-only, track its contents as scalars */ | 
|  | if (tnum_is_const(reg->var_off) && | 
|  | bpf_map_is_rdonly(map) && | 
|  | map->ops->map_direct_value_addr) { | 
|  | int map_off = off + reg->var_off.value; | 
|  | u64 val = 0; | 
|  |  | 
|  | err = bpf_map_direct_read(map, map_off, size, | 
|  | &val, is_ldsx); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | regs[value_regno].type = SCALAR_VALUE; | 
|  | __mark_reg_known(®s[value_regno], val); | 
|  | } else { | 
|  | mark_reg_unknown(env, regs, value_regno); | 
|  | } | 
|  | } | 
|  | } else if (base_type(reg->type) == PTR_TO_MEM) { | 
|  | bool rdonly_mem = type_is_rdonly_mem(reg->type); | 
|  |  | 
|  | if (type_may_be_null(reg->type)) { | 
|  | verbose(env, "R%d invalid mem access '%s'\n", regno, | 
|  | reg_type_str(env, reg->type)); | 
|  | return -EACCES; | 
|  | } | 
|  |  | 
|  | if (t == BPF_WRITE && rdonly_mem) { | 
|  | verbose(env, "R%d cannot write into %s\n", | 
|  | regno, reg_type_str(env, reg->type)); | 
|  | return -EACCES; | 
|  | } | 
|  |  | 
|  | if (t == BPF_WRITE && value_regno >= 0 && | 
|  | is_pointer_value(env, value_regno)) { | 
|  | verbose(env, "R%d leaks addr into mem\n", value_regno); | 
|  | return -EACCES; | 
|  | } | 
|  |  | 
|  | err = check_mem_region_access(env, regno, off, size, | 
|  | reg->mem_size, false); | 
|  | if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem)) | 
|  | mark_reg_unknown(env, regs, value_regno); | 
|  | } else if (reg->type == PTR_TO_CTX) { | 
|  | bool is_retval = false; | 
|  | struct bpf_retval_range range; | 
|  | enum bpf_reg_type reg_type = SCALAR_VALUE; | 
|  | struct btf *btf = NULL; | 
|  | u32 btf_id = 0; | 
|  |  | 
|  | if (t == BPF_WRITE && value_regno >= 0 && | 
|  | is_pointer_value(env, value_regno)) { | 
|  | verbose(env, "R%d leaks addr into ctx\n", value_regno); | 
|  | return -EACCES; | 
|  | } | 
|  |  | 
|  | err = check_ptr_off_reg(env, reg, regno); | 
|  | if (err < 0) | 
|  | return err; | 
|  |  | 
|  | err = check_ctx_access(env, insn_idx, off, size, t, ®_type, &btf, | 
|  | &btf_id, &is_retval, is_ldsx); | 
|  | if (err) | 
|  | verbose_linfo(env, insn_idx, "; "); | 
|  | if (!err && t == BPF_READ && value_regno >= 0) { | 
|  | /* ctx access returns either a scalar, or a | 
|  | * PTR_TO_PACKET[_META,_END]. In the latter | 
|  | * case, we know the offset is zero. | 
|  | */ | 
|  | if (reg_type == SCALAR_VALUE) { | 
|  | if (is_retval && get_func_retval_range(env->prog, &range)) { | 
|  | err = __mark_reg_s32_range(env, regs, value_regno, | 
|  | range.minval, range.maxval); | 
|  | if (err) | 
|  | return err; | 
|  | } else { | 
|  | mark_reg_unknown(env, regs, value_regno); | 
|  | } | 
|  | } else { | 
|  | mark_reg_known_zero(env, regs, | 
|  | value_regno); | 
|  | if (type_may_be_null(reg_type)) | 
|  | regs[value_regno].id = ++env->id_gen; | 
|  | /* A load of ctx field could have different | 
|  | * actual load size with the one encoded in the | 
|  | * insn. When the dst is PTR, it is for sure not | 
|  | * a sub-register. | 
|  | */ | 
|  | regs[value_regno].subreg_def = DEF_NOT_SUBREG; | 
|  | if (base_type(reg_type) == PTR_TO_BTF_ID) { | 
|  | regs[value_regno].btf = btf; | 
|  | regs[value_regno].btf_id = btf_id; | 
|  | } | 
|  | } | 
|  | regs[value_regno].type = reg_type; | 
|  | } | 
|  |  | 
|  | } else if (reg->type == PTR_TO_STACK) { | 
|  | /* Basic bounds checks. */ | 
|  | err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | if (t == BPF_READ) | 
|  | err = check_stack_read(env, regno, off, size, | 
|  | value_regno); | 
|  | else | 
|  | err = check_stack_write(env, regno, off, size, | 
|  | value_regno, insn_idx); | 
|  | } else if (reg_is_pkt_pointer(reg)) { | 
|  | if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { | 
|  | verbose(env, "cannot write into packet\n"); | 
|  | return -EACCES; | 
|  | } | 
|  | if (t == BPF_WRITE && value_regno >= 0 && | 
|  | is_pointer_value(env, value_regno)) { | 
|  | verbose(env, "R%d leaks addr into packet\n", | 
|  | value_regno); | 
|  | return -EACCES; | 
|  | } | 
|  | err = check_packet_access(env, regno, off, size, false); | 
|  | if (!err && t == BPF_READ && value_regno >= 0) | 
|  | mark_reg_unknown(env, regs, value_regno); | 
|  | } else if (reg->type == PTR_TO_FLOW_KEYS) { | 
|  | if (t == BPF_WRITE && value_regno >= 0 && | 
|  | is_pointer_value(env, value_regno)) { | 
|  | verbose(env, "R%d leaks addr into flow keys\n", | 
|  | value_regno); | 
|  | return -EACCES; | 
|  | } | 
|  |  | 
|  | err = check_flow_keys_access(env, off, size); | 
|  | if (!err && t == BPF_READ && value_regno >= 0) | 
|  | mark_reg_unknown(env, regs, value_regno); | 
|  | } else if (type_is_sk_pointer(reg->type)) { | 
|  | if (t == BPF_WRITE) { | 
|  | verbose(env, "R%d cannot write into %s\n", | 
|  | regno, reg_type_str(env, reg->type)); | 
|  | return -EACCES; | 
|  | } | 
|  | err = check_sock_access(env, insn_idx, regno, off, size, t); | 
|  | if (!err && value_regno >= 0) | 
|  | mark_reg_unknown(env, regs, value_regno); | 
|  | } else if (reg->type == PTR_TO_TP_BUFFER) { | 
|  | err = check_tp_buffer_access(env, reg, regno, off, size); | 
|  | if (!err && t == BPF_READ && value_regno >= 0) | 
|  | mark_reg_unknown(env, regs, value_regno); | 
|  | } else if (base_type(reg->type) == PTR_TO_BTF_ID && | 
|  | !type_may_be_null(reg->type)) { | 
|  | err = check_ptr_to_btf_access(env, regs, regno, off, size, t, | 
|  | value_regno); | 
|  | } else if (reg->type == CONST_PTR_TO_MAP) { | 
|  | err = check_ptr_to_map_access(env, regs, regno, off, size, t, | 
|  | value_regno); | 
|  | } else if (base_type(reg->type) == PTR_TO_BUF) { | 
|  | bool rdonly_mem = type_is_rdonly_mem(reg->type); | 
|  | u32 *max_access; | 
|  |  | 
|  | if (rdonly_mem) { | 
|  | if (t == BPF_WRITE) { | 
|  | verbose(env, "R%d cannot write into %s\n", | 
|  | regno, reg_type_str(env, reg->type)); | 
|  | return -EACCES; | 
|  | } | 
|  | max_access = &env->prog->aux->max_rdonly_access; | 
|  | } else { | 
|  | max_access = &env->prog->aux->max_rdwr_access; | 
|  | } | 
|  |  | 
|  | err = check_buffer_access(env, reg, regno, off, size, false, | 
|  | max_access); | 
|  |  | 
|  | if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ)) | 
|  | mark_reg_unknown(env, regs, value_regno); | 
|  | } else if (reg->type == PTR_TO_ARENA) { | 
|  | if (t == BPF_READ && value_regno >= 0) | 
|  | mark_reg_unknown(env, regs, value_regno); | 
|  | } else { | 
|  | verbose(env, "R%d invalid mem access '%s'\n", regno, | 
|  | reg_type_str(env, reg->type)); | 
|  | return -EACCES; | 
|  | } | 
|  |  | 
|  | if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && | 
|  | regs[value_regno].type == SCALAR_VALUE) { | 
|  | if (!is_ldsx) | 
|  | /* b/h/w load zero-extends, mark upper bits as known 0 */ | 
|  | coerce_reg_to_size(®s[value_regno], size); | 
|  | else | 
|  | coerce_reg_to_size_sx(®s[value_regno], size); | 
|  | } | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type, | 
|  | bool allow_trust_mismatch); | 
|  |  | 
|  | static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) | 
|  | { | 
|  | int load_reg; | 
|  | int err; | 
|  |  | 
|  | switch (insn->imm) { | 
|  | case BPF_ADD: | 
|  | case BPF_ADD | BPF_FETCH: | 
|  | case BPF_AND: | 
|  | case BPF_AND | BPF_FETCH: | 
|  | case BPF_OR: | 
|  | case BPF_OR | BPF_FETCH: | 
|  | case BPF_XOR: | 
|  | case BPF_XOR | BPF_FETCH: | 
|  | case BPF_XCHG: | 
|  | case BPF_CMPXCHG: | 
|  | break; | 
|  | default: | 
|  | verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) { | 
|  | verbose(env, "invalid atomic operand size\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* check src1 operand */ | 
|  | err = check_reg_arg(env, insn->src_reg, SRC_OP); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | /* check src2 operand */ | 
|  | err = check_reg_arg(env, insn->dst_reg, SRC_OP); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | if (insn->imm == BPF_CMPXCHG) { | 
|  | /* Check comparison of R0 with memory location */ | 
|  | const u32 aux_reg = BPF_REG_0; | 
|  |  | 
|  | err = check_reg_arg(env, aux_reg, SRC_OP); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | if (is_pointer_value(env, aux_reg)) { | 
|  | verbose(env, "R%d leaks addr into mem\n", aux_reg); | 
|  | return -EACCES; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (is_pointer_value(env, insn->src_reg)) { | 
|  | verbose(env, "R%d leaks addr into mem\n", insn->src_reg); | 
|  | return -EACCES; | 
|  | } | 
|  |  | 
|  | if (is_ctx_reg(env, insn->dst_reg) || | 
|  | is_pkt_reg(env, insn->dst_reg) || | 
|  | is_flow_key_reg(env, insn->dst_reg) || | 
|  | is_sk_reg(env, insn->dst_reg) || | 
|  | (is_arena_reg(env, insn->dst_reg) && !bpf_jit_supports_insn(insn, true))) { | 
|  | verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n", | 
|  | insn->dst_reg, | 
|  | reg_type_str(env, reg_state(env, insn->dst_reg)->type)); | 
|  | return -EACCES; | 
|  | } | 
|  |  | 
|  | if (insn->imm & BPF_FETCH) { | 
|  | if (insn->imm == BPF_CMPXCHG) | 
|  | load_reg = BPF_REG_0; | 
|  | else | 
|  | load_reg = insn->src_reg; | 
|  |  | 
|  | /* check and record load of old value */ | 
|  | err = check_reg_arg(env, load_reg, DST_OP); | 
|  | if (err) | 
|  | return err; | 
|  | } else { | 
|  | /* This instruction accesses a memory location but doesn't | 
|  | * actually load it into a register. | 
|  | */ | 
|  | load_reg = -1; | 
|  | } | 
|  |  | 
|  | /* Check whether we can read the memory, with second call for fetch | 
|  | * case to simulate the register fill. | 
|  | */ | 
|  | err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, | 
|  | BPF_SIZE(insn->code), BPF_READ, -1, true, false); | 
|  | if (!err && load_reg >= 0) | 
|  | err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, | 
|  | BPF_SIZE(insn->code), BPF_READ, load_reg, | 
|  | true, false); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | if (is_arena_reg(env, insn->dst_reg)) { | 
|  | err = save_aux_ptr_type(env, PTR_TO_ARENA, false); | 
|  | if (err) | 
|  | return err; | 
|  | } | 
|  | /* Check whether we can write into the same memory. */ | 
|  | err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, | 
|  | BPF_SIZE(insn->code), BPF_WRITE, -1, true, false); | 
|  | if (err) | 
|  | return err; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* When register 'regno' is used to read the stack (either directly or through | 
|  | * a helper function) make sure that it's within stack boundary and, depending | 
|  | * on the access type and privileges, that all elements of the stack are | 
|  | * initialized. | 
|  | * | 
|  | * 'off' includes 'regno->off', but not its dynamic part (if any). | 
|  | * | 
|  | * All registers that have been spilled on the stack in the slots within the | 
|  | * read offsets are marked as read. | 
|  | */ | 
|  | static int check_stack_range_initialized( | 
|  | struct bpf_verifier_env *env, int regno, int off, | 
|  | int access_size, bool zero_size_allowed, | 
|  | enum bpf_access_src type, struct bpf_call_arg_meta *meta) | 
|  | { | 
|  | struct bpf_reg_state *reg = reg_state(env, regno); | 
|  | struct bpf_func_state *state = func(env, reg); | 
|  | int err, min_off, max_off, i, j, slot, spi; | 
|  | char *err_extra = type == ACCESS_HELPER ? " indirect" : ""; | 
|  | enum bpf_access_type bounds_check_type; | 
|  | /* Some accesses can write anything into the stack, others are | 
|  | * read-only. | 
|  | */ | 
|  | bool clobber = false; | 
|  |  | 
|  | if (access_size == 0 && !zero_size_allowed) { | 
|  | verbose(env, "invalid zero-sized read\n"); | 
|  | return -EACCES; | 
|  | } | 
|  |  | 
|  | if (type == ACCESS_HELPER) { | 
|  | /* The bounds checks for writes are more permissive than for | 
|  | * reads. However, if raw_mode is not set, we'll do extra | 
|  | * checks below. | 
|  | */ | 
|  | bounds_check_type = BPF_WRITE; | 
|  | clobber = true; | 
|  | } else { | 
|  | bounds_check_type = BPF_READ; | 
|  | } | 
|  | err = check_stack_access_within_bounds(env, regno, off, access_size, | 
|  | type, bounds_check_type); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  |  | 
|  | if (tnum_is_const(reg->var_off)) { | 
|  | min_off = max_off = reg->var_off.value + off; | 
|  | } else { | 
|  | /* Variable offset is prohibited for unprivileged mode for | 
|  | * simplicity since it requires corresponding support in | 
|  | * Spectre masking for stack ALU. | 
|  | * See also retrieve_ptr_limit(). | 
|  | */ | 
|  | if (!env->bypass_spec_v1) { | 
|  | char tn_buf[48]; | 
|  |  | 
|  | tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); | 
|  | verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n", | 
|  | regno, err_extra, tn_buf); | 
|  | return -EACCES; | 
|  | } | 
|  | /* Only initialized buffer on stack is allowed to be accessed | 
|  | * with variable offset. With uninitialized buffer it's hard to | 
|  | * guarantee that whole memory is marked as initialized on | 
|  | * helper return since specific bounds are unknown what may | 
|  | * cause uninitialized stack leaking. | 
|  | */ | 
|  | if (meta && meta->raw_mode) | 
|  | meta = NULL; | 
|  |  | 
|  | min_off = reg->smin_value + off; | 
|  | max_off = reg->smax_value + off; | 
|  | } | 
|  |  | 
|  | if (meta && meta->raw_mode) { | 
|  | /* Ensure we won't be overwriting dynptrs when simulating byte | 
|  | * by byte access in check_helper_call using meta.access_size. | 
|  | * This would be a problem if we have a helper in the future | 
|  | * which takes: | 
|  | * | 
|  | *	helper(uninit_mem, len, dynptr) | 
|  | * | 
|  | * Now, uninint_mem may overlap with dynptr pointer. Hence, it | 
|  | * may end up writing to dynptr itself when touching memory from | 
|  | * arg 1. This can be relaxed on a case by case basis for known | 
|  | * safe cases, but reject due to the possibilitiy of aliasing by | 
|  | * default. | 
|  | */ | 
|  | for (i = min_off; i < max_off + access_size; i++) { | 
|  | int stack_off = -i - 1; | 
|  |  | 
|  | spi = __get_spi(i); | 
|  | /* raw_mode may write past allocated_stack */ | 
|  | if (state->allocated_stack <= stack_off) | 
|  | continue; | 
|  | if (state->stack[spi].slot_type[stack_off % BPF_REG_SIZE] == STACK_DYNPTR) { | 
|  | verbose(env, "potential write to dynptr at off=%d disallowed\n", i); | 
|  | return -EACCES; | 
|  | } | 
|  | } | 
|  | meta->access_size = access_size; | 
|  | meta->regno = regno; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | for (i = min_off; i < max_off + access_size; i++) { | 
|  | u8 *stype; | 
|  |  | 
|  | slot = -i - 1; | 
|  | spi = slot / BPF_REG_SIZE; | 
|  | if (state->allocated_stack <= slot) { | 
|  | verbose(env, "verifier bug: allocated_stack too small"); | 
|  | return -EFAULT; | 
|  | } | 
|  |  | 
|  | stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; | 
|  | if (*stype == STACK_MISC) | 
|  | goto mark; | 
|  | if ((*stype == STACK_ZERO) || | 
|  | (*stype == STACK_INVALID && env->allow_uninit_stack)) { | 
|  | if (clobber) { | 
|  | /* helper can write anything into the stack */ | 
|  | *stype = STACK_MISC; | 
|  | } | 
|  | goto mark; | 
|  | } | 
|  |  | 
|  | if (is_spilled_reg(&state->stack[spi]) && | 
|  | (state->stack[spi].spilled_ptr.type == SCALAR_VALUE || | 
|  | env->allow_ptr_leaks)) { | 
|  | if (clobber) { | 
|  | __mark_reg_unknown(env, &state->stack[spi].spilled_ptr); | 
|  | for (j = 0; j < BPF_REG_SIZE; j++) | 
|  | scrub_spilled_slot(&state->stack[spi].slot_type[j]); | 
|  | } | 
|  | goto mark; | 
|  | } | 
|  |  | 
|  | if (tnum_is_const(reg->var_off)) { | 
|  | verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n", | 
|  | err_extra, regno, min_off, i - min_off, access_size); | 
|  | } else { | 
|  | char tn_buf[48]; | 
|  |  | 
|  | tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); | 
|  | verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n", | 
|  | err_extra, regno, tn_buf, i - min_off, access_size); | 
|  | } | 
|  | return -EACCES; | 
|  | mark: | 
|  | /* reading any byte out of 8-byte 'spill_slot' will cause | 
|  | * the whole slot to be marked as 'read' | 
|  | */ | 
|  | mark_reg_read(env, &state->stack[spi].spilled_ptr, | 
|  | state->stack[spi].spilled_ptr.parent, | 
|  | REG_LIVE_READ64); | 
|  | /* We do not set REG_LIVE_WRITTEN for stack slot, as we can not | 
|  | * be sure that whether stack slot is written to or not. Hence, | 
|  | * we must still conservatively propagate reads upwards even if | 
|  | * helper may write to the entire memory range. | 
|  | */ | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, | 
|  | int access_size, bool zero_size_allowed, | 
|  | struct bpf_call_arg_meta *meta) | 
|  | { | 
|  | struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; | 
|  | u32 *max_access; | 
|  |  | 
|  | switch (base_type(reg->type)) { | 
|  | case PTR_TO_PACKET: | 
|  | case PTR_TO_PACKET_META: | 
|  | return check_packet_access(env, regno, reg->off, access_size, | 
|  | zero_size_allowed); | 
|  | case PTR_TO_MAP_KEY: | 
|  | if (meta && meta->raw_mode) { | 
|  | verbose(env, "R%d cannot write into %s\n", regno, | 
|  | reg_type_str(env, reg->type)); | 
|  | return -EACCES; | 
|  | } | 
|  | return check_mem_region_access(env, regno, reg->off, access_size, | 
|  | reg->map_ptr->key_size, false); | 
|  | case PTR_TO_MAP_VALUE: | 
|  | if (check_map_access_type(env, regno, reg->off, access_size, | 
|  | meta && meta->raw_mode ? BPF_WRITE : | 
|  | BPF_READ)) | 
|  | return -EACCES; | 
|  | return check_map_access(env, regno, reg->off, access_size, | 
|  | zero_size_allowed, ACCESS_HELPER); | 
|  | case PTR_TO_MEM: | 
|  | if (type_is_rdonly_mem(reg->type)) { | 
|  | if (meta && meta->raw_mode) { | 
|  | verbose(env, "R%d cannot write into %s\n", regno, | 
|  | reg_type_str(env, reg->type)); | 
|  | return -EACCES; | 
|  | } | 
|  | } | 
|  | return check_mem_region_access(env, regno, reg->off, | 
|  | access_size, reg->mem_size, | 
|  | zero_size_allowed); | 
|  | case PTR_TO_BUF: | 
|  | if (type_is_rdonly_mem(reg->type)) { | 
|  | if (meta && meta->raw_mode) { | 
|  | verbose(env, "R%d cannot write into %s\n", regno, | 
|  | reg_type_str(env, reg->type)); | 
|  | return -EACCES; | 
|  | } | 
|  |  | 
|  | max_access = &env->prog->aux->max_rdonly_access; | 
|  | } else { | 
|  | max_access = &env->prog->aux->max_rdwr_access; | 
|  | } | 
|  | return check_buffer_access(env, reg, regno, reg->off, | 
|  | access_size, zero_size_allowed, | 
|  | max_access); | 
|  | case PTR_TO_STACK: | 
|  | return check_stack_range_initialized( | 
|  | env, | 
|  | regno, reg->off, access_size, | 
|  | zero_size_allowed, ACCESS_HELPER, meta); | 
|  | case PTR_TO_BTF_ID: | 
|  | return check_ptr_to_btf_access(env, regs, regno, reg->off, | 
|  | access_size, BPF_READ, -1); | 
|  | case PTR_TO_CTX: | 
|  | /* in case the function doesn't know how to access the context, | 
|  | * (because we are in a program of type SYSCALL for example), we | 
|  | * can not statically check its size. | 
|  | * Dynamically check it now. | 
|  | */ | 
|  | if (!env->ops->convert_ctx_access) { | 
|  | enum bpf_access_type atype = meta && meta->raw_mode ? BPF_WRITE : BPF_READ; | 
|  | int offset = access_size - 1; | 
|  |  | 
|  | /* Allow zero-byte read from PTR_TO_CTX */ | 
|  | if (access_size == 0) | 
|  | return zero_size_allowed ? 0 : -EACCES; | 
|  |  | 
|  | return check_mem_access(env, env->insn_idx, regno, offset, BPF_B, | 
|  | atype, -1, false, false); | 
|  | } | 
|  |  | 
|  | fallthrough; | 
|  | default: /* scalar_value or invalid ptr */ | 
|  | /* Allow zero-byte read from NULL, regardless of pointer type */ | 
|  | if (zero_size_allowed && access_size == 0 && | 
|  | register_is_null(reg)) | 
|  | return 0; | 
|  |  | 
|  | verbose(env, "R%d type=%s ", regno, | 
|  | reg_type_str(env, reg->type)); | 
|  | verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK)); | 
|  | return -EACCES; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* verify arguments to helpers or kfuncs consisting of a pointer and an access | 
|  | * size. | 
|  | * | 
|  | * @regno is the register containing the access size. regno-1 is the register | 
|  | * containing the pointer. | 
|  | */ | 
|  | static int check_mem_size_reg(struct bpf_verifier_env *env, | 
|  | struct bpf_reg_state *reg, u32 regno, | 
|  | bool zero_size_allowed, | 
|  | struct bpf_call_arg_meta *meta) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | /* This is used to refine r0 return value bounds for helpers | 
|  | * that enforce this value as an upper bound on return values. | 
|  | * See do_refine_retval_range() for helpers that can refine | 
|  | * the return value. C type of helper is u32 so we pull register | 
|  | * bound from umax_value however, if negative verifier errors | 
|  | * out. Only upper bounds can be learned because retval is an | 
|  | * int type and negative retvals are allowed. | 
|  | */ | 
|  | meta->msize_max_value = reg->umax_value; | 
|  |  | 
|  | /* The register is SCALAR_VALUE; the access check | 
|  | * happens using its boundaries. | 
|  | */ | 
|  | if (!tnum_is_const(reg->var_off)) | 
|  | /* For unprivileged variable accesses, disable raw | 
|  | * mode so that the program is required to | 
|  | * initialize all the memory that the helper could | 
|  | * just partially fill up. | 
|  | */ | 
|  | meta = NULL; | 
|  |  | 
|  | if (reg->smin_value < 0) { | 
|  | verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", | 
|  | regno); | 
|  | return -EACCES; | 
|  | } | 
|  |  | 
|  | if (reg->umin_value == 0 && !zero_size_allowed) { | 
|  | verbose(env, "R%d invalid zero-sized read: u64=[%lld,%lld]\n", | 
|  | regno, reg->umin_value, reg->umax_value); | 
|  | return -EACCES; | 
|  | } | 
|  |  | 
|  | if (reg->umax_value >= BPF_MAX_VAR_SIZ) { | 
|  | verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", | 
|  | regno); | 
|  | return -EACCES; | 
|  | } | 
|  | err = check_helper_mem_access(env, regno - 1, | 
|  | reg->umax_value, | 
|  | zero_size_allowed, meta); | 
|  | if (!err) | 
|  | err = mark_chain_precision(env, regno); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, | 
|  | u32 regno, u32 mem_size) | 
|  | { | 
|  | bool may_be_null = type_may_be_null(reg->type); | 
|  | struct bpf_reg_state saved_reg; | 
|  | struct bpf_call_arg_meta meta; | 
|  | int err; | 
|  |  | 
|  | if (register_is_null(reg)) | 
|  | return 0; | 
|  |  | 
|  | memset(&meta, 0, sizeof(meta)); | 
|  | /* Assuming that the register contains a value check if the memory | 
|  | * access is safe. Temporarily save and restore the register's state as | 
|  | * the conversion shouldn't be visible to a caller. | 
|  | */ | 
|  | if (may_be_null) { | 
|  | saved_reg = *reg; | 
|  | mark_ptr_not_null_reg(reg); | 
|  | } | 
|  |  | 
|  | err = check_helper_mem_access(env, regno, mem_size, true, &meta); | 
|  | /* Check access for BPF_WRITE */ | 
|  | meta.raw_mode = true; | 
|  | err = err ?: check_helper_mem_access(env, regno, mem_size, true, &meta); | 
|  |  | 
|  | if (may_be_null) | 
|  | *reg = saved_reg; | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, | 
|  | u32 regno) | 
|  | { | 
|  | struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1]; | 
|  | bool may_be_null = type_may_be_null(mem_reg->type); | 
|  | struct bpf_reg_state saved_reg; | 
|  | struct bpf_call_arg_meta meta; | 
|  | int err; | 
|  |  | 
|  | WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5); | 
|  |  | 
|  | memset(&meta, 0, sizeof(meta)); | 
|  |  | 
|  | if (may_be_null) { | 
|  | saved_reg = *mem_reg; | 
|  | mark_ptr_not_null_reg(mem_reg); | 
|  | } | 
|  |  | 
|  | err = check_mem_size_reg(env, reg, regno, true, &meta); | 
|  | /* Check access for BPF_WRITE */ | 
|  | meta.raw_mode = true; | 
|  | err = err ?: check_mem_size_reg(env, reg, regno, true, &meta); | 
|  |  | 
|  | if (may_be_null) | 
|  | *mem_reg = saved_reg; | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* Implementation details: | 
|  | * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL. | 
|  | * bpf_obj_new returns PTR_TO_BTF_ID | MEM_ALLOC | PTR_MAYBE_NULL. | 
|  | * Two bpf_map_lookups (even with the same key) will have different reg->id. | 
|  | * Two separate bpf_obj_new will also have different reg->id. | 
|  | * For traditional PTR_TO_MAP_VALUE or PTR_TO_BTF_ID | MEM_ALLOC, the verifier | 
|  | * clears reg->id after value_or_null->value transition, since the verifier only | 
|  | * cares about the range of access to valid map value pointer and doesn't care | 
|  | * about actual address of the map element. | 
|  | * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps | 
|  | * reg->id > 0 after value_or_null->value transition. By doing so | 
|  | * two bpf_map_lookups will be considered two different pointers that | 
|  | * point to different bpf_spin_locks. Likewise for pointers to allocated objects | 
|  | * returned from bpf_obj_new. | 
|  | * The verifier allows taking only one bpf_spin_lock at a time to avoid | 
|  | * dead-locks. | 
|  | * Since only one bpf_spin_lock is allowed the checks are simpler than | 
|  | * reg_is_refcounted() logic. The verifier needs to remember only | 
|  | * one spin_lock instead of array of acquired_refs. | 
|  | * cur_state->active_lock remembers which map value element or allocated | 
|  | * object got locked and clears it after bpf_spin_unlock. | 
|  | */ | 
|  | static int process_spin_lock(struct bpf_verifier_env *env, int regno, | 
|  | bool is_lock) | 
|  | { | 
|  | struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; | 
|  | struct bpf_verifier_state *cur = env->cur_state; | 
|  | bool is_const = tnum_is_const(reg->var_off); | 
|  | u64 val = reg->var_off.value; | 
|  | struct bpf_map *map = NULL; | 
|  | struct btf *btf = NULL; | 
|  | struct btf_record *rec; | 
|  |  | 
|  | if (!is_const) { | 
|  | verbose(env, | 
|  | "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n", | 
|  | regno); | 
|  | return -EINVAL; | 
|  | } | 
|  | if (reg->type == PTR_TO_MAP_VALUE) { | 
|  | map = reg->map_ptr; | 
|  | if (!map->btf) { | 
|  | verbose(env, | 
|  | "map '%s' has to have BTF in order to use bpf_spin_lock\n", | 
|  | map->name); | 
|  | return -EINVAL; | 
|  | } | 
|  | } else { | 
|  | btf = reg->btf; | 
|  | } | 
|  |  | 
|  | rec = reg_btf_record(reg); | 
|  | if (!btf_record_has_field(rec, BPF_SPIN_LOCK)) { | 
|  | verbose(env, "%s '%s' has no valid bpf_spin_lock\n", map ? "map" : "local", | 
|  | map ? map->name : "kptr"); | 
|  | return -EINVAL; | 
|  | } | 
|  | if (rec->spin_lock_off != val + reg->off) { | 
|  | verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock' that is at %d\n", | 
|  | val + reg->off, rec->spin_lock_off); | 
|  | return -EINVAL; | 
|  | } | 
|  | if (is_lock) { | 
|  | if (cur->active_lock.ptr) { | 
|  | verbose(env, | 
|  | "Locking two bpf_spin_locks are not allowed\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | if (map) | 
|  | cur->active_lock.ptr = map; | 
|  | else | 
|  | cur->active_lock.ptr = btf; | 
|  | cur->active_lock.id = reg->id; | 
|  | } else { | 
|  | void *ptr; | 
|  |  | 
|  | if (map) | 
|  | ptr = map; | 
|  | else | 
|  | ptr = btf; | 
|  |  | 
|  | if (!cur->active_lock.ptr) { | 
|  | verbose(env, "bpf_spin_unlock without taking a lock\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | if (cur->active_lock.ptr != ptr || | 
|  | cur->active_lock.id != reg->id) { | 
|  | verbose(env, "bpf_spin_unlock of different lock\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | invalidate_non_owning_refs(env); | 
|  |  | 
|  | cur->active_lock.ptr = NULL; | 
|  | cur->active_lock.id = 0; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int process_timer_func(struct bpf_verifier_env *env, int regno, | 
|  | struct bpf_call_arg_meta *meta) | 
|  | { | 
|  | struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; | 
|  | bool is_const = tnum_is_const(reg->var_off); | 
|  | struct bpf_map *map = reg->map_ptr; | 
|  | u64 val = reg->var_off.value; | 
|  |  | 
|  | if (!is_const) { | 
|  | verbose(env, | 
|  | "R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n", | 
|  | regno); | 
|  | return -EINVAL; | 
|  | } | 
|  | if (!map->btf) { | 
|  | verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n", | 
|  | map->name); | 
|  | return -EINVAL; | 
|  | } | 
|  | if (!btf_record_has_field(map->record, BPF_TIMER)) { | 
|  | verbose(env, "map '%s' has no valid bpf_timer\n", map->name); | 
|  | return -EINVAL; | 
|  | } | 
|  | if (map->record->timer_off != val + reg->off) { | 
|  | verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n", | 
|  | val + reg->off, map->record->timer_off); | 
|  | return -EINVAL; | 
|  | } | 
|  | if (meta->map_ptr) { | 
|  | verbose(env, "verifier bug. Two map pointers in a timer helper\n"); | 
|  | return -EFAULT; | 
|  | } | 
|  | meta->map_uid = reg->map_uid; | 
|  | meta->map_ptr = map; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int process_wq_func(struct bpf_verifier_env *env, int regno, | 
|  | struct bpf_kfunc_call_arg_meta *meta) | 
|  | { | 
|  | struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; | 
|  | struct bpf_map *map = reg->map_ptr; | 
|  | u64 val = reg->var_off.value; | 
|  |  | 
|  | if (map->record->wq_off != val + reg->off) { | 
|  | verbose(env, "off %lld doesn't point to 'struct bpf_wq' that is at %d\n", | 
|  | val + reg->off, map->record->wq_off); | 
|  | return -EINVAL; | 
|  | } | 
|  | meta->map.uid = reg->map_uid; | 
|  | meta->map.ptr = map; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int process_kptr_func(struct bpf_verifier_env *env, int regno, | 
|  | struct bpf_call_arg_meta *meta) | 
|  | { | 
|  | struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; | 
|  | struct btf_field *kptr_field; | 
|  | struct bpf_map *map_ptr; | 
|  | struct btf_record *rec; | 
|  | u32 kptr_off; | 
|  |  | 
|  | if (type_is_ptr_alloc_obj(reg->type)) { | 
|  | rec = reg_btf_record(reg); | 
|  | } else { /* PTR_TO_MAP_VALUE */ | 
|  | map_ptr = reg->map_ptr; | 
|  | if (!map_ptr->btf) { | 
|  | verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n", | 
|  | map_ptr->name); | 
|  | return -EINVAL; | 
|  | } | 
|  | rec = map_ptr->record; | 
|  | meta->map_ptr = map_ptr; | 
|  | } | 
|  |  | 
|  | if (!tnum_is_const(reg->var_off)) { | 
|  | verbose(env, | 
|  | "R%d doesn't have constant offset. kptr has to be at the constant offset\n", | 
|  | regno); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (!btf_record_has_field(rec, BPF_KPTR)) { | 
|  | verbose(env, "R%d has no valid kptr\n", regno); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | kptr_off = reg->off + reg->var_off.value; | 
|  | kptr_field = btf_record_find(rec, kptr_off, BPF_KPTR); | 
|  | if (!kptr_field) { | 
|  | verbose(env, "off=%d doesn't point to kptr\n", kptr_off); | 
|  | return -EACCES; | 
|  | } | 
|  | if (kptr_field->type != BPF_KPTR_REF && kptr_field->type != BPF_KPTR_PERCPU) { | 
|  | verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off); | 
|  | return -EACCES; | 
|  | } | 
|  | meta->kptr_field = kptr_field; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* There are two register types representing a bpf_dynptr, one is PTR_TO_STACK | 
|  | * which points to a stack slot, and the other is CONST_PTR_TO_DYNPTR. | 
|  | * | 
|  | * In both cases we deal with the first 8 bytes, but need to mark the next 8 | 
|  | * bytes as STACK_DYNPTR in case of PTR_TO_STACK. In case of | 
|  | * CONST_PTR_TO_DYNPTR, we are guaranteed to get the beginning of the object. | 
|  | * | 
|  | * Mutability of bpf_dynptr is at two levels, one is at the level of struct | 
|  | * bpf_dynptr itself, i.e. whether the helper is receiving a pointer to struct | 
|  | * bpf_dynptr or pointer to const struct bpf_dynptr. In the former case, it can | 
|  | * mutate the view of the dynptr and also possibly destroy it. In the latter | 
|  | * case, it cannot mutate the bpf_dynptr itself but it can still mutate the | 
|  | * memory that dynptr points to. | 
|  | * | 
|  | * The verifier will keep track both levels of mutation (bpf_dynptr's in | 
|  | * reg->type and the memory's in reg->dynptr.type), but there is no support for | 
|  | * readonly dynptr view yet, hence only the first case is tracked and checked. | 
|  | * | 
|  | * This is consistent with how C applies the const modifier to a struct object, | 
|  | * where the pointer itself inside bpf_dynptr becomes const but not what it | 
|  | * points to. | 
|  | * | 
|  | * Helpers which do not mutate the bpf_dynptr set MEM_RDONLY in their argument | 
|  | * type, and declare it as 'const struct bpf_dynptr *' in their prototype. | 
|  | */ | 
|  | static int process_dynptr_func(struct bpf_verifier_env *env, int regno, int insn_idx, | 
|  | enum bpf_arg_type arg_type, int clone_ref_obj_id) | 
|  | { | 
|  | struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; | 
|  | int err; | 
|  |  | 
|  | if (reg->type != PTR_TO_STACK && reg->type != CONST_PTR_TO_DYNPTR) { | 
|  | verbose(env, | 
|  | "arg#%d expected pointer to stack or const struct bpf_dynptr\n", | 
|  | regno); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* MEM_UNINIT and MEM_RDONLY are exclusive, when applied to an | 
|  | * ARG_PTR_TO_DYNPTR (or ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_*): | 
|  | */ | 
|  | if ((arg_type & (MEM_UNINIT | MEM_RDONLY)) == (MEM_UNINIT | MEM_RDONLY)) { | 
|  | verbose(env, "verifier internal error: misconfigured dynptr helper type flags\n"); | 
|  | return -EFAULT; | 
|  | } | 
|  |  | 
|  | /*  MEM_UNINIT - Points to memory that is an appropriate candidate for | 
|  | *		 constructing a mutable bpf_dynptr object. | 
|  | * | 
|  | *		 Currently, this is only possible with PTR_TO_STACK | 
|  | *		 pointing to a region of at least 16 bytes which doesn't | 
|  | *		 contain an existing bpf_dynptr. | 
|  | * | 
|  | *  MEM_RDONLY - Points to a initialized bpf_dynptr that will not be | 
|  | *		 mutated or destroyed. However, the memory it points to | 
|  | *		 may be mutated. | 
|  | * | 
|  | *  None       - Points to a initialized dynptr that can be mutated and | 
|  | *		 destroyed, including mutation of the memory it points | 
|  | *		 to. | 
|  | */ | 
|  | if (arg_type & MEM_UNINIT) { | 
|  | int i; | 
|  |  | 
|  | if (!is_dynptr_reg_valid_uninit(env, reg)) { | 
|  | verbose(env, "Dynptr has to be an uninitialized dynptr\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* we write BPF_DW bits (8 bytes) at a time */ | 
|  | for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) { | 
|  | err = check_mem_access(env, insn_idx, regno, | 
|  | i, BPF_DW, BPF_WRITE, -1, false, false); | 
|  | if (err) | 
|  | return err; | 
|  | } | 
|  |  | 
|  | err = mark_stack_slots_dynptr(env, reg, arg_type, insn_idx, clone_ref_obj_id); | 
|  | } else /* MEM_RDONLY and None case from above */ { | 
|  | /* For the reg->type == PTR_TO_STACK case, bpf_dynptr is never const */ | 
|  | if (reg->type == CONST_PTR_TO_DYNPTR && !(arg_type & MEM_RDONLY)) { | 
|  | verbose(env, "cannot pass pointer to const bpf_dynptr, the helper mutates it\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (!is_dynptr_reg_valid_init(env, reg)) { | 
|  | verbose(env, | 
|  | "Expected an initialized dynptr as arg #%d\n", | 
|  | regno); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* Fold modifiers (in this case, MEM_RDONLY) when checking expected type */ | 
|  | if (!is_dynptr_type_expected(env, reg, arg_type & ~MEM_RDONLY)) { | 
|  | verbose(env, | 
|  | "Expected a dynptr of type %s as arg #%d\n", | 
|  | dynptr_type_str(arg_to_dynptr_type(arg_type)), regno); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | err = mark_dynptr_read(env, reg); | 
|  | } | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static u32 iter_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int spi) | 
|  | { | 
|  | struct bpf_func_state *state = func(env, reg); | 
|  |  | 
|  | return state->stack[spi].spilled_ptr.ref_obj_id; | 
|  | } | 
|  |  | 
|  | static bool is_iter_kfunc(struct bpf_kfunc_call_arg_meta *meta) | 
|  | { | 
|  | return meta->kfunc_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY); | 
|  | } | 
|  |  | 
|  | static bool is_iter_new_kfunc(struct bpf_kfunc_call_arg_meta *meta) | 
|  | { | 
|  | return meta->kfunc_flags & KF_ITER_NEW; | 
|  | } | 
|  |  | 
|  | static bool is_iter_next_kfunc(struct bpf_kfunc_call_arg_meta *meta) | 
|  | { | 
|  | return meta->kfunc_flags & KF_ITER_NEXT; | 
|  | } | 
|  |  | 
|  | static bool is_iter_destroy_kfunc(struct bpf_kfunc_call_arg_meta *meta) | 
|  | { | 
|  | return meta->kfunc_flags & KF_ITER_DESTROY; | 
|  | } | 
|  |  | 
|  | static bool is_kfunc_arg_iter(struct bpf_kfunc_call_arg_meta *meta, int arg_idx, | 
|  | const struct btf_param *arg) | 
|  | { | 
|  | /* btf_check_iter_kfuncs() guarantees that first argument of any iter | 
|  | * kfunc is iter state pointer | 
|  | */ | 
|  | if (is_iter_kfunc(meta)) | 
|  | return arg_idx == 0; | 
|  |  | 
|  | /* iter passed as an argument to a generic kfunc */ | 
|  | return btf_param_match_suffix(meta->btf, arg, "__iter"); | 
|  | } | 
|  |  | 
|  | static int process_iter_arg(struct bpf_verifier_env *env, int regno, int insn_idx, | 
|  | struct bpf_kfunc_call_arg_meta *meta) | 
|  | { | 
|  | struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; | 
|  | const struct btf_type *t; | 
|  | int spi, err, i, nr_slots, btf_id; | 
|  |  | 
|  | /* For iter_{new,next,destroy} functions, btf_check_iter_kfuncs() | 
|  | * ensures struct convention, so we wouldn't need to do any BTF | 
|  | * validation here. But given iter state can be passed as a parameter | 
|  | * to any kfunc, if arg has "__iter" suffix, we need to be a bit more | 
|  | * conservative here. | 
|  | */ | 
|  | btf_id = btf_check_iter_arg(meta->btf, meta->func_proto, regno - 1); | 
|  | if (btf_id < 0) { | 
|  | verbose(env, "expected valid iter pointer as arg #%d\n", regno); | 
|  | return -EINVAL; | 
|  | } | 
|  | t = btf_type_by_id(meta->btf, btf_id); | 
|  | nr_slots = t->size / BPF_REG_SIZE; | 
|  |  | 
|  | if (is_iter_new_kfunc(meta)) { | 
|  | /* bpf_iter_<type>_new() expects pointer to uninit iter state */ | 
|  | if (!is_iter_reg_valid_uninit(env, reg, nr_slots)) { | 
|  | verbose(env, "expected uninitialized iter_%s as arg #%d\n", | 
|  | iter_type_str(meta->btf, btf_id), regno); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < nr_slots * 8; i += BPF_REG_SIZE) { | 
|  | err = check_mem_access(env, insn_idx, regno, | 
|  | i, BPF_DW, BPF_WRITE, -1, false, false); | 
|  | if (err) | 
|  | return err; | 
|  | } | 
|  |  | 
|  | err = mark_stack_slots_iter(env, meta, reg, insn_idx, meta->btf, btf_id, nr_slots); | 
|  | if (err) | 
|  | return err; | 
|  | } else { | 
|  | /* iter_next() or iter_destroy(), as well as any kfunc | 
|  | * accepting iter argument, expect initialized iter state | 
|  | */ | 
|  | err = is_iter_reg_valid_init(env, reg, meta->btf, btf_id, nr_slots); | 
|  | switch (err) { | 
|  | case 0: | 
|  | break; | 
|  | case -EINVAL: | 
|  | verbose(env, "expected an initialized iter_%s as arg #%d\n", | 
|  | iter_type_str(meta->btf, btf_id), regno); | 
|  | return err; | 
|  | case -EPROTO: | 
|  | verbose(env, "expected an RCU CS when using %s\n", meta->func_name); | 
|  | return err; | 
|  | default: | 
|  | return err; | 
|  | } | 
|  |  | 
|  | spi = iter_get_spi(env, reg, nr_slots); | 
|  | if (spi < 0) | 
|  | return spi; | 
|  |  | 
|  | err = mark_iter_read(env, reg, spi, nr_slots); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | /* remember meta->iter info for process_iter_next_call() */ | 
|  | meta->iter.spi = spi; | 
|  | meta->iter.frameno = reg->frameno; | 
|  | meta->ref_obj_id = iter_ref_obj_id(env, reg, spi); | 
|  |  | 
|  | if (is_iter_destroy_kfunc(meta)) { | 
|  | err = unmark_stack_slots_iter(env, reg, nr_slots); | 
|  | if (err) | 
|  | return err; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Look for a previous loop entry at insn_idx: nearest parent state | 
|  | * stopped at insn_idx with callsites matching those in cur->frame. | 
|  | */ | 
|  | static struct bpf_verifier_state *find_prev_entry(struct bpf_verifier_env *env, | 
|  | struct bpf_verifier_state *cur, | 
|  | int insn_idx) | 
|  | { | 
|  | struct bpf_verifier_state_list *sl; | 
|  | struct bpf_verifier_state *st; | 
|  |  | 
|  | /* Explored states are pushed in stack order, most recent states come first */ | 
|  | sl = *explored_state(env, insn_idx); | 
|  | for (; sl; sl = sl->next) { | 
|  | /* If st->branches != 0 state is a part of current DFS verification path, | 
|  | * hence cur & st for a loop. | 
|  | */ | 
|  | st = &sl->state; | 
|  | if (st->insn_idx == insn_idx && st->branches && same_callsites(st, cur) && | 
|  | st->dfs_depth < cur->dfs_depth) | 
|  | return st; | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static void reset_idmap_scratch(struct bpf_verifier_env *env); | 
|  | static bool regs_exact(const struct bpf_reg_state *rold, | 
|  | const struct bpf_reg_state *rcur, | 
|  | struct bpf_idmap *idmap); | 
|  |  | 
|  | static void maybe_widen_reg(struct bpf_verifier_env *env, | 
|  | struct bpf_reg_state *rold, struct bpf_reg_state *rcur, | 
|  | struct bpf_idmap *idmap) | 
|  | { | 
|  | if (rold->type != SCALAR_VALUE) | 
|  | return; | 
|  | if (rold->type != rcur->type) | 
|  | return; | 
|  | if (rold->precise || rcur->precise || regs_exact(rold, rcur, idmap)) | 
|  | return; | 
|  | __mark_reg_unknown(env, rcur); | 
|  | } | 
|  |  | 
|  | static int widen_imprecise_scalars(struct bpf_verifier_env *env, | 
|  | struct bpf_verifier_state *old, | 
|  | struct bpf_verifier_state *cur) | 
|  | { | 
|  | struct bpf_func_state *fold, *fcur; | 
|  | int i, fr; | 
|  |  | 
|  | reset_idmap_scratch(env); | 
|  | for (fr = old->curframe; fr >= 0; fr--) { | 
|  | fold = old->frame[fr]; | 
|  | fcur = cur->frame[fr]; | 
|  |  | 
|  | for (i = 0; i < MAX_BPF_REG; i++) | 
|  | maybe_widen_reg(env, | 
|  | &fold->regs[i], | 
|  | &fcur->regs[i], | 
|  | &env->idmap_scratch); | 
|  |  | 
|  | for (i = 0; i < fold->allocated_stack / BPF_REG_SIZE; i++) { | 
|  | if (!is_spilled_reg(&fold->stack[i]) || | 
|  | !is_spilled_reg(&fcur->stack[i])) | 
|  | continue; | 
|  |  | 
|  | maybe_widen_reg(env, | 
|  | &fold->stack[i].spilled_ptr, | 
|  | &fcur->stack[i].spilled_ptr, | 
|  | &env->idmap_scratch); | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct bpf_reg_state *get_iter_from_state(struct bpf_verifier_state *cur_st, | 
|  | struct bpf_kfunc_call_arg_meta *meta) | 
|  | { | 
|  | int iter_frameno = meta->iter.frameno; | 
|  | int iter_spi = meta->iter.spi; | 
|  |  | 
|  | return &cur_st->frame[iter_frameno]->stack[iter_spi].spilled_ptr; | 
|  | } | 
|  |  | 
|  | /* process_iter_next_call() is called when verifier gets to iterator's next | 
|  | * "method" (e.g., bpf_iter_num_next() for numbers iterator) call. We'll refer | 
|  | * to it as just "iter_next()" in comments below. | 
|  | * | 
|  | * BPF verifier relies on a crucial contract for any iter_next() | 
|  | * implementation: it should *eventually* return NULL, and once that happens | 
|  | * it should keep returning NULL. That is, once iterator exhausts elements to | 
|  | * iterate, it should never reset or spuriously return new elements. | 
|  | * | 
|  | * With the assumption of such contract, process_iter_next_call() simulates | 
|  | * a fork in the verifier state to validate loop logic correctness and safety | 
|  | * without having to simulate infinite amount of iterations. | 
|  | * | 
|  | * In current state, we first assume that iter_next() returned NULL and | 
|  | * iterator state is set to DRAINED (BPF_ITER_STATE_DRAINED). In such | 
|  | * conditions we should not form an infinite loop and should eventually reach | 
|  | * exit. | 
|  | * | 
|  | * Besides that, we also fork current state and enqueue it for later | 
|  | * verification. In a forked state we keep iterator state as ACTIVE | 
|  | * (BPF_ITER_STATE_ACTIVE) and assume non-NULL return from iter_next(). We | 
|  | * also bump iteration depth to prevent erroneous infinite loop detection | 
|  | * later on (see iter_active_depths_differ() comment for details). In this | 
|  | * state we assume that we'll eventually loop back to another iter_next() | 
|  | * calls (it could be in exactly same location or in some other instruction, | 
|  | * it doesn't matter, we don't make any unnecessary assumptions about this, | 
|  | * everything revolves around iterator state in a stack slot, not which | 
|  | * instruction is calling iter_next()). When that happens, we either will come | 
|  | * to iter_next() with equivalent state and can conclude that next iteration | 
|  | * will proceed in exactly the same way as we just verified, so it's safe to | 
|  | * assume that loop converges. If not, we'll go on another iteration | 
|  | * simulation with a different input state, until all possible starting states | 
|  | * are validated or we reach maximum number of instructions limit. | 
|  | * | 
|  | * This way, we will either exhaustively discover all possible input states | 
|  | * that iterator loop can start with and eventually will converge, or we'll | 
|  | * effectively regress into bounded loop simulation logic and either reach | 
|  | * maximum number of instructions if loop is not provably convergent, or there | 
|  | * is some statically known limit on number of iterations (e.g., if there is | 
|  | * an explicit `if n > 100 then break;` statement somewhere in the loop). | 
|  | * | 
|  | * Iteration convergence logic in is_state_visited() relies on exact | 
|  | * states comparison, which ignores read and precision marks. | 
|  | * This is necessary because read and precision marks are not finalized | 
|  | * while in the loop. Exact comparison might preclude convergence for | 
|  | * simple programs like below: | 
|  | * | 
|  | *     i = 0; | 
|  | *     while(iter_next(&it)) | 
|  | *       i++; | 
|  | * | 
|  | * At each iteration step i++ would produce a new distinct state and | 
|  | * eventually instruction processing limit would be reached. | 
|  | * | 
|  | * To avoid such behavior speculatively forget (widen) range for | 
|  | * imprecise scalar registers, if those registers were not precise at the | 
|  | * end of the previous iteration and do not match exactly. | 
|  | * | 
|  | * This is a conservative heuristic that allows to verify wide range of programs, | 
|  | * however it precludes verification of programs that conjure an | 
|  | * imprecise value on the first loop iteration and use it as precise on a second. | 
|  | * For example, the following safe program would fail to verify: | 
|  | * | 
|  | *     struct bpf_num_iter it; | 
|  | *     int arr[10]; | 
|  | *     int i = 0, a = 0; | 
|  | *     bpf_iter_num_new(&it, 0, 10); | 
|  | *     while (bpf_iter_num_next(&it)) { | 
|  | *       if (a == 0) { | 
|  | *         a = 1; | 
|  | *         i = 7; // Because i changed verifier would forget | 
|  | *                // it's range on second loop entry. | 
|  | *       } else { | 
|  | *         arr[i] = 42; // This would fail to verify. | 
|  | *       } | 
|  | *     } | 
|  | *     bpf_iter_num_destroy(&it); | 
|  | */ | 
|  | static int process_iter_next_call(struct bpf_verifier_env *env, int insn_idx, | 
|  | struct bpf_kfunc_call_arg_meta *meta) | 
|  | { | 
|  | struct bpf_verifier_state *cur_st = env->cur_state, *queued_st, *prev_st; | 
|  | struct bpf_func_state *cur_fr = cur_st->frame[cur_st->curframe], *queued_fr; | 
|  | struct bpf_reg_state *cur_iter, *queued_iter; | 
|  |  | 
|  | BTF_TYPE_EMIT(struct bpf_iter); | 
|  |  | 
|  | cur_iter = get_iter_from_state(cur_st, meta); | 
|  |  | 
|  | if (cur_iter->iter.state != BPF_ITER_STATE_ACTIVE && | 
|  | cur_iter->iter.state != BPF_ITER_STATE_DRAINED) { | 
|  | verbose(env, "verifier internal error: unexpected iterator state %d (%s)\n", | 
|  | cur_iter->iter.state, iter_state_str(cur_iter->iter.state)); | 
|  | return -EFAULT; | 
|  | } | 
|  |  | 
|  | if (cur_iter->iter.state == BPF_ITER_STATE_ACTIVE) { | 
|  | /* Because iter_next() call is a checkpoint is_state_visitied() | 
|  | * should guarantee parent state with same call sites and insn_idx. | 
|  | */ | 
|  | if (!cur_st->parent || cur_st->parent->insn_idx != insn_idx || | 
|  | !same_callsites(cur_st->parent, cur_st)) { | 
|  | verbose(env, "bug: bad parent state for iter next call"); | 
|  | return -EFAULT; | 
|  | } | 
|  | /* Note cur_st->parent in the call below, it is necessary to skip | 
|  | * checkpoint created for cur_st by is_state_visited() | 
|  | * right at this instruction. | 
|  | */ | 
|  | prev_st = find_prev_entry(env, cur_st->parent, insn_idx); | 
|  | /* branch out active iter state */ | 
|  | queued_st = push_stack(env, insn_idx + 1, insn_idx, false); | 
|  | if (!queued_st) | 
|  | return -ENOMEM; | 
|  |  | 
|  | queued_iter = get_iter_from_state(queued_st, meta); | 
|  | queued_iter->iter.state = BPF_ITER_STATE_ACTIVE; | 
|  | queued_iter->iter.depth++; | 
|  | if (prev_st) | 
|  | widen_imprecise_scalars(env, prev_st, queued_st); | 
|  |  | 
|  | queued_fr = queued_st->frame[queued_st->curframe]; | 
|  | mark_ptr_not_null_reg(&queued_fr->regs[BPF_REG_0]); | 
|  | } | 
|  |  | 
|  | /* switch to DRAINED state, but keep the depth unchanged */ | 
|  | /* mark current iter state as drained and assume returned NULL */ | 
|  | cur_iter->iter.state = BPF_ITER_STATE_DRAINED; | 
|  | __mark_reg_const_zero(env, &cur_fr->regs[BPF_REG_0]); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static bool arg_type_is_mem_size(enum bpf_arg_type type) | 
|  | { | 
|  | return type == ARG_CONST_SIZE || | 
|  | type == ARG_CONST_SIZE_OR_ZERO; | 
|  | } | 
|  |  | 
|  | static bool arg_type_is_raw_mem(enum bpf_arg_type type) | 
|  | { | 
|  | return base_type(type) == ARG_PTR_TO_MEM && | 
|  | type & MEM_UNINIT; | 
|  | } | 
|  |  | 
|  | static bool arg_type_is_release(enum bpf_arg_type type) | 
|  | { | 
|  | return type & OBJ_RELEASE; | 
|  | } | 
|  |  | 
|  | static bool arg_type_is_dynptr(enum bpf_arg_type type) | 
|  | { | 
|  | return base_type(type) == ARG_PTR_TO_DYNPTR; | 
|  | } | 
|  |  | 
|  | static int resolve_map_arg_type(struct bpf_verifier_env *env, | 
|  | const struct bpf_call_arg_meta *meta, | 
|  | enum bpf_arg_type *arg_type) | 
|  | { | 
|  | if (!meta->map_ptr) { | 
|  | /* kernel subsystem misconfigured verifier */ | 
|  | verbose(env, "invalid map_ptr to access map->type\n"); | 
|  | return -EACCES; | 
|  | } | 
|  |  | 
|  | switch (meta->map_ptr->map_type) { | 
|  | case BPF_MAP_TYPE_SOCKMAP: | 
|  | case BPF_MAP_TYPE_SOCKHASH: | 
|  | if (*arg_type == ARG_PTR_TO_MAP_VALUE) { | 
|  | *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON; | 
|  | } else { | 
|  | verbose(env, "invalid arg_type for sockmap/sockhash\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | break; | 
|  | case BPF_MAP_TYPE_BLOOM_FILTER: | 
|  | if (meta->func_id == BPF_FUNC_map_peek_elem) | 
|  | *arg_type = ARG_PTR_TO_MAP_VALUE; | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | struct bpf_reg_types { | 
|  | const enum bpf_reg_type types[10]; | 
|  | u32 *btf_id; | 
|  | }; | 
|  |  | 
|  | static const struct bpf_reg_types sock_types = { | 
|  | .types = { | 
|  | PTR_TO_SOCK_COMMON, | 
|  | PTR_TO_SOCKET, | 
|  | PTR_TO_TCP_SOCK, | 
|  | PTR_TO_XDP_SOCK, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | #ifdef CONFIG_NET | 
|  | static const struct bpf_reg_types btf_id_sock_common_types = { | 
|  | .types = { | 
|  | PTR_TO_SOCK_COMMON, | 
|  | PTR_TO_SOCKET, | 
|  | PTR_TO_TCP_SOCK, | 
|  | PTR_TO_XDP_SOCK, | 
|  | PTR_TO_BTF_ID, | 
|  | PTR_TO_BTF_ID | PTR_TRUSTED, | 
|  | }, | 
|  | .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], | 
|  | }; | 
|  | #endif | 
|  |  | 
|  | static const struct bpf_reg_types mem_types = { | 
|  | .types = { | 
|  | PTR_TO_STACK, | 
|  | PTR_TO_PACKET, | 
|  | PTR_TO_PACKET_META, | 
|  | PTR_TO_MAP_KEY, | 
|  | PTR_TO_MAP_VALUE, | 
|  | PTR_TO_MEM, | 
|  | PTR_TO_MEM | MEM_RINGBUF, | 
|  | PTR_TO_BUF, | 
|  | PTR_TO_BTF_ID | PTR_TRUSTED, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | static const struct bpf_reg_types spin_lock_types = { | 
|  | .types = { | 
|  | PTR_TO_MAP_VALUE, | 
|  | PTR_TO_BTF_ID | MEM_ALLOC, | 
|  | } | 
|  | }; | 
|  |  | 
|  | static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } }; | 
|  | static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } }; | 
|  | static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } }; | 
|  | static const struct bpf_reg_types ringbuf_mem_types = { .types = { PTR_TO_MEM | MEM_RINGBUF } }; | 
|  | static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } }; | 
|  | static const struct bpf_reg_types btf_ptr_types = { | 
|  | .types = { | 
|  | PTR_TO_BTF_ID, | 
|  | PTR_TO_BTF_ID | PTR_TRUSTED, | 
|  | PTR_TO_BTF_ID | MEM_RCU, | 
|  | }, | 
|  | }; | 
|  | static const struct bpf_reg_types percpu_btf_ptr_types = { | 
|  | .types = { | 
|  | PTR_TO_BTF_ID | MEM_PERCPU, | 
|  | PTR_TO_BTF_ID | MEM_PERCPU | MEM_RCU, | 
|  | PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED, | 
|  | } | 
|  | }; | 
|  | static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } }; | 
|  | static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } }; | 
|  | static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } }; | 
|  | static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } }; | 
|  | static const struct bpf_reg_types kptr_xchg_dest_types = { | 
|  | .types = { | 
|  | PTR_TO_MAP_VALUE, | 
|  | PTR_TO_BTF_ID | MEM_ALLOC | 
|  | } | 
|  | }; | 
|  | static const struct bpf_reg_types dynptr_types = { | 
|  | .types = { | 
|  | PTR_TO_STACK, | 
|  | CONST_PTR_TO_DYNPTR, | 
|  | } | 
|  | }; | 
|  |  | 
|  | static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = { | 
|  | [ARG_PTR_TO_MAP_KEY]		= &mem_types, | 
|  | [ARG_PTR_TO_MAP_VALUE]		= &mem_types, | 
|  | [ARG_CONST_SIZE]		= &scalar_types, | 
|  | [ARG_CONST_SIZE_OR_ZERO]	= &scalar_types, | 
|  | [ARG_CONST_ALLOC_SIZE_OR_ZERO]	= &scalar_types, | 
|  | [ARG_CONST_MAP_PTR]		= &const_map_ptr_types, | 
|  | [ARG_PTR_TO_CTX]		= &context_types, | 
|  | [ARG_PTR_TO_SOCK_COMMON]	= &sock_types, | 
|  | #ifdef CONFIG_NET | 
|  | [ARG_PTR_TO_BTF_ID_SOCK_COMMON]	= &btf_id_sock_common_types, | 
|  | #endif | 
|  | [ARG_PTR_TO_SOCKET]		= &fullsock_types, | 
|  | [ARG_PTR_TO_BTF_ID]		= &btf_ptr_types, | 
|  | [ARG_PTR_TO_SPIN_LOCK]		= &spin_lock_types, | 
|  | [ARG_PTR_TO_MEM]		= &mem_types, | 
|  | [ARG_PTR_TO_RINGBUF_MEM]	= &ringbuf_mem_types, | 
|  | [ARG_PTR_TO_PERCPU_BTF_ID]	= &percpu_btf_ptr_types, | 
|  | [ARG_PTR_TO_FUNC]		= &func_ptr_types, | 
|  | [ARG_PTR_TO_STACK]		= &stack_ptr_types, | 
|  | [ARG_PTR_TO_CONST_STR]		= &const_str_ptr_types, | 
|  | [ARG_PTR_TO_TIMER]		= &timer_types, | 
|  | [ARG_KPTR_XCHG_DEST]		= &kptr_xchg_dest_types, | 
|  | [ARG_PTR_TO_DYNPTR]		= &dynptr_types, | 
|  | }; | 
|  |  | 
|  | static int check_reg_type(struct bpf_verifier_env *env, u32 regno, | 
|  | enum bpf_arg_type arg_type, | 
|  | const u32 *arg_btf_id, | 
|  | struct bpf_call_arg_meta *meta) | 
|  | { | 
|  | struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; | 
|  | enum bpf_reg_type expected, type = reg->type; | 
|  | const struct bpf_reg_types *compatible; | 
|  | int i, j; | 
|  |  | 
|  | compatible = compatible_reg_types[base_type(arg_type)]; | 
|  | if (!compatible) { | 
|  | verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type); | 
|  | return -EFAULT; | 
|  | } | 
|  |  | 
|  | /* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY, | 
|  | * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY | 
|  | * | 
|  | * Same for MAYBE_NULL: | 
|  | * | 
|  | * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL, | 
|  | * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL | 
|  | * | 
|  | * ARG_PTR_TO_MEM is compatible with PTR_TO_MEM that is tagged with a dynptr type. | 
|  | * | 
|  | * Therefore we fold these flags depending on the arg_type before comparison. | 
|  | */ | 
|  | if (arg_type & MEM_RDONLY) | 
|  | type &= ~MEM_RDONLY; | 
|  | if (arg_type & PTR_MAYBE_NULL) | 
|  | type &= ~PTR_MAYBE_NULL; | 
|  | if (base_type(arg_type) == ARG_PTR_TO_MEM) | 
|  | type &= ~DYNPTR_TYPE_FLAG_MASK; | 
|  |  | 
|  | /* Local kptr types are allowed as the source argument of bpf_kptr_xchg */ | 
|  | if (meta->func_id == BPF_FUNC_kptr_xchg && type_is_alloc(type) && regno == BPF_REG_2) { | 
|  | type &= ~MEM_ALLOC; | 
|  | type &= ~MEM_PERCPU; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(compatible->types); i++) { | 
|  | expected = compatible->types[i]; | 
|  | if (expected == NOT_INIT) | 
|  | break; | 
|  |  | 
|  | if (type == expected) | 
|  | goto found; | 
|  | } | 
|  |  | 
|  | verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type)); | 
|  | for (j = 0; j + 1 < i; j++) | 
|  | verbose(env, "%s, ", reg_type_str(env, compatible->types[j])); | 
|  | verbose(env, "%s\n", reg_type_str(env, compatible->types[j])); | 
|  | return -EACCES; | 
|  |  | 
|  | found: | 
|  | if (base_type(reg->type) != PTR_TO_BTF_ID) | 
|  | return 0; | 
|  |  | 
|  | if (compatible == &mem_types) { | 
|  | if (!(arg_type & MEM_RDONLY)) { | 
|  | verbose(env, | 
|  | "%s() may write into memory pointed by R%d type=%s\n", | 
|  | func_id_name(meta->func_id), | 
|  | regno, reg_type_str(env, reg->type)); | 
|  | return -EACCES; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | switch ((int)reg->type) { | 
|  | case PTR_TO_BTF_ID: | 
|  | case PTR_TO_BTF_ID | PTR_TRUSTED: | 
|  | case PTR_TO_BTF_ID | PTR_TRUSTED | PTR_MAYBE_NULL: | 
|  | case PTR_TO_BTF_ID | MEM_RCU: | 
|  | case PTR_TO_BTF_ID | PTR_MAYBE_NULL: | 
|  | case PTR_TO_BTF_ID | PTR_MAYBE_NULL | MEM_RCU: | 
|  | { | 
|  | /* For bpf_sk_release, it needs to match against first member | 
|  | * 'struct sock_common', hence make an exception for it. This | 
|  | * allows bpf_sk_release to work for multiple socket types. | 
|  | */ | 
|  | bool strict_type_match = arg_type_is_release(arg_type) && | 
|  | meta->func_id != BPF_FUNC_sk_release; | 
|  |  | 
|  | if (type_may_be_null(reg->type) && | 
|  | (!type_may_be_null(arg_type) || arg_type_is_release(arg_type))) { | 
|  | verbose(env, "Possibly NULL pointer passed to helper arg%d\n", regno); | 
|  | return -EACCES; | 
|  | } | 
|  |  | 
|  | if (!arg_btf_id) { | 
|  | if (!compatible->btf_id) { | 
|  | verbose(env, "verifier internal error: missing arg compatible BTF ID\n"); | 
|  | return -EFAULT; | 
|  | } | 
|  | arg_btf_id = compatible->btf_id; | 
|  | } | 
|  |  | 
|  | if (meta->func_id == BPF_FUNC_kptr_xchg) { | 
|  | if (map_kptr_match_type(env, meta->kptr_field, reg, regno)) | 
|  | return -EACCES; | 
|  | } else { | 
|  | if (arg_btf_id == BPF_PTR_POISON) { | 
|  | verbose(env, "verifier internal error:"); | 
|  | verbose(env, "R%d has non-overwritten BPF_PTR_POISON type\n", | 
|  | regno); | 
|  | return -EACCES; | 
|  | } | 
|  |  | 
|  | if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, | 
|  | btf_vmlinux, *arg_btf_id, | 
|  | strict_type_match)) { | 
|  | verbose(env, "R%d is of type %s but %s is expected\n", | 
|  | regno, btf_type_name(reg->btf, reg->btf_id), | 
|  | btf_type_name(btf_vmlinux, *arg_btf_id)); | 
|  | return -EACCES; | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  | case PTR_TO_BTF_ID | MEM_ALLOC: | 
|  | case PTR_TO_BTF_ID | MEM_PERCPU | MEM_ALLOC: | 
|  | if (meta->func_id != BPF_FUNC_spin_lock && meta->func_id != BPF_FUNC_spin_unlock && | 
|  | meta->func_id != BPF_FUNC_kptr_xchg) { | 
|  | verbose(env, "verifier internal error: unimplemented handling of MEM_ALLOC\n"); | 
|  | return -EFAULT; | 
|  | } | 
|  | /* Check if local kptr in src arg matches kptr in dst arg */ | 
|  | if (meta->func_id == BPF_FUNC_kptr_xchg && regno == BPF_REG_2) { | 
|  | if (map_kptr_match_type(env, meta->kptr_field, reg, regno)) | 
|  | return -EACCES; | 
|  | } | 
|  | break; | 
|  | case PTR_TO_BTF_ID | MEM_PERCPU: | 
|  | case PTR_TO_BTF_ID | MEM_PERCPU | MEM_RCU: | 
|  | case PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED: | 
|  | /* Handled by helper specific checks */ | 
|  | break; | 
|  | default: | 
|  | verbose(env, "verifier internal error: invalid PTR_TO_BTF_ID register for type match\n"); | 
|  | return -EFAULT; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct btf_field * | 
|  | reg_find_field_offset(const struct bpf_reg_state *reg, s32 off, u32 fields) | 
|  | { | 
|  | struct btf_field *field; | 
|  | struct btf_record *rec; | 
|  |  | 
|  | rec = reg_btf_record(reg); | 
|  | if (!rec) | 
|  | return NULL; | 
|  |  | 
|  | field = btf_record_find(rec, off, fields); | 
|  | if (!field) | 
|  | return NULL; | 
|  |  | 
|  | return field; | 
|  | } | 
|  |  | 
|  | static int check_func_arg_reg_off(struct bpf_verifier_env *env, | 
|  | const struct bpf_reg_state *reg, int regno, | 
|  | enum bpf_arg_type arg_type) | 
|  | { | 
|  | u32 type = reg->type; | 
|  |  | 
|  | /* When referenced register is passed to release function, its fixed | 
|  | * offset must be 0. | 
|  | * | 
|  | * We will check arg_type_is_release reg has ref_obj_id when storing | 
|  | * meta->release_regno. | 
|  | */ | 
|  | if (arg_type_is_release(arg_type)) { | 
|  | /* ARG_PTR_TO_DYNPTR with OBJ_RELEASE is a bit special, as it | 
|  | * may not directly point to the object being released, but to | 
|  | * dynptr pointing to such object, which might be at some offset | 
|  | * on the stack. In that case, we simply to fallback to the | 
|  | * default handling. | 
|  | */ | 
|  | if (arg_type_is_dynptr(arg_type) && type == PTR_TO_STACK) | 
|  | return 0; | 
|  |  | 
|  | /* Doing check_ptr_off_reg check for the offset will catch this | 
|  | * because fixed_off_ok is false, but checking here allows us | 
|  | * to give the user a better error message. | 
|  | */ | 
|  | if (reg->off) { | 
|  | verbose(env, "R%d must have zero offset when passed to release func or trusted arg to kfunc\n", | 
|  | regno); | 
|  | return -EINVAL; | 
|  | } | 
|  | return __check_ptr_off_reg(env, reg, regno, false); | 
|  | } | 
|  |  | 
|  | switch (type) { | 
|  | /* Pointer types where both fixed and variable offset is explicitly allowed: */ | 
|  | case PTR_TO_STACK: | 
|  | case PTR_TO_PACKET: | 
|  | case PTR_TO_PACKET_META: | 
|  | case PTR_TO_MAP_KEY: | 
|  | case PTR_TO_MAP_VALUE: | 
|  | case PTR_TO_MEM: | 
|  | case PTR_TO_MEM | MEM_RDONLY: | 
|  | case PTR_TO_MEM | MEM_RINGBUF: | 
|  | case PTR_TO_BUF: | 
|  | case PTR_TO_BUF | MEM_RDONLY: | 
|  | case PTR_TO_ARENA: | 
|  | case SCALAR_VALUE: | 
|  | return 0; | 
|  | /* All the rest must be rejected, except PTR_TO_BTF_ID which allows | 
|  | * fixed offset. | 
|  | */ | 
|  | case PTR_TO_BTF_ID: | 
|  | case PTR_TO_BTF_ID | MEM_ALLOC: | 
|  | case PTR_TO_BTF_ID | PTR_TRUSTED: | 
|  | case PTR_TO_BTF_ID | MEM_RCU: | 
|  | case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF: | 
|  | case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF | MEM_RCU: | 
|  | /* When referenced PTR_TO_BTF_ID is passed to release function, | 
|  | * its fixed offset must be 0. In the other cases, fixed offset | 
|  | * can be non-zero. This was already checked above. So pass | 
|  | * fixed_off_ok as true to allow fixed offset for all other | 
|  | * cases. var_off always must be 0 for PTR_TO_BTF_ID, hence we | 
|  | * still need to do checks instead of returning. | 
|  | */ | 
|  | return __check_ptr_off_reg(env, reg, regno, true); | 
|  | default: | 
|  | return __check_ptr_off_reg(env, reg, regno, false); | 
|  | } | 
|  | } | 
|  |  | 
|  | static struct bpf_reg_state *get_dynptr_arg_reg(struct bpf_verifier_env *env, | 
|  | const struct bpf_func_proto *fn, | 
|  | struct bpf_reg_state *regs) | 
|  | { | 
|  | struct bpf_reg_state *state = NULL; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) | 
|  | if (arg_type_is_dynptr(fn->arg_type[i])) { | 
|  | if (state) { | 
|  | verbose(env, "verifier internal error: multiple dynptr args\n"); | 
|  | return NULL; | 
|  | } | 
|  | state = ®s[BPF_REG_1 + i]; | 
|  | } | 
|  |  | 
|  | if (!state) | 
|  | verbose(env, "verifier internal error: no dynptr arg found\n"); | 
|  |  | 
|  | return state; | 
|  | } | 
|  |  | 
|  | static int dynptr_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg) | 
|  | { | 
|  | struct bpf_func_state *state = func(env, reg); | 
|  | int spi; | 
|  |  | 
|  | if (reg->type == CONST_PTR_TO_DYNPTR) | 
|  | return reg->id; | 
|  | spi = dynptr_get_spi(env, reg); | 
|  | if (spi < 0) | 
|  | return spi; | 
|  | return state->stack[spi].spilled_ptr.id; | 
|  | } | 
|  |  | 
|  | static int dynptr_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg) | 
|  | { | 
|  | struct bpf_func_state *state = func(env, reg); | 
|  | int spi; | 
|  |  | 
|  | if (reg->type == CONST_PTR_TO_DYNPTR) | 
|  | return reg->ref_obj_id; | 
|  | spi = dynptr_get_spi(env, reg); | 
|  | if (spi < 0) | 
|  | return spi; | 
|  | return state->stack[spi].spilled_ptr.ref_obj_id; | 
|  | } | 
|  |  | 
|  | static enum bpf_dynptr_type dynptr_get_type(struct bpf_verifier_env *env, | 
|  | struct bpf_reg_state *reg) | 
|  | { | 
|  | struct bpf_func_state *state = func(env, reg); | 
|  | int spi; | 
|  |  | 
|  | if (reg->type == CONST_PTR_TO_DYNPTR) | 
|  | return reg->dynptr.type; | 
|  |  | 
|  | spi = __get_spi(reg->off); | 
|  | if (spi < 0) { | 
|  | verbose(env, "verifier internal error: invalid spi when querying dynptr type\n"); | 
|  | return BPF_DYNPTR_TYPE_INVALID; | 
|  | } | 
|  |  | 
|  | return state->stack[spi].spilled_ptr.dynptr.type; | 
|  | } | 
|  |  | 
|  | static int check_reg_const_str(struct bpf_verifier_env *env, | 
|  | struct bpf_reg_state *reg, u32 regno) | 
|  | { | 
|  | struct bpf_map *map = reg->map_ptr; | 
|  | int err; | 
|  | int map_off; | 
|  | u64 map_addr; | 
|  | char *str_ptr; | 
|  |  | 
|  | if (reg->type != PTR_TO_MAP_VALUE) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (!bpf_map_is_rdonly(map)) { | 
|  | verbose(env, "R%d does not point to a readonly map'\n", regno); | 
|  | return -EACCES; | 
|  | } | 
|  |  | 
|  | if (!tnum_is_const(reg->var_off)) { | 
|  | verbose(env, "R%d is not a constant address'\n", regno); | 
|  | return -EACCES; | 
|  | } | 
|  |  | 
|  | if (!map->ops->map_direct_value_addr) { | 
|  | verbose(env, "no direct value access support for this map type\n"); | 
|  | return -EACCES; | 
|  | } | 
|  |  | 
|  | err = check_map_access(env, regno, reg->off, | 
|  | map->value_size - reg->off, false, | 
|  | ACCESS_HELPER); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | map_off = reg->off + reg->var_off.value; | 
|  | err = map->ops->map_direct_value_addr(map, &map_addr, map_off); | 
|  | if (err) { | 
|  | verbose(env, "direct value access on string failed\n"); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | str_ptr = (char *)(long)(map_addr); | 
|  | if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) { | 
|  | verbose(env, "string is not zero-terminated\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int check_func_arg(struct bpf_verifier_env *env, u32 arg, | 
|  | struct bpf_call_arg_meta *meta, | 
|  | const struct bpf_func_proto *fn, | 
|  | int insn_idx) | 
|  | { | 
|  | u32 regno = BPF_REG_1 + arg; | 
|  | struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; | 
|  | enum bpf_arg_type arg_type = fn->arg_type[arg]; | 
|  | enum bpf_reg_type type = reg->type; | 
|  | u32 *arg_btf_id = NULL; | 
|  | int err = 0; | 
|  |  | 
|  | if (arg_type == ARG_DONTCARE) | 
|  | return 0; | 
|  |  | 
|  | err = check_reg_arg(env, regno, SRC_OP); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | if (arg_type == ARG_ANYTHING) { | 
|  | if (is_pointer_value(env, regno)) { | 
|  | verbose(env, "R%d leaks addr into helper function\n", | 
|  | regno); | 
|  | return -EACCES; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (type_is_pkt_pointer(type) && | 
|  | !may_access_direct_pkt_data(env, meta, BPF_READ)) { | 
|  | verbose(env, "helper access to the packet is not allowed\n"); | 
|  | return -EACCES; | 
|  | } | 
|  |  | 
|  | if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) { | 
|  | err = resolve_map_arg_type(env, meta, &arg_type); | 
|  | if (err) | 
|  | return err; | 
|  | } | 
|  |  | 
|  | if (register_is_null(reg) && type_may_be_null(arg_type)) | 
|  | /* A NULL register has a SCALAR_VALUE type, so skip | 
|  | * type checking. | 
|  | */ | 
|  | goto skip_type_check; | 
|  |  | 
|  | /* arg_btf_id and arg_size are in a union. */ | 
|  | if (base_type(arg_type) == ARG_PTR_TO_BTF_ID || | 
|  | base_type(arg_type) == ARG_PTR_TO_SPIN_LOCK) | 
|  | arg_btf_id = fn->arg_btf_id[arg]; | 
|  |  | 
|  | err = check_reg_type(env, regno, arg_type, arg_btf_id, meta); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | err = check_func_arg_reg_off(env, reg, regno, arg_type); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | skip_type_check: | 
|  | if (arg_type_is_release(arg_type)) { | 
|  | if (arg_type_is_dynptr(arg_type)) { | 
|  | struct bpf_func_state *state = func(env, reg); | 
|  | int spi; | 
|  |  | 
|  | /* Only dynptr created on stack can be released, thus | 
|  | * the get_spi and stack state checks for spilled_ptr | 
|  | * should only be done before process_dynptr_func for | 
|  | * PTR_TO_STACK. | 
|  | */ | 
|  | if (reg->type == PTR_TO_STACK) { | 
|  | spi = dynptr_get_spi(env, reg); | 
|  | if (spi < 0 || !state->stack[spi].spilled_ptr.ref_obj_id) { | 
|  | verbose(env, "arg %d is an unacquired reference\n", regno); | 
|  | return -EINVAL; | 
|  | } | 
|  | } else { | 
|  | verbose(env, "cannot release unowned const bpf_dynptr\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | } else if (!reg->ref_obj_id && !register_is_null(reg)) { | 
|  | verbose(env, "R%d must be referenced when passed to release function\n", | 
|  | regno); | 
|  | return -EINVAL; | 
|  | } | 
|  | if (meta->release_regno) { | 
|  | verbose(env, "verifier internal error: more than one release argument\n"); | 
|  | return -EFAULT; | 
|  | } | 
|  | meta->release_regno = regno; | 
|  | } | 
|  |  | 
|  | if (reg->ref_obj_id && base_type(arg_type) != ARG_KPTR_XCHG_DEST) { | 
|  | if (meta->ref_obj_id) { | 
|  | verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", | 
|  | regno, reg->ref_obj_id, | 
|  | meta->ref_obj_id); | 
|  | return -EFAULT; | 
|  | } | 
|  | meta->ref_obj_id = reg->ref_obj_id; | 
|  | } | 
|  |  | 
|  | switch (base_type(arg_type)) { | 
|  | case ARG_CONST_MAP_PTR: | 
|  | /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ | 
|  | if (meta->map_ptr) { | 
|  | /* Use map_uid (which is unique id of inner map) to reject: | 
|  | * inner_map1 = bpf_map_lookup_elem(outer_map, key1) | 
|  | * inner_map2 = bpf_map_lookup_elem(outer_map, key2) | 
|  | * if (inner_map1 && inner_map2) { | 
|  | *     timer = bpf_map_lookup_elem(inner_map1); | 
|  | *     if (timer) | 
|  | *         // mismatch would have been allowed | 
|  | *         bpf_timer_init(timer, inner_map2); | 
|  | * } | 
|  | * | 
|  | * Comparing map_ptr is enough to distinguish normal and outer maps. | 
|  | */ | 
|  | if (meta->map_ptr != reg->map_ptr || | 
|  | meta->map_uid != reg->map_uid) { | 
|  | verbose(env, | 
|  | "timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n", | 
|  | meta->map_uid, reg->map_uid); | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  | meta->map_ptr = reg->map_ptr; | 
|  | meta->map_uid = reg->map_uid; | 
|  | break; | 
|  | case ARG_PTR_TO_MAP_KEY: | 
|  | /* bpf_map_xxx(..., map_ptr, ..., key) call: | 
|  | * check that [key, key + map->key_size) are within | 
|  | * stack limits and initialized | 
|  | */ | 
|  | if (!meta->map_ptr) { | 
|  | /* in function declaration map_ptr must come before | 
|  | * map_key, so that it's verified and known before | 
|  | * we have to check map_key here. Otherwise it means | 
|  | * that kernel subsystem misconfigured verifier | 
|  | */ | 
|  | verbose(env, "invalid map_ptr to access map->key\n"); | 
|  | return -EACCES; | 
|  | } | 
|  | err = check_helper_mem_access(env, regno, | 
|  | meta->map_ptr->key_size, false, | 
|  | NULL); | 
|  | break; | 
|  | case ARG_PTR_TO_MAP_VALUE: | 
|  | if (type_may_be_null(arg_type) && register_is_null(reg)) | 
|  | return 0; | 
|  |  | 
|  | /* bpf_map_xxx(..., map_ptr, ..., value) call: | 
|  | * check [value, value + map->value_size) validity | 
|  | */ | 
|  | if (!meta->map_ptr) { | 
|  | /* kernel subsystem misconfigured verifier */ | 
|  | verbose(env, "invalid map_ptr to access map->value\n"); | 
|  | return -EACCES; | 
|  | } | 
|  | meta->raw_mode = arg_type & MEM_UNINIT; | 
|  | err = check_helper_mem_access(env, regno, | 
|  | meta->map_ptr->value_size, false, | 
|  | meta); | 
|  | break; | 
|  | case ARG_PTR_TO_PERCPU_BTF_ID: | 
|  | if (!reg->btf_id) { | 
|  | verbose(env, "Helper has invalid btf_id in R%d\n", regno); | 
|  | return -EACCES; | 
|  | } | 
|  | meta->ret_btf = reg->btf; | 
|  | meta->ret_btf_id = reg->btf_id; | 
|  | break; | 
|  | case ARG_PTR_TO_SPIN_LOCK: | 
|  | if (in_rbtree_lock_required_cb(env)) { | 
|  | verbose(env, "can't spin_{lock,unlock} in rbtree cb\n"); | 
|  | return -EACCES; | 
|  | } | 
|  | if (meta->func_id == BPF_FUNC_spin_lock) { | 
|  | err = process_spin_lock(env, regno, true); | 
|  | if (err) | 
|  | return err; | 
|  | } else if (meta->func_id == BPF_FUNC_spin_unlock) { | 
|  | err = process_spin_lock(env, regno, false); | 
|  | if (err) | 
|  | return err; | 
|  | } else { | 
|  | verbose(env, "verifier internal error\n"); | 
|  | return -EFAULT; | 
|  | } | 
|  | break; | 
|  | case ARG_PTR_TO_TIMER: | 
|  | err = process_timer_func(env, regno, meta); | 
|  | if (err) | 
|  | return err; | 
|  | break; | 
|  | case ARG_PTR_TO_FUNC: | 
|  | meta->subprogno = reg->subprogno; | 
|  | break; | 
|  | case ARG_PTR_TO_MEM: | 
|  | /* The access to this pointer is only checked when we hit the | 
|  | * next is_mem_size argument below. | 
|  | */ | 
|  | meta->raw_mode = arg_type & MEM_UNINIT; | 
|  | if (arg_type & MEM_FIXED_SIZE) { | 
|  | err = check_helper_mem_access(env, regno, fn->arg_size[arg], false, meta); | 
|  | if (err) | 
|  | return err; | 
|  | if (arg_type & MEM_ALIGNED) | 
|  | err = check_ptr_alignment(env, reg, 0, fn->arg_size[arg], true); | 
|  | } | 
|  | break; | 
|  | case ARG_CONST_SIZE: | 
|  | err = check_mem_size_reg(env, reg, regno, false, meta); | 
|  | break; | 
|  | case ARG_CONST_SIZE_OR_ZERO: | 
|  | err = check_mem_size_reg(env, reg, regno, true, meta); | 
|  | break; | 
|  | case ARG_PTR_TO_DYNPTR: | 
|  | err = process_dynptr_func(env, regno, insn_idx, arg_type, 0); | 
|  | if (err) | 
|  | return err; | 
|  | break; | 
|  | case ARG_CONST_ALLOC_SIZE_OR_ZERO: | 
|  | if (!tnum_is_const(reg->var_off)) { | 
|  | verbose(env, "R%d is not a known constant'\n", | 
|  | regno); | 
|  | return -EACCES; | 
|  | } | 
|  | meta->mem_size = reg->var_off.value; | 
|  | err = mark_chain_precision(env, regno); | 
|  | if (err) | 
|  | return err; | 
|  | break; | 
|  | case ARG_PTR_TO_CONST_STR: | 
|  | { | 
|  | err = check_reg_const_str(env, reg, regno); | 
|  | if (err) | 
|  | return err; | 
|  | break; | 
|  | } | 
|  | case ARG_KPTR_XCHG_DEST: | 
|  | err = process_kptr_func(env, regno, meta); | 
|  | if (err) | 
|  | return err; | 
|  | break; | 
|  | } | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id) | 
|  | { | 
|  | enum bpf_attach_type eatype = env->prog->expected_attach_type; | 
|  | enum bpf_prog_type type = resolve_prog_type(env->prog); | 
|  |  | 
|  | if (func_id != BPF_FUNC_map_update_elem && | 
|  | func_id != BPF_FUNC_map_delete_elem) | 
|  | return false; | 
|  |  | 
|  | /* It's not possible to get access to a locked struct sock in these | 
|  | * contexts, so updating is safe. | 
|  | */ | 
|  | switch (type) { | 
|  | case BPF_PROG_TYPE_TRACING: | 
|  | if (eatype == BPF_TRACE_ITER) | 
|  | return true; | 
|  | break; | 
|  | case BPF_PROG_TYPE_SOCK_OPS: | 
|  | /* map_update allowed only via dedicated helpers with event type checks */ | 
|  | if (func_id == BPF_FUNC_map_delete_elem) | 
|  | return true; | 
|  | break; | 
|  | case BPF_PROG_TYPE_SOCKET_FILTER: | 
|  | case BPF_PROG_TYPE_SCHED_CLS: | 
|  | case BPF_PROG_TYPE_SCHED_ACT: | 
|  | case BPF_PROG_TYPE_XDP: | 
|  | case BPF_PROG_TYPE_SK_REUSEPORT: | 
|  | case BPF_PROG_TYPE_FLOW_DISSECTOR: | 
|  | case BPF_PROG_TYPE_SK_LOOKUP: | 
|  | return true; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | verbose(env, "cannot update sockmap in this context\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env) | 
|  | { | 
|  | return env->prog->jit_requested && | 
|  | bpf_jit_supports_subprog_tailcalls(); | 
|  | } | 
|  |  | 
|  | static int check_map_func_compatibility(struct bpf_verifier_env *env, | 
|  | struct bpf_map *map, int func_id) | 
|  | { | 
|  | if (!map) | 
|  | return 0; | 
|  |  | 
|  | /* We need a two way check, first is from map perspective ... */ | 
|  | switch (map->map_type) { | 
|  | case BPF_MAP_TYPE_PROG_ARRAY: | 
|  | if (func_id != BPF_FUNC_tail_call) | 
|  | goto error; | 
|  | break; | 
|  | case BPF_MAP_TYPE_PERF_EVENT_ARRAY: | 
|  | if (func_id != BPF_FUNC_perf_event_read && | 
|  | func_id != BPF_FUNC_perf_event_output && | 
|  | func_id != BPF_FUNC_skb_output && | 
|  | func_id != BPF_FUNC_perf_event_read_value && | 
|  | func_id != BPF_FUNC_xdp_output) | 
|  | goto error; | 
|  | break; | 
|  | case BPF_MAP_TYPE_RINGBUF: | 
|  | if (func_id != BPF_FUNC_ringbuf_output && | 
|  | func_id != BPF_FUNC_ringbuf_reserve && | 
|  | func_id != BPF_FUNC_ringbuf_query && | 
|  | func_id != BPF_FUNC_ringbuf_reserve_dynptr && | 
|  | func_id != BPF_FUNC_ringbuf_submit_dynptr && | 
|  | func_id != BPF_FUNC_ringbuf_discard_dynptr) | 
|  | goto error; | 
|  | break; | 
|  | case BPF_MAP_TYPE_USER_RINGBUF: | 
|  | if (func_id != BPF_FUNC_user_ringbuf_drain) | 
|  | goto error; | 
|  | break; | 
|  | case BPF_MAP_TYPE_STACK_TRACE: | 
|  | if (func_id != BPF_FUNC_get_stackid) | 
|  | goto error; | 
|  | break; | 
|  | case BPF_MAP_TYPE_CGROUP_ARRAY: | 
|  | if (func_id != BPF_FUNC_skb_under_cgroup && | 
|  | func_id != BPF_FUNC_current_task_under_cgroup) | 
|  | goto error; | 
|  | break; | 
|  | case BPF_MAP_TYPE_CGROUP_STORAGE: | 
|  | case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: | 
|  | if (func_id != BPF_FUNC_get_local_storage) | 
|  | goto error; | 
|  | break; | 
|  | case BPF_MAP_TYPE_DEVMAP: | 
|  | case BPF_MAP_TYPE_DEVMAP_HASH: | 
|  | if (func_id != BPF_FUNC_redirect_map && | 
|  | func_id != BPF_FUNC_map_lookup_elem) | 
|  | goto error; | 
|  | break; | 
|  | /* Restrict bpf side of cpumap and xskmap, open when use-cases | 
|  | * appear. | 
|  | */ | 
|  | case BPF_MAP_TYPE_CPUMAP: | 
|  | if (func_id != BPF_FUNC_redirect_map) | 
|  | goto error; | 
|  | break; | 
|  | case BPF_MAP_TYPE_XSKMAP: | 
|  | if (func_id != BPF_FUNC_redirect_map && | 
|  | func_id != BPF_FUNC_map_lookup_elem) | 
|  | goto error; | 
|  | break; | 
|  | case BPF_MAP_TYPE_ARRAY_OF_MAPS: | 
|  | case BPF_MAP_TYPE_HASH_OF_MAPS: | 
|  | if (func_id != BPF_FUNC_map_lookup_elem) | 
|  | goto error; | 
|  | break; | 
|  | case BPF_MAP_TYPE_SOCKMAP: | 
|  | if (func_id != BPF_FUNC_sk_redirect_map && | 
|  | func_id != BPF_FUNC_sock_map_update && | 
|  | func_id != BPF_FUNC_msg_redirect_map && | 
|  | func_id != BPF_FUNC_sk_select_reuseport && | 
|  | func_id != BPF_FUNC_map_lookup_elem && | 
|  | !may_update_sockmap(env, func_id)) | 
|  | goto error; | 
|  | break; | 
|  | case BPF_MAP_TYPE_SOCKHASH: | 
|  | if (func_id != BPF_FUNC_sk_redirect_hash && | 
|  | func_id != BPF_FUNC_sock_hash_update && | 
|  | func_id != BPF_FUNC_msg_redirect_hash && | 
|  | func_id != BPF_FUNC_sk_select_reuseport && | 
|  | func_id != BPF_FUNC_map_lookup_elem && | 
|  | !may_update_sockmap(env, func_id)) | 
|  | goto error; | 
|  | break; | 
|  | case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY: | 
|  | if (func_id != BPF_FUNC_sk_select_reuseport) | 
|  | goto error; | 
|  | break; | 
|  | case BPF_MAP_TYPE_QUEUE: | 
|  | case BPF_MAP_TYPE_STACK: | 
|  | if (func_id != BPF_FUNC_map_peek_elem && | 
|  | func_id != BPF_FUNC_map_pop_elem && | 
|  | func_id != BPF_FUNC_map_push_elem) | 
|  | goto error; | 
|  | break; | 
|  | case BPF_MAP_TYPE_SK_STORAGE: | 
|  | if (func_id != BPF_FUNC_sk_storage_get && | 
|  | func_id != BPF_FUNC_sk_storage_delete && | 
|  | func_id != BPF_FUNC_kptr_xchg) | 
|  | goto error; | 
|  | break; | 
|  | case BPF_MAP_TYPE_INODE_STORAGE: | 
|  | if (func_id != BPF_FUNC_inode_storage_get && | 
|  | func_id != BPF_FUNC_inode_storage_delete && | 
|  | func_id != BPF_FUNC_kptr_xchg) | 
|  | goto error; | 
|  | break; | 
|  | case BPF_MAP_TYPE_TASK_STORAGE: | 
|  | if (func_id != BPF_FUNC_task_storage_get && | 
|  | func_id != BPF_FUNC_task_storage_delete && | 
|  | func_id != BPF_FUNC_kptr_xchg) | 
|  | goto error; | 
|  | break; | 
|  | case BPF_MAP_TYPE_CGRP_STORAGE: | 
|  | if (func_id != BPF_FUNC_cgrp_storage_get && | 
|  | func_id != BPF_FUNC_cgrp_storage_delete && | 
|  | func_id != BPF_FUNC_kptr_xchg) | 
|  | goto error; | 
|  | break; | 
|  | case BPF_MAP_TYPE_BLOOM_FILTER: | 
|  | if (func_id != BPF_FUNC_map_peek_elem && | 
|  | func_id != BPF_FUNC_map_push_elem) | 
|  | goto error; | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* ... and second from the function itself. */ | 
|  | switch (func_id) { | 
|  | case BPF_FUNC_tail_call: | 
|  | if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) | 
|  | goto error; | 
|  | if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) { | 
|  | verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | break; | 
|  | case BPF_FUNC_perf_event_read: | 
|  | case BPF_FUNC_perf_event_output: | 
|  | case BPF_FUNC_perf_event_read_value: | 
|  | case BPF_FUNC_skb_output: | 
|  | case BPF_FUNC_xdp_output: | 
|  | if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) | 
|  | goto error; | 
|  | break; | 
|  | case BPF_FUNC_ringbuf_output: | 
|  | case BPF_FUNC_ringbuf_reserve: | 
|  | case BPF_FUNC_ringbuf_query: | 
|  | case BPF_FUNC_ringbuf_reserve_dynptr: | 
|  | case BPF_FUNC_ringbuf_submit_dynptr: | 
|  | case BPF_FUNC_ringbuf_discard_dynptr: | 
|  | if (map->map_type != BPF_MAP_TYPE_RINGBUF) | 
|  | goto error; | 
|  | break; | 
|  | case BPF_FUNC_user_ringbuf_drain: | 
|  | if (map->map_type != BPF_MAP_TYPE_USER_RINGBUF) | 
|  | goto error; | 
|  | break; | 
|  | case BPF_FUNC_get_stackid: | 
|  | if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) | 
|  | goto error; | 
|  | break; | 
|  | case BPF_FUNC_current_task_under_cgroup: | 
|  | case BPF_FUNC_skb_under_cgroup: | 
|  | if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) | 
|  | goto error; | 
|  | break; | 
|  | case BPF_FUNC_redirect_map: | 
|  | if (map->map_type != BPF_MAP_TYPE_DEVMAP && | 
|  | map->map_type != BPF_MAP_TYPE_DEVMAP_HASH && | 
|  | map->map_type != BPF_MAP_TYPE_CPUMAP && | 
|  | map->map_type != BPF_MAP_TYPE_XSKMAP) | 
|  | goto error; | 
|  | break; | 
|  | case BPF_FUNC_sk_redirect_map: | 
|  | case BPF_FUNC_msg_redirect_map: | 
|  | case BPF_FUNC_sock_map_update: | 
|  | if (map->map_type != BPF_MAP_TYPE_SOCKMAP) | 
|  | goto error; | 
|  | break; | 
|  | case BPF_FUNC_sk_redirect_hash: | 
|  | case BPF_FUNC_msg_redirect_hash: | 
|  | case BPF_FUNC_sock_hash_update: | 
|  | if (map->map_type != BPF_MAP_TYPE_SOCKHASH) | 
|  | goto error; | 
|  | break; | 
|  | case BPF_FUNC_get_local_storage: | 
|  | if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE && | 
|  | map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE) | 
|  | goto error; | 
|  | break; | 
|  | case BPF_FUNC_sk_select_reuseport: | 
|  | if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY && | 
|  | map->map_type != BPF_MAP_TYPE_SOCKMAP && | 
|  | map->map_type != BPF_MAP_TYPE_SOCKHASH) | 
|  | goto error; | 
|  | break; | 
|  | case BPF_FUNC_map_pop_elem: | 
|  | if (map->map_type != BPF_MAP_TYPE_QUEUE && | 
|  | map->map_type != BPF_MAP_TYPE_STACK) | 
|  | goto error; | 
|  | break; | 
|  | case BPF_FUNC_map_peek_elem: | 
|  | case BPF_FUNC_map_push_elem: | 
|  | if (map->map_type != BPF_MAP_TYPE_QUEUE && | 
|  | map->map_type != BPF_MAP_TYPE_STACK && | 
|  | map->map_type != BPF_MAP_TYPE_BLOOM_FILTER) | 
|  | goto error; | 
|  | break; | 
|  | case BPF_FUNC_map_lookup_percpu_elem: | 
|  | if (map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY && | 
|  | map->map_type != BPF_MAP_TYPE_PERCPU_HASH && | 
|  | map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH) | 
|  | goto error; | 
|  | break; | 
|  | case BPF_FUNC_sk_storage_get: | 
|  | case BPF_FUNC_sk_storage_delete: | 
|  | if (map->map_type != BPF_MAP_TYPE_SK_STORAGE) | 
|  | goto error; | 
|  | break; | 
|  | case BPF_FUNC_inode_storage_get: | 
|  | case BPF_FUNC_inode_storage_delete: | 
|  | if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE) | 
|  | goto error; | 
|  | break; | 
|  | case BPF_FUNC_task_storage_get: | 
|  | case BPF_FUNC_task_storage_delete: | 
|  | if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE) | 
|  | goto error; | 
|  | break; | 
|  | case BPF_FUNC_cgrp_storage_get: | 
|  | case BPF_FUNC_cgrp_storage_delete: | 
|  | if (map->map_type != BPF_MAP_TYPE_CGRP_STORAGE) | 
|  | goto error; | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | error: | 
|  | verbose(env, "cannot pass map_type %d into func %s#%d\n", | 
|  | map->map_type, func_id_name(func_id), func_id); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | static bool check_raw_mode_ok(const struct bpf_func_proto *fn) | 
|  | { | 
|  | int count = 0; | 
|  |  | 
|  | if (arg_type_is_raw_mem(fn->arg1_type)) | 
|  | count++; | 
|  | if (arg_type_is_raw_mem(fn->arg2_type)) | 
|  | count++; | 
|  | if (arg_type_is_raw_mem(fn->arg3_type)) | 
|  | count++; | 
|  | if (arg_type_is_raw_mem(fn->arg4_type)) | 
|  | count++; | 
|  | if (arg_type_is_raw_mem(fn->arg5_type)) | 
|  | count++; | 
|  |  | 
|  | /* We only support one arg being in raw mode at the moment, | 
|  | * which is sufficient for the helper functions we have | 
|  | * right now. | 
|  | */ | 
|  | return count <= 1; | 
|  | } | 
|  |  | 
|  | static bool check_args_pair_invalid(const struct bpf_func_proto *fn, int arg) | 
|  | { | 
|  | bool is_fixed = fn->arg_type[arg] & MEM_FIXED_SIZE; | 
|  | bool has_size = fn->arg_size[arg] != 0; | 
|  | bool is_next_size = false; | 
|  |  | 
|  | if (arg + 1 < ARRAY_SIZE(fn->arg_type)) | 
|  | is_next_size = arg_type_is_mem_size(fn->arg_type[arg + 1]); | 
|  |  | 
|  | if (base_type(fn->arg_type[arg]) != ARG_PTR_TO_MEM) | 
|  | return is_next_size; | 
|  |  | 
|  | return has_size == is_next_size || is_next_size == is_fixed; | 
|  | } | 
|  |  | 
|  | static bool check_arg_pair_ok(const struct bpf_func_proto *fn) | 
|  | { | 
|  | /* bpf_xxx(..., buf, len) call will access 'len' | 
|  | * bytes from memory 'buf'. Both arg types need | 
|  | * to be paired, so make sure there's no buggy | 
|  | * helper function specification. | 
|  | */ | 
|  | if (arg_type_is_mem_size(fn->arg1_type) || | 
|  | check_args_pair_invalid(fn, 0) || | 
|  | check_args_pair_invalid(fn, 1) || | 
|  | check_args_pair_invalid(fn, 2) || | 
|  | check_args_pair_invalid(fn, 3) || | 
|  | check_args_pair_invalid(fn, 4)) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool check_btf_id_ok(const struct bpf_func_proto *fn) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) { | 
|  | if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID) | 
|  | return !!fn->arg_btf_id[i]; | 
|  | if (base_type(fn->arg_type[i]) == ARG_PTR_TO_SPIN_LOCK) | 
|  | return fn->arg_btf_id[i] == BPF_PTR_POISON; | 
|  | if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i] && | 
|  | /* arg_btf_id and arg_size are in a union. */ | 
|  | (base_type(fn->arg_type[i]) != ARG_PTR_TO_MEM || | 
|  | !(fn->arg_type[i] & MEM_FIXED_SIZE))) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static int check_func_proto(const struct bpf_func_proto *fn, int func_id) | 
|  | { | 
|  | return check_raw_mode_ok(fn) && | 
|  | check_arg_pair_ok(fn) && | 
|  | check_btf_id_ok(fn) ? 0 : -EINVAL; | 
|  | } | 
|  |  | 
|  | /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] | 
|  | * are now invalid, so turn them into unknown SCALAR_VALUE. | 
|  | * | 
|  | * This also applies to dynptr slices belonging to skb and xdp dynptrs, | 
|  | * since these slices point to packet data. | 
|  | */ | 
|  | static void clear_all_pkt_pointers(struct bpf_verifier_env *env) | 
|  | { | 
|  | struct bpf_func_state *state; | 
|  | struct bpf_reg_state *reg; | 
|  |  | 
|  | bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ | 
|  | if (reg_is_pkt_pointer_any(reg) || reg_is_dynptr_slice_pkt(reg)) | 
|  | mark_reg_invalid(env, reg); | 
|  | })); | 
|  | } | 
|  |  | 
|  | enum { | 
|  | AT_PKT_END = -1, | 
|  | BEYOND_PKT_END = -2, | 
|  | }; | 
|  |  | 
|  | static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open) | 
|  | { | 
|  | struct bpf_func_state *state = vstate->frame[vstate->curframe]; | 
|  | struct bpf_reg_state *reg = &state->regs[regn]; | 
|  |  | 
|  | if (reg->type != PTR_TO_PACKET) | 
|  | /* PTR_TO_PACKET_META is not supported yet */ | 
|  | return; | 
|  |  | 
|  | /* The 'reg' is pkt > pkt_end or pkt >= pkt_end. | 
|  | * How far beyond pkt_end it goes is unknown. | 
|  | * if (!range_open) it's the case of pkt >= pkt_end | 
|  | * if (range_open) it's the case of pkt > pkt_end | 
|  | * hence this pointer is at least 1 byte bigger than pkt_end | 
|  | */ | 
|  | if (range_open) | 
|  | reg->range = BEYOND_PKT_END; | 
|  | else | 
|  | reg->range = AT_PKT_END; | 
|  | } | 
|  |  | 
|  | /* The pointer with the specified id has released its reference to kernel | 
|  | * resources. Identify all copies of the same pointer and clear the reference. | 
|  | */ | 
|  | static int release_reference(struct bpf_verifier_env *env, | 
|  | int ref_obj_id) | 
|  | { | 
|  | struct bpf_func_state *state; | 
|  | struct bpf_reg_state *reg; | 
|  | int err; | 
|  |  | 
|  | err = release_reference_state(cur_func(env), ref_obj_id); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ | 
|  | if (reg->ref_obj_id == ref_obj_id) | 
|  | mark_reg_invalid(env, reg); | 
|  | })); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void invalidate_non_owning_refs(struct bpf_verifier_env *env) | 
|  | { | 
|  | struct bpf_func_state *unused; | 
|  | struct bpf_reg_state *reg; | 
|  |  | 
|  | bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({ | 
|  | if (type_is_non_owning_ref(reg->type)) | 
|  | mark_reg_invalid(env, reg); | 
|  | })); | 
|  | } | 
|  |  | 
|  | static void clear_caller_saved_regs(struct bpf_verifier_env *env, | 
|  | struct bpf_reg_state *regs) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | /* after the call registers r0 - r5 were scratched */ | 
|  | for (i = 0; i < CALLER_SAVED_REGS; i++) { | 
|  | mark_reg_not_init(env, regs, caller_saved[i]); | 
|  | __check_reg_arg(env, regs, caller_saved[i], DST_OP_NO_MARK); | 
|  | } | 
|  | } | 
|  |  | 
|  | typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env, | 
|  | struct bpf_func_state *caller, | 
|  | struct bpf_func_state *callee, | 
|  | int insn_idx); | 
|  |  | 
|  | static int set_callee_state(struct bpf_verifier_env *env, | 
|  | struct bpf_func_state *caller, | 
|  | struct bpf_func_state *callee, int insn_idx); | 
|  |  | 
|  | static int setup_func_entry(struct bpf_verifier_env *env, int subprog, int callsite, | 
|  | set_callee_state_fn set_callee_state_cb, | 
|  | struct bpf_verifier_state *state) | 
|  | { | 
|  | struct bpf_func_state *caller, *callee; | 
|  | int err; | 
|  |  | 
|  | if (state->curframe + 1 >= MAX_CALL_FRAMES) { | 
|  | verbose(env, "the call stack of %d frames is too deep\n", | 
|  | state->curframe + 2); | 
|  | return -E2BIG; | 
|  | } | 
|  |  | 
|  | if (state->frame[state->curframe + 1]) { | 
|  | verbose(env, "verifier bug. Frame %d already allocated\n", | 
|  | state->curframe + 1); | 
|  | return -EFAULT; | 
|  | } | 
|  |  | 
|  | caller = state->frame[state->curframe]; | 
|  | callee = kzalloc(sizeof(*callee), GFP_KERNEL); | 
|  | if (!callee) | 
|  | return -ENOMEM; | 
|  | state->frame[state->curframe + 1] = callee; | 
|  |  | 
|  | /* callee cannot access r0, r6 - r9 for reading and has to write | 
|  | * into its own stack before reading from it. | 
|  | * callee can read/write into caller's stack | 
|  | */ | 
|  | init_func_state(env, callee, | 
|  | /* remember the callsite, it will be used by bpf_exit */ | 
|  | callsite, | 
|  | state->curframe + 1 /* frameno within this callchain */, | 
|  | subprog /* subprog number within this prog */); | 
|  | /* Transfer references to the callee */ | 
|  | err = copy_reference_state(callee, caller); | 
|  | err = err ?: set_callee_state_cb(env, caller, callee, callsite); | 
|  | if (err) | 
|  | goto err_out; | 
|  |  | 
|  | /* only increment it after check_reg_arg() finished */ | 
|  | state->curframe++; | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | err_out: | 
|  | free_func_state(callee); | 
|  | state->frame[state->curframe + 1] = NULL; | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int btf_check_func_arg_match(struct bpf_verifier_env *env, int subprog, | 
|  | const struct btf *btf, | 
|  | struct bpf_reg_state *regs) | 
|  | { | 
|  | struct bpf_subprog_info *sub = subprog_info(env, subprog); | 
|  | struct bpf_verifier_log *log = &env->log; | 
|  | u32 i; | 
|  | int ret; | 
|  |  | 
|  | ret = btf_prepare_func_args(env, subprog); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | /* check that BTF function arguments match actual types that the | 
|  | * verifier sees. | 
|  | */ | 
|  | for (i = 0; i < sub->arg_cnt; i++) { | 
|  | u32 regno = i + 1; | 
|  | struct bpf_reg_state *reg = ®s[regno]; | 
|  | struct bpf_subprog_arg_info *arg = &sub->args[i]; | 
|  |  | 
|  | if (arg->arg_type == ARG_ANYTHING) { | 
|  | if (reg->type != SCALAR_VALUE) { | 
|  | bpf_log(log, "R%d is not a scalar\n", regno); | 
|  | return -EINVAL; | 
|  | } | 
|  | } else if (arg->arg_type == ARG_PTR_TO_CTX) { | 
|  | ret = check_func_arg_reg_off(env, reg, regno, ARG_DONTCARE); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | /* If function expects ctx type in BTF check that caller | 
|  | * is passing PTR_TO_CTX. | 
|  | */ | 
|  | if (reg->type != PTR_TO_CTX) { | 
|  | bpf_log(log, "arg#%d expects pointer to ctx\n", i); | 
|  | return -EINVAL; | 
|  | } | 
|  | } else if (base_type(arg->arg_type) == ARG_PTR_TO_MEM) { | 
|  | ret = check_func_arg_reg_off(env, reg, regno, ARG_DONTCARE); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | if (check_mem_reg(env, reg, regno, arg->mem_size)) | 
|  | return -EINVAL; | 
|  | if (!(arg->arg_type & PTR_MAYBE_NULL) && (reg->type & PTR_MAYBE_NULL)) { | 
|  | bpf_log(log, "arg#%d is expected to be non-NULL\n", i); | 
|  | return -EINVAL; | 
|  | } | 
|  | } else if (base_type(arg->arg_type) == ARG_PTR_TO_ARENA) { | 
|  | /* | 
|  | * Can pass any value and the kernel won't crash, but | 
|  | * only PTR_TO_ARENA or SCALAR make sense. Everything | 
|  | * else is a bug in the bpf program. Point it out to | 
|  | * the user at the verification time instead of | 
|  | * run-time debug nightmare. | 
|  | */ | 
|  | if (reg->type != PTR_TO_ARENA && reg->type != SCALAR_VALUE) { | 
|  | bpf_log(log, "R%d is not a pointer to arena or scalar.\n", regno); | 
|  | return -EINVAL; | 
|  | } | 
|  | } else if (arg->arg_type == (ARG_PTR_TO_DYNPTR | MEM_RDONLY)) { | 
|  | ret = check_func_arg_reg_off(env, reg, regno, ARG_PTR_TO_DYNPTR); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = process_dynptr_func(env, regno, -1, arg->arg_type, 0); | 
|  | if (ret) | 
|  | return ret; | 
|  | } else if (base_type(arg->arg_type) == ARG_PTR_TO_BTF_ID) { | 
|  | struct bpf_call_arg_meta meta; | 
|  | int err; | 
|  |  | 
|  | if (register_is_null(reg) && type_may_be_null(arg->arg_type)) | 
|  | continue; | 
|  |  | 
|  | memset(&meta, 0, sizeof(meta)); /* leave func_id as zero */ | 
|  | err = check_reg_type(env, regno, arg->arg_type, &arg->btf_id, &meta); | 
|  | err = err ?: check_func_arg_reg_off(env, reg, regno, arg->arg_type); | 
|  | if (err) | 
|  | return err; | 
|  | } else { | 
|  | bpf_log(log, "verifier bug: unrecognized arg#%d type %d\n", | 
|  | i, arg->arg_type); | 
|  | return -EFAULT; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Compare BTF of a function call with given bpf_reg_state. | 
|  | * Returns: | 
|  | * EFAULT - there is a verifier bug. Abort verification. | 
|  | * EINVAL - there is a type mismatch or BTF is not available. | 
|  | * 0 - BTF matches with what bpf_reg_state expects. | 
|  | * Only PTR_TO_CTX and SCALAR_VALUE states are recognized. | 
|  | */ | 
|  | static int btf_check_subprog_call(struct bpf_verifier_env *env, int subprog, | 
|  | struct bpf_reg_state *regs) | 
|  | { | 
|  | struct bpf_prog *prog = env->prog; | 
|  | struct btf *btf = prog->aux->btf; | 
|  | u32 btf_id; | 
|  | int err; | 
|  |  | 
|  | if (!prog->aux->func_info) | 
|  | return -EINVAL; | 
|  |  | 
|  | btf_id = prog->aux->func_info[subprog].type_id; | 
|  | if (!btf_id) | 
|  | return -EFAULT; | 
|  |  | 
|  | if (prog->aux->func_info_aux[subprog].unreliable) | 
|  | return -EINVAL; | 
|  |  | 
|  | err = btf_check_func_arg_match(env, subprog, btf, regs); | 
|  | /* Compiler optimizations can remove arguments from static functions | 
|  | * or mismatched type can be passed into a global function. | 
|  | * In such cases mark the function as unreliable from BTF point of view. | 
|  | */ | 
|  | if (err) | 
|  | prog->aux->func_info_aux[subprog].unreliable = true; | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int push_callback_call(struct bpf_verifier_env *env, struct bpf_insn *insn, | 
|  | int insn_idx, int subprog, | 
|  | set_callee_state_fn set_callee_state_cb) | 
|  | { | 
|  | struct bpf_verifier_state *state = env->cur_state, *callback_state; | 
|  | struct bpf_func_state *caller, *callee; | 
|  | int err; | 
|  |  | 
|  | caller = state->frame[state->curframe]; | 
|  | err = btf_check_subprog_call(env, subprog, caller->regs); | 
|  | if (err == -EFAULT) | 
|  | return err; | 
|  |  | 
|  | /* set_callee_state is used for direct subprog calls, but we are | 
|  | * interested in validating only BPF helpers that can call subprogs as | 
|  | * callbacks | 
|  | */ | 
|  | env->subprog_info[subprog].is_cb = true; | 
|  | if (bpf_pseudo_kfunc_call(insn) && | 
|  | !is_callback_calling_kfunc(insn->imm)) { | 
|  | verbose(env, "verifier bug: kfunc %s#%d not marked as callback-calling\n", | 
|  | func_id_name(insn->imm), insn->imm); | 
|  | return -EFAULT; | 
|  | } else if (!bpf_pseudo_kfunc_call(insn) && | 
|  | !is_callback_calling_function(insn->imm)) { /* helper */ | 
|  | verbose(env, "verifier bug: helper %s#%d not marked as callback-calling\n", | 
|  | func_id_name(insn->imm), insn->imm); | 
|  | return -EFAULT; | 
|  | } | 
|  |  | 
|  | if (is_async_callback_calling_insn(insn)) { | 
|  | struct bpf_verifier_state *async_cb; | 
|  |  | 
|  | /* there is no real recursion here. timer and workqueue callbacks are async */ | 
|  | env->subprog_info[subprog].is_async_cb = true; | 
|  | async_cb = push_async_cb(env, env->subprog_info[subprog].start, | 
|  | insn_idx, subprog, | 
|  | is_bpf_wq_set_callback_impl_kfunc(insn->imm)); | 
|  | if (!async_cb) | 
|  | return -EFAULT; | 
|  | callee = async_cb->frame[0]; | 
|  | callee->async_entry_cnt = caller->async_entry_cnt + 1; | 
|  |  | 
|  | /* Convert bpf_timer_set_callback() args into timer callback args */ | 
|  | err = set_callee_state_cb(env, caller, callee, insn_idx); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* for callback functions enqueue entry to callback and | 
|  | * proceed with next instruction within current frame. | 
|  | */ | 
|  | callback_state = push_stack(env, env->subprog_info[subprog].start, insn_idx, false); | 
|  | if (!callback_state) | 
|  | return -ENOMEM; | 
|  |  | 
|  | err = setup_func_entry(env, subprog, insn_idx, set_callee_state_cb, | 
|  | callback_state); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | callback_state->callback_unroll_depth++; | 
|  | callback_state->frame[callback_state->curframe - 1]->callback_depth++; | 
|  | caller->callback_depth = 0; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, | 
|  | int *insn_idx) | 
|  | { | 
|  | struct bpf_verifier_state *state = env->cur_state; | 
|  | struct bpf_func_state *caller; | 
|  | int err, subprog, target_insn; | 
|  |  | 
|  | target_insn = *insn_idx + insn->imm + 1; | 
|  | subprog = find_subprog(env, target_insn); | 
|  | if (subprog < 0) { | 
|  | verbose(env, "verifier bug. No program starts at insn %d\n", target_insn); | 
|  | return -EFAULT; | 
|  | } | 
|  |  | 
|  | caller = state->frame[state->curframe]; | 
|  | err = btf_check_subprog_call(env, subprog, caller->regs); | 
|  | if (err == -EFAULT) | 
|  | return err; | 
|  | if (subprog_is_global(env, subprog)) { | 
|  | const char *sub_name = subprog_name(env, subprog); | 
|  |  | 
|  | /* Only global subprogs cannot be called with a lock held. */ | 
|  | if (env->cur_state->active_lock.ptr) { | 
|  | verbose(env, "global function calls are not allowed while holding a lock,\n" | 
|  | "use static function instead\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* Only global subprogs cannot be called with preemption disabled. */ | 
|  | if (env->cur_state->active_preempt_lock) { | 
|  | verbose(env, "global function calls are not allowed with preemption disabled,\n" | 
|  | "use static function instead\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (err) { | 
|  | verbose(env, "Caller passes invalid args into func#%d ('%s')\n", | 
|  | subprog, sub_name); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | verbose(env, "Func#%d ('%s') is global and assumed valid.\n", | 
|  | subprog, sub_name); | 
|  | /* mark global subprog for verifying after main prog */ | 
|  | subprog_aux(env, subprog)->called = true; | 
|  | clear_caller_saved_regs(env, caller->regs); | 
|  |  | 
|  | /* All global functions return a 64-bit SCALAR_VALUE */ | 
|  | mark_reg_unknown(env, caller->regs, BPF_REG_0); | 
|  | caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; | 
|  |  | 
|  | /* continue with next insn after call */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* for regular function entry setup new frame and continue | 
|  | * from that frame. | 
|  | */ | 
|  | err = setup_func_entry(env, subprog, *insn_idx, set_callee_state, state); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | clear_caller_saved_regs(env, caller->regs); | 
|  |  | 
|  | /* and go analyze first insn of the callee */ | 
|  | *insn_idx = env->subprog_info[subprog].start - 1; | 
|  |  | 
|  | if (env->log.level & BPF_LOG_LEVEL) { | 
|  | verbose(env, "caller:\n"); | 
|  | print_verifier_state(env, caller, true); | 
|  | verbose(env, "callee:\n"); | 
|  | print_verifier_state(env, state->frame[state->curframe], true); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int map_set_for_each_callback_args(struct bpf_verifier_env *env, | 
|  | struct bpf_func_state *caller, | 
|  | struct bpf_func_state *callee) | 
|  | { | 
|  | /* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn, | 
|  | *      void *callback_ctx, u64 flags); | 
|  | * callback_fn(struct bpf_map *map, void *key, void *value, | 
|  | *      void *callback_ctx); | 
|  | */ | 
|  | callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; | 
|  |  | 
|  | callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; | 
|  | __mark_reg_known_zero(&callee->regs[BPF_REG_2]); | 
|  | callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr; | 
|  |  | 
|  | callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; | 
|  | __mark_reg_known_zero(&callee->regs[BPF_REG_3]); | 
|  | callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr; | 
|  |  | 
|  | /* pointer to stack or null */ | 
|  | callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3]; | 
|  |  | 
|  | /* unused */ | 
|  | __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int set_callee_state(struct bpf_verifier_env *env, | 
|  | struct bpf_func_state *caller, | 
|  | struct bpf_func_state *callee, int insn_idx) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | /* copy r1 - r5 args that callee can access.  The copy includes parent | 
|  | * pointers, which connects us up to the liveness chain | 
|  | */ | 
|  | for (i = BPF_REG_1; i <= BPF_REG_5; i++) | 
|  | callee->regs[i] = caller->regs[i]; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int set_map_elem_callback_state(struct bpf_verifier_env *env, | 
|  | struct bpf_func_state *caller, | 
|  | struct bpf_func_state *callee, | 
|  | int insn_idx) | 
|  | { | 
|  | struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx]; | 
|  | struct bpf_map *map; | 
|  | int err; | 
|  |  | 
|  | /* valid map_ptr and poison value does not matter */ | 
|  | map = insn_aux->map_ptr_state.map_ptr; | 
|  | if (!map->ops->map_set_for_each_callback_args || | 
|  | !map->ops->map_for_each_callback) { | 
|  | verbose(env, "callback function not allowed for map\n"); | 
|  | return -ENOTSUPP; | 
|  | } | 
|  |  | 
|  | err = map->ops->map_set_for_each_callback_args(env, caller, callee); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | callee->in_callback_fn = true; | 
|  | callee->callback_ret_range = retval_range(0, 1); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int set_loop_callback_state(struct bpf_verifier_env *env, | 
|  | struct bpf_func_state *caller, | 
|  | struct bpf_func_state *callee, | 
|  | int insn_idx) | 
|  | { | 
|  | /* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx, | 
|  | *	    u64 flags); | 
|  | * callback_fn(u32 index, void *callback_ctx); | 
|  | */ | 
|  | callee->regs[BPF_REG_1].type = SCALAR_VALUE; | 
|  | callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3]; | 
|  |  | 
|  | /* unused */ | 
|  | __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); | 
|  | __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); | 
|  | __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); | 
|  |  | 
|  | callee->in_callback_fn = true; | 
|  | callee->callback_ret_range = retval_range(0, 1); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int set_timer_callback_state(struct bpf_verifier_env *env, | 
|  | struct bpf_func_state *caller, | 
|  | struct bpf_func_state *callee, | 
|  | int insn_idx) | 
|  | { | 
|  | struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr; | 
|  |  | 
|  | /* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn); | 
|  | * callback_fn(struct bpf_map *map, void *key, void *value); | 
|  | */ | 
|  | callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP; | 
|  | __mark_reg_known_zero(&callee->regs[BPF_REG_1]); | 
|  | callee->regs[BPF_REG_1].map_ptr = map_ptr; | 
|  |  | 
|  | callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; | 
|  | __mark_reg_known_zero(&callee->regs[BPF_REG_2]); | 
|  | callee->regs[BPF_REG_2].map_ptr = map_ptr; | 
|  |  | 
|  | callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; | 
|  | __mark_reg_known_zero(&callee->regs[BPF_REG_3]); | 
|  | callee->regs[BPF_REG_3].map_ptr = map_ptr; | 
|  |  | 
|  | /* unused */ | 
|  | __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); | 
|  | __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); | 
|  | callee->in_async_callback_fn = true; | 
|  | callee->callback_ret_range = retval_range(0, 1); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int set_find_vma_callback_state(struct bpf_verifier_env *env, | 
|  | struct bpf_func_state *caller, | 
|  | struct bpf_func_state *callee, | 
|  | int insn_idx) | 
|  | { | 
|  | /* bpf_find_vma(struct task_struct *task, u64 addr, | 
|  | *               void *callback_fn, void *callback_ctx, u64 flags) | 
|  | * (callback_fn)(struct task_struct *task, | 
|  | *               struct vm_area_struct *vma, void *callback_ctx); | 
|  | */ | 
|  | callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; | 
|  |  | 
|  | callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID; | 
|  | __mark_reg_known_zero(&callee->regs[BPF_REG_2]); | 
|  | callee->regs[BPF_REG_2].btf =  btf_vmlinux; | 
|  | callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA]; | 
|  |  | 
|  | /* pointer to stack or null */ | 
|  | callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4]; | 
|  |  | 
|  | /* unused */ | 
|  | __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); | 
|  | __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); | 
|  | callee->in_callback_fn = true; | 
|  | callee->callback_ret_range = retval_range(0, 1); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int set_user_ringbuf_callback_state(struct bpf_verifier_env *env, | 
|  | struct bpf_func_state *caller, | 
|  | struct bpf_func_state *callee, | 
|  | int insn_idx) | 
|  | { | 
|  | /* bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void | 
|  | *			  callback_ctx, u64 flags); | 
|  | * callback_fn(const struct bpf_dynptr_t* dynptr, void *callback_ctx); | 
|  | */ | 
|  | __mark_reg_not_init(env, &callee->regs[BPF_REG_0]); | 
|  | mark_dynptr_cb_reg(env, &callee->regs[BPF_REG_1], BPF_DYNPTR_TYPE_LOCAL); | 
|  | callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3]; | 
|  |  | 
|  | /* unused */ | 
|  | __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); | 
|  | __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); | 
|  | __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); | 
|  |  | 
|  | callee->in_callback_fn = true; | 
|  | callee->callback_ret_range = retval_range(0, 1); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int set_rbtree_add_callback_state(struct bpf_verifier_env *env, | 
|  | struct bpf_func_state *caller, | 
|  | struct bpf_func_state *callee, | 
|  | int insn_idx) | 
|  | { | 
|  | /* void bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node, | 
|  | *                     bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b)); | 
|  | * | 
|  | * 'struct bpf_rb_node *node' arg to bpf_rbtree_add_impl is the same PTR_TO_BTF_ID w/ offset | 
|  | * that 'less' callback args will be receiving. However, 'node' arg was release_reference'd | 
|  | * by this point, so look at 'root' | 
|  | */ | 
|  | struct btf_field *field; | 
|  |  | 
|  | field = reg_find_field_offset(&caller->regs[BPF_REG_1], caller->regs[BPF_REG_1].off, | 
|  | BPF_RB_ROOT); | 
|  | if (!field || !field->graph_root.value_btf_id) | 
|  | return -EFAULT; | 
|  |  | 
|  | mark_reg_graph_node(callee->regs, BPF_REG_1, &field->graph_root); | 
|  | ref_set_non_owning(env, &callee->regs[BPF_REG_1]); | 
|  | mark_reg_graph_node(callee->regs, BPF_REG_2, &field->graph_root); | 
|  | ref_set_non_owning(env, &callee->regs[BPF_REG_2]); | 
|  |  | 
|  | __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); | 
|  | __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); | 
|  | __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); | 
|  | callee->in_callback_fn = true; | 
|  | callee->callback_ret_range = retval_range(0, 1); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static bool is_rbtree_lock_required_kfunc(u32 btf_id); | 
|  |  | 
|  | /* Are we currently verifying the callback for a rbtree helper that must | 
|  | * be called with lock held? If so, no need to complain about unreleased | 
|  | * lock | 
|  | */ | 
|  | static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env) | 
|  | { | 
|  | struct bpf_verifier_state *state = env->cur_state; | 
|  | struct bpf_insn *insn = env->prog->insnsi; | 
|  | struct bpf_func_state *callee; | 
|  | int kfunc_btf_id; | 
|  |  | 
|  | if (!state->curframe) | 
|  | return false; | 
|  |  | 
|  | callee = state->frame[state->curframe]; | 
|  |  | 
|  | if (!callee->in_callback_fn) | 
|  | return false; | 
|  |  | 
|  | kfunc_btf_id = insn[callee->callsite].imm; | 
|  | return is_rbtree_lock_required_kfunc(kfunc_btf_id); | 
|  | } | 
|  |  | 
|  | static bool retval_range_within(struct bpf_retval_range range, const struct bpf_reg_state *reg, | 
|  | bool return_32bit) | 
|  | { | 
|  | if (return_32bit) | 
|  | return range.minval <= reg->s32_min_value && reg->s32_max_value <= range.maxval; | 
|  | else | 
|  | return range.minval <= reg->smin_value && reg->smax_value <= range.maxval; | 
|  | } | 
|  |  | 
|  | static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) | 
|  | { | 
|  | struct bpf_verifier_state *state = env->cur_state, *prev_st; | 
|  | struct bpf_func_state *caller, *callee; | 
|  | struct bpf_reg_state *r0; | 
|  | bool in_callback_fn; | 
|  | int err; | 
|  |  | 
|  | callee = state->frame[state->curframe]; | 
|  | r0 = &callee->regs[BPF_REG_0]; | 
|  | if (r0->type == PTR_TO_STACK) { | 
|  | /* technically it's ok to return caller's stack pointer | 
|  | * (or caller's caller's pointer) back to the caller, | 
|  | * since these pointers are valid. Only current stack | 
|  | * pointer will be invalid as soon as function exits, | 
|  | * but let's be conservative | 
|  | */ | 
|  | verbose(env, "cannot return stack pointer to the caller\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | caller = state->frame[state->curframe - 1]; | 
|  | if (callee->in_callback_fn) { | 
|  | if (r0->type != SCALAR_VALUE) { | 
|  | verbose(env, "R0 not a scalar value\n"); | 
|  | return -EACCES; | 
|  | } | 
|  |  | 
|  | /* we are going to rely on register's precise value */ | 
|  | err = mark_reg_read(env, r0, r0->parent, REG_LIVE_READ64); | 
|  | err = err ?: mark_chain_precision(env, BPF_REG_0); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | /* enforce R0 return value range, and bpf_callback_t returns 64bit */ | 
|  | if (!retval_range_within(callee->callback_ret_range, r0, false)) { | 
|  | verbose_invalid_scalar(env, r0, callee->callback_ret_range, | 
|  | "At callback return", "R0"); | 
|  | return -EINVAL; | 
|  | } | 
|  | if (!calls_callback(env, callee->callsite)) { | 
|  | verbose(env, "BUG: in callback at %d, callsite %d !calls_callback\n", | 
|  | *insn_idx, callee->callsite); | 
|  | return -EFAULT; | 
|  | } | 
|  | } else { | 
|  | /* return to the caller whatever r0 had in the callee */ | 
|  | caller->regs[BPF_REG_0] = *r0; | 
|  | } | 
|  |  | 
|  | /* callback_fn frame should have released its own additions to parent's | 
|  | * reference state at this point, or check_reference_leak would | 
|  | * complain, hence it must be the same as the caller. There is no need | 
|  | * to copy it back. | 
|  | */ | 
|  | if (!callee->in_callback_fn) { | 
|  | /* Transfer references to the caller */ | 
|  | err = copy_reference_state(caller, callee); | 
|  | if (err) | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* for callbacks like bpf_loop or bpf_for_each_map_elem go back to callsite, | 
|  | * there function call logic would reschedule callback visit. If iteration | 
|  | * converges is_state_visited() would prune that visit eventually. | 
|  | */ | 
|  | in_callback_fn = callee->in_callback_fn; | 
|  | if (in_callback_fn) | 
|  | *insn_idx = callee->callsite; | 
|  | else | 
|  | *insn_idx = callee->callsite + 1; | 
|  |  | 
|  | if (env->log.level & BPF_LOG_LEVEL) { | 
|  | verbose(env, "returning from callee:\n"); | 
|  | print_verifier_state(env, callee, true); | 
|  | verbose(env, "to caller at %d:\n", *insn_idx); | 
|  | print_verifier_state(env, caller, true); | 
|  | } | 
|  | /* clear everything in the callee. In case of exceptional exits using | 
|  | * bpf_throw, this will be done by copy_verifier_state for extra frames. */ | 
|  | free_func_state(callee); | 
|  | state->frame[state->curframe--] = NULL; | 
|  |  | 
|  | /* for callbacks widen imprecise scalars to make programs like below verify: | 
|  | * | 
|  | *   struct ctx { int i; } | 
|  | *   void cb(int idx, struct ctx *ctx) { ctx->i++; ... } | 
|  | *   ... | 
|  | *   struct ctx = { .i = 0; } | 
|  | *   bpf_loop(100, cb, &ctx, 0); | 
|  | * | 
|  | * This is similar to what is done in process_iter_next_call() for open | 
|  | * coded iterators. | 
|  | */ | 
|  | prev_st = in_callback_fn ? find_prev_entry(env, state, *insn_idx) : NULL; | 
|  | if (prev_st) { | 
|  | err = widen_imprecise_scalars(env, prev_st, state); | 
|  | if (err) | 
|  | return err; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int do_refine_retval_range(struct bpf_verifier_env *env, | 
|  | struct bpf_reg_state *regs, int ret_type, | 
|  | int func_id, | 
|  | struct bpf_call_arg_meta *meta) | 
|  | { | 
|  | struct bpf_reg_state *ret_reg = ®s[BPF_REG_0]; | 
|  |  | 
|  | if (ret_type != RET_INTEGER) | 
|  | return 0; | 
|  |  | 
|  | switch (func_id) { | 
|  | case BPF_FUNC_get_stack: | 
|  | case BPF_FUNC_get_task_stack: | 
|  | case BPF_FUNC_probe_read_str: | 
|  | case BPF_FUNC_probe_read_kernel_str: | 
|  | case BPF_FUNC_probe_read_user_str: | 
|  | ret_reg->smax_value = meta->msize_max_value; | 
|  | ret_reg->s32_max_value = meta->msize_max_value; | 
|  | ret_reg->smin_value = -MAX_ERRNO; | 
|  | ret_reg->s32_min_value = -MAX_ERRNO; | 
|  | reg_bounds_sync(ret_reg); | 
|  | break; | 
|  | case BPF_FUNC_get_smp_processor_id: | 
|  | ret_reg->umax_value = nr_cpu_ids - 1; | 
|  | ret_reg->u32_max_value = nr_cpu_ids - 1; | 
|  | ret_reg->smax_value = nr_cpu_ids - 1; | 
|  | ret_reg->s32_max_value = nr_cpu_ids - 1; | 
|  | ret_reg->umin_value = 0; | 
|  | ret_reg->u32_min_value = 0; | 
|  | ret_reg->smin_value = 0; | 
|  | ret_reg->s32_min_value = 0; | 
|  | reg_bounds_sync(ret_reg); | 
|  | break; | 
|  | } | 
|  |  | 
|  | return reg_bounds_sanity_check(env, ret_reg, "retval"); | 
|  | } | 
|  |  | 
|  | static int | 
|  | record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, | 
|  | int func_id, int insn_idx) | 
|  | { | 
|  | struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; | 
|  | struct bpf_map *map = meta->map_ptr; | 
|  |  | 
|  | if (func_id != BPF_FUNC_tail_call && | 
|  | func_id != BPF_FUNC_map_lookup_elem && | 
|  | func_id != BPF_FUNC_map_update_elem && | 
|  | func_id != BPF_FUNC_map_delete_elem && | 
|  | func_id != BPF_FUNC_map_push_elem && | 
|  | func_id != BPF_FUNC_map_pop_elem && | 
|  | func_id != BPF_FUNC_map_peek_elem && | 
|  | func_id != BPF_FUNC_for_each_map_elem && | 
|  | func_id != BPF_FUNC_redirect_map && | 
|  | func_id != BPF_FUNC_map_lookup_percpu_elem) | 
|  | return 0; | 
|  |  | 
|  | if (map == NULL) { | 
|  | verbose(env, "kernel subsystem misconfigured verifier\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* In case of read-only, some additional restrictions | 
|  | * need to be applied in order to prevent altering the | 
|  | * state of the map from program side. | 
|  | */ | 
|  | if ((map->map_flags & BPF_F_RDONLY_PROG) && | 
|  | (func_id == BPF_FUNC_map_delete_elem || | 
|  | func_id == BPF_FUNC_map_update_elem || | 
|  | func_id == BPF_FUNC_map_push_elem || | 
|  | func_id == BPF_FUNC_map_pop_elem)) { | 
|  | verbose(env, "write into map forbidden\n"); | 
|  | return -EACCES; | 
|  | } | 
|  |  | 
|  | if (!aux->map_ptr_state.map_ptr) | 
|  | bpf_map_ptr_store(aux, meta->map_ptr, | 
|  | !meta->map_ptr->bypass_spec_v1, false); | 
|  | else if (aux->map_ptr_state.map_ptr != meta->map_ptr) | 
|  | bpf_map_ptr_store(aux, meta->map_ptr, | 
|  | !meta->map_ptr->bypass_spec_v1, true); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int | 
|  | record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, | 
|  | int func_id, int insn_idx) | 
|  | { | 
|  | struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; | 
|  | struct bpf_reg_state *regs = cur_regs(env), *reg; | 
|  | struct bpf_map *map = meta->map_ptr; | 
|  | u64 val, max; | 
|  | int err; | 
|  |  | 
|  | if (func_id != BPF_FUNC_tail_call) | 
|  | return 0; | 
|  | if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) { | 
|  | verbose(env, "kernel subsystem misconfigured verifier\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | reg = ®s[BPF_REG_3]; | 
|  | val = reg->var_off.value; | 
|  | max = map->max_entries; | 
|  |  | 
|  | if (!(is_reg_const(reg, false) && val < max)) { | 
|  | bpf_map_key_store(aux, BPF_MAP_KEY_POISON); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | err = mark_chain_precision(env, BPF_REG_3); | 
|  | if (err) | 
|  | return err; | 
|  | if (bpf_map_key_unseen(aux)) | 
|  | bpf_map_key_store(aux, val); | 
|  | else if (!bpf_map_key_poisoned(aux) && | 
|  | bpf_map_key_immediate(aux) != val) | 
|  | bpf_map_key_store(aux, BPF_MAP_KEY_POISON); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int check_reference_leak(struct bpf_verifier_env *env, bool exception_exit) | 
|  | { | 
|  | struct bpf_func_state *state = cur_func(env); | 
|  | bool refs_lingering = false; | 
|  | int i; | 
|  |  | 
|  | if (!exception_exit && state->frameno && !state->in_callback_fn) | 
|  | return 0; | 
|  |  | 
|  | for (i = 0; i < state->acquired_refs; i++) { | 
|  | if (!exception_exit && state->in_callback_fn && state->refs[i].callback_ref != state->frameno) | 
|  | continue; | 
|  | verbose(env, "Unreleased reference id=%d alloc_insn=%d\n", | 
|  | state->refs[i].id, state->refs[i].insn_idx); | 
|  | refs_lingering = true; | 
|  | } | 
|  | return refs_lingering ? -EINVAL : 0; | 
|  | } | 
|  |  | 
|  | static int check_bpf_snprintf_call(struct bpf_verifier_env *env, | 
|  | struct bpf_reg_state *regs) | 
|  | { | 
|  | struct bpf_reg_state *fmt_reg = ®s[BPF_REG_3]; | 
|  | struct bpf_reg_state *data_len_reg = ®s[BPF_REG_5]; | 
|  | struct bpf_map *fmt_map = fmt_reg->map_ptr; | 
|  | struct bpf_bprintf_data data = {}; | 
|  | int err, fmt_map_off, num_args; | 
|  | u64 fmt_addr; | 
|  | char *fmt; | 
|  |  | 
|  | /* data must be an array of u64 */ | 
|  | if (data_len_reg->var_off.value % 8) | 
|  | return -EINVAL; | 
|  | num_args = data_len_reg->var_off.value / 8; | 
|  |  | 
|  | /* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const | 
|  | * and map_direct_value_addr is set. | 
|  | */ | 
|  | fmt_map_off = fmt_reg->off + fmt_reg->var_off.value; | 
|  | err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr, | 
|  | fmt_map_off); | 
|  | if (err) { | 
|  | verbose(env, "verifier bug\n"); | 
|  | return -EFAULT; | 
|  | } | 
|  | fmt = (char *)(long)fmt_addr + fmt_map_off; | 
|  |  | 
|  | /* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we | 
|  | * can focus on validating the format specifiers. | 
|  | */ | 
|  | err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, num_args, &data); | 
|  | if (err < 0) | 
|  | verbose(env, "Invalid format string\n"); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int check_get_func_ip(struct bpf_verifier_env *env) | 
|  | { | 
|  | enum bpf_prog_type type = resolve_prog_type(env->prog); | 
|  | int func_id = BPF_FUNC_get_func_ip; | 
|  |  | 
|  | if (type == BPF_PROG_TYPE_TRACING) { | 
|  | if (!bpf_prog_has_trampoline(env->prog)) { | 
|  | verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n", | 
|  | func_id_name(func_id), func_id); | 
|  | return -ENOTSUPP; | 
|  | } | 
|  | return 0; | 
|  | } else if (type == BPF_PROG_TYPE_KPROBE) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | verbose(env, "func %s#%d not supported for program type %d\n", | 
|  | func_id_name(func_id), func_id, type); | 
|  | return -ENOTSUPP; | 
|  | } | 
|  |  | 
|  | static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env) | 
|  | { | 
|  | return &env->insn_aux_data[env->insn_idx]; | 
|  | } | 
|  |  | 
|  | static bool loop_flag_is_zero(struct bpf_verifier_env *env) | 
|  | { | 
|  | struct bpf_reg_state *regs = cur_regs(env); | 
|  | struct bpf_reg_state *reg = ®s[BPF_REG_4]; | 
|  | bool reg_is_null = register_is_null(reg); | 
|  |  | 
|  | if (reg_is_null) | 
|  | mark_chain_precision(env, BPF_REG_4); | 
|  |  | 
|  | return reg_is_null; | 
|  | } | 
|  |  | 
|  | static void update_loop_inline_state(struct bpf_verifier_env *env, u32 subprogno) | 
|  | { | 
|  | struct bpf_loop_inline_state *state = &cur_aux(env)->loop_inline_state; | 
|  |  | 
|  | if (!state->initialized) { | 
|  | state->initialized = 1; | 
|  | state->fit_for_inline = loop_flag_is_zero(env); | 
|  | state->callback_subprogno = subprogno; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (!state->fit_for_inline) | 
|  | return; | 
|  |  | 
|  | state->fit_for_inline = (loop_flag_is_zero(env) && | 
|  | state->callback_subprogno == subprogno); | 
|  | } | 
|  |  | 
|  | static int get_helper_proto(struct bpf_verifier_env *env, int func_id, | 
|  | const struct bpf_func_proto **ptr) | 
|  | { | 
|  | if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) | 
|  | return -ERANGE; | 
|  |  | 
|  | if (!env->ops->get_func_proto) | 
|  | return -EINVAL; | 
|  |  | 
|  | *ptr = env->ops->get_func_proto(func_id, env->prog); | 
|  | return *ptr ? 0 : -EINVAL; | 
|  | } | 
|  |  | 
|  | static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn, | 
|  | int *insn_idx_p) | 
|  | { | 
|  | enum bpf_prog_type prog_type = resolve_prog_type(env->prog); | 
|  | bool returns_cpu_specific_alloc_ptr = false; | 
|  | const struct bpf_func_proto *fn = NULL; | 
|  | enum bpf_return_type ret_type; | 
|  | enum bpf_type_flag ret_flag; | 
|  | struct bpf_reg_state *regs; | 
|  | struct bpf_call_arg_meta meta; | 
|  | int insn_idx = *insn_idx_p; | 
|  | bool changes_data; | 
|  | int i, err, func_id; | 
|  |  | 
|  | /* find function prototype */ | 
|  | func_id = insn->imm; | 
|  | err = get_helper_proto(env, insn->imm, &fn); | 
|  | if (err == -ERANGE) { | 
|  | verbose(env, "invalid func %s#%d\n", func_id_name(func_id), func_id); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (err) { | 
|  | verbose(env, "program of this type cannot use helper %s#%d\n", | 
|  | func_id_name(func_id), func_id); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* eBPF programs must be GPL compatible to use GPL-ed functions */ | 
|  | if (!env->prog->gpl_compatible && fn->gpl_only) { | 
|  | verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (fn->allowed && !fn->allowed(env->prog)) { | 
|  | verbose(env, "helper call is not allowed in probe\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (!in_sleepable(env) && fn->might_sleep) { | 
|  | verbose(env, "helper call might sleep in a non-sleepable prog\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* With LD_ABS/IND some JITs save/restore skb from r1. */ | 
|  | changes_data = bpf_helper_changes_pkt_data(fn->func); | 
|  | if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { | 
|  | verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n", | 
|  | func_id_name(func_id), func_id); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | memset(&meta, 0, sizeof(meta)); | 
|  | meta.pkt_access = fn->pkt_access; | 
|  |  | 
|  | err = check_func_proto(fn, func_id); | 
|  | if (err) { | 
|  | verbose(env, "kernel subsystem misconfigured func %s#%d\n", | 
|  | func_id_name(func_id), func_id); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | if (env->cur_state->active_rcu_lock) { | 
|  | if (fn->might_sleep) { | 
|  | verbose(env, "sleepable helper %s#%d in rcu_read_lock region\n", | 
|  | func_id_name(func_id), func_id); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (in_sleepable(env) && is_storage_get_function(func_id)) | 
|  | env->insn_aux_data[insn_idx].storage_get_func_atomic = true; | 
|  | } | 
|  |  | 
|  | if (env->cur_state->active_preempt_lock) { | 
|  | if (fn->might_sleep) { | 
|  | verbose(env, "sleepable helper %s#%d in non-preemptible region\n", | 
|  | func_id_name(func_id), func_id); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (in_sleepable(env) && is_storage_get_function(func_id)) | 
|  | env->insn_aux_data[insn_idx].storage_get_func_atomic = true; | 
|  | } | 
|  |  | 
|  | meta.func_id = func_id; | 
|  | /* check args */ | 
|  | for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) { | 
|  | err = check_func_arg(env, i, &meta, fn, insn_idx); | 
|  | if (err) | 
|  | return err; | 
|  | } | 
|  |  | 
|  | err = record_func_map(env, &meta, func_id, insn_idx); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | err = record_func_key(env, &meta, func_id, insn_idx); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | /* Mark slots with STACK_MISC in case of raw mode, stack offset | 
|  | * is inferred from register state. | 
|  | */ | 
|  | for (i = 0; i < meta.access_size; i++) { | 
|  | err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, | 
|  | BPF_WRITE, -1, false, false); | 
|  | if (err) | 
|  | return err; | 
|  | } | 
|  |  | 
|  | regs = cur_regs(env); | 
|  |  | 
|  | if (meta.release_regno) { | 
|  | err = -EINVAL; | 
|  | /* This can only be set for PTR_TO_STACK, as CONST_PTR_TO_DYNPTR cannot | 
|  | * be released by any dynptr helper. Hence, unmark_stack_slots_dynptr | 
|  | * is safe to do directly. | 
|  | */ | 
|  | if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1])) { | 
|  | if (regs[meta.release_regno].type == CONST_PTR_TO_DYNPTR) { | 
|  | verbose(env, "verifier internal error: CONST_PTR_TO_DYNPTR cannot be released\n"); | 
|  | return -EFAULT; | 
|  | } | 
|  | err = unmark_stack_slots_dynptr(env, ®s[meta.release_regno]); | 
|  | } else if (func_id == BPF_FUNC_kptr_xchg && meta.ref_obj_id) { | 
|  | u32 ref_obj_id = meta.ref_obj_id; | 
|  | bool in_rcu = in_rcu_cs(env); | 
|  | struct bpf_func_state *state; | 
|  | struct bpf_reg_state *reg; | 
|  |  | 
|  | err = release_reference_state(cur_func(env), ref_obj_id); | 
|  | if (!err) { | 
|  | bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ | 
|  | if (reg->ref_obj_id == ref_obj_id) { | 
|  | if (in_rcu && (reg->type & MEM_ALLOC) && (reg->type & MEM_PERCPU)) { | 
|  | reg->ref_obj_id = 0; | 
|  | reg->type &= ~MEM_ALLOC; | 
|  | reg->type |= MEM_RCU; | 
|  | } else { | 
|  | mark_reg_invalid(env, reg); | 
|  | } | 
|  | } | 
|  | })); | 
|  | } | 
|  | } else if (meta.ref_obj_id) { | 
|  | err = release_reference(env, meta.ref_obj_id); | 
|  | } else if (register_is_null(®s[meta.release_regno])) { | 
|  | /* meta.ref_obj_id can only be 0 if register that is meant to be | 
|  | * released is NULL, which must be > R0. | 
|  | */ | 
|  | err = 0; | 
|  | } | 
|  | if (err) { | 
|  | verbose(env, "func %s#%d reference has not been acquired before\n", | 
|  | func_id_name(func_id), func_id); | 
|  | return err; | 
|  | } | 
|  | } | 
|  |  | 
|  | switch (func_id) { | 
|  | case BPF_FUNC_tail_call: | 
|  | err = check_reference_leak(env, false); | 
|  | if (err) { | 
|  | verbose(env, "tail_call would lead to reference leak\n"); | 
|  | return err; | 
|  | } | 
|  | break; | 
|  | case BPF_FUNC_get_local_storage: | 
|  | /* check that flags argument in get_local_storage(map, flags) is 0, | 
|  | * this is required because get_local_storage() can't return an error. | 
|  | */ | 
|  | if (!register_is_null(®s[BPF_REG_2])) { | 
|  | verbose(env, "get_local_storage() doesn't support non-zero flags\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | break; | 
|  | case BPF_FUNC_for_each_map_elem: | 
|  | err = push_callback_call(env, insn, insn_idx, meta.subprogno, | 
|  | set_map_elem_callback_state); | 
|  | break; | 
|  | case BPF_FUNC_timer_set_callback: | 
|  | err = push_callback_call(env, insn, insn_idx, meta.subprogno, | 
|  | set_timer_callback_state); | 
|  | break; | 
|  | case BPF_FUNC_find_vma: | 
|  | err = push_callback_call(env, insn, insn_idx, meta.subprogno, | 
|  | set_find_vma_callback_state); | 
|  | break; | 
|  | case BPF_FUNC_snprintf: | 
|  | err = check_bpf_snprintf_call(env, regs); | 
|  | break; | 
|  | case BPF_FUNC_loop: | 
|  | update_loop_inline_state(env, meta.subprogno); | 
|  | /* Verifier relies on R1 value to determine if bpf_loop() iteration | 
|  | * is finished, thus mark it precise. | 
|  | */ | 
|  | err = mark_chain_precision(env, BPF_REG_1); | 
|  | if (err) | 
|  | return err; | 
|  | if (cur_func(env)->callback_depth < regs[BPF_REG_1].umax_value) { | 
|  | err = push_callback_call(env, insn, insn_idx, meta.subprogno, | 
|  | set_loop_callback_state); | 
|  | } else { | 
|  | cur_func(env)->callback_depth = 0; | 
|  | if (env->log.level & BPF_LOG_LEVEL2) | 
|  | verbose(env, "frame%d bpf_loop iteration limit reached\n", | 
|  | env->cur_state->curframe); | 
|  | } | 
|  | break; | 
|  | case BPF_FUNC_dynptr_from_mem: | 
|  | if (regs[BPF_REG_1].type != PTR_TO_MAP_VALUE) { | 
|  | verbose(env, "Unsupported reg type %s for bpf_dynptr_from_mem data\n", | 
|  | reg_type_str(env, regs[BPF_REG_1].type)); | 
|  | return -EACCES; | 
|  | } | 
|  | break; | 
|  | case BPF_FUNC_set_retval: | 
|  | if (prog_type == BPF_PROG_TYPE_LSM && | 
|  | env->prog->expected_attach_type == BPF_LSM_CGROUP) { | 
|  | if (!env->prog->aux->attach_func_proto->type) { | 
|  | /* Make sure programs that attach to void | 
|  | * hooks don't try to modify return value. | 
|  | */ | 
|  | verbose(env, "BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  | break; | 
|  | case BPF_FUNC_dynptr_data: | 
|  | { | 
|  | struct bpf_reg_state *reg; | 
|  | int id, ref_obj_id; | 
|  |  | 
|  | reg = get_dynptr_arg_reg(env, fn, regs); | 
|  | if (!reg) | 
|  | return -EFAULT; | 
|  |  | 
|  |  | 
|  | if (meta.dynptr_id) { | 
|  | verbose(env, "verifier internal error: meta.dynptr_id already set\n"); | 
|  | return -EFAULT; | 
|  | } | 
|  | if (meta.ref_obj_id) { | 
|  | verbose(env, "verifier internal error: meta.ref_obj_id already set\n"); | 
|  | return -EFAULT; | 
|  | } | 
|  |  | 
|  | id = dynptr_id(env, reg); | 
|  | if (id < 0) { | 
|  | verbose(env, "verifier internal error: failed to obtain dynptr id\n"); | 
|  | return id; | 
|  | } | 
|  |  | 
|  | ref_obj_id = dynptr_ref_obj_id(env, reg); | 
|  | if (ref_obj_id < 0) { | 
|  | verbose(env, "verifier internal error: failed to obtain dynptr ref_obj_id\n"); | 
|  | return ref_obj_id; | 
|  | } | 
|  |  | 
|  | meta.dynptr_id = id; | 
|  | meta.ref_obj_id = ref_obj_id; | 
|  |  | 
|  | break; | 
|  | } | 
|  | case BPF_FUNC_dynptr_write: | 
|  | { | 
|  | enum bpf_dynptr_type dynptr_type; | 
|  | struct bpf_reg_state *reg; | 
|  |  | 
|  | reg = get_dynptr_arg_reg(env, fn, regs); | 
|  | if (!reg) | 
|  | return -EFAULT; | 
|  |  | 
|  | dynptr_type = dynptr_get_type(env, reg); | 
|  | if (dynptr_type == BPF_DYNPTR_TYPE_INVALID) | 
|  | return -EFAULT; | 
|  |  | 
|  | if (dynptr_type == BPF_DYNPTR_TYPE_SKB) | 
|  | /* this will trigger clear_all_pkt_pointers(), which will | 
|  | * invalidate all dynptr slices associated with the skb | 
|  | */ | 
|  | changes_data = true; | 
|  |  | 
|  | break; | 
|  | } | 
|  | case BPF_FUNC_per_cpu_ptr: | 
|  | case BPF_FUNC_this_cpu_ptr: | 
|  | { | 
|  | struct bpf_reg_state *reg = ®s[BPF_REG_1]; | 
|  | const struct btf_type *type; | 
|  |  | 
|  | if (reg->type & MEM_RCU) { | 
|  | type = btf_type_by_id(reg->btf, reg->btf_id); | 
|  | if (!type || !btf_type_is_struct(type)) { | 
|  | verbose(env, "Helper has invalid btf/btf_id in R1\n"); | 
|  | return -EFAULT; | 
|  | } | 
|  | returns_cpu_specific_alloc_ptr = true; | 
|  | env->insn_aux_data[insn_idx].call_with_percpu_alloc_ptr = true; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case BPF_FUNC_user_ringbuf_drain: | 
|  | err = push_callback_call(env, insn, insn_idx, meta.subprogno, | 
|  | set_user_ringbuf_callback_state); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | /* reset caller saved regs */ | 
|  | for (i = 0; i < CALLER_SAVED_REGS; i++) { | 
|  | mark_reg_not_init(env, regs, caller_saved[i]); | 
|  | check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); | 
|  | } | 
|  |  | 
|  | /* helper call returns 64-bit value. */ | 
|  | regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; | 
|  |  | 
|  | /* update return register (already marked as written above) */ | 
|  | ret_type = fn->ret_type; | 
|  | ret_flag = type_flag(ret_type); | 
|  |  | 
|  | switch (base_type(ret_type)) { | 
|  | case RET_INTEGER: | 
|  | /* sets type to SCALAR_VALUE */ | 
|  | mark_reg_unknown(env, regs, BPF_REG_0); | 
|  | break; | 
|  | case RET_VOID: | 
|  | regs[BPF_REG_0].type = NOT_INIT; | 
|  | break; | 
|  | case RET_PTR_TO_MAP_VALUE: | 
|  | /* There is no offset yet applied, variable or fixed */ | 
|  | mark_reg_known_zero(env, regs, BPF_REG_0); | 
|  | /* remember map_ptr, so that check_map_access() | 
|  | * can check 'value_size' boundary of memory access | 
|  | * to map element returned from bpf_map_lookup_elem() | 
|  | */ | 
|  | if (meta.map_ptr == NULL) { | 
|  | verbose(env, | 
|  | "kernel subsystem misconfigured verifier\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | regs[BPF_REG_0].map_ptr = meta.map_ptr; | 
|  | regs[BPF_REG_0].map_uid = meta.map_uid; | 
|  | regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag; | 
|  | if (!type_may_be_null(ret_type) && | 
|  | btf_record_has_field(meta.map_ptr->record, BPF_SPIN_LOCK)) { | 
|  | regs[BPF_REG_0].id = ++env->id_gen; | 
|  | } | 
|  | break; | 
|  | case RET_PTR_TO_SOCKET: | 
|  | mark_reg_known_zero(env, regs, BPF_REG_0); | 
|  | regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag; | 
|  | break; | 
|  | case RET_PTR_TO_SOCK_COMMON: | 
|  | mark_reg_known_zero(env, regs, BPF_REG_0); | 
|  | regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag; | 
|  | break; | 
|  | case RET_PTR_TO_TCP_SOCK: | 
|  | mark_reg_known_zero(env, regs, BPF_REG_0); | 
|  | regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag; | 
|  | break; | 
|  | case RET_PTR_TO_MEM: | 
|  | mark_reg_known_zero(env, regs, BPF_REG_0); | 
|  | regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; | 
|  | regs[BPF_REG_0].mem_size = meta.mem_size; | 
|  | break; | 
|  | case RET_PTR_TO_MEM_OR_BTF_ID: | 
|  | { | 
|  | const struct btf_type *t; | 
|  |  | 
|  | mark_reg_known_zero(env, regs, BPF_REG_0); | 
|  | t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL); | 
|  | if (!btf_type_is_struct(t)) { | 
|  | u32 tsize; | 
|  | const struct btf_type *ret; | 
|  | const char *tname; | 
|  |  | 
|  | /* resolve the type size of ksym. */ | 
|  | ret = btf_resolve_size(meta.ret_btf, t, &tsize); | 
|  | if (IS_ERR(ret)) { | 
|  | tname = btf_name_by_offset(meta.ret_btf, t->name_off); | 
|  | verbose(env, "unable to resolve the size of type '%s': %ld\n", | 
|  | tname, PTR_ERR(ret)); | 
|  | return -EINVAL; | 
|  | } | 
|  | regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; | 
|  | regs[BPF_REG_0].mem_size = tsize; | 
|  | } else { | 
|  | if (returns_cpu_specific_alloc_ptr) { | 
|  | regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC | MEM_RCU; | 
|  | } else { | 
|  | /* MEM_RDONLY may be carried from ret_flag, but it | 
|  | * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise | 
|  | * it will confuse the check of PTR_TO_BTF_ID in | 
|  | * check_mem_access(). | 
|  | */ | 
|  | ret_flag &= ~MEM_RDONLY; | 
|  | regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; | 
|  | } | 
|  |  | 
|  | regs[BPF_REG_0].btf = meta.ret_btf; | 
|  | regs[BPF_REG_0].btf_id = meta.ret_btf_id; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case RET_PTR_TO_BTF_ID: | 
|  | { | 
|  | struct btf *ret_btf; | 
|  | int ret_btf_id; | 
|  |  | 
|  | mark_reg_known_zero(env, regs, BPF_REG_0); | 
|  | regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; | 
|  | if (func_id == BPF_FUNC_kptr_xchg) { | 
|  | ret_btf = meta.kptr_field->kptr.btf; | 
|  | ret_btf_id = meta.kptr_field->kptr.btf_id; | 
|  | if (!btf_is_kernel(ret_btf)) { | 
|  | regs[BPF_REG_0].type |= MEM_ALLOC; | 
|  | if (meta.kptr_field->type == BPF_KPTR_PERCPU) | 
|  | regs[BPF_REG_0].type |= MEM_PERCPU; | 
|  | } | 
|  | } else { | 
|  | if (fn->ret_btf_id == BPF_PTR_POISON) { | 
|  | verbose(env, "verifier internal error:"); | 
|  | verbose(env, "func %s has non-overwritten BPF_PTR_POISON return type\n", | 
|  | func_id_name(func_id)); | 
|  | return -EINVAL; | 
|  | } | 
|  | ret_btf = btf_vmlinux; | 
|  | ret_btf_id = *fn->ret_btf_id; | 
|  | } | 
|  | if (ret_btf_id == 0) { | 
|  | verbose(env, "invalid return type %u of func %s#%d\n", | 
|  | base_type(ret_type), func_id_name(func_id), | 
|  | func_id); | 
|  | return -EINVAL; | 
|  | } | 
|  | regs[BPF_REG_0].btf = ret_btf; | 
|  | regs[BPF_REG_0].btf_id = ret_btf_id; | 
|  | break; | 
|  | } | 
|  | default: | 
|  | verbose(env, "unknown return type %u of func %s#%d\n", | 
|  | base_type(ret_type), func_id_name(func_id), func_id); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (type_may_be_null(regs[BPF_REG_0].type)) | 
|  | regs[BPF_REG_0].id = ++env->id_gen; | 
|  |  | 
|  | if (helper_multiple_ref_obj_use(func_id, meta.map_ptr)) { | 
|  | verbose(env, "verifier internal error: func %s#%d sets ref_obj_id more than once\n", | 
|  | func_id_name(func_id), func_id); | 
|  | return -EFAULT; | 
|  | } | 
|  |  | 
|  | if (is_dynptr_ref_function(func_id)) | 
|  | regs[BPF_REG_0].dynptr_id = meta.dynptr_id; | 
|  |  | 
|  | if (is_ptr_cast_function(func_id) || is_dynptr_ref_function(func_id)) { | 
|  | /* For release_reference() */ | 
|  | regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; | 
|  | } else if (is_acquire_function(func_id, meta.map_ptr)) { | 
|  | int id = acquire_reference_state(env, insn_idx); | 
|  |  | 
|  | if (id < 0) | 
|  | return id; | 
|  | /* For mark_ptr_or_null_reg() */ | 
|  | regs[BPF_REG_0].id = id; | 
|  | /* For release_reference() */ | 
|  | regs[BPF_REG_0].ref_obj_id = id; | 
|  | } | 
|  |  | 
|  | err = do_refine_retval_range(env, regs, fn->ret_type, func_id, &meta); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | err = check_map_func_compatibility(env, meta.map_ptr, func_id); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | if ((func_id == BPF_FUNC_get_stack || | 
|  | func_id == BPF_FUNC_get_task_stack) && | 
|  | !env->prog->has_callchain_buf) { | 
|  | const char *err_str; | 
|  |  | 
|  | #ifdef CONFIG_PERF_EVENTS | 
|  | err = get_callchain_buffers(sysctl_perf_event_max_stack); | 
|  | err_str = "cannot get callchain buffer for func %s#%d\n"; | 
|  | #else | 
|  | err = -ENOTSUPP; | 
|  | err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n"; | 
|  | #endif | 
|  | if (err) { | 
|  | verbose(env, err_str, func_id_name(func_id), func_id); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | env->prog->has_callchain_buf = true; | 
|  | } | 
|  |  | 
|  | if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack) | 
|  | env->prog->call_get_stack = true; | 
|  |  | 
|  | if (func_id == BPF_FUNC_get_func_ip) { | 
|  | if (check_get_func_ip(env)) | 
|  | return -ENOTSUPP; | 
|  | env->prog->call_get_func_ip = true; | 
|  | } | 
|  |  | 
|  | if (changes_data) | 
|  | clear_all_pkt_pointers(env); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* mark_btf_func_reg_size() is used when the reg size is determined by | 
|  | * the BTF func_proto's return value size and argument. | 
|  | */ | 
|  | static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno, | 
|  | size_t reg_size) | 
|  | { | 
|  | struct bpf_reg_state *reg = &cur_regs(env)[regno]; | 
|  |  | 
|  | if (regno == BPF_REG_0) { | 
|  | /* Function return value */ | 
|  | reg->live |= REG_LIVE_WRITTEN; | 
|  | reg->subreg_def = reg_size == sizeof(u64) ? | 
|  | DEF_NOT_SUBREG : env->insn_idx + 1; | 
|  | } else { | 
|  | /* Function argument */ | 
|  | if (reg_size == sizeof(u64)) { | 
|  | mark_insn_zext(env, reg); | 
|  | mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); | 
|  | } else { | 
|  | mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool is_kfunc_acquire(struct bpf_kfunc_call_arg_meta *meta) | 
|  | { | 
|  | return meta->kfunc_flags & KF_ACQUIRE; | 
|  | } | 
|  |  | 
|  | static bool is_kfunc_release(struct bpf_kfunc_call_arg_meta *meta) | 
|  | { | 
|  | return meta->kfunc_flags & KF_RELEASE; | 
|  | } | 
|  |  | 
|  | static bool is_kfunc_trusted_args(struct bpf_kfunc_call_arg_meta *meta) | 
|  | { | 
|  | return (meta->kfunc_flags & KF_TRUSTED_ARGS) || is_kfunc_release(meta); | 
|  | } | 
|  |  | 
|  | static bool is_kfunc_sleepable(struct bpf_kfunc_call_arg_meta *meta) | 
|  | { | 
|  | return meta->kfunc_flags & KF_SLEEPABLE; | 
|  | } | 
|  |  | 
|  | static bool is_kfunc_destructive(struct bpf_kfunc_call_arg_meta *meta) | 
|  | { | 
|  | return meta->kfunc_flags & KF_DESTRUCTIVE; | 
|  | } | 
|  |  | 
|  | static bool is_kfunc_rcu(struct bpf_kfunc_call_arg_meta *meta) | 
|  | { | 
|  | return meta->kfunc_flags & KF_RCU; | 
|  | } | 
|  |  | 
|  | static bool is_kfunc_rcu_protected(struct bpf_kfunc_call_arg_meta *meta) | 
|  | { | 
|  | return meta->kfunc_flags & KF_RCU_PROTECTED; | 
|  | } | 
|  |  | 
|  | static bool is_kfunc_arg_mem_size(const struct btf *btf, | 
|  | const struct btf_param *arg, | 
|  | const struct bpf_reg_state *reg) | 
|  | { | 
|  | const struct btf_type *t; | 
|  |  | 
|  | t = btf_type_skip_modifiers(btf, arg->type, NULL); | 
|  | if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE) | 
|  | return false; | 
|  |  | 
|  | return btf_param_match_suffix(btf, arg, "__sz"); | 
|  | } | 
|  |  | 
|  | static bool is_kfunc_arg_const_mem_size(const struct btf *btf, | 
|  | const struct btf_param *arg, | 
|  | const struct bpf_reg_state *reg) | 
|  | { | 
|  | const struct btf_type *t; | 
|  |  | 
|  | t = btf_type_skip_modifiers(btf, arg->type, NULL); | 
|  | if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE) | 
|  | return false; | 
|  |  | 
|  | return btf_param_match_suffix(btf, arg, "__szk"); | 
|  | } | 
|  |  | 
|  | static bool is_kfunc_arg_optional(const struct btf *btf, const struct btf_param *arg) | 
|  | { | 
|  | return btf_param_match_suffix(btf, arg, "__opt"); | 
|  | } | 
|  |  | 
|  | static bool is_kfunc_arg_constant(const struct btf *btf, const struct btf_param *arg) | 
|  | { | 
|  | return btf_param_match_suffix(btf, arg, "__k"); | 
|  | } | 
|  |  | 
|  | static bool is_kfunc_arg_ignore(const struct btf *btf, const struct btf_param *arg) | 
|  | { | 
|  | return btf_param_match_suffix(btf, arg, "__ign"); | 
|  | } | 
|  |  | 
|  | static bool is_kfunc_arg_map(const struct btf *btf, const struct btf_param *arg) | 
|  | { | 
|  | return btf_param_match_suffix(btf, arg, "__map"); | 
|  | } | 
|  |  | 
|  | static bool is_kfunc_arg_alloc_obj(const struct btf *btf, const struct btf_param *arg) | 
|  | { | 
|  | return btf_param_match_suffix(btf, arg, "__alloc"); | 
|  | } | 
|  |  | 
|  | static bool is_kfunc_arg_uninit(const struct btf *btf, const struct btf_param *arg) | 
|  | { | 
|  | return btf_param_match_suffix(btf, arg, "__uninit"); | 
|  | } | 
|  |  | 
|  | static bool is_kfunc_arg_refcounted_kptr(const struct btf *btf, const struct btf_param *arg) | 
|  | { | 
|  | return btf_param_match_suffix(btf, arg, "__refcounted_kptr"); | 
|  | } | 
|  |  | 
|  | static bool is_kfunc_arg_nullable(const struct btf *btf, const struct btf_param *arg) | 
|  | { | 
|  | return btf_param_match_suffix(btf, arg, "__nullable"); | 
|  | } | 
|  |  | 
|  | static bool is_kfunc_arg_const_str(const struct btf *btf, const struct btf_param *arg) | 
|  | { | 
|  | return btf_param_match_suffix(btf, arg, "__str"); | 
|  | } | 
|  |  | 
|  | static bool is_kfunc_arg_scalar_with_name(const struct btf *btf, | 
|  | const struct btf_param *arg, | 
|  | const char *name) | 
|  | { | 
|  | int len, target_len = strlen(name); | 
|  | const char *param_name; | 
|  |  | 
|  | param_name = btf_name_by_offset(btf, arg->name_off); | 
|  | if (str_is_empty(param_name)) | 
|  | return false; | 
|  | len = strlen(param_name); | 
|  | if (len != target_len) | 
|  | return false; | 
|  | if (strcmp(param_name, name)) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | enum { | 
|  | KF_ARG_DYNPTR_ID, | 
|  | KF_ARG_LIST_HEAD_ID, | 
|  | KF_ARG_LIST_NODE_ID, | 
|  | KF_ARG_RB_ROOT_ID, | 
|  | KF_ARG_RB_NODE_ID, | 
|  | KF_ARG_WORKQUEUE_ID, | 
|  | }; | 
|  |  | 
|  | BTF_ID_LIST(kf_arg_btf_ids) | 
|  | BTF_ID(struct, bpf_dynptr) | 
|  | BTF_ID(struct, bpf_list_head) | 
|  | BTF_ID(struct, bpf_list_node) | 
|  | BTF_ID(struct, bpf_rb_root) | 
|  | BTF_ID(struct, bpf_rb_node) | 
|  | BTF_ID(struct, bpf_wq) | 
|  |  | 
|  | static bool __is_kfunc_ptr_arg_type(const struct btf *btf, | 
|  | const struct btf_param *arg, int type) | 
|  | { | 
|  | const struct btf_type *t; | 
|  | u32 res_id; | 
|  |  | 
|  | t = btf_type_skip_modifiers(btf, arg->type, NULL); | 
|  | if (!t) | 
|  | return false; | 
|  | if (!btf_type_is_ptr(t)) | 
|  | return false; | 
|  | t = btf_type_skip_modifiers(btf, t->type, &res_id); | 
|  | if (!t) | 
|  | return false; | 
|  | return btf_types_are_same(btf, res_id, btf_vmlinux, kf_arg_btf_ids[type]); | 
|  | } | 
|  |  | 
|  | static bool is_kfunc_arg_dynptr(const struct btf *btf, const struct btf_param *arg) | 
|  | { | 
|  | return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_DYNPTR_ID); | 
|  | } | 
|  |  | 
|  | static bool is_kfunc_arg_list_head(const struct btf *btf, const struct btf_param *arg) | 
|  | { | 
|  | return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_HEAD_ID); | 
|  | } | 
|  |  | 
|  | static bool is_kfunc_arg_list_node(const struct btf *btf, const struct btf_param *arg) | 
|  | { | 
|  | return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_NODE_ID); | 
|  | } | 
|  |  | 
|  | static bool is_kfunc_arg_rbtree_root(const struct btf *btf, const struct btf_param *arg) | 
|  | { | 
|  | return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_ROOT_ID); | 
|  | } | 
|  |  | 
|  | static bool is_kfunc_arg_rbtree_node(const struct btf *btf, const struct btf_param *arg) | 
|  | { | 
|  | return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_NODE_ID); | 
|  | } | 
|  |  | 
|  | static bool is_kfunc_arg_wq(const struct btf *btf, const struct btf_param *arg) | 
|  | { | 
|  | return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_WORKQUEUE_ID); | 
|  | } | 
|  |  | 
|  | static bool is_kfunc_arg_callback(struct bpf_verifier_env *env, const struct btf *btf, | 
|  | const struct btf_param *arg) | 
|  | { | 
|  | const struct btf_type *t; | 
|  |  | 
|  | t = btf_type_resolve_func_ptr(btf, arg->type, NULL); | 
|  | if (!t) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Returns true if struct is composed of scalars, 4 levels of nesting allowed */ | 
|  | static bool __btf_type_is_scalar_struct(struct bpf_verifier_env *env, | 
|  | const struct btf *btf, | 
|  | const struct btf_type *t, int rec) | 
|  | { | 
|  | const struct btf_type *member_type; | 
|  | const struct btf_member *member; | 
|  | u32 i; | 
|  |  | 
|  | if (!btf_type_is_struct(t)) | 
|  | return false; | 
|  |  | 
|  | for_each_member(i, t, member) { | 
|  | const struct btf_array *array; | 
|  |  | 
|  | member_type = btf_type_skip_modifiers(btf, member->type, NULL); | 
|  | if (btf_type_is_struct(member_type)) { | 
|  | if (rec >= 3) { | 
|  | verbose(env, "max struct nesting depth exceeded\n"); | 
|  | return false; | 
|  | } | 
|  | if (!__btf_type_is_scalar_struct(env, btf, member_type, rec + 1)) | 
|  | return false; | 
|  | continue; | 
|  | } | 
|  | if (btf_type_is_array(member_type)) { | 
|  | array = btf_array(member_type); | 
|  | if (!array->nelems) | 
|  | return false; | 
|  | member_type = btf_type_skip_modifiers(btf, array->type, NULL); | 
|  | if (!btf_type_is_scalar(member_type)) | 
|  | return false; | 
|  | continue; | 
|  | } | 
|  | if (!btf_type_is_scalar(member_type)) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | enum kfunc_ptr_arg_type { | 
|  | KF_ARG_PTR_TO_CTX, | 
|  | KF_ARG_PTR_TO_ALLOC_BTF_ID,    /* Allocated object */ | 
|  | KF_ARG_PTR_TO_REFCOUNTED_KPTR, /* Refcounted local kptr */ | 
|  | KF_ARG_PTR_TO_DYNPTR, | 
|  | KF_ARG_PTR_TO_ITER, | 
|  | KF_ARG_PTR_TO_LIST_HEAD, | 
|  | KF_ARG_PTR_TO_LIST_NODE, | 
|  | KF_ARG_PTR_TO_BTF_ID,	       /* Also covers reg2btf_ids conversions */ | 
|  | KF_ARG_PTR_TO_MEM, | 
|  | KF_ARG_PTR_TO_MEM_SIZE,	       /* Size derived from next argument, skip it */ | 
|  | KF_ARG_PTR_TO_CALLBACK, | 
|  | KF_ARG_PTR_TO_RB_ROOT, | 
|  | KF_ARG_PTR_TO_RB_NODE, | 
|  | KF_ARG_PTR_TO_NULL, | 
|  | KF_ARG_PTR_TO_CONST_STR, | 
|  | KF_ARG_PTR_TO_MAP, | 
|  | KF_ARG_PTR_TO_WORKQUEUE, | 
|  | }; | 
|  |  | 
|  | enum special_kfunc_type { | 
|  | KF_bpf_obj_new_impl, | 
|  | KF_bpf_obj_drop_impl, | 
|  | KF_bpf_refcount_acquire_impl, | 
|  | KF_bpf_list_push_front_impl, | 
|  | KF_bpf_list_push_back_impl, | 
|  | KF_bpf_list_pop_front, | 
|  | KF_bpf_list_pop_back, | 
|  | KF_bpf_cast_to_kern_ctx, | 
|  | KF_bpf_rdonly_cast, | 
|  | KF_bpf_rcu_read_lock, | 
|  | KF_bpf_rcu_read_unlock, | 
|  | KF_bpf_rbtree_remove, | 
|  | KF_bpf_rbtree_add_impl, | 
|  | KF_bpf_rbtree_first, | 
|  | KF_bpf_dynptr_from_skb, | 
|  | KF_bpf_dynptr_from_xdp, | 
|  | KF_bpf_dynptr_slice, | 
|  | KF_bpf_dynptr_slice_rdwr, | 
|  | KF_bpf_dynptr_clone, | 
|  | KF_bpf_percpu_obj_new_impl, | 
|  | KF_bpf_percpu_obj_drop_impl, | 
|  | KF_bpf_throw, | 
|  | KF_bpf_wq_set_callback_impl, | 
|  | KF_bpf_preempt_disable, | 
|  | KF_bpf_preempt_enable, | 
|  | KF_bpf_iter_css_task_new, | 
|  | KF_bpf_session_cookie, | 
|  | }; | 
|  |  | 
|  | BTF_SET_START(special_kfunc_set) | 
|  | BTF_ID(func, bpf_obj_new_impl) | 
|  | BTF_ID(func, bpf_obj_drop_impl) | 
|  | BTF_ID(func, bpf_refcount_acquire_impl) | 
|  | BTF_ID(func, bpf_list_push_front_impl) | 
|  | BTF_ID(func, bpf_list_push_back_impl) | 
|  | BTF_ID(func, bpf_list_pop_front) | 
|  | BTF_ID(func, bpf_list_pop_back) | 
|  | BTF_ID(func, bpf_cast_to_kern_ctx) | 
|  | BTF_ID(func, bpf_rdonly_cast) | 
|  | BTF_ID(func, bpf_rbtree_remove) | 
|  | BTF_ID(func, bpf_rbtree_add_impl) | 
|  | BTF_ID(func, bpf_rbtree_first) | 
|  | BTF_ID(func, bpf_dynptr_from_skb) | 
|  | BTF_ID(func, bpf_dynptr_from_xdp) | 
|  | BTF_ID(func, bpf_dynptr_slice) | 
|  | BTF_ID(func, bpf_dynptr_slice_rdwr) | 
|  | BTF_ID(func, bpf_dynptr_clone) | 
|  | BTF_ID(func, bpf_percpu_obj_new_impl) | 
|  | BTF_ID(func, bpf_percpu_obj_drop_impl) | 
|  | BTF_ID(func, bpf_throw) | 
|  | BTF_ID(func, bpf_wq_set_callback_impl) | 
|  | #ifdef CONFIG_CGROUPS | 
|  | BTF_ID(func, bpf_iter_css_task_new) | 
|  | #endif | 
|  | BTF_SET_END(special_kfunc_set) | 
|  |  | 
|  | BTF_ID_LIST(special_kfunc_list) | 
|  | BTF_ID(func, bpf_obj_new_impl) | 
|  | BTF_ID(func, bpf_obj_drop_impl) | 
|  | BTF_ID(func, bpf_refcount_acquire_impl) | 
|  | BTF_ID(func, bpf_list_push_front_impl) | 
|  | BTF_ID(func, bpf_list_push_back_impl) | 
|  | BTF_ID(func, bpf_list_pop_front) | 
|  | BTF_ID(func, bpf_list_pop_back) | 
|  | BTF_ID(func, bpf_cast_to_kern_ctx) | 
|  | BTF_ID(func, bpf_rdonly_cast) | 
|  | BTF_ID(func, bpf_rcu_read_lock) | 
|  | BTF_ID(func, bpf_rcu_read_unlock) | 
|  | BTF_ID(func, bpf_rbtree_remove) | 
|  | BTF_ID(func, bpf_rbtree_add_impl) | 
|  | BTF_ID(func, bpf_rbtree_first) | 
|  | BTF_ID(func, bpf_dynptr_from_skb) | 
|  | BTF_ID(func, bpf_dynptr_from_xdp) | 
|  | BTF_ID(func, bpf_dynptr_slice) | 
|  | BTF_ID(func, bpf_dynptr_slice_rdwr) | 
|  | BTF_ID(func, bpf_dynptr_clone) | 
|  | BTF_ID(func, bpf_percpu_obj_new_impl) | 
|  | BTF_ID(func, bpf_percpu_obj_drop_impl) | 
|  | BTF_ID(func, bpf_throw) | 
|  | BTF_ID(func, bpf_wq_set_callback_impl) | 
|  | BTF_ID(func, bpf_preempt_disable) | 
|  | BTF_ID(func, bpf_preempt_enable) | 
|  | #ifdef CONFIG_CGROUPS | 
|  | BTF_ID(func, bpf_iter_css_task_new) | 
|  | #else | 
|  | BTF_ID_UNUSED | 
|  | #endif | 
|  | #ifdef CONFIG_BPF_EVENTS | 
|  | BTF_ID(func, bpf_session_cookie) | 
|  | #else | 
|  | BTF_ID_UNUSED | 
|  | #endif | 
|  |  | 
|  | static bool is_kfunc_ret_null(struct bpf_kfunc_call_arg_meta *meta) | 
|  | { | 
|  | if (meta->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] && | 
|  | meta->arg_owning_ref) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return meta->kfunc_flags & KF_RET_NULL; | 
|  | } | 
|  |  | 
|  | static bool is_kfunc_bpf_rcu_read_lock(struct bpf_kfunc_call_arg_meta *meta) | 
|  | { | 
|  | return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_lock]; | 
|  | } | 
|  |  | 
|  | static bool is_kfunc_bpf_rcu_read_unlock(struct bpf_kfunc_call_arg_meta *meta) | 
|  | { | 
|  | return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_unlock]; | 
|  | } | 
|  |  | 
|  | static bool is_kfunc_bpf_preempt_disable(struct bpf_kfunc_call_arg_meta *meta) | 
|  | { | 
|  | return meta->func_id == special_kfunc_list[KF_bpf_preempt_disable]; | 
|  | } | 
|  |  | 
|  | static bool is_kfunc_bpf_preempt_enable(struct bpf_kfunc_call_arg_meta *meta) | 
|  | { | 
|  | return meta->func_id == special_kfunc_list[KF_bpf_preempt_enable]; | 
|  | } | 
|  |  | 
|  | static enum kfunc_ptr_arg_type | 
|  | get_kfunc_ptr_arg_type(struct bpf_verifier_env *env, | 
|  | struct bpf_kfunc_call_arg_meta *meta, | 
|  | const struct btf_type *t, const struct btf_type *ref_t, | 
|  | const char *ref_tname, const struct btf_param *args, | 
|  | int argno, int nargs) | 
|  | { | 
|  | u32 regno = argno + 1; | 
|  | struct bpf_reg_state *regs = cur_regs(env); | 
|  | struct bpf_reg_state *reg = ®s[regno]; | 
|  | bool arg_mem_size = false; | 
|  |  | 
|  | if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) | 
|  | return KF_ARG_PTR_TO_CTX; | 
|  |  | 
|  | /* In this function, we verify the kfunc's BTF as per the argument type, | 
|  | * leaving the rest of the verification with respect to the register | 
|  | * type to our caller. When a set of conditions hold in the BTF type of | 
|  | * arguments, we resolve it to a known kfunc_ptr_arg_type. | 
|  | */ | 
|  | if (btf_is_prog_ctx_type(&env->log, meta->btf, t, resolve_prog_type(env->prog), argno)) | 
|  | return KF_ARG_PTR_TO_CTX; | 
|  |  | 
|  | if (is_kfunc_arg_nullable(meta->btf, &args[argno]) && register_is_null(reg)) | 
|  | return KF_ARG_PTR_TO_NULL; | 
|  |  | 
|  | if (is_kfunc_arg_alloc_obj(meta->btf, &args[argno])) | 
|  | return KF_ARG_PTR_TO_ALLOC_BTF_ID; | 
|  |  | 
|  | if (is_kfunc_arg_refcounted_kptr(meta->btf, &args[argno])) | 
|  | return KF_ARG_PTR_TO_REFCOUNTED_KPTR; | 
|  |  | 
|  | if (is_kfunc_arg_dynptr(meta->btf, &args[argno])) | 
|  | return KF_ARG_PTR_TO_DYNPTR; | 
|  |  | 
|  | if (is_kfunc_arg_iter(meta, argno, &args[argno])) | 
|  | return KF_ARG_PTR_TO_ITER; | 
|  |  | 
|  | if (is_kfunc_arg_list_head(meta->btf, &args[argno])) | 
|  | return KF_ARG_PTR_TO_LIST_HEAD; | 
|  |  | 
|  | if (is_kfunc_arg_list_node(meta->btf, &args[argno])) | 
|  | return KF_ARG_PTR_TO_LIST_NODE; | 
|  |  | 
|  | if (is_kfunc_arg_rbtree_root(meta->btf, &args[argno])) | 
|  | return KF_ARG_PTR_TO_RB_ROOT; | 
|  |  | 
|  | if (is_kfunc_arg_rbtree_node(meta->btf, &args[argno])) | 
|  | return KF_ARG_PTR_TO_RB_NODE; | 
|  |  | 
|  | if (is_kfunc_arg_const_str(meta->btf, &args[argno])) | 
|  | return KF_ARG_PTR_TO_CONST_STR; | 
|  |  | 
|  | if (is_kfunc_arg_map(meta->btf, &args[argno])) | 
|  | return KF_ARG_PTR_TO_MAP; | 
|  |  | 
|  | if (is_kfunc_arg_wq(meta->btf, &args[argno])) | 
|  | return KF_ARG_PTR_TO_WORKQUEUE; | 
|  |  | 
|  | if ((base_type(reg->type) == PTR_TO_BTF_ID || reg2btf_ids[base_type(reg->type)])) { | 
|  | if (!btf_type_is_struct(ref_t)) { | 
|  | verbose(env, "kernel function %s args#%d pointer type %s %s is not supported\n", | 
|  | meta->func_name, argno, btf_type_str(ref_t), ref_tname); | 
|  | return -EINVAL; | 
|  | } | 
|  | return KF_ARG_PTR_TO_BTF_ID; | 
|  | } | 
|  |  | 
|  | if (is_kfunc_arg_callback(env, meta->btf, &args[argno])) | 
|  | return KF_ARG_PTR_TO_CALLBACK; | 
|  |  | 
|  | if (argno + 1 < nargs && | 
|  | (is_kfunc_arg_mem_size(meta->btf, &args[argno + 1], ®s[regno + 1]) || | 
|  | is_kfunc_arg_const_mem_size(meta->btf, &args[argno + 1], ®s[regno + 1]))) | 
|  | arg_mem_size = true; | 
|  |  | 
|  | /* This is the catch all argument type of register types supported by | 
|  | * check_helper_mem_access. However, we only allow when argument type is | 
|  | * pointer to scalar, or struct composed (recursively) of scalars. When | 
|  | * arg_mem_size is true, the pointer can be void *. | 
|  | */ | 
|  | if (!btf_type_is_scalar(ref_t) && !__btf_type_is_scalar_struct(env, meta->btf, ref_t, 0) && | 
|  | (arg_mem_size ? !btf_type_is_void(ref_t) : 1)) { | 
|  | verbose(env, "arg#%d pointer type %s %s must point to %sscalar, or struct with scalar\n", | 
|  | argno, btf_type_str(ref_t), ref_tname, arg_mem_size ? "void, " : ""); | 
|  | return -EINVAL; | 
|  | } | 
|  | return arg_mem_size ? KF_ARG_PTR_TO_MEM_SIZE : KF_ARG_PTR_TO_MEM; | 
|  | } | 
|  |  | 
|  | static int process_kf_arg_ptr_to_btf_id(struct bpf_verifier_env *env, | 
|  | struct bpf_reg_state *reg, | 
|  | const struct btf_type *ref_t, | 
|  | const char *ref_tname, u32 ref_id, | 
|  | struct bpf_kfunc_call_arg_meta *meta, | 
|  | int argno) | 
|  | { | 
|  | const struct btf_type *reg_ref_t; | 
|  | bool strict_type_match = false; | 
|  | const struct btf *reg_btf; | 
|  | const char *reg_ref_tname; | 
|  | bool taking_projection; | 
|  | bool struct_same; | 
|  | u32 reg_ref_id; | 
|  |  | 
|  | if (base_type(reg->type) == PTR_TO_BTF_ID) { | 
|  | reg_btf = reg->btf; | 
|  | reg_ref_id = reg->btf_id; | 
|  | } else { | 
|  | reg_btf = btf_vmlinux; | 
|  | reg_ref_id = *reg2btf_ids[base_type(reg->type)]; | 
|  | } | 
|  |  | 
|  | /* Enforce strict type matching for calls to kfuncs that are acquiring | 
|  | * or releasing a reference, or are no-cast aliases. We do _not_ | 
|  | * enforce strict matching for plain KF_TRUSTED_ARGS kfuncs by default, | 
|  | * as we want to enable BPF programs to pass types that are bitwise | 
|  | * equivalent without forcing them to explicitly cast with something | 
|  | * like bpf_cast_to_kern_ctx(). | 
|  | * | 
|  | * For example, say we had a type like the following: | 
|  | * | 
|  | * struct bpf_cpumask { | 
|  | *	cpumask_t cpumask; | 
|  | *	refcount_t usage; | 
|  | * }; | 
|  | * | 
|  | * Note that as specified in <linux/cpumask.h>, cpumask_t is typedef'ed | 
|  | * to a struct cpumask, so it would be safe to pass a struct | 
|  | * bpf_cpumask * to a kfunc expecting a struct cpumask *. | 
|  | * | 
|  | * The philosophy here is similar to how we allow scalars of different | 
|  | * types to be passed to kfuncs as long as the size is the same. The | 
|  | * only difference here is that we're simply allowing | 
|  | * btf_struct_ids_match() to walk the struct at the 0th offset, and | 
|  | * resolve types. | 
|  | */ | 
|  | if ((is_kfunc_release(meta) && reg->ref_obj_id) || | 
|  | btf_type_ids_nocast_alias(&env->log, reg_btf, reg_ref_id, meta->btf, ref_id)) | 
|  | strict_type_match = true; | 
|  |  | 
|  | WARN_ON_ONCE(is_kfunc_release(meta) && | 
|  | (reg->off || !tnum_is_const(reg->var_off) || | 
|  | reg->var_off.value)); | 
|  |  | 
|  | reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id, ®_ref_id); | 
|  | reg_ref_tname = btf_name_by_offset(reg_btf, reg_ref_t->name_off); | 
|  | struct_same = btf_struct_ids_match(&env->log, reg_btf, reg_ref_id, reg->off, meta->btf, ref_id, strict_type_match); | 
|  | /* If kfunc is accepting a projection type (ie. __sk_buff), it cannot | 
|  | * actually use it -- it must cast to the underlying type. So we allow | 
|  | * caller to pass in the underlying type. | 
|  | */ | 
|  | taking_projection = btf_is_projection_of(ref_tname, reg_ref_tname); | 
|  | if (!taking_projection && !struct_same) { | 
|  | verbose(env, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n", | 
|  | meta->func_name, argno, btf_type_str(ref_t), ref_tname, argno + 1, | 
|  | btf_type_str(reg_ref_t), reg_ref_tname); | 
|  | return -EINVAL; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int ref_set_non_owning(struct bpf_verifier_env *env, struct bpf_reg_state *reg) | 
|  | { | 
|  | struct bpf_verifier_state *state = env->cur_state; | 
|  | struct btf_record *rec = reg_btf_record(reg); | 
|  |  | 
|  | if (!state->active_lock.ptr) { | 
|  | verbose(env, "verifier internal error: ref_set_non_owning w/o active lock\n"); | 
|  | return -EFAULT; | 
|  | } | 
|  |  | 
|  | if (type_flag(reg->type) & NON_OWN_REF) { | 
|  | verbose(env, "verifier internal error: NON_OWN_REF already set\n"); | 
|  | return -EFAULT; | 
|  | } | 
|  |  | 
|  | reg->type |= NON_OWN_REF; | 
|  | if (rec->refcount_off >= 0) | 
|  | reg->type |= MEM_RCU; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int ref_convert_owning_non_owning(struct bpf_verifier_env *env, u32 ref_obj_id) | 
|  | { | 
|  | struct bpf_func_state *state, *unused; | 
|  | struct bpf_reg_state *reg; | 
|  | int i; | 
|  |  | 
|  | state = cur_func(env); | 
|  |  | 
|  | if (!ref_obj_id) { | 
|  | verbose(env, "verifier internal error: ref_obj_id is zero for " | 
|  | "owning -> non-owning conversion\n"); | 
|  | return -EFAULT; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < state->acquired_refs; i++) { | 
|  | if (state->refs[i].id != ref_obj_id) | 
|  | continue; | 
|  |  | 
|  | /* Clear ref_obj_id here so release_reference doesn't clobber | 
|  | * the whole reg | 
|  | */ | 
|  | bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({ | 
|  | if (reg->ref_obj_id == ref_obj_id) { | 
|  | reg->ref_obj_id = 0; | 
|  | ref_set_non_owning(env, reg); | 
|  | } | 
|  | })); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | verbose(env, "verifier internal error: ref state missing for ref_obj_id\n"); | 
|  | return -EFAULT; | 
|  | } | 
|  |  | 
|  | /* Implementation details: | 
|  | * | 
|  | * Each register points to some region of memory, which we define as an | 
|  | * allocation. Each allocation may embed a bpf_spin_lock which protects any | 
|  | * special BPF objects (bpf_list_head, bpf_rb_root, etc.) part of the same | 
|  | * allocation. The lock and the data it protects are colocated in the same | 
|  | * memory region. | 
|  | * | 
|  | * Hence, everytime a register holds a pointer value pointing to such | 
|  | * allocation, the verifier preserves a unique reg->id for it. | 
|  | * | 
|  | * The verifier remembers the lock 'ptr' and the lock 'id' whenever | 
|  | * bpf_spin_lock is called. | 
|  | * | 
|  | * To enable this, lock state in the verifier captures two values: | 
|  | *	active_lock.ptr = Register's type specific pointer | 
|  | *	active_lock.id  = A unique ID for each register pointer value | 
|  | * | 
|  | * Currently, PTR_TO_MAP_VALUE and PTR_TO_BTF_ID | MEM_ALLOC are the two | 
|  | * supported register types. | 
|  | * | 
|  | * The active_lock.ptr in case of map values is the reg->map_ptr, and in case of | 
|  | * allocated objects is the reg->btf pointer. | 
|  | * | 
|  | * The active_lock.id is non-unique for maps supporting direct_value_addr, as we | 
|  | * can establish the provenance of the map value statically for each distinct | 
|  | * lookup into such maps. They always contain a single map value hence unique | 
|  | * IDs for each pseudo load pessimizes the algorithm and rejects valid programs. | 
|  | * | 
|  | * So, in case of global variables, they use array maps with max_entries = 1, | 
|  | * hence their active_lock.ptr becomes map_ptr and id = 0 (since they all point | 
|  | * into the same map value as max_entries is 1, as described above). | 
|  | * | 
|  | * In case of inner map lookups, the inner map pointer has same map_ptr as the | 
|  | * outer map pointer (in verifier context), but each lookup into an inner map | 
|  | * assigns a fresh reg->id to the lookup, so while lookups into distinct inner | 
|  | * maps from the same outer map share the same map_ptr as active_lock.ptr, they | 
|  | * will get different reg->id assigned to each lookup, hence different | 
|  | * active_lock.id. | 
|  | * | 
|  | * In case of allocated objects, active_lock.ptr is the reg->btf, and the | 
|  | * reg->id is a unique ID preserved after the NULL pointer check on the pointer | 
|  | * returned from bpf_obj_new. Each allocation receives a new reg->id. | 
|  | */ | 
|  | static int check_reg_allocation_locked(struct bpf_verifier_env *env, struct bpf_reg_state *reg) | 
|  | { | 
|  | void *ptr; | 
|  | u32 id; | 
|  |  | 
|  | switch ((int)reg->type) { | 
|  | case PTR_TO_MAP_VALUE: | 
|  | ptr = reg->map_ptr; | 
|  | break; | 
|  | case PTR_TO_BTF_ID | MEM_ALLOC: | 
|  | ptr = reg->btf; | 
|  | break; | 
|  | default: | 
|  | verbose(env, "verifier internal error: unknown reg type for lock check\n"); | 
|  | return -EFAULT; | 
|  | } | 
|  | id = reg->id; | 
|  |  | 
|  | if (!env->cur_state->active_lock.ptr) | 
|  | return -EINVAL; | 
|  | if (env->cur_state->active_lock.ptr != ptr || | 
|  | env->cur_state->active_lock.id != id) { | 
|  | verbose(env, "held lock and object are not in the same allocation\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static bool is_bpf_list_api_kfunc(u32 btf_id) | 
|  | { | 
|  | return btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] || | 
|  | btf_id == special_kfunc_list[KF_bpf_list_push_back_impl] || | 
|  | btf_id == special_kfunc_list[KF_bpf_list_pop_front] || | 
|  | btf_id == special_kfunc_list[KF_bpf_list_pop_back]; | 
|  | } | 
|  |  | 
|  | static bool is_bpf_rbtree_api_kfunc(u32 btf_id) | 
|  | { | 
|  | return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl] || | 
|  | btf_id == special_kfunc_list[KF_bpf_rbtree_remove] || | 
|  | btf_id == special_kfunc_list[KF_bpf_rbtree_first]; | 
|  | } | 
|  |  | 
|  | static bool is_bpf_graph_api_kfunc(u32 btf_id) | 
|  | { | 
|  | return is_bpf_list_api_kfunc(btf_id) || is_bpf_rbtree_api_kfunc(btf_id) || | 
|  | btf_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]; | 
|  | } | 
|  |  | 
|  | static bool is_sync_callback_calling_kfunc(u32 btf_id) | 
|  | { | 
|  | return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl]; | 
|  | } | 
|  |  | 
|  | static bool is_async_callback_calling_kfunc(u32 btf_id) | 
|  | { | 
|  | return btf_id == special_kfunc_list[KF_bpf_wq_set_callback_impl]; | 
|  | } | 
|  |  | 
|  | static bool is_bpf_throw_kfunc(struct bpf_insn *insn) | 
|  | { | 
|  | return bpf_pseudo_kfunc_call(insn) && insn->off == 0 && | 
|  | insn->imm == special_kfunc_list[KF_bpf_throw]; | 
|  | } | 
|  |  | 
|  | static bool is_bpf_wq_set_callback_impl_kfunc(u32 btf_id) | 
|  | { | 
|  | return btf_id == special_kfunc_list[KF_bpf_wq_set_callback_impl]; | 
|  | } | 
|  |  | 
|  | static bool is_callback_calling_kfunc(u32 btf_id) | 
|  | { | 
|  | return is_sync_callback_calling_kfunc(btf_id) || | 
|  | is_async_callback_calling_kfunc(btf_id); | 
|  | } | 
|  |  | 
|  | static bool is_rbtree_lock_required_kfunc(u32 btf_id) | 
|  | { | 
|  | return is_bpf_rbtree_api_kfunc(btf_id); | 
|  | } | 
|  |  | 
|  | static bool check_kfunc_is_graph_root_api(struct bpf_verifier_env *env, | 
|  | enum btf_field_type head_field_type, | 
|  | u32 kfunc_btf_id) | 
|  | { | 
|  | bool ret; | 
|  |  | 
|  | switch (head_field_type) { | 
|  | case BPF_LIST_HEAD: | 
|  | ret = is_bpf_list_api_kfunc(kfunc_btf_id); | 
|  | break; | 
|  | case BPF_RB_ROOT: | 
|  | ret = is_bpf_rbtree_api_kfunc(kfunc_btf_id); | 
|  | break; | 
|  | default: | 
|  | verbose(env, "verifier internal error: unexpected graph root argument type %s\n", | 
|  | btf_field_type_name(head_field_type)); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!ret) | 
|  | verbose(env, "verifier internal error: %s head arg for unknown kfunc\n", | 
|  | btf_field_type_name(head_field_type)); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static bool check_kfunc_is_graph_node_api(struct bpf_verifier_env *env, | 
|  | enum btf_field_type node_field_type, | 
|  | u32 kfunc_btf_id) | 
|  | { | 
|  | bool ret; | 
|  |  | 
|  | switch (node_field_type) { | 
|  | case BPF_LIST_NODE: | 
|  | ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] || | 
|  | kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_back_impl]); | 
|  | break; | 
|  | case BPF_RB_NODE: | 
|  | ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_remove] || | 
|  | kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl]); | 
|  | break; | 
|  | default: | 
|  | verbose(env, "verifier internal error: unexpected graph node argument type %s\n", | 
|  | btf_field_type_name(node_field_type)); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!ret) | 
|  | verbose(env, "verifier internal error: %s node arg for unknown kfunc\n", | 
|  | btf_field_type_name(node_field_type)); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int | 
|  | __process_kf_arg_ptr_to_graph_root(struct bpf_verifier_env *env, | 
|  | struct bpf_reg_state *reg, u32 regno, | 
|  | struct bpf_kfunc_call_arg_meta *meta, | 
|  | enum btf_field_type head_field_type, | 
|  | struct btf_field **head_field) | 
|  | { | 
|  | const char *head_type_name; | 
|  | struct btf_field *field; | 
|  | struct btf_record *rec; | 
|  | u32 head_off; | 
|  |  | 
|  | if (meta->btf != btf_vmlinux) { | 
|  | verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n"); | 
|  | return -EFAULT; | 
|  | } | 
|  |  | 
|  | if (!check_kfunc_is_graph_root_api(env, head_field_type, meta->func_id)) | 
|  | return -EFAULT; | 
|  |  | 
|  | head_type_name = btf_field_type_name(head_field_type); | 
|  | if (!tnum_is_const(reg->var_off)) { | 
|  | verbose(env, | 
|  | "R%d doesn't have constant offset. %s has to be at the constant offset\n", | 
|  | regno, head_type_name); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | rec = reg_btf_record(reg); | 
|  | head_off = reg->off + reg->var_off.value; | 
|  | field = btf_record_find(rec, head_off, head_field_type); | 
|  | if (!field) { | 
|  | verbose(env, "%s not found at offset=%u\n", head_type_name, head_off); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* All functions require bpf_list_head to be protected using a bpf_spin_lock */ | 
|  | if (check_reg_allocation_locked(env, reg)) { | 
|  | verbose(env, "bpf_spin_lock at off=%d must be held for %s\n", | 
|  | rec->spin_lock_off, head_type_name); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (*head_field) { | 
|  | verbose(env, "verifier internal error: repeating %s arg\n", head_type_name); | 
|  | return -EFAULT; | 
|  | } | 
|  | *head_field = field; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int process_kf_arg_ptr_to_list_head(struct bpf_verifier_env *env, | 
|  | struct bpf_reg_state *reg, u32 regno, | 
|  | struct bpf_kfunc_call_arg_meta *meta) | 
|  | { | 
|  | return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_LIST_HEAD, | 
|  | &meta->arg_list_head.field); | 
|  | } | 
|  |  | 
|  | static int process_kf_arg_ptr_to_rbtree_root(struct bpf_verifier_env *env, | 
|  | struct bpf_reg_state *reg, u32 regno, | 
|  | struct bpf_kfunc_call_arg_meta *meta) | 
|  | { | 
|  | return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_RB_ROOT, | 
|  | &meta->arg_rbtree_root.field); | 
|  | } | 
|  |  | 
|  | static int | 
|  | __process_kf_arg_ptr_to_graph_node(struct bpf_verifier_env *env, | 
|  | struct bpf_reg_state *reg, u32 regno, | 
|  | struct bpf_kfunc_call_arg_meta *meta, | 
|  | enum btf_field_type head_field_type, | 
|  | enum btf_field_type node_field_type, | 
|  | struct btf_field **node_field) | 
|  | { | 
|  | const char *node_type_name; | 
|  | const struct btf_type *et, *t; | 
|  | struct btf_field *field; | 
|  | u32 node_off; | 
|  |  | 
|  | if (meta->btf != btf_vmlinux) { | 
|  | verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n"); | 
|  | return -EFAULT; | 
|  | } | 
|  |  | 
|  | if (!check_kfunc_is_graph_node_api(env, node_field_type, meta->func_id)) | 
|  | return -EFAULT; | 
|  |  | 
|  | node_type_name = btf_field_type_name(node_field_type); | 
|  | if (!tnum_is_const(reg->var_off)) { | 
|  | verbose(env, | 
|  | "R%d doesn't have constant offset. %s has to be at the constant offset\n", | 
|  | regno, node_type_name); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | node_off = reg->off + reg->var_off.value; | 
|  | field = reg_find_field_offset(reg, node_off, node_field_type); | 
|  | if (!field) { | 
|  | verbose(env, "%s not found at offset=%u\n", node_type_name, node_off); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | field = *node_field; | 
|  |  | 
|  | et = btf_type_by_id(field->graph_root.btf, field->graph_root.value_btf_id); | 
|  | t = btf_type_by_id(reg->btf, reg->btf_id); | 
|  | if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, 0, field->graph_root.btf, | 
|  | field->graph_root.value_btf_id, true)) { | 
|  | verbose(env, "operation on %s expects arg#1 %s at offset=%d " | 
|  | "in struct %s, but arg is at offset=%d in struct %s\n", | 
|  | btf_field_type_name(head_field_type), | 
|  | btf_field_type_name(node_field_type), | 
|  | field->graph_root.node_offset, | 
|  | btf_name_by_offset(field->graph_root.btf, et->name_off), | 
|  | node_off, btf_name_by_offset(reg->btf, t->name_off)); | 
|  | return -EINVAL; | 
|  | } | 
|  | meta->arg_btf = reg->btf; | 
|  | meta->arg_btf_id = reg->btf_id; | 
|  |  | 
|  | if (node_off != field->graph_root.node_offset) { | 
|  | verbose(env, "arg#1 offset=%d, but expected %s at offset=%d in struct %s\n", | 
|  | node_off, btf_field_type_name(node_field_type), | 
|  | field->graph_root.node_offset, | 
|  | btf_name_by_offset(field->graph_root.btf, et->name_off)); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int process_kf_arg_ptr_to_list_node(struct bpf_verifier_env *env, | 
|  | struct bpf_reg_state *reg, u32 regno, | 
|  | struct bpf_kfunc_call_arg_meta *meta) | 
|  | { | 
|  | return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta, | 
|  | BPF_LIST_HEAD, BPF_LIST_NODE, | 
|  | &meta->arg_list_head.field); | 
|  | } | 
|  |  | 
|  | static int process_kf_arg_ptr_to_rbtree_node(struct bpf_verifier_env *env, | 
|  | struct bpf_reg_state *reg, u32 regno, | 
|  | struct bpf_kfunc_call_arg_meta *meta) | 
|  | { | 
|  | return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta, | 
|  | BPF_RB_ROOT, BPF_RB_NODE, | 
|  | &meta->arg_rbtree_root.field); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * css_task iter allowlist is needed to avoid dead locking on css_set_lock. | 
|  | * LSM hooks and iters (both sleepable and non-sleepable) are safe. | 
|  | * Any sleepable progs are also safe since bpf_check_attach_target() enforce | 
|  | * them can only be attached to some specific hook points. | 
|  | */ | 
|  | static bool check_css_task_iter_allowlist(struct bpf_verifier_env *env) | 
|  | { | 
|  | enum bpf_prog_type prog_type = resolve_prog_type(env->prog); | 
|  |  | 
|  | switch (prog_type) { | 
|  | case BPF_PROG_TYPE_LSM: | 
|  | return true; | 
|  | case BPF_PROG_TYPE_TRACING: | 
|  | if (env->prog->expected_attach_type == BPF_TRACE_ITER) | 
|  | return true; | 
|  | fallthrough; | 
|  | default: | 
|  | return in_sleepable(env); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_arg_meta *meta, | 
|  | int insn_idx) | 
|  | { | 
|  | const char *func_name = meta->func_name, *ref_tname; | 
|  | const struct btf *btf = meta->btf; | 
|  | const struct btf_param *args; | 
|  | struct btf_record *rec; | 
|  | u32 i, nargs; | 
|  | int ret; | 
|  |  | 
|  | args = (const struct btf_param *)(meta->func_proto + 1); | 
|  | nargs = btf_type_vlen(meta->func_proto); | 
|  | if (nargs > MAX_BPF_FUNC_REG_ARGS) { | 
|  | verbose(env, "Function %s has %d > %d args\n", func_name, nargs, | 
|  | MAX_BPF_FUNC_REG_ARGS); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* Check that BTF function arguments match actual types that the | 
|  | * verifier sees. | 
|  | */ | 
|  | for (i = 0; i < nargs; i++) { | 
|  | struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[i + 1]; | 
|  | const struct btf_type *t, *ref_t, *resolve_ret; | 
|  | enum bpf_arg_type arg_type = ARG_DONTCARE; | 
|  | u32 regno = i + 1, ref_id, type_size; | 
|  | bool is_ret_buf_sz = false; | 
|  | int kf_arg_type; | 
|  |  | 
|  | t = btf_type_skip_modifiers(btf, args[i].type, NULL); | 
|  |  | 
|  | if (is_kfunc_arg_ignore(btf, &args[i])) | 
|  | continue; | 
|  |  | 
|  | if (btf_type_is_scalar(t)) { | 
|  | if (reg->type != SCALAR_VALUE) { | 
|  | verbose(env, "R%d is not a scalar\n", regno); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (is_kfunc_arg_constant(meta->btf, &args[i])) { | 
|  | if (meta->arg_constant.found) { | 
|  | verbose(env, "verifier internal error: only one constant argument permitted\n"); | 
|  | return -EFAULT; | 
|  | } | 
|  | if (!tnum_is_const(reg->var_off)) { | 
|  | verbose(env, "R%d must be a known constant\n", regno); | 
|  | return -EINVAL; | 
|  | } | 
|  | ret = mark_chain_precision(env, regno); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | meta->arg_constant.found = true; | 
|  | meta->arg_constant.value = reg->var_off.value; | 
|  | } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdonly_buf_size")) { | 
|  | meta->r0_rdonly = true; | 
|  | is_ret_buf_sz = true; | 
|  | } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdwr_buf_size")) { | 
|  | is_ret_buf_sz = true; | 
|  | } | 
|  |  | 
|  | if (is_ret_buf_sz) { | 
|  | if (meta->r0_size) { | 
|  | verbose(env, "2 or more rdonly/rdwr_buf_size parameters for kfunc"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (!tnum_is_const(reg->var_off)) { | 
|  | verbose(env, "R%d is not a const\n", regno); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | meta->r0_size = reg->var_off.value; | 
|  | ret = mark_chain_precision(env, regno); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (!btf_type_is_ptr(t)) { | 
|  | verbose(env, "Unrecognized arg#%d type %s\n", i, btf_type_str(t)); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if ((is_kfunc_trusted_args(meta) || is_kfunc_rcu(meta)) && | 
|  | (register_is_null(reg) || type_may_be_null(reg->type)) && | 
|  | !is_kfunc_arg_nullable(meta->btf, &args[i])) { | 
|  | verbose(env, "Possibly NULL pointer passed to trusted arg%d\n", i); | 
|  | return -EACCES; | 
|  | } | 
|  |  | 
|  | if (reg->ref_obj_id) { | 
|  | if (is_kfunc_release(meta) && meta->ref_obj_id) { | 
|  | verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", | 
|  | regno, reg->ref_obj_id, | 
|  | meta->ref_obj_id); | 
|  | return -EFAULT; | 
|  | } | 
|  | meta->ref_obj_id = reg->ref_obj_id; | 
|  | if (is_kfunc_release(meta)) | 
|  | meta->release_regno = regno; | 
|  | } | 
|  |  | 
|  | ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id); | 
|  | ref_tname = btf_name_by_offset(btf, ref_t->name_off); | 
|  |  | 
|  | kf_arg_type = get_kfunc_ptr_arg_type(env, meta, t, ref_t, ref_tname, args, i, nargs); | 
|  | if (kf_arg_type < 0) | 
|  | return kf_arg_type; | 
|  |  | 
|  | switch (kf_arg_type) { | 
|  | case KF_ARG_PTR_TO_NULL: | 
|  | continue; | 
|  | case KF_ARG_PTR_TO_MAP: | 
|  | if (!reg->map_ptr) { | 
|  | verbose(env, "pointer in R%d isn't map pointer\n", regno); | 
|  | return -EINVAL; | 
|  | } | 
|  | if (meta->map.ptr && reg->map_ptr->record->wq_off >= 0) { | 
|  | /* Use map_uid (which is unique id of inner map) to reject: | 
|  | * inner_map1 = bpf_map_lookup_elem(outer_map, key1) | 
|  | * inner_map2 = bpf_map_lookup_elem(outer_map, key2) | 
|  | * if (inner_map1 && inner_map2) { | 
|  | *     wq = bpf_map_lookup_elem(inner_map1); | 
|  | *     if (wq) | 
|  | *         // mismatch would have been allowed | 
|  | *         bpf_wq_init(wq, inner_map2); | 
|  | * } | 
|  | * | 
|  | * Comparing map_ptr is enough to distinguish normal and outer maps. | 
|  | */ | 
|  | if (meta->map.ptr != reg->map_ptr || | 
|  | meta->map.uid != reg->map_uid) { | 
|  | verbose(env, | 
|  | "workqueue pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n", | 
|  | meta->map.uid, reg->map_uid); | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  | meta->map.ptr = reg->map_ptr; | 
|  | meta->map.uid = reg->map_uid; | 
|  | fallthrough; | 
|  | case KF_ARG_PTR_TO_ALLOC_BTF_ID: | 
|  | case KF_ARG_PTR_TO_BTF_ID: | 
|  | if (!is_kfunc_trusted_args(meta) && !is_kfunc_rcu(meta)) | 
|  | break; | 
|  |  | 
|  | if (!is_trusted_reg(reg)) { | 
|  | if (!is_kfunc_rcu(meta)) { | 
|  | verbose(env, "R%d must be referenced or trusted\n", regno); | 
|  | return -EINVAL; | 
|  | } | 
|  | if (!is_rcu_reg(reg)) { | 
|  | verbose(env, "R%d must be a rcu pointer\n", regno); | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  | fallthrough; | 
|  | case KF_ARG_PTR_TO_CTX: | 
|  | case KF_ARG_PTR_TO_DYNPTR: | 
|  | case KF_ARG_PTR_TO_ITER: | 
|  | case KF_ARG_PTR_TO_LIST_HEAD: | 
|  | case KF_ARG_PTR_TO_LIST_NODE: | 
|  | case KF_ARG_PTR_TO_RB_ROOT: | 
|  | case KF_ARG_PTR_TO_RB_NODE: | 
|  | case KF_ARG_PTR_TO_MEM: | 
|  | case KF_ARG_PTR_TO_MEM_SIZE: | 
|  | case KF_ARG_PTR_TO_CALLBACK: | 
|  | case KF_ARG_PTR_TO_REFCOUNTED_KPTR: | 
|  | case KF_ARG_PTR_TO_CONST_STR: | 
|  | case KF_ARG_PTR_TO_WORKQUEUE: | 
|  | break; | 
|  | default: | 
|  | WARN_ON_ONCE(1); | 
|  | return -EFAULT; | 
|  | } | 
|  |  | 
|  | if (is_kfunc_release(meta) && reg->ref_obj_id) | 
|  | arg_type |= OBJ_RELEASE; | 
|  | ret = check_func_arg_reg_off(env, reg, regno, arg_type); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | switch (kf_arg_type) { | 
|  | case KF_ARG_PTR_TO_CTX: | 
|  | if (reg->type != PTR_TO_CTX) { | 
|  | verbose(env, "arg#%d expected pointer to ctx, but got %s\n", | 
|  | i, reg_type_str(env, reg->type)); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) { | 
|  | ret = get_kern_ctx_btf_id(&env->log, resolve_prog_type(env->prog)); | 
|  | if (ret < 0) | 
|  | return -EINVAL; | 
|  | meta->ret_btf_id  = ret; | 
|  | } | 
|  | break; | 
|  | case KF_ARG_PTR_TO_ALLOC_BTF_ID: | 
|  | if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC)) { | 
|  | if (meta->func_id != special_kfunc_list[KF_bpf_obj_drop_impl]) { | 
|  | verbose(env, "arg#%d expected for bpf_obj_drop_impl()\n", i); | 
|  | return -EINVAL; | 
|  | } | 
|  | } else if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC | MEM_PERCPU)) { | 
|  | if (meta->func_id != special_kfunc_list[KF_bpf_percpu_obj_drop_impl]) { | 
|  | verbose(env, "arg#%d expected for bpf_percpu_obj_drop_impl()\n", i); | 
|  | return -EINVAL; | 
|  | } | 
|  | } else { | 
|  | verbose(env, "arg#%d expected pointer to allocated object\n", i); | 
|  | return -EINVAL; | 
|  | } | 
|  | if (!reg->ref_obj_id) { | 
|  | verbose(env, "allocated object must be referenced\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | if (meta->btf == btf_vmlinux) { | 
|  | meta->arg_btf = reg->btf; | 
|  | meta->arg_btf_id = reg->btf_id; | 
|  | } | 
|  | break; | 
|  | case KF_ARG_PTR_TO_DYNPTR: | 
|  | { | 
|  | enum bpf_arg_type dynptr_arg_type = ARG_PTR_TO_DYNPTR; | 
|  | int clone_ref_obj_id = 0; | 
|  |  | 
|  | if (reg->type == CONST_PTR_TO_DYNPTR) | 
|  | dynptr_arg_type |= MEM_RDONLY; | 
|  |  | 
|  | if (is_kfunc_arg_uninit(btf, &args[i])) | 
|  | dynptr_arg_type |= MEM_UNINIT; | 
|  |  | 
|  | if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) { | 
|  | dynptr_arg_type |= DYNPTR_TYPE_SKB; | 
|  | } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_xdp]) { | 
|  | dynptr_arg_type |= DYNPTR_TYPE_XDP; | 
|  | } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_clone] && | 
|  | (dynptr_arg_type & MEM_UNINIT)) { | 
|  | enum bpf_dynptr_type parent_type = meta->initialized_dynptr.type; | 
|  |  | 
|  | if (parent_type == BPF_DYNPTR_TYPE_INVALID) { | 
|  | verbose(env, "verifier internal error: no dynptr type for parent of clone\n"); | 
|  | return -EFAULT; | 
|  | } | 
|  |  | 
|  | dynptr_arg_type |= (unsigned int)get_dynptr_type_flag(parent_type); | 
|  | clone_ref_obj_id = meta->initialized_dynptr.ref_obj_id; | 
|  | if (dynptr_type_refcounted(parent_type) && !clone_ref_obj_id) { | 
|  | verbose(env, "verifier internal error: missing ref obj id for parent of clone\n"); | 
|  | return -EFAULT; | 
|  | } | 
|  | } | 
|  |  | 
|  | ret = process_dynptr_func(env, regno, insn_idx, dynptr_arg_type, clone_ref_obj_id); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | if (!(dynptr_arg_type & MEM_UNINIT)) { | 
|  | int id = dynptr_id(env, reg); | 
|  |  | 
|  | if (id < 0) { | 
|  | verbose(env, "verifier internal error: failed to obtain dynptr id\n"); | 
|  | return id; | 
|  | } | 
|  | meta->initialized_dynptr.id = id; | 
|  | meta->initialized_dynptr.type = dynptr_get_type(env, reg); | 
|  | meta->initialized_dynptr.ref_obj_id = dynptr_ref_obj_id(env, reg); | 
|  | } | 
|  |  | 
|  | break; | 
|  | } | 
|  | case KF_ARG_PTR_TO_ITER: | 
|  | if (meta->func_id == special_kfunc_list[KF_bpf_iter_css_task_new]) { | 
|  | if (!check_css_task_iter_allowlist(env)) { | 
|  | verbose(env, "css_task_iter is only allowed in bpf_lsm, bpf_iter and sleepable progs\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  | ret = process_iter_arg(env, regno, insn_idx, meta); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | break; | 
|  | case KF_ARG_PTR_TO_LIST_HEAD: | 
|  | if (reg->type != PTR_TO_MAP_VALUE && | 
|  | reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { | 
|  | verbose(env, "arg#%d expected pointer to map value or allocated object\n", i); | 
|  | return -EINVAL; | 
|  | } | 
|  | if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) { | 
|  | verbose(env, "allocated object must be referenced\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | ret = process_kf_arg_ptr_to_list_head(env, reg, regno, meta); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | break; | 
|  | case KF_ARG_PTR_TO_RB_ROOT: | 
|  | if (reg->type != PTR_TO_MAP_VALUE && | 
|  | reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { | 
|  | verbose(env, "arg#%d expected pointer to map value or allocated object\n", i); | 
|  | return -EINVAL; | 
|  | } | 
|  | if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) { | 
|  | verbose(env, "allocated object must be referenced\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | ret = process_kf_arg_ptr_to_rbtree_root(env, reg, regno, meta); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | break; | 
|  | case KF_ARG_PTR_TO_LIST_NODE: | 
|  | if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { | 
|  | verbose(env, "arg#%d expected pointer to allocated object\n", i); | 
|  | return -EINVAL; | 
|  | } | 
|  | if (!reg->ref_obj_id) { | 
|  | verbose(env, "allocated object must be referenced\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | ret = process_kf_arg_ptr_to_list_node(env, reg, regno, meta); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | break; | 
|  | case KF_ARG_PTR_TO_RB_NODE: | 
|  | if (meta->func_id == special_kfunc_list[KF_bpf_rbtree_remove]) { | 
|  | if (!type_is_non_owning_ref(reg->type) || reg->ref_obj_id) { | 
|  | verbose(env, "rbtree_remove node input must be non-owning ref\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | if (in_rbtree_lock_required_cb(env)) { | 
|  | verbose(env, "rbtree_remove not allowed in rbtree cb\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | } else { | 
|  | if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { | 
|  | verbose(env, "arg#%d expected pointer to allocated object\n", i); | 
|  | return -EINVAL; | 
|  | } | 
|  | if (!reg->ref_obj_id) { | 
|  | verbose(env, "allocated object must be referenced\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  |  | 
|  | ret = process_kf_arg_ptr_to_rbtree_node(env, reg, regno, meta); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | break; | 
|  | case KF_ARG_PTR_TO_MAP: | 
|  | /* If argument has '__map' suffix expect 'struct bpf_map *' */ | 
|  | ref_id = *reg2btf_ids[CONST_PTR_TO_MAP]; | 
|  | ref_t = btf_type_by_id(btf_vmlinux, ref_id); | 
|  | ref_tname = btf_name_by_offset(btf, ref_t->name_off); | 
|  | fallthrough; | 
|  | case KF_ARG_PTR_TO_BTF_ID: | 
|  | /* Only base_type is checked, further checks are done here */ | 
|  | if ((base_type(reg->type) != PTR_TO_BTF_ID || | 
|  | (bpf_type_has_unsafe_modifiers(reg->type) && !is_rcu_reg(reg))) && | 
|  | !reg2btf_ids[base_type(reg->type)]) { | 
|  | verbose(env, "arg#%d is %s ", i, reg_type_str(env, reg->type)); | 
|  | verbose(env, "expected %s or socket\n", | 
|  | reg_type_str(env, base_type(reg->type) | | 
|  | (type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS))); | 
|  | return -EINVAL; | 
|  | } | 
|  | ret = process_kf_arg_ptr_to_btf_id(env, reg, ref_t, ref_tname, ref_id, meta, i); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | break; | 
|  | case KF_ARG_PTR_TO_MEM: | 
|  | resolve_ret = btf_resolve_size(btf, ref_t, &type_size); | 
|  | if (IS_ERR(resolve_ret)) { | 
|  | verbose(env, "arg#%d reference type('%s %s') size cannot be determined: %ld\n", | 
|  | i, btf_type_str(ref_t), ref_tname, PTR_ERR(resolve_ret)); | 
|  | return -EINVAL; | 
|  | } | 
|  | ret = check_mem_reg(env, reg, regno, type_size); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | break; | 
|  | case KF_ARG_PTR_TO_MEM_SIZE: | 
|  | { | 
|  | struct bpf_reg_state *buff_reg = ®s[regno]; | 
|  | const struct btf_param *buff_arg = &args[i]; | 
|  | struct bpf_reg_state *size_reg = ®s[regno + 1]; | 
|  | const struct btf_param *size_arg = &args[i + 1]; | 
|  |  | 
|  | if (!register_is_null(buff_reg) || !is_kfunc_arg_optional(meta->btf, buff_arg)) { | 
|  | ret = check_kfunc_mem_size_reg(env, size_reg, regno + 1); | 
|  | if (ret < 0) { | 
|  | verbose(env, "arg#%d arg#%d memory, len pair leads to invalid memory access\n", i, i + 1); | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (is_kfunc_arg_const_mem_size(meta->btf, size_arg, size_reg)) { | 
|  | if (meta->arg_constant.found) { | 
|  | verbose(env, "verifier internal error: only one constant argument permitted\n"); | 
|  | return -EFAULT; | 
|  | } | 
|  | if (!tnum_is_const(size_reg->var_off)) { | 
|  | verbose(env, "R%d must be a known constant\n", regno + 1); | 
|  | return -EINVAL; | 
|  | } | 
|  | meta->arg_constant.found = true; | 
|  | meta->arg_constant.value = size_reg->var_off.value; | 
|  | } | 
|  |  | 
|  | /* Skip next '__sz' or '__szk' argument */ | 
|  | i++; | 
|  | break; | 
|  | } | 
|  | case KF_ARG_PTR_TO_CALLBACK: | 
|  | if (reg->type != PTR_TO_FUNC) { | 
|  | verbose(env, "arg%d expected pointer to func\n", i); | 
|  | return -EINVAL; | 
|  | } | 
|  | meta->subprogno = reg->subprogno; | 
|  | break; | 
|  | case KF_ARG_PTR_TO_REFCOUNTED_KPTR: | 
|  | if (!type_is_ptr_alloc_obj(reg->type)) { | 
|  | verbose(env, "arg#%d is neither owning or non-owning ref\n", i); | 
|  | return -EINVAL; | 
|  | } | 
|  | if (!type_is_non_owning_ref(reg->type)) | 
|  | meta->arg_owning_ref = true; | 
|  |  | 
|  | rec = reg_btf_record(reg); | 
|  | if (!rec) { | 
|  | verbose(env, "verifier internal error: Couldn't find btf_record\n"); | 
|  | return -EFAULT; | 
|  | } | 
|  |  | 
|  | if (rec->refcount_off < 0) { | 
|  | verbose(env, "arg#%d doesn't point to a type with bpf_refcount field\n", i); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | meta->arg_btf = reg->btf; | 
|  | meta->arg_btf_id = reg->btf_id; | 
|  | break; | 
|  | case KF_ARG_PTR_TO_CONST_STR: | 
|  | if (reg->type != PTR_TO_MAP_VALUE) { | 
|  | verbose(env, "arg#%d doesn't point to a const string\n", i); | 
|  | return -EINVAL; | 
|  | } | 
|  | ret = check_reg_const_str(env, reg, regno); | 
|  | if (ret) | 
|  | return ret; | 
|  | break; | 
|  | case KF_ARG_PTR_TO_WORKQUEUE: | 
|  | if (reg->type != PTR_TO_MAP_VALUE) { | 
|  | verbose(env, "arg#%d doesn't point to a map value\n", i); | 
|  | return -EINVAL; | 
|  | } | 
|  | ret = process_wq_func(env, regno, meta); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (is_kfunc_release(meta) && !meta->release_regno) { | 
|  | verbose(env, "release kernel function %s expects refcounted PTR_TO_BTF_ID\n", | 
|  | func_name); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int fetch_kfunc_meta(struct bpf_verifier_env *env, | 
|  | struct bpf_insn *insn, | 
|  | struct bpf_kfunc_call_arg_meta *meta, | 
|  | const char **kfunc_name) | 
|  | { | 
|  | const struct btf_type *func, *func_proto; | 
|  | u32 func_id, *kfunc_flags; | 
|  | const char *func_name; | 
|  | struct btf *desc_btf; | 
|  |  | 
|  | if (kfunc_name) | 
|  | *kfunc_name = NULL; | 
|  |  | 
|  | if (!insn->imm) | 
|  | return -EINVAL; | 
|  |  | 
|  | desc_btf = find_kfunc_desc_btf(env, insn->off); | 
|  | if (IS_ERR(desc_btf)) | 
|  | return PTR_ERR(desc_btf); | 
|  |  | 
|  | func_id = insn->imm; | 
|  | func = btf_type_by_id(desc_btf, func_id); | 
|  | func_name = btf_name_by_offset(desc_btf, func->name_off); | 
|  | if (kfunc_name) | 
|  | *kfunc_name = func_name; | 
|  | func_proto = btf_type_by_id(desc_btf, func->type); | 
|  |  | 
|  | kfunc_flags = btf_kfunc_id_set_contains(desc_btf, func_id, env->prog); | 
|  | if (!kfunc_flags) { | 
|  | return -EACCES; | 
|  | } | 
|  |  | 
|  | memset(meta, 0, sizeof(*meta)); | 
|  | meta->btf = desc_btf; | 
|  | meta->func_id = func_id; | 
|  | meta->kfunc_flags = *kfunc_flags; | 
|  | meta->func_proto = func_proto; | 
|  | meta->func_name = func_name; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int check_return_code(struct bpf_verifier_env *env, int regno, const char *reg_name); | 
|  |  | 
|  | static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn, | 
|  | int *insn_idx_p) | 
|  | { | 
|  | bool sleepable, rcu_lock, rcu_unlock, preempt_disable, preempt_enable; | 
|  | u32 i, nargs, ptr_type_id, release_ref_obj_id; | 
|  | struct bpf_reg_state *regs = cur_regs(env); | 
|  | const char *func_name, *ptr_type_name; | 
|  | const struct btf_type *t, *ptr_type; | 
|  | struct bpf_kfunc_call_arg_meta meta; | 
|  | struct bpf_insn_aux_data *insn_aux; | 
|  | int err, insn_idx = *insn_idx_p; | 
|  | const struct btf_param *args; | 
|  | const struct btf_type *ret_t; | 
|  | struct btf *desc_btf; | 
|  |  | 
|  | /* skip for now, but return error when we find this in fixup_kfunc_call */ | 
|  | if (!insn->imm) | 
|  | return 0; | 
|  |  | 
|  | err = fetch_kfunc_meta(env, insn, &meta, &func_name); | 
|  | if (err == -EACCES && func_name) | 
|  | verbose(env, "calling kernel function %s is not allowed\n", func_name); | 
|  | if (err) | 
|  | return err; | 
|  | desc_btf = meta.btf; | 
|  | insn_aux = &env->insn_aux_data[insn_idx]; | 
|  |  | 
|  | insn_aux->is_iter_next = is_iter_next_kfunc(&meta); | 
|  |  | 
|  | if (is_kfunc_destructive(&meta) && !capable(CAP_SYS_BOOT)) { | 
|  | verbose(env, "destructive kfunc calls require CAP_SYS_BOOT capability\n"); | 
|  | return -EACCES; | 
|  | } | 
|  |  | 
|  | sleepable = is_kfunc_sleepable(&meta); | 
|  | if (sleepable && !in_sleepable(env)) { | 
|  | verbose(env, "program must be sleepable to call sleepable kfunc %s\n", func_name); | 
|  | return -EACCES; | 
|  | } | 
|  |  | 
|  | /* Check the arguments */ | 
|  | err = check_kfunc_args(env, &meta, insn_idx); | 
|  | if (err < 0) | 
|  | return err; | 
|  |  | 
|  | if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { | 
|  | err = push_callback_call(env, insn, insn_idx, meta.subprogno, | 
|  | set_rbtree_add_callback_state); | 
|  | if (err) { | 
|  | verbose(env, "kfunc %s#%d failed callback verification\n", | 
|  | func_name, meta.func_id); | 
|  | return err; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (meta.func_id == special_kfunc_list[KF_bpf_session_cookie]) { | 
|  | meta.r0_size = sizeof(u64); | 
|  | meta.r0_rdonly = false; | 
|  | } | 
|  |  | 
|  | if (is_bpf_wq_set_callback_impl_kfunc(meta.func_id)) { | 
|  | err = push_callback_call(env, insn, insn_idx, meta.subprogno, | 
|  | set_timer_callback_state); | 
|  | if (err) { | 
|  | verbose(env, "kfunc %s#%d failed callback verification\n", | 
|  | func_name, meta.func_id); | 
|  | return err; | 
|  | } | 
|  | } | 
|  |  | 
|  | rcu_lock = is_kfunc_bpf_rcu_read_lock(&meta); | 
|  | rcu_unlock = is_kfunc_bpf_rcu_read_unlock(&meta); | 
|  |  | 
|  | preempt_disable = is_kfunc_bpf_preempt_disable(&meta); | 
|  | preempt_enable = is_kfunc_bpf_preempt_enable(&meta); | 
|  |  | 
|  | if (env->cur_state->active_rcu_lock) { | 
|  | struct bpf_func_state *state; | 
|  | struct bpf_reg_state *reg; | 
|  | u32 clear_mask = (1 << STACK_SPILL) | (1 << STACK_ITER); | 
|  |  | 
|  | if (in_rbtree_lock_required_cb(env) && (rcu_lock || rcu_unlock)) { | 
|  | verbose(env, "Calling bpf_rcu_read_{lock,unlock} in unnecessary rbtree callback\n"); | 
|  | return -EACCES; | 
|  | } | 
|  |  | 
|  | if (rcu_lock) { | 
|  | verbose(env, "nested rcu read lock (kernel function %s)\n", func_name); | 
|  | return -EINVAL; | 
|  | } else if (rcu_unlock) { | 
|  | bpf_for_each_reg_in_vstate_mask(env->cur_state, state, reg, clear_mask, ({ | 
|  | if (reg->type & MEM_RCU) { | 
|  | reg->type &= ~(MEM_RCU | PTR_MAYBE_NULL); | 
|  | reg->type |= PTR_UNTRUSTED; | 
|  | } | 
|  | })); | 
|  | env->cur_state->active_rcu_lock = false; | 
|  | } else if (sleepable) { | 
|  | verbose(env, "kernel func %s is sleepable within rcu_read_lock region\n", func_name); | 
|  | return -EACCES; | 
|  | } | 
|  | } else if (rcu_lock) { | 
|  | env->cur_state->active_rcu_lock = true; | 
|  | } else if (rcu_unlock) { | 
|  | verbose(env, "unmatched rcu read unlock (kernel function %s)\n", func_name); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (env->cur_state->active_preempt_lock) { | 
|  | if (preempt_disable) { | 
|  | env->cur_state->active_preempt_lock++; | 
|  | } else if (preempt_enable) { | 
|  | env->cur_state->active_preempt_lock--; | 
|  | } else if (sleepable) { | 
|  | verbose(env, "kernel func %s is sleepable within non-preemptible region\n", func_name); | 
|  | return -EACCES; | 
|  | } | 
|  | } else if (preempt_disable) { | 
|  | env->cur_state->active_preempt_lock++; | 
|  | } else if (preempt_enable) { | 
|  | verbose(env, "unmatched attempt to enable preemption (kernel function %s)\n", func_name); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* In case of release function, we get register number of refcounted | 
|  | * PTR_TO_BTF_ID in bpf_kfunc_arg_meta, do the release now. | 
|  | */ | 
|  | if (meta.release_regno) { | 
|  | err = release_reference(env, regs[meta.release_regno].ref_obj_id); | 
|  | if (err) { | 
|  | verbose(env, "kfunc %s#%d reference has not been acquired before\n", | 
|  | func_name, meta.func_id); | 
|  | return err; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (meta.func_id == special_kfunc_list[KF_bpf_list_push_front_impl] || | 
|  | meta.func_id == special_kfunc_list[KF_bpf_list_push_back_impl] || | 
|  | meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { | 
|  | release_ref_obj_id = regs[BPF_REG_2].ref_obj_id; | 
|  | insn_aux->insert_off = regs[BPF_REG_2].off; | 
|  | insn_aux->kptr_struct_meta = btf_find_struct_meta(meta.arg_btf, meta.arg_btf_id); | 
|  | err = ref_convert_owning_non_owning(env, release_ref_obj_id); | 
|  | if (err) { | 
|  | verbose(env, "kfunc %s#%d conversion of owning ref to non-owning failed\n", | 
|  | func_name, meta.func_id); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | err = release_reference(env, release_ref_obj_id); | 
|  | if (err) { | 
|  | verbose(env, "kfunc %s#%d reference has not been acquired before\n", | 
|  | func_name, meta.func_id); | 
|  | return err; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (meta.func_id == special_kfunc_list[KF_bpf_throw]) { | 
|  | if (!bpf_jit_supports_exceptions()) { | 
|  | verbose(env, "JIT does not support calling kfunc %s#%d\n", | 
|  | func_name, meta.func_id); | 
|  | return -ENOTSUPP; | 
|  | } | 
|  | env->seen_exception = true; | 
|  |  | 
|  | /* In the case of the default callback, the cookie value passed | 
|  | * to bpf_throw becomes the return value of the program. | 
|  | */ | 
|  | if (!env->exception_callback_subprog) { | 
|  | err = check_return_code(env, BPF_REG_1, "R1"); | 
|  | if (err < 0) | 
|  | return err; | 
|  | } | 
|  | } | 
|  |  | 
|  | for (i = 0; i < CALLER_SAVED_REGS; i++) | 
|  | mark_reg_not_init(env, regs, caller_saved[i]); | 
|  |  | 
|  | /* Check return type */ | 
|  | t = btf_type_skip_modifiers(desc_btf, meta.func_proto->type, NULL); | 
|  |  | 
|  | if (is_kfunc_acquire(&meta) && !btf_type_is_struct_ptr(meta.btf, t)) { | 
|  | /* Only exception is bpf_obj_new_impl */ | 
|  | if (meta.btf != btf_vmlinux || | 
|  | (meta.func_id != special_kfunc_list[KF_bpf_obj_new_impl] && | 
|  | meta.func_id != special_kfunc_list[KF_bpf_percpu_obj_new_impl] && | 
|  | meta.func_id != special_kfunc_list[KF_bpf_refcount_acquire_impl])) { | 
|  | verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (btf_type_is_scalar(t)) { | 
|  | mark_reg_unknown(env, regs, BPF_REG_0); | 
|  | mark_btf_func_reg_size(env, BPF_REG_0, t->size); | 
|  | } else if (btf_type_is_ptr(t)) { | 
|  | ptr_type = btf_type_skip_modifiers(desc_btf, t->type, &ptr_type_id); | 
|  |  | 
|  | if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) { | 
|  | if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl] || | 
|  | meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) { | 
|  | struct btf_struct_meta *struct_meta; | 
|  | struct btf *ret_btf; | 
|  | u32 ret_btf_id; | 
|  |  | 
|  | if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl] && !bpf_global_ma_set) | 
|  | return -ENOMEM; | 
|  |  | 
|  | if (((u64)(u32)meta.arg_constant.value) != meta.arg_constant.value) { | 
|  | verbose(env, "local type ID argument must be in range [0, U32_MAX]\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | ret_btf = env->prog->aux->btf; | 
|  | ret_btf_id = meta.arg_constant.value; | 
|  |  | 
|  | /* This may be NULL due to user not supplying a BTF */ | 
|  | if (!ret_btf) { | 
|  | verbose(env, "bpf_obj_new/bpf_percpu_obj_new requires prog BTF\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | ret_t = btf_type_by_id(ret_btf, ret_btf_id); | 
|  | if (!ret_t || !__btf_type_is_struct(ret_t)) { | 
|  | verbose(env, "bpf_obj_new/bpf_percpu_obj_new type ID argument must be of a struct\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) { | 
|  | if (ret_t->size > BPF_GLOBAL_PERCPU_MA_MAX_SIZE) { | 
|  | verbose(env, "bpf_percpu_obj_new type size (%d) is greater than %d\n", | 
|  | ret_t->size, BPF_GLOBAL_PERCPU_MA_MAX_SIZE); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (!bpf_global_percpu_ma_set) { | 
|  | mutex_lock(&bpf_percpu_ma_lock); | 
|  | if (!bpf_global_percpu_ma_set) { | 
|  | /* Charge memory allocated with bpf_global_percpu_ma to | 
|  | * root memcg. The obj_cgroup for root memcg is NULL. | 
|  | */ | 
|  | err = bpf_mem_alloc_percpu_init(&bpf_global_percpu_ma, NULL); | 
|  | if (!err) | 
|  | bpf_global_percpu_ma_set = true; | 
|  | } | 
|  | mutex_unlock(&bpf_percpu_ma_lock); | 
|  | if (err) | 
|  | return err; | 
|  | } | 
|  |  | 
|  | mutex_lock(&bpf_percpu_ma_lock); | 
|  | err = bpf_mem_alloc_percpu_unit_init(&bpf_global_percpu_ma, ret_t->size); | 
|  | mutex_unlock(&bpf_percpu_ma_lock); | 
|  | if (err) | 
|  | return err; | 
|  | } | 
|  |  | 
|  | struct_meta = btf_find_struct_meta(ret_btf, ret_btf_id); | 
|  | if (meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) { | 
|  | if (!__btf_type_is_scalar_struct(env, ret_btf, ret_t, 0)) { | 
|  | verbose(env, "bpf_percpu_obj_new type ID argument must be of a struct of scalars\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (struct_meta) { | 
|  | verbose(env, "bpf_percpu_obj_new type ID argument must not contain special fields\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  |  | 
|  | mark_reg_known_zero(env, regs, BPF_REG_0); | 
|  | regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC; | 
|  | regs[BPF_REG_0].btf = ret_btf; | 
|  | regs[BPF_REG_0].btf_id = ret_btf_id; | 
|  | if (meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) | 
|  | regs[BPF_REG_0].type |= MEM_PERCPU; | 
|  |  | 
|  | insn_aux->obj_new_size = ret_t->size; | 
|  | insn_aux->kptr_struct_meta = struct_meta; | 
|  | } else if (meta.func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) { | 
|  | mark_reg_known_zero(env, regs, BPF_REG_0); | 
|  | regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC; | 
|  | regs[BPF_REG_0].btf = meta.arg_btf; | 
|  | regs[BPF_REG_0].btf_id = meta.arg_btf_id; | 
|  |  | 
|  | insn_aux->kptr_struct_meta = | 
|  | btf_find_struct_meta(meta.arg_btf, | 
|  | meta.arg_btf_id); | 
|  | } else if (meta.func_id == special_kfunc_list[KF_bpf_list_pop_front] || | 
|  | meta.func_id == special_kfunc_list[KF_bpf_list_pop_back]) { | 
|  | struct btf_field *field = meta.arg_list_head.field; | 
|  |  | 
|  | mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root); | 
|  | } else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_remove] || | 
|  | meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) { | 
|  | struct btf_field *field = meta.arg_rbtree_root.field; | 
|  |  | 
|  | mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root); | 
|  | } else if (meta.func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) { | 
|  | mark_reg_known_zero(env, regs, BPF_REG_0); | 
|  | regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_TRUSTED; | 
|  | regs[BPF_REG_0].btf = desc_btf; | 
|  | regs[BPF_REG_0].btf_id = meta.ret_btf_id; | 
|  | } else if (meta.func_id == special_kfunc_list[KF_bpf_rdonly_cast]) { | 
|  | ret_t = btf_type_by_id(desc_btf, meta.arg_constant.value); | 
|  | if (!ret_t || !btf_type_is_struct(ret_t)) { | 
|  | verbose(env, | 
|  | "kfunc bpf_rdonly_cast type ID argument must be of a struct\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | mark_reg_known_zero(env, regs, BPF_REG_0); | 
|  | regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_UNTRUSTED; | 
|  | regs[BPF_REG_0].btf = desc_btf; | 
|  | regs[BPF_REG_0].btf_id = meta.arg_constant.value; | 
|  | } else if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice] || | 
|  | meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice_rdwr]) { | 
|  | enum bpf_type_flag type_flag = get_dynptr_type_flag(meta.initialized_dynptr.type); | 
|  |  | 
|  | mark_reg_known_zero(env, regs, BPF_REG_0); | 
|  |  | 
|  | if (!meta.arg_constant.found) { | 
|  | verbose(env, "verifier internal error: bpf_dynptr_slice(_rdwr) no constant size\n"); | 
|  | return -EFAULT; | 
|  | } | 
|  |  | 
|  | regs[BPF_REG_0].mem_size = meta.arg_constant.value; | 
|  |  | 
|  | /* PTR_MAYBE_NULL will be added when is_kfunc_ret_null is checked */ | 
|  | regs[BPF_REG_0].type = PTR_TO_MEM | type_flag; | 
|  |  | 
|  | if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice]) { | 
|  | regs[BPF_REG_0].type |= MEM_RDONLY; | 
|  | } else { | 
|  | /* this will set env->seen_direct_write to true */ | 
|  | if (!may_access_direct_pkt_data(env, NULL, BPF_WRITE)) { | 
|  | verbose(env, "the prog does not allow writes to packet data\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!meta.initialized_dynptr.id) { | 
|  | verbose(env, "verifier internal error: no dynptr id\n"); | 
|  | return -EFAULT; | 
|  | } | 
|  | regs[BPF_REG_0].dynptr_id = meta.initialized_dynptr.id; | 
|  |  | 
|  | /* we don't need to set BPF_REG_0's ref obj id | 
|  | * because packet slices are not refcounted (see | 
|  | * dynptr_type_refcounted) | 
|  | */ | 
|  | } else { | 
|  | verbose(env, "kernel function %s unhandled dynamic return type\n", | 
|  | meta.func_name); | 
|  | return -EFAULT; | 
|  | } | 
|  | } else if (btf_type_is_void(ptr_type)) { | 
|  | /* kfunc returning 'void *' is equivalent to returning scalar */ | 
|  | mark_reg_unknown(env, regs, BPF_REG_0); | 
|  | } else if (!__btf_type_is_struct(ptr_type)) { | 
|  | if (!meta.r0_size) { | 
|  | __u32 sz; | 
|  |  | 
|  | if (!IS_ERR(btf_resolve_size(desc_btf, ptr_type, &sz))) { | 
|  | meta.r0_size = sz; | 
|  | meta.r0_rdonly = true; | 
|  | } | 
|  | } | 
|  | if (!meta.r0_size) { | 
|  | ptr_type_name = btf_name_by_offset(desc_btf, | 
|  | ptr_type->name_off); | 
|  | verbose(env, | 
|  | "kernel function %s returns pointer type %s %s is not supported\n", | 
|  | func_name, | 
|  | btf_type_str(ptr_type), | 
|  | ptr_type_name); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | mark_reg_known_zero(env, regs, BPF_REG_0); | 
|  | regs[BPF_REG_0].type = PTR_TO_MEM; | 
|  | regs[BPF_REG_0].mem_size = meta.r0_size; | 
|  |  | 
|  | if (meta.r0_rdonly) | 
|  | regs[BPF_REG_0].type |= MEM_RDONLY; | 
|  |  | 
|  | /* Ensures we don't access the memory after a release_reference() */ | 
|  | if (meta.ref_obj_id) | 
|  | regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; | 
|  | } else { | 
|  | mark_reg_known_zero(env, regs, BPF_REG_0); | 
|  | regs[BPF_REG_0].btf = desc_btf; | 
|  | regs[BPF_REG_0].type = PTR_TO_BTF_ID; | 
|  | regs[BPF_REG_0].btf_id = ptr_type_id; | 
|  |  | 
|  | if (is_iter_next_kfunc(&meta)) { | 
|  | struct bpf_reg_state *cur_iter; | 
|  |  | 
|  | cur_iter = get_iter_from_state(env->cur_state, &meta); | 
|  |  | 
|  | if (cur_iter->type & MEM_RCU) /* KF_RCU_PROTECTED */ | 
|  | regs[BPF_REG_0].type |= MEM_RCU; | 
|  | else | 
|  | regs[BPF_REG_0].type |= PTR_TRUSTED; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (is_kfunc_ret_null(&meta)) { | 
|  | regs[BPF_REG_0].type |= PTR_MAYBE_NULL; | 
|  | /* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */ | 
|  | regs[BPF_REG_0].id = ++env->id_gen; | 
|  | } | 
|  | mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *)); | 
|  | if (is_kfunc_acquire(&meta)) { | 
|  | int id = acquire_reference_state(env, insn_idx); | 
|  |  | 
|  | if (id < 0) | 
|  | return id; | 
|  | if (is_kfunc_ret_null(&meta)) | 
|  | regs[BPF_REG_0].id = id; | 
|  | regs[BPF_REG_0].ref_obj_id = id; | 
|  | } else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) { | 
|  | ref_set_non_owning(env, ®s[BPF_REG_0]); | 
|  | } | 
|  |  | 
|  | if (reg_may_point_to_spin_lock(®s[BPF_REG_0]) && !regs[BPF_REG_0].id) | 
|  | regs[BPF_REG_0].id = ++env->id_gen; | 
|  | } else if (btf_type_is_void(t)) { | 
|  | if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) { | 
|  | if (meta.func_id == special_kfunc_list[KF_bpf_obj_drop_impl] || | 
|  | meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl]) { | 
|  | insn_aux->kptr_struct_meta = | 
|  | btf_find_struct_meta(meta.arg_btf, | 
|  | meta.arg_btf_id); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | nargs = btf_type_vlen(meta.func_proto); | 
|  | args = (const struct btf_param *)(meta.func_proto + 1); | 
|  | for (i = 0; i < nargs; i++) { | 
|  | u32 regno = i + 1; | 
|  |  | 
|  | t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL); | 
|  | if (btf_type_is_ptr(t)) | 
|  | mark_btf_func_reg_size(env, regno, sizeof(void *)); | 
|  | else | 
|  | /* scalar. ensured by btf_check_kfunc_arg_match() */ | 
|  | mark_btf_func_reg_size(env, regno, t->size); | 
|  | } | 
|  |  | 
|  | if (is_iter_next_kfunc(&meta)) { | 
|  | err = process_iter_next_call(env, insn_idx, &meta); | 
|  | if (err) | 
|  | return err; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static bool check_reg_sane_offset(struct bpf_verifier_env *env, | 
|  | const struct bpf_reg_state *reg, | 
|  | enum bpf_reg_type type) | 
|  | { | 
|  | bool known = tnum_is_const(reg->var_off); | 
|  | s64 val = reg->var_off.value; | 
|  | s64 smin = reg->smin_value; | 
|  |  | 
|  | if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { | 
|  | verbose(env, "math between %s pointer and %lld is not allowed\n", | 
|  | reg_type_str(env, type), val); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { | 
|  | verbose(env, "%s pointer offset %d is not allowed\n", | 
|  | reg_type_str(env, type), reg->off); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (smin == S64_MIN) { | 
|  | verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", | 
|  | reg_type_str(env, type)); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { | 
|  | verbose(env, "value %lld makes %s pointer be out of bounds\n", | 
|  | smin, reg_type_str(env, type)); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | enum { | 
|  | REASON_BOUNDS	= -1, | 
|  | REASON_TYPE	= -2, | 
|  | REASON_PATHS	= -3, | 
|  | REASON_LIMIT	= -4, | 
|  | REASON_STACK	= -5, | 
|  | }; | 
|  |  | 
|  | static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg, | 
|  | u32 *alu_limit, bool mask_to_left) | 
|  | { | 
|  | u32 max = 0, ptr_limit = 0; | 
|  |  | 
|  | switch (ptr_reg->type) { | 
|  | case PTR_TO_STACK: | 
|  | /* Offset 0 is out-of-bounds, but acceptable start for the | 
|  | * left direction, see BPF_REG_FP. Also, unknown scalar | 
|  | * offset where we would need to deal with min/max bounds is | 
|  | * currently prohibited for unprivileged. | 
|  | */ | 
|  | max = MAX_BPF_STACK + mask_to_left; | 
|  | ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off); | 
|  | break; | 
|  | case PTR_TO_MAP_VALUE: | 
|  | max = ptr_reg->map_ptr->value_size; | 
|  | ptr_limit = (mask_to_left ? | 
|  | ptr_reg->smin_value : | 
|  | ptr_reg->umax_value) + ptr_reg->off; | 
|  | break; | 
|  | default: | 
|  | return REASON_TYPE; | 
|  | } | 
|  |  | 
|  | if (ptr_limit >= max) | 
|  | return REASON_LIMIT; | 
|  | *alu_limit = ptr_limit; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env, | 
|  | const struct bpf_insn *insn) | 
|  | { | 
|  | return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K; | 
|  | } | 
|  |  | 
|  | static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux, | 
|  | u32 alu_state, u32 alu_limit) | 
|  | { | 
|  | /* If we arrived here from different branches with different | 
|  | * state or limits to sanitize, then this won't work. | 
|  | */ | 
|  | if (aux->alu_state && | 
|  | (aux->alu_state != alu_state || | 
|  | aux->alu_limit != alu_limit)) | 
|  | return REASON_PATHS; | 
|  |  | 
|  | /* Corresponding fixup done in do_misc_fixups(). */ | 
|  | aux->alu_state = alu_state; | 
|  | aux->alu_limit = alu_limit; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int sanitize_val_alu(struct bpf_verifier_env *env, | 
|  | struct bpf_insn *insn) | 
|  | { | 
|  | struct bpf_insn_aux_data *aux = cur_aux(env); | 
|  |  | 
|  | if (can_skip_alu_sanitation(env, insn)) | 
|  | return 0; | 
|  |  | 
|  | return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0); | 
|  | } | 
|  |  | 
|  | static bool sanitize_needed(u8 opcode) | 
|  | { | 
|  | return opcode == BPF_ADD || opcode == BPF_SUB; | 
|  | } | 
|  |  | 
|  | struct bpf_sanitize_info { | 
|  | struct bpf_insn_aux_data aux; | 
|  | bool mask_to_left; | 
|  | }; | 
|  |  | 
|  | static struct bpf_verifier_state * | 
|  | sanitize_speculative_path(struct bpf_verifier_env *env, | 
|  | const struct bpf_insn *insn, | 
|  | u32 next_idx, u32 curr_idx) | 
|  | { | 
|  | struct bpf_verifier_state *branch; | 
|  | struct bpf_reg_state *regs; | 
|  |  | 
|  | branch = push_stack(env, next_idx, curr_idx, true); | 
|  | if (branch && insn) { | 
|  | regs = branch->frame[branch->curframe]->regs; | 
|  | if (BPF_SRC(insn->code) == BPF_K) { | 
|  | mark_reg_unknown(env, regs, insn->dst_reg); | 
|  | } else if (BPF_SRC(insn->code) == BPF_X) { | 
|  | mark_reg_unknown(env, regs, insn->dst_reg); | 
|  | mark_reg_unknown(env, regs, insn->src_reg); | 
|  | } | 
|  | } | 
|  | return branch; | 
|  | } | 
|  |  | 
|  | static int sanitize_ptr_alu(struct bpf_verifier_env *env, | 
|  | struct bpf_insn *insn, | 
|  | const struct bpf_reg_state *ptr_reg, | 
|  | const struct bpf_reg_state *off_reg, | 
|  | struct bpf_reg_state *dst_reg, | 
|  | struct bpf_sanitize_info *info, | 
|  | const bool commit_window) | 
|  | { | 
|  | struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux; | 
|  | struct bpf_verifier_state *vstate = env->cur_state; | 
|  | bool off_is_imm = tnum_is_const(off_reg->var_off); | 
|  | bool off_is_neg = off_reg->smin_value < 0; | 
|  | bool ptr_is_dst_reg = ptr_reg == dst_reg; | 
|  | u8 opcode = BPF_OP(insn->code); | 
|  | u32 alu_state, alu_limit; | 
|  | struct bpf_reg_state tmp; | 
|  | bool ret; | 
|  | int err; | 
|  |  | 
|  | if (can_skip_alu_sanitation(env, insn)) | 
|  | return 0; | 
|  |  | 
|  | /* We already marked aux for masking from non-speculative | 
|  | * paths, thus we got here in the first place. We only care | 
|  | * to explore bad access from here. | 
|  | */ | 
|  | if (vstate->speculative) | 
|  | goto do_sim; | 
|  |  | 
|  | if (!commit_window) { | 
|  | if (!tnum_is_const(off_reg->var_off) && | 
|  | (off_reg->smin_value < 0) != (off_reg->smax_value < 0)) | 
|  | return REASON_BOUNDS; | 
|  |  | 
|  | info->mask_to_left = (opcode == BPF_ADD &&  off_is_neg) || | 
|  | (opcode == BPF_SUB && !off_is_neg); | 
|  | } | 
|  |  | 
|  | err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left); | 
|  | if (err < 0) | 
|  | return err; | 
|  |  | 
|  | if (commit_window) { | 
|  | /* In commit phase we narrow the masking window based on | 
|  | * the observed pointer move after the simulated operation. | 
|  | */ | 
|  | alu_state = info->aux.alu_state; | 
|  | alu_limit = abs(info->aux.alu_limit - alu_limit); | 
|  | } else { | 
|  | alu_state  = off_is_neg ? BPF_ALU_NEG_VALUE : 0; | 
|  | alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0; | 
|  | alu_state |= ptr_is_dst_reg ? | 
|  | BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST; | 
|  |  | 
|  | /* Limit pruning on unknown scalars to enable deep search for | 
|  | * potential masking differences from other program paths. | 
|  | */ | 
|  | if (!off_is_imm) | 
|  | env->explore_alu_limits = true; | 
|  | } | 
|  |  | 
|  | err = update_alu_sanitation_state(aux, alu_state, alu_limit); | 
|  | if (err < 0) | 
|  | return err; | 
|  | do_sim: | 
|  | /* If we're in commit phase, we're done here given we already | 
|  | * pushed the truncated dst_reg into the speculative verification | 
|  | * stack. | 
|  | * | 
|  | * Also, when register is a known constant, we rewrite register-based | 
|  | * operation to immediate-based, and thus do not need masking (and as | 
|  | * a consequence, do not need to simulate the zero-truncation either). | 
|  | */ | 
|  | if (commit_window || off_is_imm) | 
|  | return 0; | 
|  |  | 
|  | /* Simulate and find potential out-of-bounds access under | 
|  | * speculative execution from truncation as a result of | 
|  | * masking when off was not within expected range. If off | 
|  | * sits in dst, then we temporarily need to move ptr there | 
|  | * to simulate dst (== 0) +/-= ptr. Needed, for example, | 
|  | * for cases where we use K-based arithmetic in one direction | 
|  | * and truncated reg-based in the other in order to explore | 
|  | * bad access. | 
|  | */ | 
|  | if (!ptr_is_dst_reg) { | 
|  | tmp = *dst_reg; | 
|  | copy_register_state(dst_reg, ptr_reg); | 
|  | } | 
|  | ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1, | 
|  | env->insn_idx); | 
|  | if (!ptr_is_dst_reg && ret) | 
|  | *dst_reg = tmp; | 
|  | return !ret ? REASON_STACK : 0; | 
|  | } | 
|  |  | 
|  | static void sanitize_mark_insn_seen(struct bpf_verifier_env *env) | 
|  | { | 
|  | struct bpf_verifier_state *vstate = env->cur_state; | 
|  |  | 
|  | /* If we simulate paths under speculation, we don't update the | 
|  | * insn as 'seen' such that when we verify unreachable paths in | 
|  | * the non-speculative domain, sanitize_dead_code() can still | 
|  | * rewrite/sanitize them. | 
|  | */ | 
|  | if (!vstate->speculative) | 
|  | env->insn_aux_data[env->insn_idx].seen = env->pass_cnt; | 
|  | } | 
|  |  | 
|  | static int sanitize_err(struct bpf_verifier_env *env, | 
|  | const struct bpf_insn *insn, int reason, | 
|  | const struct bpf_reg_state *off_reg, | 
|  | const struct bpf_reg_state *dst_reg) | 
|  | { | 
|  | static const char *err = "pointer arithmetic with it prohibited for !root"; | 
|  | const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub"; | 
|  | u32 dst = insn->dst_reg, src = insn->src_reg; | 
|  |  | 
|  | switch (reason) { | 
|  | case REASON_BOUNDS: | 
|  | verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n", | 
|  | off_reg == dst_reg ? dst : src, err); | 
|  | break; | 
|  | case REASON_TYPE: | 
|  | verbose(env, "R%d has pointer with unsupported alu operation, %s\n", | 
|  | off_reg == dst_reg ? src : dst, err); | 
|  | break; | 
|  | case REASON_PATHS: | 
|  | verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n", | 
|  | dst, op, err); | 
|  | break; | 
|  | case REASON_LIMIT: | 
|  | verbose(env, "R%d tried to %s beyond pointer bounds, %s\n", | 
|  | dst, op, err); | 
|  | break; | 
|  | case REASON_STACK: | 
|  | verbose(env, "R%d could not be pushed for speculative verification, %s\n", | 
|  | dst, err); | 
|  | break; | 
|  | default: | 
|  | verbose(env, "verifier internal error: unknown reason (%d)\n", | 
|  | reason); | 
|  | break; | 
|  | } | 
|  |  | 
|  | return -EACCES; | 
|  | } | 
|  |  | 
|  | /* check that stack access falls within stack limits and that 'reg' doesn't | 
|  | * have a variable offset. | 
|  | * | 
|  | * Variable offset is prohibited for unprivileged mode for simplicity since it | 
|  | * requires corresponding support in Spectre masking for stack ALU.  See also | 
|  | * retrieve_ptr_limit(). | 
|  | * | 
|  | * | 
|  | * 'off' includes 'reg->off'. | 
|  | */ | 
|  | static int check_stack_access_for_ptr_arithmetic( | 
|  | struct bpf_verifier_env *env, | 
|  | int regno, | 
|  | const struct bpf_reg_state *reg, | 
|  | int off) | 
|  | { | 
|  | if (!tnum_is_const(reg->var_off)) { | 
|  | char tn_buf[48]; | 
|  |  | 
|  | tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); | 
|  | verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n", | 
|  | regno, tn_buf, off); | 
|  | return -EACCES; | 
|  | } | 
|  |  | 
|  | if (off >= 0 || off < -MAX_BPF_STACK) { | 
|  | verbose(env, "R%d stack pointer arithmetic goes out of range, " | 
|  | "prohibited for !root; off=%d\n", regno, off); | 
|  | return -EACCES; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int sanitize_check_bounds(struct bpf_verifier_env *env, | 
|  | const struct bpf_insn *insn, | 
|  | const struct bpf_reg_state *dst_reg) | 
|  | { | 
|  | u32 dst = insn->dst_reg; | 
|  |  | 
|  | /* For unprivileged we require that resulting offset must be in bounds | 
|  | * in order to be able to sanitize access later on. | 
|  | */ | 
|  | if (env->bypass_spec_v1) | 
|  | return 0; | 
|  |  | 
|  | switch (dst_reg->type) { | 
|  | case PTR_TO_STACK: | 
|  | if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg, | 
|  | dst_reg->off + dst_reg->var_off.value)) | 
|  | return -EACCES; | 
|  | break; | 
|  | case PTR_TO_MAP_VALUE: | 
|  | if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) { | 
|  | verbose(env, "R%d pointer arithmetic of map value goes out of range, " | 
|  | "prohibited for !root\n", dst); | 
|  | return -EACCES; | 
|  | } | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. | 
|  | * Caller should also handle BPF_MOV case separately. | 
|  | * If we return -EACCES, caller may want to try again treating pointer as a | 
|  | * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks. | 
|  | */ | 
|  | static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, | 
|  | struct bpf_insn *insn, | 
|  | const struct bpf_reg_state *ptr_reg, | 
|  | const struct bpf_reg_state *off_reg) | 
|  | { | 
|  | struct bpf_verifier_state *vstate = env->cur_state; | 
|  | struct bpf_func_state *state = vstate->frame[vstate->curframe]; | 
|  | struct bpf_reg_state *regs = state->regs, *dst_reg; | 
|  | bool known = tnum_is_const(off_reg->var_off); | 
|  | s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, | 
|  | smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; | 
|  | u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, | 
|  | umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; | 
|  | struct bpf_sanitize_info info = {}; | 
|  | u8 opcode = BPF_OP(insn->code); | 
|  | u32 dst = insn->dst_reg; | 
|  | int ret; | 
|  |  | 
|  | dst_reg = ®s[dst]; | 
|  |  | 
|  | if ((known && (smin_val != smax_val || umin_val != umax_val)) || | 
|  | smin_val > smax_val || umin_val > umax_val) { | 
|  | /* Taint dst register if offset had invalid bounds derived from | 
|  | * e.g. dead branches. | 
|  | */ | 
|  | __mark_reg_unknown(env, dst_reg); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (BPF_CLASS(insn->code) != BPF_ALU64) { | 
|  | /* 32-bit ALU ops on pointers produce (meaningless) scalars */ | 
|  | if (opcode == BPF_SUB && env->allow_ptr_leaks) { | 
|  | __mark_reg_unknown(env, dst_reg); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | verbose(env, | 
|  | "R%d 32-bit pointer arithmetic prohibited\n", | 
|  | dst); | 
|  | return -EACCES; | 
|  | } | 
|  |  | 
|  | if (ptr_reg->type & PTR_MAYBE_NULL) { | 
|  | verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n", | 
|  | dst, reg_type_str(env, ptr_reg->type)); | 
|  | return -EACCES; | 
|  | } | 
|  |  | 
|  | switch (base_type(ptr_reg->type)) { | 
|  | case PTR_TO_CTX: | 
|  | case PTR_TO_MAP_VALUE: | 
|  | case PTR_TO_MAP_KEY: | 
|  | case PTR_TO_STACK: | 
|  | case PTR_TO_PACKET_META: | 
|  | case PTR_TO_PACKET: | 
|  | case PTR_TO_TP_BUFFER: | 
|  | case PTR_TO_BTF_ID: | 
|  | case PTR_TO_MEM: | 
|  | case PTR_TO_BUF: | 
|  | case PTR_TO_FUNC: | 
|  | case CONST_PTR_TO_DYNPTR: | 
|  | break; | 
|  | case PTR_TO_FLOW_KEYS: | 
|  | if (known) | 
|  | break; | 
|  | fallthrough; | 
|  | case CONST_PTR_TO_MAP: | 
|  | /* smin_val represents the known value */ | 
|  | if (known && smin_val == 0 && opcode == BPF_ADD) | 
|  | break; | 
|  | fallthrough; | 
|  | default: | 
|  | verbose(env, "R%d pointer arithmetic on %s prohibited\n", | 
|  | dst, reg_type_str(env, ptr_reg->type)); | 
|  | return -EACCES; | 
|  | } | 
|  |  | 
|  | /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. | 
|  | * The id may be overwritten later if we create a new variable offset. | 
|  | */ | 
|  | dst_reg->type = ptr_reg->type; | 
|  | dst_reg->id = ptr_reg->id; | 
|  |  | 
|  | if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || | 
|  | !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* pointer types do not carry 32-bit bounds at the moment. */ | 
|  | __mark_reg32_unbounded(dst_reg); | 
|  |  | 
|  | if (sanitize_needed(opcode)) { | 
|  | ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg, | 
|  | &info, false); | 
|  | if (ret < 0) | 
|  | return sanitize_err(env, insn, ret, off_reg, dst_reg); | 
|  | } | 
|  |  | 
|  | switch (opcode) { | 
|  | case BPF_ADD: | 
|  | /* We can take a fixed offset as long as it doesn't overflow | 
|  | * the s32 'off' field | 
|  | */ | 
|  | if (known && (ptr_reg->off + smin_val == | 
|  | (s64)(s32)(ptr_reg->off + smin_val))) { | 
|  | /* pointer += K.  Accumulate it into fixed offset */ | 
|  | dst_reg->smin_value = smin_ptr; | 
|  | dst_reg->smax_value = smax_ptr; | 
|  | dst_reg->umin_value = umin_ptr; | 
|  | dst_reg->umax_value = umax_ptr; | 
|  | dst_reg->var_off = ptr_reg->var_off; | 
|  | dst_reg->off = ptr_reg->off + smin_val; | 
|  | dst_reg->raw = ptr_reg->raw; | 
|  | break; | 
|  | } | 
|  | /* A new variable offset is created.  Note that off_reg->off | 
|  | * == 0, since it's a scalar. | 
|  | * dst_reg gets the pointer type and since some positive | 
|  | * integer value was added to the pointer, give it a new 'id' | 
|  | * if it's a PTR_TO_PACKET. | 
|  | * this creates a new 'base' pointer, off_reg (variable) gets | 
|  | * added into the variable offset, and we copy the fixed offset | 
|  | * from ptr_reg. | 
|  | */ | 
|  | if (check_add_overflow(smin_ptr, smin_val, &dst_reg->smin_value) || | 
|  | check_add_overflow(smax_ptr, smax_val, &dst_reg->smax_value)) { | 
|  | dst_reg->smin_value = S64_MIN; | 
|  | dst_reg->smax_value = S64_MAX; | 
|  | } | 
|  | if (check_add_overflow(umin_ptr, umin_val, &dst_reg->umin_value) || | 
|  | check_add_overflow(umax_ptr, umax_val, &dst_reg->umax_value)) { | 
|  | dst_reg->umin_value = 0; | 
|  | dst_reg->umax_value = U64_MAX; | 
|  | } | 
|  | dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); | 
|  | dst_reg->off = ptr_reg->off; | 
|  | dst_reg->raw = ptr_reg->raw; | 
|  | if (reg_is_pkt_pointer(ptr_reg)) { | 
|  | dst_reg->id = ++env->id_gen; | 
|  | /* something was added to pkt_ptr, set range to zero */ | 
|  | memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); | 
|  | } | 
|  | break; | 
|  | case BPF_SUB: | 
|  | if (dst_reg == off_reg) { | 
|  | /* scalar -= pointer.  Creates an unknown scalar */ | 
|  | verbose(env, "R%d tried to subtract pointer from scalar\n", | 
|  | dst); | 
|  | return -EACCES; | 
|  | } | 
|  | /* We don't allow subtraction from FP, because (according to | 
|  | * test_verifier.c test "invalid fp arithmetic", JITs might not | 
|  | * be able to deal with it. | 
|  | */ | 
|  | if (ptr_reg->type == PTR_TO_STACK) { | 
|  | verbose(env, "R%d subtraction from stack pointer prohibited\n", | 
|  | dst); | 
|  | return -EACCES; | 
|  | } | 
|  | if (known && (ptr_reg->off - smin_val == | 
|  | (s64)(s32)(ptr_reg->off - smin_val))) { | 
|  | /* pointer -= K.  Subtract it from fixed offset */ | 
|  | dst_reg->smin_value = smin_ptr; | 
|  | dst_reg->smax_value = smax_ptr; | 
|  | dst_reg->umin_value = umin_ptr; | 
|  | dst_reg->umax_value = umax_ptr; | 
|  | dst_reg->var_off = ptr_reg->var_off; | 
|  | dst_reg->id = ptr_reg->id; | 
|  | dst_reg->off = ptr_reg->off - smin_val; | 
|  | dst_reg->raw = ptr_reg->raw; | 
|  | break; | 
|  | } | 
|  | /* A new variable offset is created.  If the subtrahend is known | 
|  | * nonnegative, then any reg->range we had before is still good. | 
|  | */ | 
|  | if (check_sub_overflow(smin_ptr, smax_val, &dst_reg->smin_value) || | 
|  | check_sub_overflow(smax_ptr, smin_val, &dst_reg->smax_value)) { | 
|  | /* Overflow possible, we know nothing */ | 
|  | dst_reg->smin_value = S64_MIN; | 
|  | dst_reg->smax_value = S64_MAX; | 
|  | } | 
|  | if (umin_ptr < umax_val) { | 
|  | /* Overflow possible, we know nothing */ | 
|  | dst_reg->umin_value = 0; | 
|  | dst_reg->umax_value = U64_MAX; | 
|  | } else { | 
|  | /* Cannot overflow (as long as bounds are consistent) */ | 
|  | dst_reg->umin_value = umin_ptr - umax_val; | 
|  | dst_reg->umax_value = umax_ptr - umin_val; | 
|  | } | 
|  | dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); | 
|  | dst_reg->off = ptr_reg->off; | 
|  | dst_reg->raw = ptr_reg->raw; | 
|  | if (reg_is_pkt_pointer(ptr_reg)) { | 
|  | dst_reg->id = ++env->id_gen; | 
|  | /* something was added to pkt_ptr, set range to zero */ | 
|  | if (smin_val < 0) | 
|  | memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); | 
|  | } | 
|  | break; | 
|  | case BPF_AND: | 
|  | case BPF_OR: | 
|  | case BPF_XOR: | 
|  | /* bitwise ops on pointers are troublesome, prohibit. */ | 
|  | verbose(env, "R%d bitwise operator %s on pointer prohibited\n", | 
|  | dst, bpf_alu_string[opcode >> 4]); | 
|  | return -EACCES; | 
|  | default: | 
|  | /* other operators (e.g. MUL,LSH) produce non-pointer results */ | 
|  | verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", | 
|  | dst, bpf_alu_string[opcode >> 4]); | 
|  | return -EACCES; | 
|  | } | 
|  |  | 
|  | if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) | 
|  | return -EINVAL; | 
|  | reg_bounds_sync(dst_reg); | 
|  | if (sanitize_check_bounds(env, insn, dst_reg) < 0) | 
|  | return -EACCES; | 
|  | if (sanitize_needed(opcode)) { | 
|  | ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg, | 
|  | &info, true); | 
|  | if (ret < 0) | 
|  | return sanitize_err(env, insn, ret, off_reg, dst_reg); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void scalar32_min_max_add(struct bpf_reg_state *dst_reg, | 
|  | struct bpf_reg_state *src_reg) | 
|  | { | 
|  | s32 *dst_smin = &dst_reg->s32_min_value; | 
|  | s32 *dst_smax = &dst_reg->s32_max_value; | 
|  | u32 *dst_umin = &dst_reg->u32_min_value; | 
|  | u32 *dst_umax = &dst_reg->u32_max_value; | 
|  |  | 
|  | if (check_add_overflow(*dst_smin, src_reg->s32_min_value, dst_smin) || | 
|  | check_add_overflow(*dst_smax, src_reg->s32_max_value, dst_smax)) { | 
|  | *dst_smin = S32_MIN; | 
|  | *dst_smax = S32_MAX; | 
|  | } | 
|  | if (check_add_overflow(*dst_umin, src_reg->u32_min_value, dst_umin) || | 
|  | check_add_overflow(*dst_umax, src_reg->u32_max_value, dst_umax)) { | 
|  | *dst_umin = 0; | 
|  | *dst_umax = U32_MAX; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void scalar_min_max_add(struct bpf_reg_state *dst_reg, | 
|  | struct bpf_reg_state *src_reg) | 
|  | { | 
|  | s64 *dst_smin = &dst_reg->smin_value; | 
|  | s64 *dst_smax = &dst_reg->smax_value; | 
|  | u64 *dst_umin = &dst_reg->umin_value; | 
|  | u64 *dst_umax = &dst_reg->umax_value; | 
|  |  | 
|  | if (check_add_overflow(*dst_smin, src_reg->smin_value, dst_smin) || | 
|  | check_add_overflow(*dst_smax, src_reg->smax_value, dst_smax)) { | 
|  | *dst_smin = S64_MIN; | 
|  | *dst_smax = S64_MAX; | 
|  | } | 
|  | if (check_add_overflow(*dst_umin, src_reg->umin_value, dst_umin) || | 
|  | check_add_overflow(*dst_umax, src_reg->umax_value, dst_umax)) { | 
|  | *dst_umin = 0; | 
|  | *dst_umax = U64_MAX; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg, | 
|  | struct bpf_reg_state *src_reg) | 
|  | { | 
|  | s32 *dst_smin = &dst_reg->s32_min_value; | 
|  | s32 *dst_smax = &dst_reg->s32_max_value; | 
|  | u32 umin_val = src_reg->u32_min_value; | 
|  | u32 umax_val = src_reg->u32_max_value; | 
|  |  | 
|  | if (check_sub_overflow(*dst_smin, src_reg->s32_max_value, dst_smin) || | 
|  | check_sub_overflow(*dst_smax, src_reg->s32_min_value, dst_smax)) { | 
|  | /* Overflow possible, we know nothing */ | 
|  | *dst_smin = S32_MIN; | 
|  | *dst_smax = S32_MAX; | 
|  | } | 
|  | if (dst_reg->u32_min_value < umax_val) { | 
|  | /* Overflow possible, we know nothing */ | 
|  | dst_reg->u32_min_value = 0; | 
|  | dst_reg->u32_max_value = U32_MAX; | 
|  | } else { | 
|  | /* Cannot overflow (as long as bounds are consistent) */ | 
|  | dst_reg->u32_min_value -= umax_val; | 
|  | dst_reg->u32_max_value -= umin_val; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void scalar_min_max_sub(struct bpf_reg_state *dst_reg, | 
|  | struct bpf_reg_state *src_reg) | 
|  | { | 
|  | s64 *dst_smin = &dst_reg->smin_value; | 
|  | s64 *dst_smax = &dst_reg->smax_value; | 
|  | u64 umin_val = src_reg->umin_value; | 
|  | u64 umax_val = src_reg->umax_value; | 
|  |  | 
|  | if (check_sub_overflow(*dst_smin, src_reg->smax_value, dst_smin) || | 
|  | check_sub_overflow(*dst_smax, src_reg->smin_value, dst_smax)) { | 
|  | /* Overflow possible, we know nothing */ | 
|  | *dst_smin = S64_MIN; | 
|  | *dst_smax = S64_MAX; | 
|  | } | 
|  | if (dst_reg->umin_value < umax_val) { | 
|  | /* Overflow possible, we know nothing */ | 
|  | dst_reg->umin_value = 0; | 
|  | dst_reg->umax_value = U64_MAX; | 
|  | } else { | 
|  | /* Cannot overflow (as long as bounds are consistent) */ | 
|  | dst_reg->umin_value -= umax_val; | 
|  | dst_reg->umax_value -= umin_val; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg, | 
|  | struct bpf_reg_state *src_reg) | 
|  | { | 
|  | s32 smin_val = src_reg->s32_min_value; | 
|  | u32 umin_val = src_reg->u32_min_value; | 
|  | u32 umax_val = src_reg->u32_max_value; | 
|  |  | 
|  | if (smin_val < 0 || dst_reg->s32_min_value < 0) { | 
|  | /* Ain't nobody got time to multiply that sign */ | 
|  | __mark_reg32_unbounded(dst_reg); | 
|  | return; | 
|  | } | 
|  | /* Both values are positive, so we can work with unsigned and | 
|  | * copy the result to signed (unless it exceeds S32_MAX). | 
|  | */ | 
|  | if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) { | 
|  | /* Potential overflow, we know nothing */ | 
|  | __mark_reg32_unbounded(dst_reg); | 
|  | return; | 
|  | } | 
|  | dst_reg->u32_min_value *= umin_val; | 
|  | dst_reg->u32_max_value *= umax_val; | 
|  | if (dst_reg->u32_max_value > S32_MAX) { | 
|  | /* Overflow possible, we know nothing */ | 
|  | dst_reg->s32_min_value = S32_MIN; | 
|  | dst_reg->s32_max_value = S32_MAX; | 
|  | } else { | 
|  | dst_reg->s32_min_value = dst_reg->u32_min_value; | 
|  | dst_reg->s32_max_value = dst_reg->u32_max_value; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void scalar_min_max_mul(struct bpf_reg_state *dst_reg, | 
|  | struct bpf_reg_state *src_reg) | 
|  | { | 
|  | s64 smin_val = src_reg->smin_value; | 
|  | u64 umin_val = src_reg->umin_value; | 
|  | u64 umax_val = src_reg->umax_value; | 
|  |  | 
|  | if (smin_val < 0 || dst_reg->smin_value < 0) { | 
|  | /* Ain't nobody got time to multiply that sign */ | 
|  | __mark_reg64_unbounded(dst_reg); | 
|  | return; | 
|  | } | 
|  | /* Both values are positive, so we can work with unsigned and | 
|  | * copy the result to signed (unless it exceeds S64_MAX). | 
|  | */ | 
|  | if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { | 
|  | /* Potential overflow, we know nothing */ | 
|  | __mark_reg64_unbounded(dst_reg); | 
|  | return; | 
|  | } | 
|  | dst_reg->umin_value *= umin_val; | 
|  | dst_reg->umax_value *= umax_val; | 
|  | if (dst_reg->umax_value > S64_MAX) { | 
|  | /* Overflow possible, we know nothing */ | 
|  | dst_reg->smin_value = S64_MIN; | 
|  | dst_reg->smax_value = S64_MAX; | 
|  | } else { | 
|  | dst_reg->smin_value = dst_reg->umin_value; | 
|  | dst_reg->smax_value = dst_reg->umax_value; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void scalar32_min_max_and(struct bpf_reg_state *dst_reg, | 
|  | struct bpf_reg_state *src_reg) | 
|  | { | 
|  | bool src_known = tnum_subreg_is_const(src_reg->var_off); | 
|  | bool dst_known = tnum_subreg_is_const(dst_reg->var_off); | 
|  | struct tnum var32_off = tnum_subreg(dst_reg->var_off); | 
|  | u32 umax_val = src_reg->u32_max_value; | 
|  |  | 
|  | if (src_known && dst_known) { | 
|  | __mark_reg32_known(dst_reg, var32_off.value); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* We get our minimum from the var_off, since that's inherently | 
|  | * bitwise.  Our maximum is the minimum of the operands' maxima. | 
|  | */ | 
|  | dst_reg->u32_min_value = var32_off.value; | 
|  | dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val); | 
|  |  | 
|  | /* Safe to set s32 bounds by casting u32 result into s32 when u32 | 
|  | * doesn't cross sign boundary. Otherwise set s32 bounds to unbounded. | 
|  | */ | 
|  | if ((s32)dst_reg->u32_min_value <= (s32)dst_reg->u32_max_value) { | 
|  | dst_reg->s32_min_value = dst_reg->u32_min_value; | 
|  | dst_reg->s32_max_value = dst_reg->u32_max_value; | 
|  | } else { | 
|  | dst_reg->s32_min_value = S32_MIN; | 
|  | dst_reg->s32_max_value = S32_MAX; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void scalar_min_max_and(struct bpf_reg_state *dst_reg, | 
|  | struct bpf_reg_state *src_reg) | 
|  | { | 
|  | bool src_known = tnum_is_const(src_reg->var_off); | 
|  | bool dst_known = tnum_is_const(dst_reg->var_off); | 
|  | u64 umax_val = src_reg->umax_value; | 
|  |  | 
|  | if (src_known && dst_known) { | 
|  | __mark_reg_known(dst_reg, dst_reg->var_off.value); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* We get our minimum from the var_off, since that's inherently | 
|  | * bitwise.  Our maximum is the minimum of the operands' maxima. | 
|  | */ | 
|  | dst_reg->umin_value = dst_reg->var_off.value; | 
|  | dst_reg->umax_value = min(dst_reg->umax_value, umax_val); | 
|  |  | 
|  | /* Safe to set s64 bounds by casting u64 result into s64 when u64 | 
|  | * doesn't cross sign boundary. Otherwise set s64 bounds to unbounded. | 
|  | */ | 
|  | if ((s64)dst_reg->umin_value <= (s64)dst_reg->umax_value) { | 
|  | dst_reg->smin_value = dst_reg->umin_value; | 
|  | dst_reg->smax_value = dst_reg->umax_value; | 
|  | } else { | 
|  | dst_reg->smin_value = S64_MIN; | 
|  | dst_reg->smax_value = S64_MAX; | 
|  | } | 
|  | /* We may learn something more from the var_off */ | 
|  | __update_reg_bounds(dst_reg); | 
|  | } | 
|  |  | 
|  | static void scalar32_min_max_or(struct bpf_reg_state *dst_reg, | 
|  | struct bpf_reg_state *src_reg) | 
|  | { | 
|  | bool src_known = tnum_subreg_is_const(src_reg->var_off); | 
|  | bool dst_known = tnum_subreg_is_const(dst_reg->var_off); | 
|  | struct tnum var32_off = tnum_subreg(dst_reg->var_off); | 
|  | u32 umin_val = src_reg->u32_min_value; | 
|  |  | 
|  | if (src_known && dst_known) { | 
|  | __mark_reg32_known(dst_reg, var32_off.value); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* We get our maximum from the var_off, and our minimum is the | 
|  | * maximum of the operands' minima | 
|  | */ | 
|  | dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val); | 
|  | dst_reg->u32_max_value = var32_off.value | var32_off.mask; | 
|  |  | 
|  | /* Safe to set s32 bounds by casting u32 result into s32 when u32 | 
|  | * doesn't cross sign boundary. Otherwise set s32 bounds to unbounded. | 
|  | */ | 
|  | if ((s32)dst_reg->u32_min_value <= (s32)dst_reg->u32_max_value) { | 
|  | dst_reg->s32_min_value = dst_reg->u32_min_value; | 
|  | dst_reg->s32_max_value = dst_reg->u32_max_value; | 
|  | } else { | 
|  | dst_reg->s32_min_value = S32_MIN; | 
|  | dst_reg->s32_max_value = S32_MAX; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void scalar_min_max_or(struct bpf_reg_state *dst_reg, | 
|  | struct bpf_reg_state *src_reg) | 
|  | { | 
|  | bool src_known = tnum_is_const(src_reg->var_off); | 
|  | bool dst_known = tnum_is_const(dst_reg->var_off); | 
|  | u64 umin_val = src_reg->umin_value; | 
|  |  | 
|  | if (src_known && dst_known) { | 
|  | __mark_reg_known(dst_reg, dst_reg->var_off.value); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* We get our maximum from the var_off, and our minimum is the | 
|  | * maximum of the operands' minima | 
|  | */ | 
|  | dst_reg->umin_value = max(dst_reg->umin_value, umin_val); | 
|  | dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; | 
|  |  | 
|  | /* Safe to set s64 bounds by casting u64 result into s64 when u64 | 
|  | * doesn't cross sign boundary. Otherwise set s64 bounds to unbounded. | 
|  | */ | 
|  | if ((s64)dst_reg->umin_value <= (s64)dst_reg->umax_value) { | 
|  | dst_reg->smin_value = dst_reg->umin_value; | 
|  | dst_reg->smax_value = dst_reg->umax_value; | 
|  | } else { | 
|  | dst_reg->smin_value = S64_MIN; | 
|  | dst_reg->smax_value = S64_MAX; | 
|  | } | 
|  | /* We may learn something more from the var_off */ | 
|  | __update_reg_bounds(dst_reg); | 
|  | } | 
|  |  | 
|  | static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg, | 
|  | struct bpf_reg_state *src_reg) | 
|  | { | 
|  | bool src_known = tnum_subreg_is_const(src_reg->var_off); | 
|  | bool dst_known = tnum_subreg_is_const(dst_reg->var_off); | 
|  | struct tnum var32_off = tnum_subreg(dst_reg->var_off); | 
|  |  | 
|  | if (src_known && dst_known) { | 
|  | __mark_reg32_known(dst_reg, var32_off.value); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* We get both minimum and maximum from the var32_off. */ | 
|  | dst_reg->u32_min_value = var32_off.value; | 
|  | dst_reg->u32_max_value = var32_off.value | var32_off.mask; | 
|  |  | 
|  | /* Safe to set s32 bounds by casting u32 result into s32 when u32 | 
|  | * doesn't cross sign boundary. Otherwise set s32 bounds to unbounded. | 
|  | */ | 
|  | if ((s32)dst_reg->u32_min_value <= (s32)dst_reg->u32_max_value) { | 
|  | dst_reg->s32_min_value = dst_reg->u32_min_value; | 
|  | dst_reg->s32_max_value = dst_reg->u32_max_value; | 
|  | } else { | 
|  | dst_reg->s32_min_value = S32_MIN; | 
|  | dst_reg->s32_max_value = S32_MAX; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void scalar_min_max_xor(struct bpf_reg_state *dst_reg, | 
|  | struct bpf_reg_state *src_reg) | 
|  | { | 
|  | bool src_known = tnum_is_const(src_reg->var_off); | 
|  | bool dst_known = tnum_is_const(dst_reg->var_off); | 
|  |  | 
|  | if (src_known && dst_known) { | 
|  | /* dst_reg->var_off.value has been updated earlier */ | 
|  | __mark_reg_known(dst_reg, dst_reg->var_off.value); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* We get both minimum and maximum from the var_off. */ | 
|  | dst_reg->umin_value = dst_reg->var_off.value; | 
|  | dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; | 
|  |  | 
|  | /* Safe to set s64 bounds by casting u64 result into s64 when u64 | 
|  | * doesn't cross sign boundary. Otherwise set s64 bounds to unbounded. | 
|  | */ | 
|  | if ((s64)dst_reg->umin_value <= (s64)dst_reg->umax_value) { | 
|  | dst_reg->smin_value = dst_reg->umin_value; | 
|  | dst_reg->smax_value = dst_reg->umax_value; | 
|  | } else { | 
|  | dst_reg->smin_value = S64_MIN; | 
|  | dst_reg->smax_value = S64_MAX; | 
|  | } | 
|  |  | 
|  | __update_reg_bounds(dst_reg); | 
|  | } | 
|  |  | 
|  | static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, | 
|  | u64 umin_val, u64 umax_val) | 
|  | { | 
|  | /* We lose all sign bit information (except what we can pick | 
|  | * up from var_off) | 
|  | */ | 
|  | dst_reg->s32_min_value = S32_MIN; | 
|  | dst_reg->s32_max_value = S32_MAX; | 
|  | /* If we might shift our top bit out, then we know nothing */ | 
|  | if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) { | 
|  | dst_reg->u32_min_value = 0; | 
|  | dst_reg->u32_max_value = U32_MAX; | 
|  | } else { | 
|  | dst_reg->u32_min_value <<= umin_val; | 
|  | dst_reg->u32_max_value <<= umax_val; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, | 
|  | struct bpf_reg_state *src_reg) | 
|  | { | 
|  | u32 umax_val = src_reg->u32_max_value; | 
|  | u32 umin_val = src_reg->u32_min_value; | 
|  | /* u32 alu operation will zext upper bits */ | 
|  | struct tnum subreg = tnum_subreg(dst_reg->var_off); | 
|  |  | 
|  | __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); | 
|  | dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val)); | 
|  | /* Not required but being careful mark reg64 bounds as unknown so | 
|  | * that we are forced to pick them up from tnum and zext later and | 
|  | * if some path skips this step we are still safe. | 
|  | */ | 
|  | __mark_reg64_unbounded(dst_reg); | 
|  | __update_reg32_bounds(dst_reg); | 
|  | } | 
|  |  | 
|  | static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg, | 
|  | u64 umin_val, u64 umax_val) | 
|  | { | 
|  | /* Special case <<32 because it is a common compiler pattern to sign | 
|  | * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are | 
|  | * positive we know this shift will also be positive so we can track | 
|  | * bounds correctly. Otherwise we lose all sign bit information except | 
|  | * what we can pick up from var_off. Perhaps we can generalize this | 
|  | * later to shifts of any length. | 
|  | */ | 
|  | if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0) | 
|  | dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32; | 
|  | else | 
|  | dst_reg->smax_value = S64_MAX; | 
|  |  | 
|  | if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0) | 
|  | dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32; | 
|  | else | 
|  | dst_reg->smin_value = S64_MIN; | 
|  |  | 
|  | /* If we might shift our top bit out, then we know nothing */ | 
|  | if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { | 
|  | dst_reg->umin_value = 0; | 
|  | dst_reg->umax_value = U64_MAX; | 
|  | } else { | 
|  | dst_reg->umin_value <<= umin_val; | 
|  | dst_reg->umax_value <<= umax_val; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg, | 
|  | struct bpf_reg_state *src_reg) | 
|  | { | 
|  | u64 umax_val = src_reg->umax_value; | 
|  | u64 umin_val = src_reg->umin_value; | 
|  |  | 
|  | /* scalar64 calc uses 32bit unshifted bounds so must be called first */ | 
|  | __scalar64_min_max_lsh(dst_reg, umin_val, umax_val); | 
|  | __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); | 
|  |  | 
|  | dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); | 
|  | /* We may learn something more from the var_off */ | 
|  | __update_reg_bounds(dst_reg); | 
|  | } | 
|  |  | 
|  | static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg, | 
|  | struct bpf_reg_state *src_reg) | 
|  | { | 
|  | struct tnum subreg = tnum_subreg(dst_reg->var_off); | 
|  | u32 umax_val = src_reg->u32_max_value; | 
|  | u32 umin_val = src_reg->u32_min_value; | 
|  |  | 
|  | /* BPF_RSH is an unsigned shift.  If the value in dst_reg might | 
|  | * be negative, then either: | 
|  | * 1) src_reg might be zero, so the sign bit of the result is | 
|  | *    unknown, so we lose our signed bounds | 
|  | * 2) it's known negative, thus the unsigned bounds capture the | 
|  | *    signed bounds | 
|  | * 3) the signed bounds cross zero, so they tell us nothing | 
|  | *    about the result | 
|  | * If the value in dst_reg is known nonnegative, then again the | 
|  | * unsigned bounds capture the signed bounds. | 
|  | * Thus, in all cases it suffices to blow away our signed bounds | 
|  | * and rely on inferring new ones from the unsigned bounds and | 
|  | * var_off of the result. | 
|  | */ | 
|  | dst_reg->s32_min_value = S32_MIN; | 
|  | dst_reg->s32_max_value = S32_MAX; | 
|  |  | 
|  | dst_reg->var_off = tnum_rshift(subreg, umin_val); | 
|  | dst_reg->u32_min_value >>= umax_val; | 
|  | dst_reg->u32_max_value >>= umin_val; | 
|  |  | 
|  | __mark_reg64_unbounded(dst_reg); | 
|  | __update_reg32_bounds(dst_reg); | 
|  | } | 
|  |  | 
|  | static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg, | 
|  | struct bpf_reg_state *src_reg) | 
|  | { | 
|  | u64 umax_val = src_reg->umax_value; | 
|  | u64 umin_val = src_reg->umin_value; | 
|  |  | 
|  | /* BPF_RSH is an unsigned shift.  If the value in dst_reg might | 
|  | * be negative, then either: | 
|  | * 1) src_reg might be zero, so the sign bit of the result is | 
|  | *    unknown, so we lose our signed bounds | 
|  | * 2) it's known negative, thus the unsigned bounds capture the | 
|  | *    signed bounds | 
|  | * 3) the signed bounds cross zero, so they tell us nothing | 
|  | *    about the result | 
|  | * If the value in dst_reg is known nonnegative, then again the | 
|  | * unsigned bounds capture the signed bounds. | 
|  | * Thus, in all cases it suffices to blow away our signed bounds | 
|  | * and rely on inferring new ones from the unsigned bounds and | 
|  | * var_off of the result. | 
|  | */ | 
|  | dst_reg->smin_value = S64_MIN; | 
|  | dst_reg->smax_value = S64_MAX; | 
|  | dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); | 
|  | dst_reg->umin_value >>= umax_val; | 
|  | dst_reg->umax_value >>= umin_val; | 
|  |  | 
|  | /* Its not easy to operate on alu32 bounds here because it depends | 
|  | * on bits being shifted in. Take easy way out and mark unbounded | 
|  | * so we can recalculate later from tnum. | 
|  | */ | 
|  | __mark_reg32_unbounded(dst_reg); | 
|  | __update_reg_bounds(dst_reg); | 
|  | } | 
|  |  | 
|  | static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg, | 
|  | struct bpf_reg_state *src_reg) | 
|  | { | 
|  | u64 umin_val = src_reg->u32_min_value; | 
|  |  | 
|  | /* Upon reaching here, src_known is true and | 
|  | * umax_val is equal to umin_val. | 
|  | */ | 
|  | dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val); | 
|  | dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val); | 
|  |  | 
|  | dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32); | 
|  |  | 
|  | /* blow away the dst_reg umin_value/umax_value and rely on | 
|  | * dst_reg var_off to refine the result. | 
|  | */ | 
|  | dst_reg->u32_min_value = 0; | 
|  | dst_reg->u32_max_value = U32_MAX; | 
|  |  | 
|  | __mark_reg64_unbounded(dst_reg); | 
|  | __update_reg32_bounds(dst_reg); | 
|  | } | 
|  |  | 
|  | static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg, | 
|  | struct bpf_reg_state *src_reg) | 
|  | { | 
|  | u64 umin_val = src_reg->umin_value; | 
|  |  | 
|  | /* Upon reaching here, src_known is true and umax_val is equal | 
|  | * to umin_val. | 
|  | */ | 
|  | dst_reg->smin_value >>= umin_val; | 
|  | dst_reg->smax_value >>= umin_val; | 
|  |  | 
|  | dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64); | 
|  |  | 
|  | /* blow away the dst_reg umin_value/umax_value and rely on | 
|  | * dst_reg var_off to refine the result. | 
|  | */ | 
|  | dst_reg->umin_value = 0; | 
|  | dst_reg->umax_value = U64_MAX; | 
|  |  | 
|  | /* Its not easy to operate on alu32 bounds here because it depends | 
|  | * on bits being shifted in from upper 32-bits. Take easy way out | 
|  | * and mark unbounded so we can recalculate later from tnum. | 
|  | */ | 
|  | __mark_reg32_unbounded(dst_reg); | 
|  | __update_reg_bounds(dst_reg); | 
|  | } | 
|  |  | 
|  | static bool is_safe_to_compute_dst_reg_range(struct bpf_insn *insn, | 
|  | const struct bpf_reg_state *src_reg) | 
|  | { | 
|  | bool src_is_const = false; | 
|  | u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; | 
|  |  | 
|  | if (insn_bitness == 32) { | 
|  | if (tnum_subreg_is_const(src_reg->var_off) | 
|  | && src_reg->s32_min_value == src_reg->s32_max_value | 
|  | && src_reg->u32_min_value == src_reg->u32_max_value) | 
|  | src_is_const = true; | 
|  | } else { | 
|  | if (tnum_is_const(src_reg->var_off) | 
|  | && src_reg->smin_value == src_reg->smax_value | 
|  | && src_reg->umin_value == src_reg->umax_value) | 
|  | src_is_const = true; | 
|  | } | 
|  |  | 
|  | switch (BPF_OP(insn->code)) { | 
|  | case BPF_ADD: | 
|  | case BPF_SUB: | 
|  | case BPF_AND: | 
|  | case BPF_XOR: | 
|  | case BPF_OR: | 
|  | case BPF_MUL: | 
|  | return true; | 
|  |  | 
|  | /* Shift operators range is only computable if shift dimension operand | 
|  | * is a constant. Shifts greater than 31 or 63 are undefined. This | 
|  | * includes shifts by a negative number. | 
|  | */ | 
|  | case BPF_LSH: | 
|  | case BPF_RSH: | 
|  | case BPF_ARSH: | 
|  | return (src_is_const && src_reg->umax_value < insn_bitness); | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* WARNING: This function does calculations on 64-bit values, but the actual | 
|  | * execution may occur on 32-bit values. Therefore, things like bitshifts | 
|  | * need extra checks in the 32-bit case. | 
|  | */ | 
|  | static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, | 
|  | struct bpf_insn *insn, | 
|  | struct bpf_reg_state *dst_reg, | 
|  | struct bpf_reg_state src_reg) | 
|  | { | 
|  | u8 opcode = BPF_OP(insn->code); | 
|  | bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64); | 
|  | int ret; | 
|  |  | 
|  | if (!is_safe_to_compute_dst_reg_range(insn, &src_reg)) { | 
|  | __mark_reg_unknown(env, dst_reg); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (sanitize_needed(opcode)) { | 
|  | ret = sanitize_val_alu(env, insn); | 
|  | if (ret < 0) | 
|  | return sanitize_err(env, insn, ret, NULL, NULL); | 
|  | } | 
|  |  | 
|  | /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops. | 
|  | * There are two classes of instructions: The first class we track both | 
|  | * alu32 and alu64 sign/unsigned bounds independently this provides the | 
|  | * greatest amount of precision when alu operations are mixed with jmp32 | 
|  | * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD, | 
|  | * and BPF_OR. This is possible because these ops have fairly easy to | 
|  | * understand and calculate behavior in both 32-bit and 64-bit alu ops. | 
|  | * See alu32 verifier tests for examples. The second class of | 
|  | * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy | 
|  | * with regards to tracking sign/unsigned bounds because the bits may | 
|  | * cross subreg boundaries in the alu64 case. When this happens we mark | 
|  | * the reg unbounded in the subreg bound space and use the resulting | 
|  | * tnum to calculate an approximation of the sign/unsigned bounds. | 
|  | */ | 
|  | switch (opcode) { | 
|  | case BPF_ADD: | 
|  | scalar32_min_max_add(dst_reg, &src_reg); | 
|  | scalar_min_max_add(dst_reg, &src_reg); | 
|  | dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); | 
|  | break; | 
|  | case BPF_SUB: | 
|  | scalar32_min_max_sub(dst_reg, &src_reg); | 
|  | scalar_min_max_sub(dst_reg, &src_reg); | 
|  | dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); | 
|  | break; | 
|  | case BPF_MUL: | 
|  | dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); | 
|  | scalar32_min_max_mul(dst_reg, &src_reg); | 
|  | scalar_min_max_mul(dst_reg, &src_reg); | 
|  | break; | 
|  | case BPF_AND: | 
|  | dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); | 
|  | scalar32_min_max_and(dst_reg, &src_reg); | 
|  | scalar_min_max_and(dst_reg, &src_reg); | 
|  | break; | 
|  | case BPF_OR: | 
|  | dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); | 
|  | scalar32_min_max_or(dst_reg, &src_reg); | 
|  | scalar_min_max_or(dst_reg, &src_reg); | 
|  | break; | 
|  | case BPF_XOR: | 
|  | dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off); | 
|  | scalar32_min_max_xor(dst_reg, &src_reg); | 
|  | scalar_min_max_xor(dst_reg, &src_reg); | 
|  | break; | 
|  | case BPF_LSH: | 
|  | if (alu32) | 
|  | scalar32_min_max_lsh(dst_reg, &src_reg); | 
|  | else | 
|  | scalar_min_max_lsh(dst_reg, &src_reg); | 
|  | break; | 
|  | case BPF_RSH: | 
|  | if (alu32) | 
|  | scalar32_min_max_rsh(dst_reg, &src_reg); | 
|  | else | 
|  | scalar_min_max_rsh(dst_reg, &src_reg); | 
|  | break; | 
|  | case BPF_ARSH: | 
|  | if (alu32) | 
|  | scalar32_min_max_arsh(dst_reg, &src_reg); | 
|  | else | 
|  | scalar_min_max_arsh(dst_reg, &src_reg); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* ALU32 ops are zero extended into 64bit register */ | 
|  | if (alu32) | 
|  | zext_32_to_64(dst_reg); | 
|  | reg_bounds_sync(dst_reg); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max | 
|  | * and var_off. | 
|  | */ | 
|  | static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, | 
|  | struct bpf_insn *insn) | 
|  | { | 
|  | struct bpf_verifier_state *vstate = env->cur_state; | 
|  | struct bpf_func_state *state = vstate->frame[vstate->curframe]; | 
|  | struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; | 
|  | struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; | 
|  | bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64); | 
|  | u8 opcode = BPF_OP(insn->code); | 
|  | int err; | 
|  |  | 
|  | dst_reg = ®s[insn->dst_reg]; | 
|  | src_reg = NULL; | 
|  |  | 
|  | if (dst_reg->type == PTR_TO_ARENA) { | 
|  | struct bpf_insn_aux_data *aux = cur_aux(env); | 
|  |  | 
|  | if (BPF_CLASS(insn->code) == BPF_ALU64) | 
|  | /* | 
|  | * 32-bit operations zero upper bits automatically. | 
|  | * 64-bit operations need to be converted to 32. | 
|  | */ | 
|  | aux->needs_zext = true; | 
|  |  | 
|  | /* Any arithmetic operations are allowed on arena pointers */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (dst_reg->type != SCALAR_VALUE) | 
|  | ptr_reg = dst_reg; | 
|  |  | 
|  | if (BPF_SRC(insn->code) == BPF_X) { | 
|  | src_reg = ®s[insn->src_reg]; | 
|  | if (src_reg->type != SCALAR_VALUE) { | 
|  | if (dst_reg->type != SCALAR_VALUE) { | 
|  | /* Combining two pointers by any ALU op yields | 
|  | * an arbitrary scalar. Disallow all math except | 
|  | * pointer subtraction | 
|  | */ | 
|  | if (opcode == BPF_SUB && env->allow_ptr_leaks) { | 
|  | mark_reg_unknown(env, regs, insn->dst_reg); | 
|  | return 0; | 
|  | } | 
|  | verbose(env, "R%d pointer %s pointer prohibited\n", | 
|  | insn->dst_reg, | 
|  | bpf_alu_string[opcode >> 4]); | 
|  | return -EACCES; | 
|  | } else { | 
|  | /* scalar += pointer | 
|  | * This is legal, but we have to reverse our | 
|  | * src/dest handling in computing the range | 
|  | */ | 
|  | err = mark_chain_precision(env, insn->dst_reg); | 
|  | if (err) | 
|  | return err; | 
|  | return adjust_ptr_min_max_vals(env, insn, | 
|  | src_reg, dst_reg); | 
|  | } | 
|  | } else if (ptr_reg) { | 
|  | /* pointer += scalar */ | 
|  | err = mark_chain_precision(env, insn->src_reg); | 
|  | if (err) | 
|  | return err; | 
|  | return adjust_ptr_min_max_vals(env, insn, | 
|  | dst_reg, src_reg); | 
|  | } else if (dst_reg->precise) { | 
|  | /* if dst_reg is precise, src_reg should be precise as well */ | 
|  | err = mark_chain_precision(env, insn->src_reg); | 
|  | if (err) | 
|  | return err; | 
|  | } | 
|  | } else { | 
|  | /* Pretend the src is a reg with a known value, since we only | 
|  | * need to be able to read from this state. | 
|  | */ | 
|  | off_reg.type = SCALAR_VALUE; | 
|  | __mark_reg_known(&off_reg, insn->imm); | 
|  | src_reg = &off_reg; | 
|  | if (ptr_reg) /* pointer += K */ | 
|  | return adjust_ptr_min_max_vals(env, insn, | 
|  | ptr_reg, src_reg); | 
|  | } | 
|  |  | 
|  | /* Got here implies adding two SCALAR_VALUEs */ | 
|  | if (WARN_ON_ONCE(ptr_reg)) { | 
|  | print_verifier_state(env, state, true); | 
|  | verbose(env, "verifier internal error: unexpected ptr_reg\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | if (WARN_ON(!src_reg)) { | 
|  | print_verifier_state(env, state, true); | 
|  | verbose(env, "verifier internal error: no src_reg\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | err = adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); | 
|  | if (err) | 
|  | return err; | 
|  | /* | 
|  | * Compilers can generate the code | 
|  | * r1 = r2 | 
|  | * r1 += 0x1 | 
|  | * if r2 < 1000 goto ... | 
|  | * use r1 in memory access | 
|  | * So remember constant delta between r2 and r1 and update r1 after | 
|  | * 'if' condition. | 
|  | */ | 
|  | if (env->bpf_capable && BPF_OP(insn->code) == BPF_ADD && | 
|  | dst_reg->id && is_reg_const(src_reg, alu32)) { | 
|  | u64 val = reg_const_value(src_reg, alu32); | 
|  |  | 
|  | if ((dst_reg->id & BPF_ADD_CONST) || | 
|  | /* prevent overflow in sync_linked_regs() later */ | 
|  | val > (u32)S32_MAX) { | 
|  | /* | 
|  | * If the register already went through rX += val | 
|  | * we cannot accumulate another val into rx->off. | 
|  | */ | 
|  | dst_reg->off = 0; | 
|  | dst_reg->id = 0; | 
|  | } else { | 
|  | dst_reg->id |= BPF_ADD_CONST; | 
|  | dst_reg->off = val; | 
|  | } | 
|  | } else { | 
|  | /* | 
|  | * Make sure ID is cleared otherwise dst_reg min/max could be | 
|  | * incorrectly propagated into other registers by sync_linked_regs() | 
|  | */ | 
|  | dst_reg->id = 0; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* check validity of 32-bit and 64-bit arithmetic operations */ | 
|  | static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) | 
|  | { | 
|  | struct bpf_reg_state *regs = cur_regs(env); | 
|  | u8 opcode = BPF_OP(insn->code); | 
|  | int err; | 
|  |  | 
|  | if (opcode == BPF_END || opcode == BPF_NEG) { | 
|  | if (opcode == BPF_NEG) { | 
|  | if (BPF_SRC(insn->code) != BPF_K || | 
|  | insn->src_reg != BPF_REG_0 || | 
|  | insn->off != 0 || insn->imm != 0) { | 
|  | verbose(env, "BPF_NEG uses reserved fields\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | } else { | 
|  | if (insn->src_reg != BPF_REG_0 || insn->off != 0 || | 
|  | (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || | 
|  | (BPF_CLASS(insn->code) == BPF_ALU64 && | 
|  | BPF_SRC(insn->code) != BPF_TO_LE)) { | 
|  | verbose(env, "BPF_END uses reserved fields\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* check src operand */ | 
|  | err = check_reg_arg(env, insn->dst_reg, SRC_OP); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | if (is_pointer_value(env, insn->dst_reg)) { | 
|  | verbose(env, "R%d pointer arithmetic prohibited\n", | 
|  | insn->dst_reg); | 
|  | return -EACCES; | 
|  | } | 
|  |  | 
|  | /* check dest operand */ | 
|  | err = check_reg_arg(env, insn->dst_reg, DST_OP); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | } else if (opcode == BPF_MOV) { | 
|  |  | 
|  | if (BPF_SRC(insn->code) == BPF_X) { | 
|  | if (BPF_CLASS(insn->code) == BPF_ALU) { | 
|  | if ((insn->off != 0 && insn->off != 8 && insn->off != 16) || | 
|  | insn->imm) { | 
|  | verbose(env, "BPF_MOV uses reserved fields\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | } else if (insn->off == BPF_ADDR_SPACE_CAST) { | 
|  | if (insn->imm != 1 && insn->imm != 1u << 16) { | 
|  | verbose(env, "addr_space_cast insn can only convert between address space 1 and 0\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | if (!env->prog->aux->arena) { | 
|  | verbose(env, "addr_space_cast insn can only be used in a program that has an associated arena\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | } else { | 
|  | if ((insn->off != 0 && insn->off != 8 && insn->off != 16 && | 
|  | insn->off != 32) || insn->imm) { | 
|  | verbose(env, "BPF_MOV uses reserved fields\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* check src operand */ | 
|  | err = check_reg_arg(env, insn->src_reg, SRC_OP); | 
|  | if (err) | 
|  | return err; | 
|  | } else { | 
|  | if (insn->src_reg != BPF_REG_0 || insn->off != 0) { | 
|  | verbose(env, "BPF_MOV uses reserved fields\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* check dest operand, mark as required later */ | 
|  | err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | if (BPF_SRC(insn->code) == BPF_X) { | 
|  | struct bpf_reg_state *src_reg = regs + insn->src_reg; | 
|  | struct bpf_reg_state *dst_reg = regs + insn->dst_reg; | 
|  |  | 
|  | if (BPF_CLASS(insn->code) == BPF_ALU64) { | 
|  | if (insn->imm) { | 
|  | /* off == BPF_ADDR_SPACE_CAST */ | 
|  | mark_reg_unknown(env, regs, insn->dst_reg); | 
|  | if (insn->imm == 1) { /* cast from as(1) to as(0) */ | 
|  | dst_reg->type = PTR_TO_ARENA; | 
|  | /* PTR_TO_ARENA is 32-bit */ | 
|  | dst_reg->subreg_def = env->insn_idx + 1; | 
|  | } | 
|  | } else if (insn->off == 0) { | 
|  | /* case: R1 = R2 | 
|  | * copy register state to dest reg | 
|  | */ | 
|  | assign_scalar_id_before_mov(env, src_reg); | 
|  | copy_register_state(dst_reg, src_reg); | 
|  | dst_reg->live |= REG_LIVE_WRITTEN; | 
|  | dst_reg->subreg_def = DEF_NOT_SUBREG; | 
|  | } else { | 
|  | /* case: R1 = (s8, s16 s32)R2 */ | 
|  | if (is_pointer_value(env, insn->src_reg)) { | 
|  | verbose(env, | 
|  | "R%d sign-extension part of pointer\n", | 
|  | insn->src_reg); | 
|  | return -EACCES; | 
|  | } else if (src_reg->type == SCALAR_VALUE) { | 
|  | bool no_sext; | 
|  |  | 
|  | no_sext = src_reg->umax_value < (1ULL << (insn->off - 1)); | 
|  | if (no_sext) | 
|  | assign_scalar_id_before_mov(env, src_reg); | 
|  | copy_register_state(dst_reg, src_reg); | 
|  | if (!no_sext) | 
|  | dst_reg->id = 0; | 
|  | coerce_reg_to_size_sx(dst_reg, insn->off >> 3); | 
|  | dst_reg->live |= REG_LIVE_WRITTEN; | 
|  | dst_reg->subreg_def = DEF_NOT_SUBREG; | 
|  | } else { | 
|  | mark_reg_unknown(env, regs, insn->dst_reg); | 
|  | } | 
|  | } | 
|  | } else { | 
|  | /* R1 = (u32) R2 */ | 
|  | if (is_pointer_value(env, insn->src_reg)) { | 
|  | verbose(env, | 
|  | "R%d partial copy of pointer\n", | 
|  | insn->src_reg); | 
|  | return -EACCES; | 
|  | } else if (src_reg->type == SCALAR_VALUE) { | 
|  | if (insn->off == 0) { | 
|  | bool is_src_reg_u32 = get_reg_width(src_reg) <= 32; | 
|  |  | 
|  | if (is_src_reg_u32) | 
|  | assign_scalar_id_before_mov(env, src_reg); | 
|  | copy_register_state(dst_reg, src_reg); | 
|  | /* Make sure ID is cleared if src_reg is not in u32 | 
|  | * range otherwise dst_reg min/max could be incorrectly | 
|  | * propagated into src_reg by sync_linked_regs() | 
|  | */ | 
|  | if (!is_src_reg_u32) | 
|  | dst_reg->id = 0; | 
|  | dst_reg->live |= REG_LIVE_WRITTEN; | 
|  | dst_reg->subreg_def = env->insn_idx + 1; | 
|  | } else { | 
|  | /* case: W1 = (s8, s16)W2 */ | 
|  | bool no_sext = src_reg->umax_value < (1ULL << (insn->off - 1)); | 
|  |  | 
|  | if (no_sext) | 
|  | assign_scalar_id_before_mov(env, src_reg); | 
|  | copy_register_state(dst_reg, src_reg); | 
|  | if (!no_sext) | 
|  | dst_reg->id = 0; | 
|  | dst_reg->live |= REG_LIVE_WRITTEN; | 
|  | dst_reg->subreg_def = env->insn_idx + 1; | 
|  | coerce_subreg_to_size_sx(dst_reg, insn->off >> 3); | 
|  | } | 
|  | } else { | 
|  | mark_reg_unknown(env, regs, | 
|  | insn->dst_reg); | 
|  | } | 
|  | zext_32_to_64(dst_reg); | 
|  | reg_bounds_sync(dst_reg); | 
|  | } | 
|  | } else { | 
|  | /* case: R = imm | 
|  | * remember the value we stored into this reg | 
|  | */ | 
|  | /* clear any state __mark_reg_known doesn't set */ | 
|  | mark_reg_unknown(env, regs, insn->dst_reg); | 
|  | regs[insn->dst_reg].type = SCALAR_VALUE; | 
|  | if (BPF_CLASS(insn->code) == BPF_ALU64) { | 
|  | __mark_reg_known(regs + insn->dst_reg, | 
|  | insn->imm); | 
|  | } else { | 
|  | __mark_reg_known(regs + insn->dst_reg, | 
|  | (u32)insn->imm); | 
|  | } | 
|  | } | 
|  |  | 
|  | } else if (opcode > BPF_END) { | 
|  | verbose(env, "invalid BPF_ALU opcode %x\n", opcode); | 
|  | return -EINVAL; | 
|  |  | 
|  | } else {	/* all other ALU ops: and, sub, xor, add, ... */ | 
|  |  | 
|  | if (BPF_SRC(insn->code) == BPF_X) { | 
|  | if (insn->imm != 0 || insn->off > 1 || | 
|  | (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) { | 
|  | verbose(env, "BPF_ALU uses reserved fields\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | /* check src1 operand */ | 
|  | err = check_reg_arg(env, insn->src_reg, SRC_OP); | 
|  | if (err) | 
|  | return err; | 
|  | } else { | 
|  | if (insn->src_reg != BPF_REG_0 || insn->off > 1 || | 
|  | (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) { | 
|  | verbose(env, "BPF_ALU uses reserved fields\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* check src2 operand */ | 
|  | err = check_reg_arg(env, insn->dst_reg, SRC_OP); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | if ((opcode == BPF_MOD || opcode == BPF_DIV) && | 
|  | BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { | 
|  | verbose(env, "div by zero\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if ((opcode == BPF_LSH || opcode == BPF_RSH || | 
|  | opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { | 
|  | int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; | 
|  |  | 
|  | if (insn->imm < 0 || insn->imm >= size) { | 
|  | verbose(env, "invalid shift %d\n", insn->imm); | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* check dest operand */ | 
|  | err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); | 
|  | err = err ?: adjust_reg_min_max_vals(env, insn); | 
|  | if (err) | 
|  | return err; | 
|  | } | 
|  |  | 
|  | return reg_bounds_sanity_check(env, ®s[insn->dst_reg], "alu"); | 
|  | } | 
|  |  | 
|  | static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, | 
|  | struct bpf_reg_state *dst_reg, | 
|  | enum bpf_reg_type type, | 
|  | bool range_right_open) | 
|  | { | 
|  | struct bpf_func_state *state; | 
|  | struct bpf_reg_state *reg; | 
|  | int new_range; | 
|  |  | 
|  | if (dst_reg->off < 0 || | 
|  | (dst_reg->off == 0 && range_right_open)) | 
|  | /* This doesn't give us any range */ | 
|  | return; | 
|  |  | 
|  | if (dst_reg->umax_value > MAX_PACKET_OFF || | 
|  | dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) | 
|  | /* Risk of overflow.  For instance, ptr + (1<<63) may be less | 
|  | * than pkt_end, but that's because it's also less than pkt. | 
|  | */ | 
|  | return; | 
|  |  | 
|  | new_range = dst_reg->off; | 
|  | if (range_right_open) | 
|  | new_range++; | 
|  |  | 
|  | /* Examples for register markings: | 
|  | * | 
|  | * pkt_data in dst register: | 
|  | * | 
|  | *   r2 = r3; | 
|  | *   r2 += 8; | 
|  | *   if (r2 > pkt_end) goto <handle exception> | 
|  | *   <access okay> | 
|  | * | 
|  | *   r2 = r3; | 
|  | *   r2 += 8; | 
|  | *   if (r2 < pkt_end) goto <access okay> | 
|  | *   <handle exception> | 
|  | * | 
|  | *   Where: | 
|  | *     r2 == dst_reg, pkt_end == src_reg | 
|  | *     r2=pkt(id=n,off=8,r=0) | 
|  | *     r3=pkt(id=n,off=0,r=0) | 
|  | * | 
|  | * pkt_data in src register: | 
|  | * | 
|  | *   r2 = r3; | 
|  | *   r2 += 8; | 
|  | *   if (pkt_end >= r2) goto <access okay> | 
|  | *   <handle exception> | 
|  | * | 
|  | *   r2 = r3; | 
|  | *   r2 += 8; | 
|  | *   if (pkt_end <= r2) goto <handle exception> | 
|  | *   <access okay> | 
|  | * | 
|  | *   Where: | 
|  | *     pkt_end == dst_reg, r2 == src_reg | 
|  | *     r2=pkt(id=n,off=8,r=0) | 
|  | *     r3=pkt(id=n,off=0,r=0) | 
|  | * | 
|  | * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) | 
|  | * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) | 
|  | * and [r3, r3 + 8-1) respectively is safe to access depending on | 
|  | * the check. | 
|  | */ | 
|  |  | 
|  | /* If our ids match, then we must have the same max_value.  And we | 
|  | * don't care about the other reg's fixed offset, since if it's too big | 
|  | * the range won't allow anything. | 
|  | * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. | 
|  | */ | 
|  | bpf_for_each_reg_in_vstate(vstate, state, reg, ({ | 
|  | if (reg->type == type && reg->id == dst_reg->id) | 
|  | /* keep the maximum range already checked */ | 
|  | reg->range = max(reg->range, new_range); | 
|  | })); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * <reg1> <op> <reg2>, currently assuming reg2 is a constant | 
|  | */ | 
|  | static int is_scalar_branch_taken(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2, | 
|  | u8 opcode, bool is_jmp32) | 
|  | { | 
|  | struct tnum t1 = is_jmp32 ? tnum_subreg(reg1->var_off) : reg1->var_off; | 
|  | struct tnum t2 = is_jmp32 ? tnum_subreg(reg2->var_off) : reg2->var_off; | 
|  | u64 umin1 = is_jmp32 ? (u64)reg1->u32_min_value : reg1->umin_value; | 
|  | u64 umax1 = is_jmp32 ? (u64)reg1->u32_max_value : reg1->umax_value; | 
|  | s64 smin1 = is_jmp32 ? (s64)reg1->s32_min_value : reg1->smin_value; | 
|  | s64 smax1 = is_jmp32 ? (s64)reg1->s32_max_value : reg1->smax_value; | 
|  | u64 umin2 = is_jmp32 ? (u64)reg2->u32_min_value : reg2->umin_value; | 
|  | u64 umax2 = is_jmp32 ? (u64)reg2->u32_max_value : reg2->umax_value; | 
|  | s64 smin2 = is_jmp32 ? (s64)reg2->s32_min_value : reg2->smin_value; | 
|  | s64 smax2 = is_jmp32 ? (s64)reg2->s32_max_value : reg2->smax_value; | 
|  |  | 
|  | switch (opcode) { | 
|  | case BPF_JEQ: | 
|  | /* constants, umin/umax and smin/smax checks would be | 
|  | * redundant in this case because they all should match | 
|  | */ | 
|  | if (tnum_is_const(t1) && tnum_is_const(t2)) | 
|  | return t1.value == t2.value; | 
|  | /* non-overlapping ranges */ | 
|  | if (umin1 > umax2 || umax1 < umin2) | 
|  | return 0; | 
|  | if (smin1 > smax2 || smax1 < smin2) | 
|  | return 0; | 
|  | if (!is_jmp32) { | 
|  | /* if 64-bit ranges are inconclusive, see if we can | 
|  | * utilize 32-bit subrange knowledge to eliminate | 
|  | * branches that can't be taken a priori | 
|  | */ | 
|  | if (reg1->u32_min_value > reg2->u32_max_value || | 
|  | reg1->u32_max_value < reg2->u32_min_value) | 
|  | return 0; | 
|  | if (reg1->s32_min_value > reg2->s32_max_value || | 
|  | reg1->s32_max_value < reg2->s32_min_value) | 
|  | return 0; | 
|  | } | 
|  | break; | 
|  | case BPF_JNE: | 
|  | /* constants, umin/umax and smin/smax checks would be | 
|  | * redundant in this case because they all should match | 
|  | */ | 
|  | if (tnum_is_const(t1) && tnum_is_const(t2)) | 
|  | return t1.value != t2.value; | 
|  | /* non-overlapping ranges */ | 
|  | if (umin1 > umax2 || umax1 < umin2) | 
|  | return 1; | 
|  | if (smin1 > smax2 || smax1 < smin2) | 
|  | return 1; | 
|  | if (!is_jmp32) { | 
|  | /* if 64-bit ranges are inconclusive, see if we can | 
|  | * utilize 32-bit subrange knowledge to eliminate | 
|  | * branches that can't be taken a priori | 
|  | */ | 
|  | if (reg1->u32_min_value > reg2->u32_max_value || | 
|  | reg1->u32_max_value < reg2->u32_min_value) | 
|  | return 1; | 
|  | if (reg1->s32_min_value > reg2->s32_max_value || | 
|  | reg1->s32_max_value < reg2->s32_min_value) | 
|  | return 1; | 
|  | } | 
|  | break; | 
|  | case BPF_JSET: | 
|  | if (!is_reg_const(reg2, is_jmp32)) { | 
|  | swap(reg1, reg2); | 
|  | swap(t1, t2); | 
|  | } | 
|  | if (!is_reg_const(reg2, is_jmp32)) | 
|  | return -1; | 
|  | if ((~t1.mask & t1.value) & t2.value) | 
|  | return 1; | 
|  | if (!((t1.mask | t1.value) & t2.value)) | 
|  | return 0; | 
|  | break; | 
|  | case BPF_JGT: | 
|  | if (umin1 > umax2) | 
|  | return 1; | 
|  | else if (umax1 <= umin2) | 
|  | return 0; | 
|  | break; | 
|  | case BPF_JSGT: | 
|  | if (smin1 > smax2) | 
|  | return 1; | 
|  | else if (smax1 <= smin2) | 
|  | return 0; | 
|  | break; | 
|  | case BPF_JLT: | 
|  | if (umax1 < umin2) | 
|  | return 1; | 
|  | else if (umin1 >= umax2) | 
|  | return 0; | 
|  | break; | 
|  | case BPF_JSLT: | 
|  | if (smax1 < smin2) | 
|  | return 1; | 
|  | else if (smin1 >= smax2) | 
|  | return 0; | 
|  | break; | 
|  | case BPF_JGE: | 
|  | if (umin1 >= umax2) | 
|  | return 1; | 
|  | else if (umax1 < umin2) | 
|  | return 0; | 
|  | break; | 
|  | case BPF_JSGE: | 
|  | if (smin1 >= smax2) | 
|  | return 1; | 
|  | else if (smax1 < smin2) | 
|  | return 0; | 
|  | break; | 
|  | case BPF_JLE: | 
|  | if (umax1 <= umin2) | 
|  | return 1; | 
|  | else if (umin1 > umax2) | 
|  | return 0; | 
|  | break; | 
|  | case BPF_JSLE: | 
|  | if (smax1 <= smin2) | 
|  | return 1; | 
|  | else if (smin1 > smax2) | 
|  | return 0; | 
|  | break; | 
|  | } | 
|  |  | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | static int flip_opcode(u32 opcode) | 
|  | { | 
|  | /* How can we transform "a <op> b" into "b <op> a"? */ | 
|  | static const u8 opcode_flip[16] = { | 
|  | /* these stay the same */ | 
|  | [BPF_JEQ  >> 4] = BPF_JEQ, | 
|  | [BPF_JNE  >> 4] = BPF_JNE, | 
|  | [BPF_JSET >> 4] = BPF_JSET, | 
|  | /* these swap "lesser" and "greater" (L and G in the opcodes) */ | 
|  | [BPF_JGE  >> 4] = BPF_JLE, | 
|  | [BPF_JGT  >> 4] = BPF_JLT, | 
|  | [BPF_JLE  >> 4] = BPF_JGE, | 
|  | [BPF_JLT  >> 4] = BPF_JGT, | 
|  | [BPF_JSGE >> 4] = BPF_JSLE, | 
|  | [BPF_JSGT >> 4] = BPF_JSLT, | 
|  | [BPF_JSLE >> 4] = BPF_JSGE, | 
|  | [BPF_JSLT >> 4] = BPF_JSGT | 
|  | }; | 
|  | return opcode_flip[opcode >> 4]; | 
|  | } | 
|  |  | 
|  | static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg, | 
|  | struct bpf_reg_state *src_reg, | 
|  | u8 opcode) | 
|  | { | 
|  | struct bpf_reg_state *pkt; | 
|  |  | 
|  | if (src_reg->type == PTR_TO_PACKET_END) { | 
|  | pkt = dst_reg; | 
|  | } else if (dst_reg->type == PTR_TO_PACKET_END) { | 
|  | pkt = src_reg; | 
|  | opcode = flip_opcode(opcode); | 
|  | } else { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | if (pkt->range >= 0) | 
|  | return -1; | 
|  |  | 
|  | switch (opcode) { | 
|  | case BPF_JLE: | 
|  | /* pkt <= pkt_end */ | 
|  | fallthrough; | 
|  | case BPF_JGT: | 
|  | /* pkt > pkt_end */ | 
|  | if (pkt->range == BEYOND_PKT_END) | 
|  | /* pkt has at last one extra byte beyond pkt_end */ | 
|  | return opcode == BPF_JGT; | 
|  | break; | 
|  | case BPF_JLT: | 
|  | /* pkt < pkt_end */ | 
|  | fallthrough; | 
|  | case BPF_JGE: | 
|  | /* pkt >= pkt_end */ | 
|  | if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END) | 
|  | return opcode == BPF_JGE; | 
|  | break; | 
|  | } | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* compute branch direction of the expression "if (<reg1> opcode <reg2>) goto target;" | 
|  | * and return: | 
|  | *  1 - branch will be taken and "goto target" will be executed | 
|  | *  0 - branch will not be taken and fall-through to next insn | 
|  | * -1 - unknown. Example: "if (reg1 < 5)" is unknown when register value | 
|  | *      range [0,10] | 
|  | */ | 
|  | static int is_branch_taken(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2, | 
|  | u8 opcode, bool is_jmp32) | 
|  | { | 
|  | if (reg_is_pkt_pointer_any(reg1) && reg_is_pkt_pointer_any(reg2) && !is_jmp32) | 
|  | return is_pkt_ptr_branch_taken(reg1, reg2, opcode); | 
|  |  | 
|  | if (__is_pointer_value(false, reg1) || __is_pointer_value(false, reg2)) { | 
|  | u64 val; | 
|  |  | 
|  | /* arrange that reg2 is a scalar, and reg1 is a pointer */ | 
|  | if (!is_reg_const(reg2, is_jmp32)) { | 
|  | opcode = flip_opcode(opcode); | 
|  | swap(reg1, reg2); | 
|  | } | 
|  | /* and ensure that reg2 is a constant */ | 
|  | if (!is_reg_const(reg2, is_jmp32)) | 
|  | return -1; | 
|  |  | 
|  | if (!reg_not_null(reg1)) | 
|  | return -1; | 
|  |  | 
|  | /* If pointer is valid tests against zero will fail so we can | 
|  | * use this to direct branch taken. | 
|  | */ | 
|  | val = reg_const_value(reg2, is_jmp32); | 
|  | if (val != 0) | 
|  | return -1; | 
|  |  | 
|  | switch (opcode) { | 
|  | case BPF_JEQ: | 
|  | return 0; | 
|  | case BPF_JNE: | 
|  | return 1; | 
|  | default: | 
|  | return -1; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* now deal with two scalars, but not necessarily constants */ | 
|  | return is_scalar_branch_taken(reg1, reg2, opcode, is_jmp32); | 
|  | } | 
|  |  | 
|  | /* Opcode that corresponds to a *false* branch condition. | 
|  | * E.g., if r1 < r2, then reverse (false) condition is r1 >= r2 | 
|  | */ | 
|  | static u8 rev_opcode(u8 opcode) | 
|  | { | 
|  | switch (opcode) { | 
|  | case BPF_JEQ:		return BPF_JNE; | 
|  | case BPF_JNE:		return BPF_JEQ; | 
|  | /* JSET doesn't have it's reverse opcode in BPF, so add | 
|  | * BPF_X flag to denote the reverse of that operation | 
|  | */ | 
|  | case BPF_JSET:		return BPF_JSET | BPF_X; | 
|  | case BPF_JSET | BPF_X:	return BPF_JSET; | 
|  | case BPF_JGE:		return BPF_JLT; | 
|  | case BPF_JGT:		return BPF_JLE; | 
|  | case BPF_JLE:		return BPF_JGT; | 
|  | case BPF_JLT:		return BPF_JGE; | 
|  | case BPF_JSGE:		return BPF_JSLT; | 
|  | case BPF_JSGT:		return BPF_JSLE; | 
|  | case BPF_JSLE:		return BPF_JSGT; | 
|  | case BPF_JSLT:		return BPF_JSGE; | 
|  | default:		return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Refine range knowledge for <reg1> <op> <reg>2 conditional operation. */ | 
|  | static void regs_refine_cond_op(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2, | 
|  | u8 opcode, bool is_jmp32) | 
|  | { | 
|  | struct tnum t; | 
|  | u64 val; | 
|  |  | 
|  | /* In case of GE/GT/SGE/JST, reuse LE/LT/SLE/SLT logic from below */ | 
|  | switch (opcode) { | 
|  | case BPF_JGE: | 
|  | case BPF_JGT: | 
|  | case BPF_JSGE: | 
|  | case BPF_JSGT: | 
|  | opcode = flip_opcode(opcode); | 
|  | swap(reg1, reg2); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | switch (opcode) { | 
|  | case BPF_JEQ: | 
|  | if (is_jmp32) { | 
|  | reg1->u32_min_value = max(reg1->u32_min_value, reg2->u32_min_value); | 
|  | reg1->u32_max_value = min(reg1->u32_max_value, reg2->u32_max_value); | 
|  | reg1->s32_min_value = max(reg1->s32_min_value, reg2->s32_min_value); | 
|  | reg1->s32_max_value = min(reg1->s32_max_value, reg2->s32_max_value); | 
|  | reg2->u32_min_value = reg1->u32_min_value; | 
|  | reg2->u32_max_value = reg1->u32_max_value; | 
|  | reg2->s32_min_value = reg1->s32_min_value; | 
|  | reg2->s32_max_value = reg1->s32_max_value; | 
|  |  | 
|  | t = tnum_intersect(tnum_subreg(reg1->var_off), tnum_subreg(reg2->var_off)); | 
|  | reg1->var_off = tnum_with_subreg(reg1->var_off, t); | 
|  | reg2->var_off = tnum_with_subreg(reg2->var_off, t); | 
|  | } else { | 
|  | reg1->umin_value = max(reg1->umin_value, reg2->umin_value); | 
|  | reg1->umax_value = min(reg1->umax_value, reg2->umax_value); | 
|  | reg1->smin_value = max(reg1->smin_value, reg2->smin_value); | 
|  | reg1->smax_value = min(reg1->smax_value, reg2->smax_value); | 
|  | reg2->umin_value = reg1->umin_value; | 
|  | reg2->umax_value = reg1->umax_value; | 
|  | reg2->smin_value = reg1->smin_value; | 
|  | reg2->smax_value = reg1->smax_value; | 
|  |  | 
|  | reg1->var_off = tnum_intersect(reg1->var_off, reg2->var_off); | 
|  | reg2->var_off = reg1->var_off; | 
|  | } | 
|  | break; | 
|  | case BPF_JNE: | 
|  | if (!is_reg_const(reg2, is_jmp32)) | 
|  | swap(reg1, reg2); | 
|  | if (!is_reg_const(reg2, is_jmp32)) | 
|  | break; | 
|  |  | 
|  | /* try to recompute the bound of reg1 if reg2 is a const and | 
|  | * is exactly the edge of reg1. | 
|  | */ | 
|  | val = reg_const_value(reg2, is_jmp32); | 
|  | if (is_jmp32) { | 
|  | /* u32_min_value is not equal to 0xffffffff at this point, | 
|  | * because otherwise u32_max_value is 0xffffffff as well, | 
|  | * in such a case both reg1 and reg2 would be constants, | 
|  | * jump would be predicted and reg_set_min_max() won't | 
|  | * be called. | 
|  | * | 
|  | * Same reasoning works for all {u,s}{min,max}{32,64} cases | 
|  | * below. | 
|  | */ | 
|  | if (reg1->u32_min_value == (u32)val) | 
|  | reg1->u32_min_value++; | 
|  | if (reg1->u32_max_value == (u32)val) | 
|  | reg1->u32_max_value--; | 
|  | if (reg1->s32_min_value == (s32)val) | 
|  | reg1->s32_min_value++; | 
|  | if (reg1->s32_max_value == (s32)val) | 
|  | reg1->s32_max_value--; | 
|  | } else { | 
|  | if (reg1->umin_value == (u64)val) | 
|  | reg1->umin_value++; | 
|  | if (reg1->umax_value == (u64)val) | 
|  | reg1->umax_value--; | 
|  | if (reg1->smin_value == (s64)val) | 
|  | reg1->smin_value++; | 
|  | if (reg1->smax_value == (s64)val) | 
|  | reg1->smax_value--; | 
|  | } | 
|  | break; | 
|  | case BPF_JSET: | 
|  | if (!is_reg_const(reg2, is_jmp32)) | 
|  | swap(reg1, reg2); | 
|  | if (!is_reg_const(reg2, is_jmp32)) | 
|  | break; | 
|  | val = reg_const_value(reg2, is_jmp32); | 
|  | /* BPF_JSET (i.e., TRUE branch, *not* BPF_JSET | BPF_X) | 
|  | * requires single bit to learn something useful. E.g., if we | 
|  | * know that `r1 & 0x3` is true, then which bits (0, 1, or both) | 
|  | * are actually set? We can learn something definite only if | 
|  | * it's a single-bit value to begin with. | 
|  | * | 
|  | * BPF_JSET | BPF_X (i.e., negation of BPF_JSET) doesn't have | 
|  | * this restriction. I.e., !(r1 & 0x3) means neither bit 0 nor | 
|  | * bit 1 is set, which we can readily use in adjustments. | 
|  | */ | 
|  | if (!is_power_of_2(val)) | 
|  | break; | 
|  | if (is_jmp32) { | 
|  | t = tnum_or(tnum_subreg(reg1->var_off), tnum_const(val)); | 
|  | reg1->var_off = tnum_with_subreg(reg1->var_off, t); | 
|  | } else { | 
|  | reg1->var_off = tnum_or(reg1->var_off, tnum_const(val)); | 
|  | } | 
|  | break; | 
|  | case BPF_JSET | BPF_X: /* reverse of BPF_JSET, see rev_opcode() */ | 
|  | if (!is_reg_const(reg2, is_jmp32)) | 
|  | swap(reg1, reg2); | 
|  | if (!is_reg_const(reg2, is_jmp32)) | 
|  | break; | 
|  | val = reg_const_value(reg2, is_jmp32); | 
|  | if (is_jmp32) { | 
|  | t = tnum_and(tnum_subreg(reg1->var_off), tnum_const(~val)); | 
|  | reg1->var_off = tnum_with_subreg(reg1->var_off, t); | 
|  | } else { | 
|  | reg1->var_off = tnum_and(reg1->var_off, tnum_const(~val)); | 
|  | } | 
|  | break; | 
|  | case BPF_JLE: | 
|  | if (is_jmp32) { | 
|  | reg1->u32_max_value = min(reg1->u32_max_value, reg2->u32_max_value); | 
|  | reg2->u32_min_value = max(reg1->u32_min_value, reg2->u32_min_value); | 
|  | } else { | 
|  | reg1->umax_value = min(reg1->umax_value, reg2->umax_value); | 
|  | reg2->umin_value = max(reg1->umin_value, reg2->umin_value); | 
|  | } | 
|  | break; | 
|  | case BPF_JLT: | 
|  | if (is_jmp32) { | 
|  | reg1->u32_max_value = min(reg1->u32_max_value, reg2->u32_max_value - 1); | 
|  | reg2->u32_min_value = max(reg1->u32_min_value + 1, reg2->u32_min_value); | 
|  | } else { | 
|  | reg1->umax_value = min(reg1->umax_value, reg2->umax_value - 1); | 
|  | reg2->umin_value = max(reg1->umin_value + 1, reg2->umin_value); | 
|  | } | 
|  | break; | 
|  | case BPF_JSLE: | 
|  | if (is_jmp32) { | 
|  | reg1->s32_max_value = min(reg1->s32_max_value, reg2->s32_max_value); | 
|  | reg2->s32_min_value = max(reg1->s32_min_value, reg2->s32_min_value); | 
|  | } else { | 
|  | reg1->smax_value = min(reg1->smax_value, reg2->smax_value); | 
|  | reg2->smin_value = max(reg1->smin_value, reg2->smin_value); | 
|  | } | 
|  | break; | 
|  | case BPF_JSLT: | 
|  | if (is_jmp32) { | 
|  | reg1->s32_max_value = min(reg1->s32_max_value, reg2->s32_max_value - 1); | 
|  | reg2->s32_min_value = max(reg1->s32_min_value + 1, reg2->s32_min_value); | 
|  | } else { | 
|  | reg1->smax_value = min(reg1->smax_value, reg2->smax_value - 1); | 
|  | reg2->smin_value = max(reg1->smin_value + 1, reg2->smin_value); | 
|  | } | 
|  | break; | 
|  | default: | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Adjusts the register min/max values in the case that the dst_reg and | 
|  | * src_reg are both SCALAR_VALUE registers (or we are simply doing a BPF_K | 
|  | * check, in which case we have a fake SCALAR_VALUE representing insn->imm). | 
|  | * Technically we can do similar adjustments for pointers to the same object, | 
|  | * but we don't support that right now. | 
|  | */ | 
|  | static int reg_set_min_max(struct bpf_verifier_env *env, | 
|  | struct bpf_reg_state *true_reg1, | 
|  | struct bpf_reg_state *true_reg2, | 
|  | struct bpf_reg_state *false_reg1, | 
|  | struct bpf_reg_state *false_reg2, | 
|  | u8 opcode, bool is_jmp32) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | /* If either register is a pointer, we can't learn anything about its | 
|  | * variable offset from the compare (unless they were a pointer into | 
|  | * the same object, but we don't bother with that). | 
|  | */ | 
|  | if (false_reg1->type != SCALAR_VALUE || false_reg2->type != SCALAR_VALUE) | 
|  | return 0; | 
|  |  | 
|  | /* fallthrough (FALSE) branch */ | 
|  | regs_refine_cond_op(false_reg1, false_reg2, rev_opcode(opcode), is_jmp32); | 
|  | reg_bounds_sync(false_reg1); | 
|  | reg_bounds_sync(false_reg2); | 
|  |  | 
|  | /* jump (TRUE) branch */ | 
|  | regs_refine_cond_op(true_reg1, true_reg2, opcode, is_jmp32); | 
|  | reg_bounds_sync(true_reg1); | 
|  | reg_bounds_sync(true_reg2); | 
|  |  | 
|  | err = reg_bounds_sanity_check(env, true_reg1, "true_reg1"); | 
|  | err = err ?: reg_bounds_sanity_check(env, true_reg2, "true_reg2"); | 
|  | err = err ?: reg_bounds_sanity_check(env, false_reg1, "false_reg1"); | 
|  | err = err ?: reg_bounds_sanity_check(env, false_reg2, "false_reg2"); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static void mark_ptr_or_null_reg(struct bpf_func_state *state, | 
|  | struct bpf_reg_state *reg, u32 id, | 
|  | bool is_null) | 
|  | { | 
|  | if (type_may_be_null(reg->type) && reg->id == id && | 
|  | (is_rcu_reg(reg) || !WARN_ON_ONCE(!reg->id))) { | 
|  | /* Old offset (both fixed and variable parts) should have been | 
|  | * known-zero, because we don't allow pointer arithmetic on | 
|  | * pointers that might be NULL. If we see this happening, don't | 
|  | * convert the register. | 
|  | * | 
|  | * But in some cases, some helpers that return local kptrs | 
|  | * advance offset for the returned pointer. In those cases, it | 
|  | * is fine to expect to see reg->off. | 
|  | */ | 
|  | if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || !tnum_equals_const(reg->var_off, 0))) | 
|  | return; | 
|  | if (!(type_is_ptr_alloc_obj(reg->type) || type_is_non_owning_ref(reg->type)) && | 
|  | WARN_ON_ONCE(reg->off)) | 
|  | return; | 
|  |  | 
|  | if (is_null) { | 
|  | reg->type = SCALAR_VALUE; | 
|  | /* We don't need id and ref_obj_id from this point | 
|  | * onwards anymore, thus we should better reset it, | 
|  | * so that state pruning has chances to take effect. | 
|  | */ | 
|  | reg->id = 0; | 
|  | reg->ref_obj_id = 0; | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | mark_ptr_not_null_reg(reg); | 
|  |  | 
|  | if (!reg_may_point_to_spin_lock(reg)) { | 
|  | /* For not-NULL ptr, reg->ref_obj_id will be reset | 
|  | * in release_reference(). | 
|  | * | 
|  | * reg->id is still used by spin_lock ptr. Other | 
|  | * than spin_lock ptr type, reg->id can be reset. | 
|  | */ | 
|  | reg->id = 0; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* The logic is similar to find_good_pkt_pointers(), both could eventually | 
|  | * be folded together at some point. | 
|  | */ | 
|  | static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno, | 
|  | bool is_null) | 
|  | { | 
|  | struct bpf_func_state *state = vstate->frame[vstate->curframe]; | 
|  | struct bpf_reg_state *regs = state->regs, *reg; | 
|  | u32 ref_obj_id = regs[regno].ref_obj_id; | 
|  | u32 id = regs[regno].id; | 
|  |  | 
|  | if (ref_obj_id && ref_obj_id == id && is_null) | 
|  | /* regs[regno] is in the " == NULL" branch. | 
|  | * No one could have freed the reference state before | 
|  | * doing the NULL check. | 
|  | */ | 
|  | WARN_ON_ONCE(release_reference_state(state, id)); | 
|  |  | 
|  | bpf_for_each_reg_in_vstate(vstate, state, reg, ({ | 
|  | mark_ptr_or_null_reg(state, reg, id, is_null); | 
|  | })); | 
|  | } | 
|  |  | 
|  | static bool try_match_pkt_pointers(const struct bpf_insn *insn, | 
|  | struct bpf_reg_state *dst_reg, | 
|  | struct bpf_reg_state *src_reg, | 
|  | struct bpf_verifier_state *this_branch, | 
|  | struct bpf_verifier_state *other_branch) | 
|  | { | 
|  | if (BPF_SRC(insn->code) != BPF_X) | 
|  | return false; | 
|  |  | 
|  | /* Pointers are always 64-bit. */ | 
|  | if (BPF_CLASS(insn->code) == BPF_JMP32) | 
|  | return false; | 
|  |  | 
|  | switch (BPF_OP(insn->code)) { | 
|  | case BPF_JGT: | 
|  | if ((dst_reg->type == PTR_TO_PACKET && | 
|  | src_reg->type == PTR_TO_PACKET_END) || | 
|  | (dst_reg->type == PTR_TO_PACKET_META && | 
|  | reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { | 
|  | /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ | 
|  | find_good_pkt_pointers(this_branch, dst_reg, | 
|  | dst_reg->type, false); | 
|  | mark_pkt_end(other_branch, insn->dst_reg, true); | 
|  | } else if ((dst_reg->type == PTR_TO_PACKET_END && | 
|  | src_reg->type == PTR_TO_PACKET) || | 
|  | (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && | 
|  | src_reg->type == PTR_TO_PACKET_META)) { | 
|  | /* pkt_end > pkt_data', pkt_data > pkt_meta' */ | 
|  | find_good_pkt_pointers(other_branch, src_reg, | 
|  | src_reg->type, true); | 
|  | mark_pkt_end(this_branch, insn->src_reg, false); | 
|  | } else { | 
|  | return false; | 
|  | } | 
|  | break; | 
|  | case BPF_JLT: | 
|  | if ((dst_reg->type == PTR_TO_PACKET && | 
|  | src_reg->type == PTR_TO_PACKET_END) || | 
|  | (dst_reg->type == PTR_TO_PACKET_META && | 
|  | reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { | 
|  | /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ | 
|  | find_good_pkt_pointers(other_branch, dst_reg, | 
|  | dst_reg->type, true); | 
|  | mark_pkt_end(this_branch, insn->dst_reg, false); | 
|  | } else if ((dst_reg->type == PTR_TO_PACKET_END && | 
|  | src_reg->type == PTR_TO_PACKET) || | 
|  | (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && | 
|  | src_reg->type == PTR_TO_PACKET_META)) { | 
|  | /* pkt_end < pkt_data', pkt_data > pkt_meta' */ | 
|  | find_good_pkt_pointers(this_branch, src_reg, | 
|  | src_reg->type, false); | 
|  | mark_pkt_end(other_branch, insn->src_reg, true); | 
|  | } else { | 
|  | return false; | 
|  | } | 
|  | break; | 
|  | case BPF_JGE: | 
|  | if ((dst_reg->type == PTR_TO_PACKET && | 
|  | src_reg->type == PTR_TO_PACKET_END) || | 
|  | (dst_reg->type == PTR_TO_PACKET_META && | 
|  | reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { | 
|  | /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ | 
|  | find_good_pkt_pointers(this_branch, dst_reg, | 
|  | dst_reg->type, true); | 
|  | mark_pkt_end(other_branch, insn->dst_reg, false); | 
|  | } else if ((dst_reg->type == PTR_TO_PACKET_END && | 
|  | src_reg->type == PTR_TO_PACKET) || | 
|  | (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && | 
|  | src_reg->type == PTR_TO_PACKET_META)) { | 
|  | /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ | 
|  | find_good_pkt_pointers(other_branch, src_reg, | 
|  | src_reg->type, false); | 
|  | mark_pkt_end(this_branch, insn->src_reg, true); | 
|  | } else { | 
|  | return false; | 
|  | } | 
|  | break; | 
|  | case BPF_JLE: | 
|  | if ((dst_reg->type == PTR_TO_PACKET && | 
|  | src_reg->type == PTR_TO_PACKET_END) || | 
|  | (dst_reg->type == PTR_TO_PACKET_META && | 
|  | reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { | 
|  | /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ | 
|  | find_good_pkt_pointers(other_branch, dst_reg, | 
|  | dst_reg->type, false); | 
|  | mark_pkt_end(this_branch, insn->dst_reg, true); | 
|  | } else if ((dst_reg->type == PTR_TO_PACKET_END && | 
|  | src_reg->type == PTR_TO_PACKET) || | 
|  | (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && | 
|  | src_reg->type == PTR_TO_PACKET_META)) { | 
|  | /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ | 
|  | find_good_pkt_pointers(this_branch, src_reg, | 
|  | src_reg->type, true); | 
|  | mark_pkt_end(other_branch, insn->src_reg, false); | 
|  | } else { | 
|  | return false; | 
|  | } | 
|  | break; | 
|  | default: | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void __collect_linked_regs(struct linked_regs *reg_set, struct bpf_reg_state *reg, | 
|  | u32 id, u32 frameno, u32 spi_or_reg, bool is_reg) | 
|  | { | 
|  | struct linked_reg *e; | 
|  |  | 
|  | if (reg->type != SCALAR_VALUE || (reg->id & ~BPF_ADD_CONST) != id) | 
|  | return; | 
|  |  | 
|  | e = linked_regs_push(reg_set); | 
|  | if (e) { | 
|  | e->frameno = frameno; | 
|  | e->is_reg = is_reg; | 
|  | e->regno = spi_or_reg; | 
|  | } else { | 
|  | reg->id = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* For all R being scalar registers or spilled scalar registers | 
|  | * in verifier state, save R in linked_regs if R->id == id. | 
|  | * If there are too many Rs sharing same id, reset id for leftover Rs. | 
|  | */ | 
|  | static void collect_linked_regs(struct bpf_verifier_state *vstate, u32 id, | 
|  | struct linked_regs *linked_regs) | 
|  | { | 
|  | struct bpf_func_state *func; | 
|  | struct bpf_reg_state *reg; | 
|  | int i, j; | 
|  |  | 
|  | id = id & ~BPF_ADD_CONST; | 
|  | for (i = vstate->curframe; i >= 0; i--) { | 
|  | func = vstate->frame[i]; | 
|  | for (j = 0; j < BPF_REG_FP; j++) { | 
|  | reg = &func->regs[j]; | 
|  | __collect_linked_regs(linked_regs, reg, id, i, j, true); | 
|  | } | 
|  | for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { | 
|  | if (!is_spilled_reg(&func->stack[j])) | 
|  | continue; | 
|  | reg = &func->stack[j].spilled_ptr; | 
|  | __collect_linked_regs(linked_regs, reg, id, i, j, false); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* For all R in linked_regs, copy known_reg range into R | 
|  | * if R->id == known_reg->id. | 
|  | */ | 
|  | static void sync_linked_regs(struct bpf_verifier_state *vstate, struct bpf_reg_state *known_reg, | 
|  | struct linked_regs *linked_regs) | 
|  | { | 
|  | struct bpf_reg_state fake_reg; | 
|  | struct bpf_reg_state *reg; | 
|  | struct linked_reg *e; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < linked_regs->cnt; ++i) { | 
|  | e = &linked_regs->entries[i]; | 
|  | reg = e->is_reg ? &vstate->frame[e->frameno]->regs[e->regno] | 
|  | : &vstate->frame[e->frameno]->stack[e->spi].spilled_ptr; | 
|  | if (reg->type != SCALAR_VALUE || reg == known_reg) | 
|  | continue; | 
|  | if ((reg->id & ~BPF_ADD_CONST) != (known_reg->id & ~BPF_ADD_CONST)) | 
|  | continue; | 
|  | if ((!(reg->id & BPF_ADD_CONST) && !(known_reg->id & BPF_ADD_CONST)) || | 
|  | reg->off == known_reg->off) { | 
|  | copy_register_state(reg, known_reg); | 
|  | } else { | 
|  | s32 saved_off = reg->off; | 
|  |  | 
|  | fake_reg.type = SCALAR_VALUE; | 
|  | __mark_reg_known(&fake_reg, (s32)reg->off - (s32)known_reg->off); | 
|  |  | 
|  | /* reg = known_reg; reg += delta */ | 
|  | copy_register_state(reg, known_reg); | 
|  | /* | 
|  | * Must preserve off, id and add_const flag, | 
|  | * otherwise another sync_linked_regs() will be incorrect. | 
|  | */ | 
|  | reg->off = saved_off; | 
|  |  | 
|  | scalar32_min_max_add(reg, &fake_reg); | 
|  | scalar_min_max_add(reg, &fake_reg); | 
|  | reg->var_off = tnum_add(reg->var_off, fake_reg.var_off); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static int check_cond_jmp_op(struct bpf_verifier_env *env, | 
|  | struct bpf_insn *insn, int *insn_idx) | 
|  | { | 
|  | struct bpf_verifier_state *this_branch = env->cur_state; | 
|  | struct bpf_verifier_state *other_branch; | 
|  | struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; | 
|  | struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL; | 
|  | struct bpf_reg_state *eq_branch_regs; | 
|  | struct linked_regs linked_regs = {}; | 
|  | u8 opcode = BPF_OP(insn->code); | 
|  | bool is_jmp32; | 
|  | int pred = -1; | 
|  | int err; | 
|  |  | 
|  | /* Only conditional jumps are expected to reach here. */ | 
|  | if (opcode == BPF_JA || opcode > BPF_JCOND) { | 
|  | verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (opcode == BPF_JCOND) { | 
|  | struct bpf_verifier_state *cur_st = env->cur_state, *queued_st, *prev_st; | 
|  | int idx = *insn_idx; | 
|  |  | 
|  | if (insn->code != (BPF_JMP | BPF_JCOND) || | 
|  | insn->src_reg != BPF_MAY_GOTO || | 
|  | insn->dst_reg || insn->imm || insn->off == 0) { | 
|  | verbose(env, "invalid may_goto off %d imm %d\n", | 
|  | insn->off, insn->imm); | 
|  | return -EINVAL; | 
|  | } | 
|  | prev_st = find_prev_entry(env, cur_st->parent, idx); | 
|  |  | 
|  | /* branch out 'fallthrough' insn as a new state to explore */ | 
|  | queued_st = push_stack(env, idx + 1, idx, false); | 
|  | if (!queued_st) | 
|  | return -ENOMEM; | 
|  |  | 
|  | queued_st->may_goto_depth++; | 
|  | if (prev_st) | 
|  | widen_imprecise_scalars(env, prev_st, queued_st); | 
|  | *insn_idx += insn->off; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* check src2 operand */ | 
|  | err = check_reg_arg(env, insn->dst_reg, SRC_OP); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | dst_reg = ®s[insn->dst_reg]; | 
|  | if (BPF_SRC(insn->code) == BPF_X) { | 
|  | if (insn->imm != 0) { | 
|  | verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* check src1 operand */ | 
|  | err = check_reg_arg(env, insn->src_reg, SRC_OP); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | src_reg = ®s[insn->src_reg]; | 
|  | if (!(reg_is_pkt_pointer_any(dst_reg) && reg_is_pkt_pointer_any(src_reg)) && | 
|  | is_pointer_value(env, insn->src_reg)) { | 
|  | verbose(env, "R%d pointer comparison prohibited\n", | 
|  | insn->src_reg); | 
|  | return -EACCES; | 
|  | } | 
|  | } else { | 
|  | if (insn->src_reg != BPF_REG_0) { | 
|  | verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | src_reg = &env->fake_reg[0]; | 
|  | memset(src_reg, 0, sizeof(*src_reg)); | 
|  | src_reg->type = SCALAR_VALUE; | 
|  | __mark_reg_known(src_reg, insn->imm); | 
|  | } | 
|  |  | 
|  | is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32; | 
|  | pred = is_branch_taken(dst_reg, src_reg, opcode, is_jmp32); | 
|  | if (pred >= 0) { | 
|  | /* If we get here with a dst_reg pointer type it is because | 
|  | * above is_branch_taken() special cased the 0 comparison. | 
|  | */ | 
|  | if (!__is_pointer_value(false, dst_reg)) | 
|  | err = mark_chain_precision(env, insn->dst_reg); | 
|  | if (BPF_SRC(insn->code) == BPF_X && !err && | 
|  | !__is_pointer_value(false, src_reg)) | 
|  | err = mark_chain_precision(env, insn->src_reg); | 
|  | if (err) | 
|  | return err; | 
|  | } | 
|  |  | 
|  | if (pred == 1) { | 
|  | /* Only follow the goto, ignore fall-through. If needed, push | 
|  | * the fall-through branch for simulation under speculative | 
|  | * execution. | 
|  | */ | 
|  | if (!env->bypass_spec_v1 && | 
|  | !sanitize_speculative_path(env, insn, *insn_idx + 1, | 
|  | *insn_idx)) | 
|  | return -EFAULT; | 
|  | if (env->log.level & BPF_LOG_LEVEL) | 
|  | print_insn_state(env, this_branch->frame[this_branch->curframe]); | 
|  | *insn_idx += insn->off; | 
|  | return 0; | 
|  | } else if (pred == 0) { | 
|  | /* Only follow the fall-through branch, since that's where the | 
|  | * program will go. If needed, push the goto branch for | 
|  | * simulation under speculative execution. | 
|  | */ | 
|  | if (!env->bypass_spec_v1 && | 
|  | !sanitize_speculative_path(env, insn, | 
|  | *insn_idx + insn->off + 1, | 
|  | *insn_idx)) | 
|  | return -EFAULT; | 
|  | if (env->log.level & BPF_LOG_LEVEL) | 
|  | print_insn_state(env, this_branch->frame[this_branch->curframe]); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Push scalar registers sharing same ID to jump history, | 
|  | * do this before creating 'other_branch', so that both | 
|  | * 'this_branch' and 'other_branch' share this history | 
|  | * if parent state is created. | 
|  | */ | 
|  | if (BPF_SRC(insn->code) == BPF_X && src_reg->type == SCALAR_VALUE && src_reg->id) | 
|  | collect_linked_regs(this_branch, src_reg->id, &linked_regs); | 
|  | if (dst_reg->type == SCALAR_VALUE && dst_reg->id) | 
|  | collect_linked_regs(this_branch, dst_reg->id, &linked_regs); | 
|  | if (linked_regs.cnt > 1) { | 
|  | err = push_jmp_history(env, this_branch, 0, linked_regs_pack(&linked_regs)); | 
|  | if (err) | 
|  | return err; | 
|  | } | 
|  |  | 
|  | other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx, | 
|  | false); | 
|  | if (!other_branch) | 
|  | return -EFAULT; | 
|  | other_branch_regs = other_branch->frame[other_branch->curframe]->regs; | 
|  |  | 
|  | if (BPF_SRC(insn->code) == BPF_X) { | 
|  | err = reg_set_min_max(env, | 
|  | &other_branch_regs[insn->dst_reg], | 
|  | &other_branch_regs[insn->src_reg], | 
|  | dst_reg, src_reg, opcode, is_jmp32); | 
|  | } else /* BPF_SRC(insn->code) == BPF_K */ { | 
|  | /* reg_set_min_max() can mangle the fake_reg. Make a copy | 
|  | * so that these are two different memory locations. The | 
|  | * src_reg is not used beyond here in context of K. | 
|  | */ | 
|  | memcpy(&env->fake_reg[1], &env->fake_reg[0], | 
|  | sizeof(env->fake_reg[0])); | 
|  | err = reg_set_min_max(env, | 
|  | &other_branch_regs[insn->dst_reg], | 
|  | &env->fake_reg[0], | 
|  | dst_reg, &env->fake_reg[1], | 
|  | opcode, is_jmp32); | 
|  | } | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | if (BPF_SRC(insn->code) == BPF_X && | 
|  | src_reg->type == SCALAR_VALUE && src_reg->id && | 
|  | !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) { | 
|  | sync_linked_regs(this_branch, src_reg, &linked_regs); | 
|  | sync_linked_regs(other_branch, &other_branch_regs[insn->src_reg], &linked_regs); | 
|  | } | 
|  | if (dst_reg->type == SCALAR_VALUE && dst_reg->id && | 
|  | !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) { | 
|  | sync_linked_regs(this_branch, dst_reg, &linked_regs); | 
|  | sync_linked_regs(other_branch, &other_branch_regs[insn->dst_reg], &linked_regs); | 
|  | } | 
|  |  | 
|  | /* if one pointer register is compared to another pointer | 
|  | * register check if PTR_MAYBE_NULL could be lifted. | 
|  | * E.g. register A - maybe null | 
|  | *      register B - not null | 
|  | * for JNE A, B, ... - A is not null in the false branch; | 
|  | * for JEQ A, B, ... - A is not null in the true branch. | 
|  | * | 
|  | * Since PTR_TO_BTF_ID points to a kernel struct that does | 
|  | * not need to be null checked by the BPF program, i.e., | 
|  | * could be null even without PTR_MAYBE_NULL marking, so | 
|  | * only propagate nullness when neither reg is that type. | 
|  | */ | 
|  | if (!is_jmp32 && BPF_SRC(insn->code) == BPF_X && | 
|  | __is_pointer_value(false, src_reg) && __is_pointer_value(false, dst_reg) && | 
|  | type_may_be_null(src_reg->type) != type_may_be_null(dst_reg->type) && | 
|  | base_type(src_reg->type) != PTR_TO_BTF_ID && | 
|  | base_type(dst_reg->type) != PTR_TO_BTF_ID) { | 
|  | eq_branch_regs = NULL; | 
|  | switch (opcode) { | 
|  | case BPF_JEQ: | 
|  | eq_branch_regs = other_branch_regs; | 
|  | break; | 
|  | case BPF_JNE: | 
|  | eq_branch_regs = regs; | 
|  | break; | 
|  | default: | 
|  | /* do nothing */ | 
|  | break; | 
|  | } | 
|  | if (eq_branch_regs) { | 
|  | if (type_may_be_null(src_reg->type)) | 
|  | mark_ptr_not_null_reg(&eq_branch_regs[insn->src_reg]); | 
|  | else | 
|  | mark_ptr_not_null_reg(&eq_branch_regs[insn->dst_reg]); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* detect if R == 0 where R is returned from bpf_map_lookup_elem(). | 
|  | * NOTE: these optimizations below are related with pointer comparison | 
|  | *       which will never be JMP32. | 
|  | */ | 
|  | if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K && | 
|  | insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && | 
|  | type_may_be_null(dst_reg->type)) { | 
|  | /* Mark all identical registers in each branch as either | 
|  | * safe or unknown depending R == 0 or R != 0 conditional. | 
|  | */ | 
|  | mark_ptr_or_null_regs(this_branch, insn->dst_reg, | 
|  | opcode == BPF_JNE); | 
|  | mark_ptr_or_null_regs(other_branch, insn->dst_reg, | 
|  | opcode == BPF_JEQ); | 
|  | } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], | 
|  | this_branch, other_branch) && | 
|  | is_pointer_value(env, insn->dst_reg)) { | 
|  | verbose(env, "R%d pointer comparison prohibited\n", | 
|  | insn->dst_reg); | 
|  | return -EACCES; | 
|  | } | 
|  | if (env->log.level & BPF_LOG_LEVEL) | 
|  | print_insn_state(env, this_branch->frame[this_branch->curframe]); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* verify BPF_LD_IMM64 instruction */ | 
|  | static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) | 
|  | { | 
|  | struct bpf_insn_aux_data *aux = cur_aux(env); | 
|  | struct bpf_reg_state *regs = cur_regs(env); | 
|  | struct bpf_reg_state *dst_reg; | 
|  | struct bpf_map *map; | 
|  | int err; | 
|  |  | 
|  | if (BPF_SIZE(insn->code) != BPF_DW) { | 
|  | verbose(env, "invalid BPF_LD_IMM insn\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | if (insn->off != 0) { | 
|  | verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | err = check_reg_arg(env, insn->dst_reg, DST_OP); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | dst_reg = ®s[insn->dst_reg]; | 
|  | if (insn->src_reg == 0) { | 
|  | u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; | 
|  |  | 
|  | dst_reg->type = SCALAR_VALUE; | 
|  | __mark_reg_known(®s[insn->dst_reg], imm); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* All special src_reg cases are listed below. From this point onwards | 
|  | * we either succeed and assign a corresponding dst_reg->type after | 
|  | * zeroing the offset, or fail and reject the program. | 
|  | */ | 
|  | mark_reg_known_zero(env, regs, insn->dst_reg); | 
|  |  | 
|  | if (insn->src_reg == BPF_PSEUDO_BTF_ID) { | 
|  | dst_reg->type = aux->btf_var.reg_type; | 
|  | switch (base_type(dst_reg->type)) { | 
|  | case PTR_TO_MEM: | 
|  | dst_reg->mem_size = aux->btf_var.mem_size; | 
|  | break; | 
|  | case PTR_TO_BTF_ID: | 
|  | dst_reg->btf = aux->btf_var.btf; | 
|  | dst_reg->btf_id = aux->btf_var.btf_id; | 
|  | break; | 
|  | default: | 
|  | verbose(env, "bpf verifier is misconfigured\n"); | 
|  | return -EFAULT; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (insn->src_reg == BPF_PSEUDO_FUNC) { | 
|  | struct bpf_prog_aux *aux = env->prog->aux; | 
|  | u32 subprogno = find_subprog(env, | 
|  | env->insn_idx + insn->imm + 1); | 
|  |  | 
|  | if (!aux->func_info) { | 
|  | verbose(env, "missing btf func_info\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) { | 
|  | verbose(env, "callback function not static\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | dst_reg->type = PTR_TO_FUNC; | 
|  | dst_reg->subprogno = subprogno; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | map = env->used_maps[aux->map_index]; | 
|  | dst_reg->map_ptr = map; | 
|  |  | 
|  | if (insn->src_reg == BPF_PSEUDO_MAP_VALUE || | 
|  | insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) { | 
|  | if (map->map_type == BPF_MAP_TYPE_ARENA) { | 
|  | __mark_reg_unknown(env, dst_reg); | 
|  | return 0; | 
|  | } | 
|  | dst_reg->type = PTR_TO_MAP_VALUE; | 
|  | dst_reg->off = aux->map_off; | 
|  | WARN_ON_ONCE(map->max_entries != 1); | 
|  | /* We want reg->id to be same (0) as map_value is not distinct */ | 
|  | } else if (insn->src_reg == BPF_PSEUDO_MAP_FD || | 
|  | insn->src_reg == BPF_PSEUDO_MAP_IDX) { | 
|  | dst_reg->type = CONST_PTR_TO_MAP; | 
|  | } else { | 
|  | verbose(env, "bpf verifier is misconfigured\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static bool may_access_skb(enum bpf_prog_type type) | 
|  | { | 
|  | switch (type) { | 
|  | case BPF_PROG_TYPE_SOCKET_FILTER: | 
|  | case BPF_PROG_TYPE_SCHED_CLS: | 
|  | case BPF_PROG_TYPE_SCHED_ACT: | 
|  | return true; | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* verify safety of LD_ABS|LD_IND instructions: | 
|  | * - they can only appear in the programs where ctx == skb | 
|  | * - since they are wrappers of function calls, they scratch R1-R5 registers, | 
|  | *   preserve R6-R9, and store return value into R0 | 
|  | * | 
|  | * Implicit input: | 
|  | *   ctx == skb == R6 == CTX | 
|  | * | 
|  | * Explicit input: | 
|  | *   SRC == any register | 
|  | *   IMM == 32-bit immediate | 
|  | * | 
|  | * Output: | 
|  | *   R0 - 8/16/32-bit skb data converted to cpu endianness | 
|  | */ | 
|  | static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) | 
|  | { | 
|  | struct bpf_reg_state *regs = cur_regs(env); | 
|  | static const int ctx_reg = BPF_REG_6; | 
|  | u8 mode = BPF_MODE(insn->code); | 
|  | int i, err; | 
|  |  | 
|  | if (!may_access_skb(resolve_prog_type(env->prog))) { | 
|  | verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (!env->ops->gen_ld_abs) { | 
|  | verbose(env, "bpf verifier is misconfigured\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || | 
|  | BPF_SIZE(insn->code) == BPF_DW || | 
|  | (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { | 
|  | verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* check whether implicit source operand (register R6) is readable */ | 
|  | err = check_reg_arg(env, ctx_reg, SRC_OP); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as | 
|  | * gen_ld_abs() may terminate the program at runtime, leading to | 
|  | * reference leak. | 
|  | */ | 
|  | err = check_reference_leak(env, false); | 
|  | if (err) { | 
|  | verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n"); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | if (env->cur_state->active_lock.ptr) { | 
|  | verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (env->cur_state->active_rcu_lock) { | 
|  | verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_rcu_read_lock-ed region\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (env->cur_state->active_preempt_lock) { | 
|  | verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_preempt_disable-ed region\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (regs[ctx_reg].type != PTR_TO_CTX) { | 
|  | verbose(env, | 
|  | "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (mode == BPF_IND) { | 
|  | /* check explicit source operand */ | 
|  | err = check_reg_arg(env, insn->src_reg, SRC_OP); | 
|  | if (err) | 
|  | return err; | 
|  | } | 
|  |  | 
|  | err = check_ptr_off_reg(env, ®s[ctx_reg], ctx_reg); | 
|  | if (err < 0) | 
|  | return err; | 
|  |  | 
|  | /* reset caller saved regs to unreadable */ | 
|  | for (i = 0; i < CALLER_SAVED_REGS; i++) { | 
|  | mark_reg_not_init(env, regs, caller_saved[i]); | 
|  | check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); | 
|  | } | 
|  |  | 
|  | /* mark destination R0 register as readable, since it contains | 
|  | * the value fetched from the packet. | 
|  | * Already marked as written above. | 
|  | */ | 
|  | mark_reg_unknown(env, regs, BPF_REG_0); | 
|  | /* ld_abs load up to 32-bit skb data. */ | 
|  | regs[BPF_REG_0].subreg_def = env->insn_idx + 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int check_return_code(struct bpf_verifier_env *env, int regno, const char *reg_name) | 
|  | { | 
|  | const char *exit_ctx = "At program exit"; | 
|  | struct tnum enforce_attach_type_range = tnum_unknown; | 
|  | const struct bpf_prog *prog = env->prog; | 
|  | struct bpf_reg_state *reg; | 
|  | struct bpf_retval_range range = retval_range(0, 1); | 
|  | enum bpf_prog_type prog_type = resolve_prog_type(env->prog); | 
|  | int err; | 
|  | struct bpf_func_state *frame = env->cur_state->frame[0]; | 
|  | const bool is_subprog = frame->subprogno; | 
|  | bool return_32bit = false; | 
|  |  | 
|  | /* LSM and struct_ops func-ptr's return type could be "void" */ | 
|  | if (!is_subprog || frame->in_exception_callback_fn) { | 
|  | switch (prog_type) { | 
|  | case BPF_PROG_TYPE_LSM: | 
|  | if (prog->expected_attach_type == BPF_LSM_CGROUP) | 
|  | /* See below, can be 0 or 0-1 depending on hook. */ | 
|  | break; | 
|  | fallthrough; | 
|  | case BPF_PROG_TYPE_STRUCT_OPS: | 
|  | if (!prog->aux->attach_func_proto->type) | 
|  | return 0; | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* eBPF calling convention is such that R0 is used | 
|  | * to return the value from eBPF program. | 
|  | * Make sure that it's readable at this time | 
|  | * of bpf_exit, which means that program wrote | 
|  | * something into it earlier | 
|  | */ | 
|  | err = check_reg_arg(env, regno, SRC_OP); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | if (is_pointer_value(env, regno)) { | 
|  | verbose(env, "R%d leaks addr as return value\n", regno); | 
|  | return -EACCES; | 
|  | } | 
|  |  | 
|  | reg = cur_regs(env) + regno; | 
|  |  | 
|  | if (frame->in_async_callback_fn) { | 
|  | /* enforce return zero from async callbacks like timer */ | 
|  | exit_ctx = "At async callback return"; | 
|  | range = retval_range(0, 0); | 
|  | goto enforce_retval; | 
|  | } | 
|  |  | 
|  | if (is_subprog && !frame->in_exception_callback_fn) { | 
|  | if (reg->type != SCALAR_VALUE) { | 
|  | verbose(env, "At subprogram exit the register R%d is not a scalar value (%s)\n", | 
|  | regno, reg_type_str(env, reg->type)); | 
|  | return -EINVAL; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | switch (prog_type) { | 
|  | case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: | 
|  | if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG || | 
|  | env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG || | 
|  | env->prog->expected_attach_type == BPF_CGROUP_UNIX_RECVMSG || | 
|  | env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME || | 
|  | env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME || | 
|  | env->prog->expected_attach_type == BPF_CGROUP_UNIX_GETPEERNAME || | 
|  | env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME || | 
|  | env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME || | 
|  | env->prog->expected_attach_type == BPF_CGROUP_UNIX_GETSOCKNAME) | 
|  | range = retval_range(1, 1); | 
|  | if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND || | 
|  | env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND) | 
|  | range = retval_range(0, 3); | 
|  | break; | 
|  | case BPF_PROG_TYPE_CGROUP_SKB: | 
|  | if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) { | 
|  | range = retval_range(0, 3); | 
|  | enforce_attach_type_range = tnum_range(2, 3); | 
|  | } | 
|  | break; | 
|  | case BPF_PROG_TYPE_CGROUP_SOCK: | 
|  | case BPF_PROG_TYPE_SOCK_OPS: | 
|  | case BPF_PROG_TYPE_CGROUP_DEVICE: | 
|  | case BPF_PROG_TYPE_CGROUP_SYSCTL: | 
|  | case BPF_PROG_TYPE_CGROUP_SOCKOPT: | 
|  | break; | 
|  | case BPF_PROG_TYPE_RAW_TRACEPOINT: | 
|  | if (!env->prog->aux->attach_btf_id) | 
|  | return 0; | 
|  | range = retval_range(0, 0); | 
|  | break; | 
|  | case BPF_PROG_TYPE_TRACING: | 
|  | switch (env->prog->expected_attach_type) { | 
|  | case BPF_TRACE_FENTRY: | 
|  | case BPF_TRACE_FEXIT: | 
|  | range = retval_range(0, 0); | 
|  | break; | 
|  | case BPF_TRACE_RAW_TP: | 
|  | case BPF_MODIFY_RETURN: | 
|  | return 0; | 
|  | case BPF_TRACE_ITER: | 
|  | break; | 
|  | default: | 
|  | return -ENOTSUPP; | 
|  | } | 
|  | break; | 
|  | case BPF_PROG_TYPE_SK_LOOKUP: | 
|  | range = retval_range(SK_DROP, SK_PASS); | 
|  | break; | 
|  |  | 
|  | case BPF_PROG_TYPE_LSM: | 
|  | if (env->prog->expected_attach_type != BPF_LSM_CGROUP) { | 
|  | /* no range found, any return value is allowed */ | 
|  | if (!get_func_retval_range(env->prog, &range)) | 
|  | return 0; | 
|  | /* no restricted range, any return value is allowed */ | 
|  | if (range.minval == S32_MIN && range.maxval == S32_MAX) | 
|  | return 0; | 
|  | return_32bit = true; | 
|  | } else if (!env->prog->aux->attach_func_proto->type) { | 
|  | /* Make sure programs that attach to void | 
|  | * hooks don't try to modify return value. | 
|  | */ | 
|  | range = retval_range(1, 1); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case BPF_PROG_TYPE_NETFILTER: | 
|  | range = retval_range(NF_DROP, NF_ACCEPT); | 
|  | break; | 
|  | case BPF_PROG_TYPE_EXT: | 
|  | /* freplace program can return anything as its return value | 
|  | * depends on the to-be-replaced kernel func or bpf program. | 
|  | */ | 
|  | default: | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | enforce_retval: | 
|  | if (reg->type != SCALAR_VALUE) { | 
|  | verbose(env, "%s the register R%d is not a known value (%s)\n", | 
|  | exit_ctx, regno, reg_type_str(env, reg->type)); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | err = mark_chain_precision(env, regno); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | if (!retval_range_within(range, reg, return_32bit)) { | 
|  | verbose_invalid_scalar(env, reg, range, exit_ctx, reg_name); | 
|  | if (!is_subprog && | 
|  | prog->expected_attach_type == BPF_LSM_CGROUP && | 
|  | prog_type == BPF_PROG_TYPE_LSM && | 
|  | !prog->aux->attach_func_proto->type) | 
|  | verbose(env, "Note, BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (!tnum_is_unknown(enforce_attach_type_range) && | 
|  | tnum_in(enforce_attach_type_range, reg->var_off)) | 
|  | env->prog->enforce_expected_attach_type = 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* non-recursive DFS pseudo code | 
|  | * 1  procedure DFS-iterative(G,v): | 
|  | * 2      label v as discovered | 
|  | * 3      let S be a stack | 
|  | * 4      S.push(v) | 
|  | * 5      while S is not empty | 
|  | * 6            t <- S.peek() | 
|  | * 7            if t is what we're looking for: | 
|  | * 8                return t | 
|  | * 9            for all edges e in G.adjacentEdges(t) do | 
|  | * 10               if edge e is already labelled | 
|  | * 11                   continue with the next edge | 
|  | * 12               w <- G.adjacentVertex(t,e) | 
|  | * 13               if vertex w is not discovered and not explored | 
|  | * 14                   label e as tree-edge | 
|  | * 15                   label w as discovered | 
|  | * 16                   S.push(w) | 
|  | * 17                   continue at 5 | 
|  | * 18               else if vertex w is discovered | 
|  | * 19                   label e as back-edge | 
|  | * 20               else | 
|  | * 21                   // vertex w is explored | 
|  | * 22                   label e as forward- or cross-edge | 
|  | * 23           label t as explored | 
|  | * 24           S.pop() | 
|  | * | 
|  | * convention: | 
|  | * 0x10 - discovered | 
|  | * 0x11 - discovered and fall-through edge labelled | 
|  | * 0x12 - discovered and fall-through and branch edges labelled | 
|  | * 0x20 - explored | 
|  | */ | 
|  |  | 
|  | enum { | 
|  | DISCOVERED = 0x10, | 
|  | EXPLORED = 0x20, | 
|  | FALLTHROUGH = 1, | 
|  | BRANCH = 2, | 
|  | }; | 
|  |  | 
|  | static void mark_prune_point(struct bpf_verifier_env *env, int idx) | 
|  | { | 
|  | env->insn_aux_data[idx].prune_point = true; | 
|  | } | 
|  |  | 
|  | static bool is_prune_point(struct bpf_verifier_env *env, int insn_idx) | 
|  | { | 
|  | return env->insn_aux_data[insn_idx].prune_point; | 
|  | } | 
|  |  | 
|  | static void mark_force_checkpoint(struct bpf_verifier_env *env, int idx) | 
|  | { | 
|  | env->insn_aux_data[idx].force_checkpoint = true; | 
|  | } | 
|  |  | 
|  | static bool is_force_checkpoint(struct bpf_verifier_env *env, int insn_idx) | 
|  | { | 
|  | return env->insn_aux_data[insn_idx].force_checkpoint; | 
|  | } | 
|  |  | 
|  | static void mark_calls_callback(struct bpf_verifier_env *env, int idx) | 
|  | { | 
|  | env->insn_aux_data[idx].calls_callback = true; | 
|  | } | 
|  |  | 
|  | static bool calls_callback(struct bpf_verifier_env *env, int insn_idx) | 
|  | { | 
|  | return env->insn_aux_data[insn_idx].calls_callback; | 
|  | } | 
|  |  | 
|  | enum { | 
|  | DONE_EXPLORING = 0, | 
|  | KEEP_EXPLORING = 1, | 
|  | }; | 
|  |  | 
|  | /* t, w, e - match pseudo-code above: | 
|  | * t - index of current instruction | 
|  | * w - next instruction | 
|  | * e - edge | 
|  | */ | 
|  | static int push_insn(int t, int w, int e, struct bpf_verifier_env *env) | 
|  | { | 
|  | int *insn_stack = env->cfg.insn_stack; | 
|  | int *insn_state = env->cfg.insn_state; | 
|  |  | 
|  | if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) | 
|  | return DONE_EXPLORING; | 
|  |  | 
|  | if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) | 
|  | return DONE_EXPLORING; | 
|  |  | 
|  | if (w < 0 || w >= env->prog->len) { | 
|  | verbose_linfo(env, t, "%d: ", t); | 
|  | verbose(env, "jump out of range from insn %d to %d\n", t, w); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (e == BRANCH) { | 
|  | /* mark branch target for state pruning */ | 
|  | mark_prune_point(env, w); | 
|  | mark_jmp_point(env, w); | 
|  | } | 
|  |  | 
|  | if (insn_state[w] == 0) { | 
|  | /* tree-edge */ | 
|  | insn_state[t] = DISCOVERED | e; | 
|  | insn_state[w] = DISCOVERED; | 
|  | if (env->cfg.cur_stack >= env->prog->len) | 
|  | return -E2BIG; | 
|  | insn_stack[env->cfg.cur_stack++] = w; | 
|  | return KEEP_EXPLORING; | 
|  | } else if ((insn_state[w] & 0xF0) == DISCOVERED) { | 
|  | if (env->bpf_capable) | 
|  | return DONE_EXPLORING; | 
|  | verbose_linfo(env, t, "%d: ", t); | 
|  | verbose_linfo(env, w, "%d: ", w); | 
|  | verbose(env, "back-edge from insn %d to %d\n", t, w); | 
|  | return -EINVAL; | 
|  | } else if (insn_state[w] == EXPLORED) { | 
|  | /* forward- or cross-edge */ | 
|  | insn_state[t] = DISCOVERED | e; | 
|  | } else { | 
|  | verbose(env, "insn state internal bug\n"); | 
|  | return -EFAULT; | 
|  | } | 
|  | return DONE_EXPLORING; | 
|  | } | 
|  |  | 
|  | static int visit_func_call_insn(int t, struct bpf_insn *insns, | 
|  | struct bpf_verifier_env *env, | 
|  | bool visit_callee) | 
|  | { | 
|  | int ret, insn_sz; | 
|  |  | 
|  | insn_sz = bpf_is_ldimm64(&insns[t]) ? 2 : 1; | 
|  | ret = push_insn(t, t + insn_sz, FALLTHROUGH, env); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | mark_prune_point(env, t + insn_sz); | 
|  | /* when we exit from subprog, we need to record non-linear history */ | 
|  | mark_jmp_point(env, t + insn_sz); | 
|  |  | 
|  | if (visit_callee) { | 
|  | mark_prune_point(env, t); | 
|  | ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Bitmask with 1s for all caller saved registers */ | 
|  | #define ALL_CALLER_SAVED_REGS ((1u << CALLER_SAVED_REGS) - 1) | 
|  |  | 
|  | /* Return a bitmask specifying which caller saved registers are | 
|  | * clobbered by a call to a helper *as if* this helper follows | 
|  | * bpf_fastcall contract: | 
|  | * - includes R0 if function is non-void; | 
|  | * - includes R1-R5 if corresponding parameter has is described | 
|  | *   in the function prototype. | 
|  | */ | 
|  | static u32 helper_fastcall_clobber_mask(const struct bpf_func_proto *fn) | 
|  | { | 
|  | u32 mask; | 
|  | int i; | 
|  |  | 
|  | mask = 0; | 
|  | if (fn->ret_type != RET_VOID) | 
|  | mask |= BIT(BPF_REG_0); | 
|  | for (i = 0; i < ARRAY_SIZE(fn->arg_type); ++i) | 
|  | if (fn->arg_type[i] != ARG_DONTCARE) | 
|  | mask |= BIT(BPF_REG_1 + i); | 
|  | return mask; | 
|  | } | 
|  |  | 
|  | /* True if do_misc_fixups() replaces calls to helper number 'imm', | 
|  | * replacement patch is presumed to follow bpf_fastcall contract | 
|  | * (see mark_fastcall_pattern_for_call() below). | 
|  | */ | 
|  | static bool verifier_inlines_helper_call(struct bpf_verifier_env *env, s32 imm) | 
|  | { | 
|  | switch (imm) { | 
|  | #ifdef CONFIG_X86_64 | 
|  | case BPF_FUNC_get_smp_processor_id: | 
|  | return env->prog->jit_requested && bpf_jit_supports_percpu_insn(); | 
|  | #endif | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Same as helper_fastcall_clobber_mask() but for kfuncs, see comment above */ | 
|  | static u32 kfunc_fastcall_clobber_mask(struct bpf_kfunc_call_arg_meta *meta) | 
|  | { | 
|  | u32 vlen, i, mask; | 
|  |  | 
|  | vlen = btf_type_vlen(meta->func_proto); | 
|  | mask = 0; | 
|  | if (!btf_type_is_void(btf_type_by_id(meta->btf, meta->func_proto->type))) | 
|  | mask |= BIT(BPF_REG_0); | 
|  | for (i = 0; i < vlen; ++i) | 
|  | mask |= BIT(BPF_REG_1 + i); | 
|  | return mask; | 
|  | } | 
|  |  | 
|  | /* Same as verifier_inlines_helper_call() but for kfuncs, see comment above */ | 
|  | static bool is_fastcall_kfunc_call(struct bpf_kfunc_call_arg_meta *meta) | 
|  | { | 
|  | if (meta->btf == btf_vmlinux) | 
|  | return meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx] || | 
|  | meta->func_id == special_kfunc_list[KF_bpf_rdonly_cast]; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* LLVM define a bpf_fastcall function attribute. | 
|  | * This attribute means that function scratches only some of | 
|  | * the caller saved registers defined by ABI. | 
|  | * For BPF the set of such registers could be defined as follows: | 
|  | * - R0 is scratched only if function is non-void; | 
|  | * - R1-R5 are scratched only if corresponding parameter type is defined | 
|  | *   in the function prototype. | 
|  | * | 
|  | * The contract between kernel and clang allows to simultaneously use | 
|  | * such functions and maintain backwards compatibility with old | 
|  | * kernels that don't understand bpf_fastcall calls: | 
|  | * | 
|  | * - for bpf_fastcall calls clang allocates registers as-if relevant r0-r5 | 
|  | *   registers are not scratched by the call; | 
|  | * | 
|  | * - as a post-processing step, clang visits each bpf_fastcall call and adds | 
|  | *   spill/fill for every live r0-r5; | 
|  | * | 
|  | * - stack offsets used for the spill/fill are allocated as lowest | 
|  | *   stack offsets in whole function and are not used for any other | 
|  | *   purposes; | 
|  | * | 
|  | * - when kernel loads a program, it looks for such patterns | 
|  | *   (bpf_fastcall function surrounded by spills/fills) and checks if | 
|  | *   spill/fill stack offsets are used exclusively in fastcall patterns; | 
|  | * | 
|  | * - if so, and if verifier or current JIT inlines the call to the | 
|  | *   bpf_fastcall function (e.g. a helper call), kernel removes unnecessary | 
|  | *   spill/fill pairs; | 
|  | * | 
|  | * - when old kernel loads a program, presence of spill/fill pairs | 
|  | *   keeps BPF program valid, albeit slightly less efficient. | 
|  | * | 
|  | * For example: | 
|  | * | 
|  | *   r1 = 1; | 
|  | *   r2 = 2; | 
|  | *   *(u64 *)(r10 - 8)  = r1;            r1 = 1; | 
|  | *   *(u64 *)(r10 - 16) = r2;            r2 = 2; | 
|  | *   call %[to_be_inlined]         -->   call %[to_be_inlined] | 
|  | *   r2 = *(u64 *)(r10 - 16);            r0 = r1; | 
|  | *   r1 = *(u64 *)(r10 - 8);             r0 += r2; | 
|  | *   r0 = r1;                            exit; | 
|  | *   r0 += r2; | 
|  | *   exit; | 
|  | * | 
|  | * The purpose of mark_fastcall_pattern_for_call is to: | 
|  | * - look for such patterns; | 
|  | * - mark spill and fill instructions in env->insn_aux_data[*].fastcall_pattern; | 
|  | * - mark set env->insn_aux_data[*].fastcall_spills_num for call instruction; | 
|  | * - update env->subprog_info[*]->fastcall_stack_off to find an offset | 
|  | *   at which bpf_fastcall spill/fill stack slots start; | 
|  | * - update env->subprog_info[*]->keep_fastcall_stack. | 
|  | * | 
|  | * The .fastcall_pattern and .fastcall_stack_off are used by | 
|  | * check_fastcall_stack_contract() to check if every stack access to | 
|  | * fastcall spill/fill stack slot originates from spill/fill | 
|  | * instructions, members of fastcall patterns. | 
|  | * | 
|  | * If such condition holds true for a subprogram, fastcall patterns could | 
|  | * be rewritten by remove_fastcall_spills_fills(). | 
|  | * Otherwise bpf_fastcall patterns are not changed in the subprogram | 
|  | * (code, presumably, generated by an older clang version). | 
|  | * | 
|  | * For example, it is *not* safe to remove spill/fill below: | 
|  | * | 
|  | *   r1 = 1; | 
|  | *   *(u64 *)(r10 - 8)  = r1;            r1 = 1; | 
|  | *   call %[to_be_inlined]         -->   call %[to_be_inlined] | 
|  | *   r1 = *(u64 *)(r10 - 8);             r0 = *(u64 *)(r10 - 8);  <---- wrong !!! | 
|  | *   r0 = *(u64 *)(r10 - 8);             r0 += r1; | 
|  | *   r0 += r1;                           exit; | 
|  | *   exit; | 
|  | */ | 
|  | static void mark_fastcall_pattern_for_call(struct bpf_verifier_env *env, | 
|  | struct bpf_subprog_info *subprog, | 
|  | int insn_idx, s16 lowest_off) | 
|  | { | 
|  | struct bpf_insn *insns = env->prog->insnsi, *stx, *ldx; | 
|  | struct bpf_insn *call = &env->prog->insnsi[insn_idx]; | 
|  | const struct bpf_func_proto *fn; | 
|  | u32 clobbered_regs_mask = ALL_CALLER_SAVED_REGS; | 
|  | u32 expected_regs_mask; | 
|  | bool can_be_inlined = false; | 
|  | s16 off; | 
|  | int i; | 
|  |  | 
|  | if (bpf_helper_call(call)) { | 
|  | if (get_helper_proto(env, call->imm, &fn) < 0) | 
|  | /* error would be reported later */ | 
|  | return; | 
|  | clobbered_regs_mask = helper_fastcall_clobber_mask(fn); | 
|  | can_be_inlined = fn->allow_fastcall && | 
|  | (verifier_inlines_helper_call(env, call->imm) || | 
|  | bpf_jit_inlines_helper_call(call->imm)); | 
|  | } | 
|  |  | 
|  | if (bpf_pseudo_kfunc_call(call)) { | 
|  | struct bpf_kfunc_call_arg_meta meta; | 
|  | int err; | 
|  |  | 
|  | err = fetch_kfunc_meta(env, call, &meta, NULL); | 
|  | if (err < 0) | 
|  | /* error would be reported later */ | 
|  | return; | 
|  |  | 
|  | clobbered_regs_mask = kfunc_fastcall_clobber_mask(&meta); | 
|  | can_be_inlined = is_fastcall_kfunc_call(&meta); | 
|  | } | 
|  |  | 
|  | if (clobbered_regs_mask == ALL_CALLER_SAVED_REGS) | 
|  | return; | 
|  |  | 
|  | /* e.g. if helper call clobbers r{0,1}, expect r{2,3,4,5} in the pattern */ | 
|  | expected_regs_mask = ~clobbered_regs_mask & ALL_CALLER_SAVED_REGS; | 
|  |  | 
|  | /* match pairs of form: | 
|  | * | 
|  | * *(u64 *)(r10 - Y) = rX   (where Y % 8 == 0) | 
|  | * ... | 
|  | * call %[to_be_inlined] | 
|  | * ... | 
|  | * rX = *(u64 *)(r10 - Y) | 
|  | */ | 
|  | for (i = 1, off = lowest_off; i <= ARRAY_SIZE(caller_saved); ++i, off += BPF_REG_SIZE) { | 
|  | if (insn_idx - i < 0 || insn_idx + i >= env->prog->len) | 
|  | break; | 
|  | stx = &insns[insn_idx - i]; | 
|  | ldx = &insns[insn_idx + i]; | 
|  | /* must be a stack spill/fill pair */ | 
|  | if (stx->code != (BPF_STX | BPF_MEM | BPF_DW) || | 
|  | ldx->code != (BPF_LDX | BPF_MEM | BPF_DW) || | 
|  | stx->dst_reg != BPF_REG_10 || | 
|  | ldx->src_reg != BPF_REG_10) | 
|  | break; | 
|  | /* must be a spill/fill for the same reg */ | 
|  | if (stx->src_reg != ldx->dst_reg) | 
|  | break; | 
|  | /* must be one of the previously unseen registers */ | 
|  | if ((BIT(stx->src_reg) & expected_regs_mask) == 0) | 
|  | break; | 
|  | /* must be a spill/fill for the same expected offset, | 
|  | * no need to check offset alignment, BPF_DW stack access | 
|  | * is always 8-byte aligned. | 
|  | */ | 
|  | if (stx->off != off || ldx->off != off) | 
|  | break; | 
|  | expected_regs_mask &= ~BIT(stx->src_reg); | 
|  | env->insn_aux_data[insn_idx - i].fastcall_pattern = 1; | 
|  | env->insn_aux_data[insn_idx + i].fastcall_pattern = 1; | 
|  | } | 
|  | if (i == 1) | 
|  | return; | 
|  |  | 
|  | /* Conditionally set 'fastcall_spills_num' to allow forward | 
|  | * compatibility when more helper functions are marked as | 
|  | * bpf_fastcall at compile time than current kernel supports, e.g: | 
|  | * | 
|  | *   1: *(u64 *)(r10 - 8) = r1 | 
|  | *   2: call A                  ;; assume A is bpf_fastcall for current kernel | 
|  | *   3: r1 = *(u64 *)(r10 - 8) | 
|  | *   4: *(u64 *)(r10 - 8) = r1 | 
|  | *   5: call B                  ;; assume B is not bpf_fastcall for current kernel | 
|  | *   6: r1 = *(u64 *)(r10 - 8) | 
|  | * | 
|  | * There is no need to block bpf_fastcall rewrite for such program. | 
|  | * Set 'fastcall_pattern' for both calls to keep check_fastcall_stack_contract() happy, | 
|  | * don't set 'fastcall_spills_num' for call B so that remove_fastcall_spills_fills() | 
|  | * does not remove spill/fill pair {4,6}. | 
|  | */ | 
|  | if (can_be_inlined) | 
|  | env->insn_aux_data[insn_idx].fastcall_spills_num = i - 1; | 
|  | else | 
|  | subprog->keep_fastcall_stack = 1; | 
|  | subprog->fastcall_stack_off = min(subprog->fastcall_stack_off, off); | 
|  | } | 
|  |  | 
|  | static int mark_fastcall_patterns(struct bpf_verifier_env *env) | 
|  | { | 
|  | struct bpf_subprog_info *subprog = env->subprog_info; | 
|  | struct bpf_insn *insn; | 
|  | s16 lowest_off; | 
|  | int s, i; | 
|  |  | 
|  | for (s = 0; s < env->subprog_cnt; ++s, ++subprog) { | 
|  | /* find lowest stack spill offset used in this subprog */ | 
|  | lowest_off = 0; | 
|  | for (i = subprog->start; i < (subprog + 1)->start; ++i) { | 
|  | insn = env->prog->insnsi + i; | 
|  | if (insn->code != (BPF_STX | BPF_MEM | BPF_DW) || | 
|  | insn->dst_reg != BPF_REG_10) | 
|  | continue; | 
|  | lowest_off = min(lowest_off, insn->off); | 
|  | } | 
|  | /* use this offset to find fastcall patterns */ | 
|  | for (i = subprog->start; i < (subprog + 1)->start; ++i) { | 
|  | insn = env->prog->insnsi + i; | 
|  | if (insn->code != (BPF_JMP | BPF_CALL)) | 
|  | continue; | 
|  | mark_fastcall_pattern_for_call(env, subprog, i, lowest_off); | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Visits the instruction at index t and returns one of the following: | 
|  | *  < 0 - an error occurred | 
|  | *  DONE_EXPLORING - the instruction was fully explored | 
|  | *  KEEP_EXPLORING - there is still work to be done before it is fully explored | 
|  | */ | 
|  | static int visit_insn(int t, struct bpf_verifier_env *env) | 
|  | { | 
|  | struct bpf_insn *insns = env->prog->insnsi, *insn = &insns[t]; | 
|  | int ret, off, insn_sz; | 
|  |  | 
|  | if (bpf_pseudo_func(insn)) | 
|  | return visit_func_call_insn(t, insns, env, true); | 
|  |  | 
|  | /* All non-branch instructions have a single fall-through edge. */ | 
|  | if (BPF_CLASS(insn->code) != BPF_JMP && | 
|  | BPF_CLASS(insn->code) != BPF_JMP32) { | 
|  | insn_sz = bpf_is_ldimm64(insn) ? 2 : 1; | 
|  | return push_insn(t, t + insn_sz, FALLTHROUGH, env); | 
|  | } | 
|  |  | 
|  | switch (BPF_OP(insn->code)) { | 
|  | case BPF_EXIT: | 
|  | return DONE_EXPLORING; | 
|  |  | 
|  | case BPF_CALL: | 
|  | if (is_async_callback_calling_insn(insn)) | 
|  | /* Mark this call insn as a prune point to trigger | 
|  | * is_state_visited() check before call itself is | 
|  | * processed by __check_func_call(). Otherwise new | 
|  | * async state will be pushed for further exploration. | 
|  | */ | 
|  | mark_prune_point(env, t); | 
|  | /* For functions that invoke callbacks it is not known how many times | 
|  | * callback would be called. Verifier models callback calling functions | 
|  | * by repeatedly visiting callback bodies and returning to origin call | 
|  | * instruction. | 
|  | * In order to stop such iteration verifier needs to identify when a | 
|  | * state identical some state from a previous iteration is reached. | 
|  | * Check below forces creation of checkpoint before callback calling | 
|  | * instruction to allow search for such identical states. | 
|  | */ | 
|  | if (is_sync_callback_calling_insn(insn)) { | 
|  | mark_calls_callback(env, t); | 
|  | mark_force_checkpoint(env, t); | 
|  | mark_prune_point(env, t); | 
|  | mark_jmp_point(env, t); | 
|  | } | 
|  | if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { | 
|  | struct bpf_kfunc_call_arg_meta meta; | 
|  |  | 
|  | ret = fetch_kfunc_meta(env, insn, &meta, NULL); | 
|  | if (ret == 0 && is_iter_next_kfunc(&meta)) { | 
|  | mark_prune_point(env, t); | 
|  | /* Checking and saving state checkpoints at iter_next() call | 
|  | * is crucial for fast convergence of open-coded iterator loop | 
|  | * logic, so we need to force it. If we don't do that, | 
|  | * is_state_visited() might skip saving a checkpoint, causing | 
|  | * unnecessarily long sequence of not checkpointed | 
|  | * instructions and jumps, leading to exhaustion of jump | 
|  | * history buffer, and potentially other undesired outcomes. | 
|  | * It is expected that with correct open-coded iterators | 
|  | * convergence will happen quickly, so we don't run a risk of | 
|  | * exhausting memory. | 
|  | */ | 
|  | mark_force_checkpoint(env, t); | 
|  | } | 
|  | } | 
|  | return visit_func_call_insn(t, insns, env, insn->src_reg == BPF_PSEUDO_CALL); | 
|  |  | 
|  | case BPF_JA: | 
|  | if (BPF_SRC(insn->code) != BPF_K) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (BPF_CLASS(insn->code) == BPF_JMP) | 
|  | off = insn->off; | 
|  | else | 
|  | off = insn->imm; | 
|  |  | 
|  | /* unconditional jump with single edge */ | 
|  | ret = push_insn(t, t + off + 1, FALLTHROUGH, env); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | mark_prune_point(env, t + off + 1); | 
|  | mark_jmp_point(env, t + off + 1); | 
|  |  | 
|  | return ret; | 
|  |  | 
|  | default: | 
|  | /* conditional jump with two edges */ | 
|  | mark_prune_point(env, t); | 
|  | if (is_may_goto_insn(insn)) | 
|  | mark_force_checkpoint(env, t); | 
|  |  | 
|  | ret = push_insn(t, t + 1, FALLTHROUGH, env); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | return push_insn(t, t + insn->off + 1, BRANCH, env); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* non-recursive depth-first-search to detect loops in BPF program | 
|  | * loop == back-edge in directed graph | 
|  | */ | 
|  | static int check_cfg(struct bpf_verifier_env *env) | 
|  | { | 
|  | int insn_cnt = env->prog->len; | 
|  | int *insn_stack, *insn_state; | 
|  | int ex_insn_beg, i, ret = 0; | 
|  | bool ex_done = false; | 
|  |  | 
|  | insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); | 
|  | if (!insn_state) | 
|  | return -ENOMEM; | 
|  |  | 
|  | insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); | 
|  | if (!insn_stack) { | 
|  | kvfree(insn_state); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ | 
|  | insn_stack[0] = 0; /* 0 is the first instruction */ | 
|  | env->cfg.cur_stack = 1; | 
|  |  | 
|  | walk_cfg: | 
|  | while (env->cfg.cur_stack > 0) { | 
|  | int t = insn_stack[env->cfg.cur_stack - 1]; | 
|  |  | 
|  | ret = visit_insn(t, env); | 
|  | switch (ret) { | 
|  | case DONE_EXPLORING: | 
|  | insn_state[t] = EXPLORED; | 
|  | env->cfg.cur_stack--; | 
|  | break; | 
|  | case KEEP_EXPLORING: | 
|  | break; | 
|  | default: | 
|  | if (ret > 0) { | 
|  | verbose(env, "visit_insn internal bug\n"); | 
|  | ret = -EFAULT; | 
|  | } | 
|  | goto err_free; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (env->cfg.cur_stack < 0) { | 
|  | verbose(env, "pop stack internal bug\n"); | 
|  | ret = -EFAULT; | 
|  | goto err_free; | 
|  | } | 
|  |  | 
|  | if (env->exception_callback_subprog && !ex_done) { | 
|  | ex_insn_beg = env->subprog_info[env->exception_callback_subprog].start; | 
|  |  | 
|  | insn_state[ex_insn_beg] = DISCOVERED; | 
|  | insn_stack[0] = ex_insn_beg; | 
|  | env->cfg.cur_stack = 1; | 
|  | ex_done = true; | 
|  | goto walk_cfg; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < insn_cnt; i++) { | 
|  | struct bpf_insn *insn = &env->prog->insnsi[i]; | 
|  |  | 
|  | if (insn_state[i] != EXPLORED) { | 
|  | verbose(env, "unreachable insn %d\n", i); | 
|  | ret = -EINVAL; | 
|  | goto err_free; | 
|  | } | 
|  | if (bpf_is_ldimm64(insn)) { | 
|  | if (insn_state[i + 1] != 0) { | 
|  | verbose(env, "jump into the middle of ldimm64 insn %d\n", i); | 
|  | ret = -EINVAL; | 
|  | goto err_free; | 
|  | } | 
|  | i++; /* skip second half of ldimm64 */ | 
|  | } | 
|  | } | 
|  | ret = 0; /* cfg looks good */ | 
|  |  | 
|  | err_free: | 
|  | kvfree(insn_state); | 
|  | kvfree(insn_stack); | 
|  | env->cfg.insn_state = env->cfg.insn_stack = NULL; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int check_abnormal_return(struct bpf_verifier_env *env) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 1; i < env->subprog_cnt; i++) { | 
|  | if (env->subprog_info[i].has_ld_abs) { | 
|  | verbose(env, "LD_ABS is not allowed in subprogs without BTF\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | if (env->subprog_info[i].has_tail_call) { | 
|  | verbose(env, "tail_call is not allowed in subprogs without BTF\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* The minimum supported BTF func info size */ | 
|  | #define MIN_BPF_FUNCINFO_SIZE	8 | 
|  | #define MAX_FUNCINFO_REC_SIZE	252 | 
|  |  | 
|  | static int check_btf_func_early(struct bpf_verifier_env *env, | 
|  | const union bpf_attr *attr, | 
|  | bpfptr_t uattr) | 
|  | { | 
|  | u32 krec_size = sizeof(struct bpf_func_info); | 
|  | const struct btf_type *type, *func_proto; | 
|  | u32 i, nfuncs, urec_size, min_size; | 
|  | struct bpf_func_info *krecord; | 
|  | struct bpf_prog *prog; | 
|  | const struct btf *btf; | 
|  | u32 prev_offset = 0; | 
|  | bpfptr_t urecord; | 
|  | int ret = -ENOMEM; | 
|  |  | 
|  | nfuncs = attr->func_info_cnt; | 
|  | if (!nfuncs) { | 
|  | if (check_abnormal_return(env)) | 
|  | return -EINVAL; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | urec_size = attr->func_info_rec_size; | 
|  | if (urec_size < MIN_BPF_FUNCINFO_SIZE || | 
|  | urec_size > MAX_FUNCINFO_REC_SIZE || | 
|  | urec_size % sizeof(u32)) { | 
|  | verbose(env, "invalid func info rec size %u\n", urec_size); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | prog = env->prog; | 
|  | btf = prog->aux->btf; | 
|  |  | 
|  | urecord = make_bpfptr(attr->func_info, uattr.is_kernel); | 
|  | min_size = min_t(u32, krec_size, urec_size); | 
|  |  | 
|  | krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN); | 
|  | if (!krecord) | 
|  | return -ENOMEM; | 
|  |  | 
|  | for (i = 0; i < nfuncs; i++) { | 
|  | ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size); | 
|  | if (ret) { | 
|  | if (ret == -E2BIG) { | 
|  | verbose(env, "nonzero tailing record in func info"); | 
|  | /* set the size kernel expects so loader can zero | 
|  | * out the rest of the record. | 
|  | */ | 
|  | if (copy_to_bpfptr_offset(uattr, | 
|  | offsetof(union bpf_attr, func_info_rec_size), | 
|  | &min_size, sizeof(min_size))) | 
|  | ret = -EFAULT; | 
|  | } | 
|  | goto err_free; | 
|  | } | 
|  |  | 
|  | if (copy_from_bpfptr(&krecord[i], urecord, min_size)) { | 
|  | ret = -EFAULT; | 
|  | goto err_free; | 
|  | } | 
|  |  | 
|  | /* check insn_off */ | 
|  | ret = -EINVAL; | 
|  | if (i == 0) { | 
|  | if (krecord[i].insn_off) { | 
|  | verbose(env, | 
|  | "nonzero insn_off %u for the first func info record", | 
|  | krecord[i].insn_off); | 
|  | goto err_free; | 
|  | } | 
|  | } else if (krecord[i].insn_off <= prev_offset) { | 
|  | verbose(env, | 
|  | "same or smaller insn offset (%u) than previous func info record (%u)", | 
|  | krecord[i].insn_off, prev_offset); | 
|  | goto err_free; | 
|  | } | 
|  |  | 
|  | /* check type_id */ | 
|  | type = btf_type_by_id(btf, krecord[i].type_id); | 
|  | if (!type || !btf_type_is_func(type)) { | 
|  | verbose(env, "invalid type id %d in func info", | 
|  | krecord[i].type_id); | 
|  | goto err_free; | 
|  | } | 
|  |  | 
|  | func_proto = btf_type_by_id(btf, type->type); | 
|  | if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto))) | 
|  | /* btf_func_check() already verified it during BTF load */ | 
|  | goto err_free; | 
|  |  | 
|  | prev_offset = krecord[i].insn_off; | 
|  | bpfptr_add(&urecord, urec_size); | 
|  | } | 
|  |  | 
|  | prog->aux->func_info = krecord; | 
|  | prog->aux->func_info_cnt = nfuncs; | 
|  | return 0; | 
|  |  | 
|  | err_free: | 
|  | kvfree(krecord); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int check_btf_func(struct bpf_verifier_env *env, | 
|  | const union bpf_attr *attr, | 
|  | bpfptr_t uattr) | 
|  | { | 
|  | const struct btf_type *type, *func_proto, *ret_type; | 
|  | u32 i, nfuncs, urec_size; | 
|  | struct bpf_func_info *krecord; | 
|  | struct bpf_func_info_aux *info_aux = NULL; | 
|  | struct bpf_prog *prog; | 
|  | const struct btf *btf; | 
|  | bpfptr_t urecord; | 
|  | bool scalar_return; | 
|  | int ret = -ENOMEM; | 
|  |  | 
|  | nfuncs = attr->func_info_cnt; | 
|  | if (!nfuncs) { | 
|  | if (check_abnormal_return(env)) | 
|  | return -EINVAL; | 
|  | return 0; | 
|  | } | 
|  | if (nfuncs != env->subprog_cnt) { | 
|  | verbose(env, "number of funcs in func_info doesn't match number of subprogs\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | urec_size = attr->func_info_rec_size; | 
|  |  | 
|  | prog = env->prog; | 
|  | btf = prog->aux->btf; | 
|  |  | 
|  | urecord = make_bpfptr(attr->func_info, uattr.is_kernel); | 
|  |  | 
|  | krecord = prog->aux->func_info; | 
|  | info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN); | 
|  | if (!info_aux) | 
|  | return -ENOMEM; | 
|  |  | 
|  | for (i = 0; i < nfuncs; i++) { | 
|  | /* check insn_off */ | 
|  | ret = -EINVAL; | 
|  |  | 
|  | if (env->subprog_info[i].start != krecord[i].insn_off) { | 
|  | verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n"); | 
|  | goto err_free; | 
|  | } | 
|  |  | 
|  | /* Already checked type_id */ | 
|  | type = btf_type_by_id(btf, krecord[i].type_id); | 
|  | info_aux[i].linkage = BTF_INFO_VLEN(type->info); | 
|  | /* Already checked func_proto */ | 
|  | func_proto = btf_type_by_id(btf, type->type); | 
|  |  | 
|  | ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL); | 
|  | scalar_return = | 
|  | btf_type_is_small_int(ret_type) || btf_is_any_enum(ret_type); | 
|  | if (i && !scalar_return && env->subprog_info[i].has_ld_abs) { | 
|  | verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n"); | 
|  | goto err_free; | 
|  | } | 
|  | if (i && !scalar_return && env->subprog_info[i].has_tail_call) { | 
|  | verbose(env, "tail_call is only allowed in functions that return 'int'.\n"); | 
|  | goto err_free; | 
|  | } | 
|  |  | 
|  | bpfptr_add(&urecord, urec_size); | 
|  | } | 
|  |  | 
|  | prog->aux->func_info_aux = info_aux; | 
|  | return 0; | 
|  |  | 
|  | err_free: | 
|  | kfree(info_aux); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void adjust_btf_func(struct bpf_verifier_env *env) | 
|  | { | 
|  | struct bpf_prog_aux *aux = env->prog->aux; | 
|  | int i; | 
|  |  | 
|  | if (!aux->func_info) | 
|  | return; | 
|  |  | 
|  | /* func_info is not available for hidden subprogs */ | 
|  | for (i = 0; i < env->subprog_cnt - env->hidden_subprog_cnt; i++) | 
|  | aux->func_info[i].insn_off = env->subprog_info[i].start; | 
|  | } | 
|  |  | 
|  | #define MIN_BPF_LINEINFO_SIZE	offsetofend(struct bpf_line_info, line_col) | 
|  | #define MAX_LINEINFO_REC_SIZE	MAX_FUNCINFO_REC_SIZE | 
|  |  | 
|  | static int check_btf_line(struct bpf_verifier_env *env, | 
|  | const union bpf_attr *attr, | 
|  | bpfptr_t uattr) | 
|  | { | 
|  | u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0; | 
|  | struct bpf_subprog_info *sub; | 
|  | struct bpf_line_info *linfo; | 
|  | struct bpf_prog *prog; | 
|  | const struct btf *btf; | 
|  | bpfptr_t ulinfo; | 
|  | int err; | 
|  |  | 
|  | nr_linfo = attr->line_info_cnt; | 
|  | if (!nr_linfo) | 
|  | return 0; | 
|  | if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info)) | 
|  | return -EINVAL; | 
|  |  | 
|  | rec_size = attr->line_info_rec_size; | 
|  | if (rec_size < MIN_BPF_LINEINFO_SIZE || | 
|  | rec_size > MAX_LINEINFO_REC_SIZE || | 
|  | rec_size & (sizeof(u32) - 1)) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* Need to zero it in case the userspace may | 
|  | * pass in a smaller bpf_line_info object. | 
|  | */ | 
|  | linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info), | 
|  | GFP_KERNEL | __GFP_NOWARN); | 
|  | if (!linfo) | 
|  | return -ENOMEM; | 
|  |  | 
|  | prog = env->prog; | 
|  | btf = prog->aux->btf; | 
|  |  | 
|  | s = 0; | 
|  | sub = env->subprog_info; | 
|  | ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel); | 
|  | expected_size = sizeof(struct bpf_line_info); | 
|  | ncopy = min_t(u32, expected_size, rec_size); | 
|  | for (i = 0; i < nr_linfo; i++) { | 
|  | err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size); | 
|  | if (err) { | 
|  | if (err == -E2BIG) { | 
|  | verbose(env, "nonzero tailing record in line_info"); | 
|  | if (copy_to_bpfptr_offset(uattr, | 
|  | offsetof(union bpf_attr, line_info_rec_size), | 
|  | &expected_size, sizeof(expected_size))) | 
|  | err = -EFAULT; | 
|  | } | 
|  | goto err_free; | 
|  | } | 
|  |  | 
|  | if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) { | 
|  | err = -EFAULT; | 
|  | goto err_free; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check insn_off to ensure | 
|  | * 1) strictly increasing AND | 
|  | * 2) bounded by prog->len | 
|  | * | 
|  | * The linfo[0].insn_off == 0 check logically falls into | 
|  | * the later "missing bpf_line_info for func..." case | 
|  | * because the first linfo[0].insn_off must be the | 
|  | * first sub also and the first sub must have | 
|  | * subprog_info[0].start == 0. | 
|  | */ | 
|  | if ((i && linfo[i].insn_off <= prev_offset) || | 
|  | linfo[i].insn_off >= prog->len) { | 
|  | verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n", | 
|  | i, linfo[i].insn_off, prev_offset, | 
|  | prog->len); | 
|  | err = -EINVAL; | 
|  | goto err_free; | 
|  | } | 
|  |  | 
|  | if (!prog->insnsi[linfo[i].insn_off].code) { | 
|  | verbose(env, | 
|  | "Invalid insn code at line_info[%u].insn_off\n", | 
|  | i); | 
|  | err = -EINVAL; | 
|  | goto err_free; | 
|  | } | 
|  |  | 
|  | if (!btf_name_by_offset(btf, linfo[i].line_off) || | 
|  | !btf_name_by_offset(btf, linfo[i].file_name_off)) { | 
|  | verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i); | 
|  | err = -EINVAL; | 
|  | goto err_free; | 
|  | } | 
|  |  | 
|  | if (s != env->subprog_cnt) { | 
|  | if (linfo[i].insn_off == sub[s].start) { | 
|  | sub[s].linfo_idx = i; | 
|  | s++; | 
|  | } else if (sub[s].start < linfo[i].insn_off) { | 
|  | verbose(env, "missing bpf_line_info for func#%u\n", s); | 
|  | err = -EINVAL; | 
|  | goto err_free; | 
|  | } | 
|  | } | 
|  |  | 
|  | prev_offset = linfo[i].insn_off; | 
|  | bpfptr_add(&ulinfo, rec_size); | 
|  | } | 
|  |  | 
|  | if (s != env->subprog_cnt) { | 
|  | verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n", | 
|  | env->subprog_cnt - s, s); | 
|  | err = -EINVAL; | 
|  | goto err_free; | 
|  | } | 
|  |  | 
|  | prog->aux->linfo = linfo; | 
|  | prog->aux->nr_linfo = nr_linfo; | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | err_free: | 
|  | kvfree(linfo); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | #define MIN_CORE_RELO_SIZE	sizeof(struct bpf_core_relo) | 
|  | #define MAX_CORE_RELO_SIZE	MAX_FUNCINFO_REC_SIZE | 
|  |  | 
|  | static int check_core_relo(struct bpf_verifier_env *env, | 
|  | const union bpf_attr *attr, | 
|  | bpfptr_t uattr) | 
|  | { | 
|  | u32 i, nr_core_relo, ncopy, expected_size, rec_size; | 
|  | struct bpf_core_relo core_relo = {}; | 
|  | struct bpf_prog *prog = env->prog; | 
|  | const struct btf *btf = prog->aux->btf; | 
|  | struct bpf_core_ctx ctx = { | 
|  | .log = &env->log, | 
|  | .btf = btf, | 
|  | }; | 
|  | bpfptr_t u_core_relo; | 
|  | int err; | 
|  |  | 
|  | nr_core_relo = attr->core_relo_cnt; | 
|  | if (!nr_core_relo) | 
|  | return 0; | 
|  | if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo)) | 
|  | return -EINVAL; | 
|  |  | 
|  | rec_size = attr->core_relo_rec_size; | 
|  | if (rec_size < MIN_CORE_RELO_SIZE || | 
|  | rec_size > MAX_CORE_RELO_SIZE || | 
|  | rec_size % sizeof(u32)) | 
|  | return -EINVAL; | 
|  |  | 
|  | u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel); | 
|  | expected_size = sizeof(struct bpf_core_relo); | 
|  | ncopy = min_t(u32, expected_size, rec_size); | 
|  |  | 
|  | /* Unlike func_info and line_info, copy and apply each CO-RE | 
|  | * relocation record one at a time. | 
|  | */ | 
|  | for (i = 0; i < nr_core_relo; i++) { | 
|  | /* future proofing when sizeof(bpf_core_relo) changes */ | 
|  | err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size); | 
|  | if (err) { | 
|  | if (err == -E2BIG) { | 
|  | verbose(env, "nonzero tailing record in core_relo"); | 
|  | if (copy_to_bpfptr_offset(uattr, | 
|  | offsetof(union bpf_attr, core_relo_rec_size), | 
|  | &expected_size, sizeof(expected_size))) | 
|  | err = -EFAULT; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) { | 
|  | err = -EFAULT; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) { | 
|  | verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n", | 
|  | i, core_relo.insn_off, prog->len); | 
|  | err = -EINVAL; | 
|  | break; | 
|  | } | 
|  |  | 
|  | err = bpf_core_apply(&ctx, &core_relo, i, | 
|  | &prog->insnsi[core_relo.insn_off / 8]); | 
|  | if (err) | 
|  | break; | 
|  | bpfptr_add(&u_core_relo, rec_size); | 
|  | } | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int check_btf_info_early(struct bpf_verifier_env *env, | 
|  | const union bpf_attr *attr, | 
|  | bpfptr_t uattr) | 
|  | { | 
|  | struct btf *btf; | 
|  | int err; | 
|  |  | 
|  | if (!attr->func_info_cnt && !attr->line_info_cnt) { | 
|  | if (check_abnormal_return(env)) | 
|  | return -EINVAL; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | btf = btf_get_by_fd(attr->prog_btf_fd); | 
|  | if (IS_ERR(btf)) | 
|  | return PTR_ERR(btf); | 
|  | if (btf_is_kernel(btf)) { | 
|  | btf_put(btf); | 
|  | return -EACCES; | 
|  | } | 
|  | env->prog->aux->btf = btf; | 
|  |  | 
|  | err = check_btf_func_early(env, attr, uattr); | 
|  | if (err) | 
|  | return err; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int check_btf_info(struct bpf_verifier_env *env, | 
|  | const union bpf_attr *attr, | 
|  | bpfptr_t uattr) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | if (!attr->func_info_cnt && !attr->line_info_cnt) { | 
|  | if (check_abnormal_return(env)) | 
|  | return -EINVAL; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | err = check_btf_func(env, attr, uattr); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | err = check_btf_line(env, attr, uattr); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | err = check_core_relo(env, attr, uattr); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* check %cur's range satisfies %old's */ | 
|  | static bool range_within(const struct bpf_reg_state *old, | 
|  | const struct bpf_reg_state *cur) | 
|  | { | 
|  | return old->umin_value <= cur->umin_value && | 
|  | old->umax_value >= cur->umax_value && | 
|  | old->smin_value <= cur->smin_value && | 
|  | old->smax_value >= cur->smax_value && | 
|  | old->u32_min_value <= cur->u32_min_value && | 
|  | old->u32_max_value >= cur->u32_max_value && | 
|  | old->s32_min_value <= cur->s32_min_value && | 
|  | old->s32_max_value >= cur->s32_max_value; | 
|  | } | 
|  |  | 
|  | /* If in the old state two registers had the same id, then they need to have | 
|  | * the same id in the new state as well.  But that id could be different from | 
|  | * the old state, so we need to track the mapping from old to new ids. | 
|  | * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent | 
|  | * regs with old id 5 must also have new id 9 for the new state to be safe.  But | 
|  | * regs with a different old id could still have new id 9, we don't care about | 
|  | * that. | 
|  | * So we look through our idmap to see if this old id has been seen before.  If | 
|  | * so, we require the new id to match; otherwise, we add the id pair to the map. | 
|  | */ | 
|  | static bool check_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap) | 
|  | { | 
|  | struct bpf_id_pair *map = idmap->map; | 
|  | unsigned int i; | 
|  |  | 
|  | /* either both IDs should be set or both should be zero */ | 
|  | if (!!old_id != !!cur_id) | 
|  | return false; | 
|  |  | 
|  | if (old_id == 0) /* cur_id == 0 as well */ | 
|  | return true; | 
|  |  | 
|  | for (i = 0; i < BPF_ID_MAP_SIZE; i++) { | 
|  | if (!map[i].old) { | 
|  | /* Reached an empty slot; haven't seen this id before */ | 
|  | map[i].old = old_id; | 
|  | map[i].cur = cur_id; | 
|  | return true; | 
|  | } | 
|  | if (map[i].old == old_id) | 
|  | return map[i].cur == cur_id; | 
|  | if (map[i].cur == cur_id) | 
|  | return false; | 
|  | } | 
|  | /* We ran out of idmap slots, which should be impossible */ | 
|  | WARN_ON_ONCE(1); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* Similar to check_ids(), but allocate a unique temporary ID | 
|  | * for 'old_id' or 'cur_id' of zero. | 
|  | * This makes pairs like '0 vs unique ID', 'unique ID vs 0' valid. | 
|  | */ | 
|  | static bool check_scalar_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap) | 
|  | { | 
|  | old_id = old_id ? old_id : ++idmap->tmp_id_gen; | 
|  | cur_id = cur_id ? cur_id : ++idmap->tmp_id_gen; | 
|  |  | 
|  | return check_ids(old_id, cur_id, idmap); | 
|  | } | 
|  |  | 
|  | static void clean_func_state(struct bpf_verifier_env *env, | 
|  | struct bpf_func_state *st) | 
|  | { | 
|  | enum bpf_reg_liveness live; | 
|  | int i, j; | 
|  |  | 
|  | for (i = 0; i < BPF_REG_FP; i++) { | 
|  | live = st->regs[i].live; | 
|  | /* liveness must not touch this register anymore */ | 
|  | st->regs[i].live |= REG_LIVE_DONE; | 
|  | if (!(live & REG_LIVE_READ)) | 
|  | /* since the register is unused, clear its state | 
|  | * to make further comparison simpler | 
|  | */ | 
|  | __mark_reg_not_init(env, &st->regs[i]); | 
|  | } | 
|  |  | 
|  | for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) { | 
|  | live = st->stack[i].spilled_ptr.live; | 
|  | /* liveness must not touch this stack slot anymore */ | 
|  | st->stack[i].spilled_ptr.live |= REG_LIVE_DONE; | 
|  | if (!(live & REG_LIVE_READ)) { | 
|  | __mark_reg_not_init(env, &st->stack[i].spilled_ptr); | 
|  | for (j = 0; j < BPF_REG_SIZE; j++) | 
|  | st->stack[i].slot_type[j] = STACK_INVALID; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void clean_verifier_state(struct bpf_verifier_env *env, | 
|  | struct bpf_verifier_state *st) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | if (st->frame[0]->regs[0].live & REG_LIVE_DONE) | 
|  | /* all regs in this state in all frames were already marked */ | 
|  | return; | 
|  |  | 
|  | for (i = 0; i <= st->curframe; i++) | 
|  | clean_func_state(env, st->frame[i]); | 
|  | } | 
|  |  | 
|  | /* the parentage chains form a tree. | 
|  | * the verifier states are added to state lists at given insn and | 
|  | * pushed into state stack for future exploration. | 
|  | * when the verifier reaches bpf_exit insn some of the verifer states | 
|  | * stored in the state lists have their final liveness state already, | 
|  | * but a lot of states will get revised from liveness point of view when | 
|  | * the verifier explores other branches. | 
|  | * Example: | 
|  | * 1: r0 = 1 | 
|  | * 2: if r1 == 100 goto pc+1 | 
|  | * 3: r0 = 2 | 
|  | * 4: exit | 
|  | * when the verifier reaches exit insn the register r0 in the state list of | 
|  | * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch | 
|  | * of insn 2 and goes exploring further. At the insn 4 it will walk the | 
|  | * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ. | 
|  | * | 
|  | * Since the verifier pushes the branch states as it sees them while exploring | 
|  | * the program the condition of walking the branch instruction for the second | 
|  | * time means that all states below this branch were already explored and | 
|  | * their final liveness marks are already propagated. | 
|  | * Hence when the verifier completes the search of state list in is_state_visited() | 
|  | * we can call this clean_live_states() function to mark all liveness states | 
|  | * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state' | 
|  | * will not be used. | 
|  | * This function also clears the registers and stack for states that !READ | 
|  | * to simplify state merging. | 
|  | * | 
|  | * Important note here that walking the same branch instruction in the callee | 
|  | * doesn't meant that the states are DONE. The verifier has to compare | 
|  | * the callsites | 
|  | */ | 
|  | static void clean_live_states(struct bpf_verifier_env *env, int insn, | 
|  | struct bpf_verifier_state *cur) | 
|  | { | 
|  | struct bpf_verifier_state_list *sl; | 
|  |  | 
|  | sl = *explored_state(env, insn); | 
|  | while (sl) { | 
|  | if (sl->state.branches) | 
|  | goto next; | 
|  | if (sl->state.insn_idx != insn || | 
|  | !same_callsites(&sl->state, cur)) | 
|  | goto next; | 
|  | clean_verifier_state(env, &sl->state); | 
|  | next: | 
|  | sl = sl->next; | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool regs_exact(const struct bpf_reg_state *rold, | 
|  | const struct bpf_reg_state *rcur, | 
|  | struct bpf_idmap *idmap) | 
|  | { | 
|  | return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && | 
|  | check_ids(rold->id, rcur->id, idmap) && | 
|  | check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap); | 
|  | } | 
|  |  | 
|  | enum exact_level { | 
|  | NOT_EXACT, | 
|  | EXACT, | 
|  | RANGE_WITHIN | 
|  | }; | 
|  |  | 
|  | /* Returns true if (rold safe implies rcur safe) */ | 
|  | static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold, | 
|  | struct bpf_reg_state *rcur, struct bpf_idmap *idmap, | 
|  | enum exact_level exact) | 
|  | { | 
|  | if (exact == EXACT) | 
|  | return regs_exact(rold, rcur, idmap); | 
|  |  | 
|  | if (!(rold->live & REG_LIVE_READ) && exact == NOT_EXACT) | 
|  | /* explored state didn't use this */ | 
|  | return true; | 
|  | if (rold->type == NOT_INIT) { | 
|  | if (exact == NOT_EXACT || rcur->type == NOT_INIT) | 
|  | /* explored state can't have used this */ | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Enforce that register types have to match exactly, including their | 
|  | * modifiers (like PTR_MAYBE_NULL, MEM_RDONLY, etc), as a general | 
|  | * rule. | 
|  | * | 
|  | * One can make a point that using a pointer register as unbounded | 
|  | * SCALAR would be technically acceptable, but this could lead to | 
|  | * pointer leaks because scalars are allowed to leak while pointers | 
|  | * are not. We could make this safe in special cases if root is | 
|  | * calling us, but it's probably not worth the hassle. | 
|  | * | 
|  | * Also, register types that are *not* MAYBE_NULL could technically be | 
|  | * safe to use as their MAYBE_NULL variants (e.g., PTR_TO_MAP_VALUE | 
|  | * is safe to be used as PTR_TO_MAP_VALUE_OR_NULL, provided both point | 
|  | * to the same map). | 
|  | * However, if the old MAYBE_NULL register then got NULL checked, | 
|  | * doing so could have affected others with the same id, and we can't | 
|  | * check for that because we lost the id when we converted to | 
|  | * a non-MAYBE_NULL variant. | 
|  | * So, as a general rule we don't allow mixing MAYBE_NULL and | 
|  | * non-MAYBE_NULL registers as well. | 
|  | */ | 
|  | if (rold->type != rcur->type) | 
|  | return false; | 
|  |  | 
|  | switch (base_type(rold->type)) { | 
|  | case SCALAR_VALUE: | 
|  | if (env->explore_alu_limits) { | 
|  | /* explore_alu_limits disables tnum_in() and range_within() | 
|  | * logic and requires everything to be strict | 
|  | */ | 
|  | return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && | 
|  | check_scalar_ids(rold->id, rcur->id, idmap); | 
|  | } | 
|  | if (!rold->precise && exact == NOT_EXACT) | 
|  | return true; | 
|  | if ((rold->id & BPF_ADD_CONST) != (rcur->id & BPF_ADD_CONST)) | 
|  | return false; | 
|  | if ((rold->id & BPF_ADD_CONST) && (rold->off != rcur->off)) | 
|  | return false; | 
|  | /* Why check_ids() for scalar registers? | 
|  | * | 
|  | * Consider the following BPF code: | 
|  | *   1: r6 = ... unbound scalar, ID=a ... | 
|  | *   2: r7 = ... unbound scalar, ID=b ... | 
|  | *   3: if (r6 > r7) goto +1 | 
|  | *   4: r6 = r7 | 
|  | *   5: if (r6 > X) goto ... | 
|  | *   6: ... memory operation using r7 ... | 
|  | * | 
|  | * First verification path is [1-6]: | 
|  | * - at (4) same bpf_reg_state::id (b) would be assigned to r6 and r7; | 
|  | * - at (5) r6 would be marked <= X, sync_linked_regs() would also mark | 
|  | *   r7 <= X, because r6 and r7 share same id. | 
|  | * Next verification path is [1-4, 6]. | 
|  | * | 
|  | * Instruction (6) would be reached in two states: | 
|  | *   I.  r6{.id=b}, r7{.id=b} via path 1-6; | 
|  | *   II. r6{.id=a}, r7{.id=b} via path 1-4, 6. | 
|  | * | 
|  | * Use check_ids() to distinguish these states. | 
|  | * --- | 
|  | * Also verify that new value satisfies old value range knowledge. | 
|  | */ | 
|  | return range_within(rold, rcur) && | 
|  | tnum_in(rold->var_off, rcur->var_off) && | 
|  | check_scalar_ids(rold->id, rcur->id, idmap); | 
|  | case PTR_TO_MAP_KEY: | 
|  | case PTR_TO_MAP_VALUE: | 
|  | case PTR_TO_MEM: | 
|  | case PTR_TO_BUF: | 
|  | case PTR_TO_TP_BUFFER: | 
|  | /* If the new min/max/var_off satisfy the old ones and | 
|  | * everything else matches, we are OK. | 
|  | */ | 
|  | return memcmp(rold, rcur, offsetof(struct bpf_reg_state, var_off)) == 0 && | 
|  | range_within(rold, rcur) && | 
|  | tnum_in(rold->var_off, rcur->var_off) && | 
|  | check_ids(rold->id, rcur->id, idmap) && | 
|  | check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap); | 
|  | case PTR_TO_PACKET_META: | 
|  | case PTR_TO_PACKET: | 
|  | /* We must have at least as much range as the old ptr | 
|  | * did, so that any accesses which were safe before are | 
|  | * still safe.  This is true even if old range < old off, | 
|  | * since someone could have accessed through (ptr - k), or | 
|  | * even done ptr -= k in a register, to get a safe access. | 
|  | */ | 
|  | if (rold->range > rcur->range) | 
|  | return false; | 
|  | /* If the offsets don't match, we can't trust our alignment; | 
|  | * nor can we be sure that we won't fall out of range. | 
|  | */ | 
|  | if (rold->off != rcur->off) | 
|  | return false; | 
|  | /* id relations must be preserved */ | 
|  | if (!check_ids(rold->id, rcur->id, idmap)) | 
|  | return false; | 
|  | /* new val must satisfy old val knowledge */ | 
|  | return range_within(rold, rcur) && | 
|  | tnum_in(rold->var_off, rcur->var_off); | 
|  | case PTR_TO_STACK: | 
|  | /* two stack pointers are equal only if they're pointing to | 
|  | * the same stack frame, since fp-8 in foo != fp-8 in bar | 
|  | */ | 
|  | return regs_exact(rold, rcur, idmap) && rold->frameno == rcur->frameno; | 
|  | case PTR_TO_ARENA: | 
|  | return true; | 
|  | default: | 
|  | return regs_exact(rold, rcur, idmap); | 
|  | } | 
|  | } | 
|  |  | 
|  | static struct bpf_reg_state unbound_reg; | 
|  |  | 
|  | static __init int unbound_reg_init(void) | 
|  | { | 
|  | __mark_reg_unknown_imprecise(&unbound_reg); | 
|  | unbound_reg.live |= REG_LIVE_READ; | 
|  | return 0; | 
|  | } | 
|  | late_initcall(unbound_reg_init); | 
|  |  | 
|  | static bool is_stack_all_misc(struct bpf_verifier_env *env, | 
|  | struct bpf_stack_state *stack) | 
|  | { | 
|  | u32 i; | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(stack->slot_type); ++i) { | 
|  | if ((stack->slot_type[i] == STACK_MISC) || | 
|  | (stack->slot_type[i] == STACK_INVALID && env->allow_uninit_stack)) | 
|  | continue; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static struct bpf_reg_state *scalar_reg_for_stack(struct bpf_verifier_env *env, | 
|  | struct bpf_stack_state *stack) | 
|  | { | 
|  | if (is_spilled_scalar_reg64(stack)) | 
|  | return &stack->spilled_ptr; | 
|  |  | 
|  | if (is_stack_all_misc(env, stack)) | 
|  | return &unbound_reg; | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old, | 
|  | struct bpf_func_state *cur, struct bpf_idmap *idmap, | 
|  | enum exact_level exact) | 
|  | { | 
|  | int i, spi; | 
|  |  | 
|  | /* walk slots of the explored stack and ignore any additional | 
|  | * slots in the current stack, since explored(safe) state | 
|  | * didn't use them | 
|  | */ | 
|  | for (i = 0; i < old->allocated_stack; i++) { | 
|  | struct bpf_reg_state *old_reg, *cur_reg; | 
|  |  | 
|  | spi = i / BPF_REG_SIZE; | 
|  |  | 
|  | if (exact != NOT_EXACT && | 
|  | (i >= cur->allocated_stack || | 
|  | old->stack[spi].slot_type[i % BPF_REG_SIZE] != | 
|  | cur->stack[spi].slot_type[i % BPF_REG_SIZE])) | 
|  | return false; | 
|  |  | 
|  | if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ) | 
|  | && exact == NOT_EXACT) { | 
|  | i += BPF_REG_SIZE - 1; | 
|  | /* explored state didn't use this */ | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) | 
|  | continue; | 
|  |  | 
|  | if (env->allow_uninit_stack && | 
|  | old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC) | 
|  | continue; | 
|  |  | 
|  | /* explored stack has more populated slots than current stack | 
|  | * and these slots were used | 
|  | */ | 
|  | if (i >= cur->allocated_stack) | 
|  | return false; | 
|  |  | 
|  | /* 64-bit scalar spill vs all slots MISC and vice versa. | 
|  | * Load from all slots MISC produces unbound scalar. | 
|  | * Construct a fake register for such stack and call | 
|  | * regsafe() to ensure scalar ids are compared. | 
|  | */ | 
|  | old_reg = scalar_reg_for_stack(env, &old->stack[spi]); | 
|  | cur_reg = scalar_reg_for_stack(env, &cur->stack[spi]); | 
|  | if (old_reg && cur_reg) { | 
|  | if (!regsafe(env, old_reg, cur_reg, idmap, exact)) | 
|  | return false; | 
|  | i += BPF_REG_SIZE - 1; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* if old state was safe with misc data in the stack | 
|  | * it will be safe with zero-initialized stack. | 
|  | * The opposite is not true | 
|  | */ | 
|  | if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && | 
|  | cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) | 
|  | continue; | 
|  | if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != | 
|  | cur->stack[spi].slot_type[i % BPF_REG_SIZE]) | 
|  | /* Ex: old explored (safe) state has STACK_SPILL in | 
|  | * this stack slot, but current has STACK_MISC -> | 
|  | * this verifier states are not equivalent, | 
|  | * return false to continue verification of this path | 
|  | */ | 
|  | return false; | 
|  | if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1) | 
|  | continue; | 
|  | /* Both old and cur are having same slot_type */ | 
|  | switch (old->stack[spi].slot_type[BPF_REG_SIZE - 1]) { | 
|  | case STACK_SPILL: | 
|  | /* when explored and current stack slot are both storing | 
|  | * spilled registers, check that stored pointers types | 
|  | * are the same as well. | 
|  | * Ex: explored safe path could have stored | 
|  | * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} | 
|  | * but current path has stored: | 
|  | * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} | 
|  | * such verifier states are not equivalent. | 
|  | * return false to continue verification of this path | 
|  | */ | 
|  | if (!regsafe(env, &old->stack[spi].spilled_ptr, | 
|  | &cur->stack[spi].spilled_ptr, idmap, exact)) | 
|  | return false; | 
|  | break; | 
|  | case STACK_DYNPTR: | 
|  | old_reg = &old->stack[spi].spilled_ptr; | 
|  | cur_reg = &cur->stack[spi].spilled_ptr; | 
|  | if (old_reg->dynptr.type != cur_reg->dynptr.type || | 
|  | old_reg->dynptr.first_slot != cur_reg->dynptr.first_slot || | 
|  | !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap)) | 
|  | return false; | 
|  | break; | 
|  | case STACK_ITER: | 
|  | old_reg = &old->stack[spi].spilled_ptr; | 
|  | cur_reg = &cur->stack[spi].spilled_ptr; | 
|  | /* iter.depth is not compared between states as it | 
|  | * doesn't matter for correctness and would otherwise | 
|  | * prevent convergence; we maintain it only to prevent | 
|  | * infinite loop check triggering, see | 
|  | * iter_active_depths_differ() | 
|  | */ | 
|  | if (old_reg->iter.btf != cur_reg->iter.btf || | 
|  | old_reg->iter.btf_id != cur_reg->iter.btf_id || | 
|  | old_reg->iter.state != cur_reg->iter.state || | 
|  | /* ignore {old_reg,cur_reg}->iter.depth, see above */ | 
|  | !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap)) | 
|  | return false; | 
|  | break; | 
|  | case STACK_MISC: | 
|  | case STACK_ZERO: | 
|  | case STACK_INVALID: | 
|  | continue; | 
|  | /* Ensure that new unhandled slot types return false by default */ | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur, | 
|  | struct bpf_idmap *idmap) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | if (old->acquired_refs != cur->acquired_refs) | 
|  | return false; | 
|  |  | 
|  | for (i = 0; i < old->acquired_refs; i++) { | 
|  | if (!check_ids(old->refs[i].id, cur->refs[i].id, idmap)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* compare two verifier states | 
|  | * | 
|  | * all states stored in state_list are known to be valid, since | 
|  | * verifier reached 'bpf_exit' instruction through them | 
|  | * | 
|  | * this function is called when verifier exploring different branches of | 
|  | * execution popped from the state stack. If it sees an old state that has | 
|  | * more strict register state and more strict stack state then this execution | 
|  | * branch doesn't need to be explored further, since verifier already | 
|  | * concluded that more strict state leads to valid finish. | 
|  | * | 
|  | * Therefore two states are equivalent if register state is more conservative | 
|  | * and explored stack state is more conservative than the current one. | 
|  | * Example: | 
|  | *       explored                   current | 
|  | * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) | 
|  | * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) | 
|  | * | 
|  | * In other words if current stack state (one being explored) has more | 
|  | * valid slots than old one that already passed validation, it means | 
|  | * the verifier can stop exploring and conclude that current state is valid too | 
|  | * | 
|  | * Similarly with registers. If explored state has register type as invalid | 
|  | * whereas register type in current state is meaningful, it means that | 
|  | * the current state will reach 'bpf_exit' instruction safely | 
|  | */ | 
|  | static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old, | 
|  | struct bpf_func_state *cur, enum exact_level exact) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | if (old->callback_depth > cur->callback_depth) | 
|  | return false; | 
|  |  | 
|  | for (i = 0; i < MAX_BPF_REG; i++) | 
|  | if (!regsafe(env, &old->regs[i], &cur->regs[i], | 
|  | &env->idmap_scratch, exact)) | 
|  | return false; | 
|  |  | 
|  | if (!stacksafe(env, old, cur, &env->idmap_scratch, exact)) | 
|  | return false; | 
|  |  | 
|  | if (!refsafe(old, cur, &env->idmap_scratch)) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void reset_idmap_scratch(struct bpf_verifier_env *env) | 
|  | { | 
|  | env->idmap_scratch.tmp_id_gen = env->id_gen; | 
|  | memset(&env->idmap_scratch.map, 0, sizeof(env->idmap_scratch.map)); | 
|  | } | 
|  |  | 
|  | static bool states_equal(struct bpf_verifier_env *env, | 
|  | struct bpf_verifier_state *old, | 
|  | struct bpf_verifier_state *cur, | 
|  | enum exact_level exact) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | if (old->curframe != cur->curframe) | 
|  | return false; | 
|  |  | 
|  | reset_idmap_scratch(env); | 
|  |  | 
|  | /* Verification state from speculative execution simulation | 
|  | * must never prune a non-speculative execution one. | 
|  | */ | 
|  | if (old->speculative && !cur->speculative) | 
|  | return false; | 
|  |  | 
|  | if (old->active_lock.ptr != cur->active_lock.ptr) | 
|  | return false; | 
|  |  | 
|  | /* Old and cur active_lock's have to be either both present | 
|  | * or both absent. | 
|  | */ | 
|  | if (!!old->active_lock.id != !!cur->active_lock.id) | 
|  | return false; | 
|  |  | 
|  | if (old->active_lock.id && | 
|  | !check_ids(old->active_lock.id, cur->active_lock.id, &env->idmap_scratch)) | 
|  | return false; | 
|  |  | 
|  | if (old->active_rcu_lock != cur->active_rcu_lock) | 
|  | return false; | 
|  |  | 
|  | if (old->active_preempt_lock != cur->active_preempt_lock) | 
|  | return false; | 
|  |  | 
|  | if (old->in_sleepable != cur->in_sleepable) | 
|  | return false; | 
|  |  | 
|  | /* for states to be equal callsites have to be the same | 
|  | * and all frame states need to be equivalent | 
|  | */ | 
|  | for (i = 0; i <= old->curframe; i++) { | 
|  | if (old->frame[i]->callsite != cur->frame[i]->callsite) | 
|  | return false; | 
|  | if (!func_states_equal(env, old->frame[i], cur->frame[i], exact)) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Return 0 if no propagation happened. Return negative error code if error | 
|  | * happened. Otherwise, return the propagated bit. | 
|  | */ | 
|  | static int propagate_liveness_reg(struct bpf_verifier_env *env, | 
|  | struct bpf_reg_state *reg, | 
|  | struct bpf_reg_state *parent_reg) | 
|  | { | 
|  | u8 parent_flag = parent_reg->live & REG_LIVE_READ; | 
|  | u8 flag = reg->live & REG_LIVE_READ; | 
|  | int err; | 
|  |  | 
|  | /* When comes here, read flags of PARENT_REG or REG could be any of | 
|  | * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need | 
|  | * of propagation if PARENT_REG has strongest REG_LIVE_READ64. | 
|  | */ | 
|  | if (parent_flag == REG_LIVE_READ64 || | 
|  | /* Or if there is no read flag from REG. */ | 
|  | !flag || | 
|  | /* Or if the read flag from REG is the same as PARENT_REG. */ | 
|  | parent_flag == flag) | 
|  | return 0; | 
|  |  | 
|  | err = mark_reg_read(env, reg, parent_reg, flag); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | return flag; | 
|  | } | 
|  |  | 
|  | /* A write screens off any subsequent reads; but write marks come from the | 
|  | * straight-line code between a state and its parent.  When we arrive at an | 
|  | * equivalent state (jump target or such) we didn't arrive by the straight-line | 
|  | * code, so read marks in the state must propagate to the parent regardless | 
|  | * of the state's write marks. That's what 'parent == state->parent' comparison | 
|  | * in mark_reg_read() is for. | 
|  | */ | 
|  | static int propagate_liveness(struct bpf_verifier_env *env, | 
|  | const struct bpf_verifier_state *vstate, | 
|  | struct bpf_verifier_state *vparent) | 
|  | { | 
|  | struct bpf_reg_state *state_reg, *parent_reg; | 
|  | struct bpf_func_state *state, *parent; | 
|  | int i, frame, err = 0; | 
|  |  | 
|  | if (vparent->curframe != vstate->curframe) { | 
|  | WARN(1, "propagate_live: parent frame %d current frame %d\n", | 
|  | vparent->curframe, vstate->curframe); | 
|  | return -EFAULT; | 
|  | } | 
|  | /* Propagate read liveness of registers... */ | 
|  | BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); | 
|  | for (frame = 0; frame <= vstate->curframe; frame++) { | 
|  | parent = vparent->frame[frame]; | 
|  | state = vstate->frame[frame]; | 
|  | parent_reg = parent->regs; | 
|  | state_reg = state->regs; | 
|  | /* We don't need to worry about FP liveness, it's read-only */ | 
|  | for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) { | 
|  | err = propagate_liveness_reg(env, &state_reg[i], | 
|  | &parent_reg[i]); | 
|  | if (err < 0) | 
|  | return err; | 
|  | if (err == REG_LIVE_READ64) | 
|  | mark_insn_zext(env, &parent_reg[i]); | 
|  | } | 
|  |  | 
|  | /* Propagate stack slots. */ | 
|  | for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && | 
|  | i < parent->allocated_stack / BPF_REG_SIZE; i++) { | 
|  | parent_reg = &parent->stack[i].spilled_ptr; | 
|  | state_reg = &state->stack[i].spilled_ptr; | 
|  | err = propagate_liveness_reg(env, state_reg, | 
|  | parent_reg); | 
|  | if (err < 0) | 
|  | return err; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* find precise scalars in the previous equivalent state and | 
|  | * propagate them into the current state | 
|  | */ | 
|  | static int propagate_precision(struct bpf_verifier_env *env, | 
|  | const struct bpf_verifier_state *old) | 
|  | { | 
|  | struct bpf_reg_state *state_reg; | 
|  | struct bpf_func_state *state; | 
|  | int i, err = 0, fr; | 
|  | bool first; | 
|  |  | 
|  | for (fr = old->curframe; fr >= 0; fr--) { | 
|  | state = old->frame[fr]; | 
|  | state_reg = state->regs; | 
|  | first = true; | 
|  | for (i = 0; i < BPF_REG_FP; i++, state_reg++) { | 
|  | if (state_reg->type != SCALAR_VALUE || | 
|  | !state_reg->precise || | 
|  | !(state_reg->live & REG_LIVE_READ)) | 
|  | continue; | 
|  | if (env->log.level & BPF_LOG_LEVEL2) { | 
|  | if (first) | 
|  | verbose(env, "frame %d: propagating r%d", fr, i); | 
|  | else | 
|  | verbose(env, ",r%d", i); | 
|  | } | 
|  | bt_set_frame_reg(&env->bt, fr, i); | 
|  | first = false; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { | 
|  | if (!is_spilled_reg(&state->stack[i])) | 
|  | continue; | 
|  | state_reg = &state->stack[i].spilled_ptr; | 
|  | if (state_reg->type != SCALAR_VALUE || | 
|  | !state_reg->precise || | 
|  | !(state_reg->live & REG_LIVE_READ)) | 
|  | continue; | 
|  | if (env->log.level & BPF_LOG_LEVEL2) { | 
|  | if (first) | 
|  | verbose(env, "frame %d: propagating fp%d", | 
|  | fr, (-i - 1) * BPF_REG_SIZE); | 
|  | else | 
|  | verbose(env, ",fp%d", (-i - 1) * BPF_REG_SIZE); | 
|  | } | 
|  | bt_set_frame_slot(&env->bt, fr, i); | 
|  | first = false; | 
|  | } | 
|  | if (!first) | 
|  | verbose(env, "\n"); | 
|  | } | 
|  |  | 
|  | err = mark_chain_precision_batch(env); | 
|  | if (err < 0) | 
|  | return err; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static bool states_maybe_looping(struct bpf_verifier_state *old, | 
|  | struct bpf_verifier_state *cur) | 
|  | { | 
|  | struct bpf_func_state *fold, *fcur; | 
|  | int i, fr = cur->curframe; | 
|  |  | 
|  | if (old->curframe != fr) | 
|  | return false; | 
|  |  | 
|  | fold = old->frame[fr]; | 
|  | fcur = cur->frame[fr]; | 
|  | for (i = 0; i < MAX_BPF_REG; i++) | 
|  | if (memcmp(&fold->regs[i], &fcur->regs[i], | 
|  | offsetof(struct bpf_reg_state, parent))) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool is_iter_next_insn(struct bpf_verifier_env *env, int insn_idx) | 
|  | { | 
|  | return env->insn_aux_data[insn_idx].is_iter_next; | 
|  | } | 
|  |  | 
|  | /* is_state_visited() handles iter_next() (see process_iter_next_call() for | 
|  | * terminology) calls specially: as opposed to bounded BPF loops, it *expects* | 
|  | * states to match, which otherwise would look like an infinite loop. So while | 
|  | * iter_next() calls are taken care of, we still need to be careful and | 
|  | * prevent erroneous and too eager declaration of "ininite loop", when | 
|  | * iterators are involved. | 
|  | * | 
|  | * Here's a situation in pseudo-BPF assembly form: | 
|  | * | 
|  | *   0: again:                          ; set up iter_next() call args | 
|  | *   1:   r1 = &it                      ; <CHECKPOINT HERE> | 
|  | *   2:   call bpf_iter_num_next        ; this is iter_next() call | 
|  | *   3:   if r0 == 0 goto done | 
|  | *   4:   ... something useful here ... | 
|  | *   5:   goto again                    ; another iteration | 
|  | *   6: done: | 
|  | *   7:   r1 = &it | 
|  | *   8:   call bpf_iter_num_destroy     ; clean up iter state | 
|  | *   9:   exit | 
|  | * | 
|  | * This is a typical loop. Let's assume that we have a prune point at 1:, | 
|  | * before we get to `call bpf_iter_num_next` (e.g., because of that `goto | 
|  | * again`, assuming other heuristics don't get in a way). | 
|  | * | 
|  | * When we first time come to 1:, let's say we have some state X. We proceed | 
|  | * to 2:, fork states, enqueue ACTIVE, validate NULL case successfully, exit. | 
|  | * Now we come back to validate that forked ACTIVE state. We proceed through | 
|  | * 3-5, come to goto, jump to 1:. Let's assume our state didn't change, so we | 
|  | * are converging. But the problem is that we don't know that yet, as this | 
|  | * convergence has to happen at iter_next() call site only. So if nothing is | 
|  | * done, at 1: verifier will use bounded loop logic and declare infinite | 
|  | * looping (and would be *technically* correct, if not for iterator's | 
|  | * "eventual sticky NULL" contract, see process_iter_next_call()). But we | 
|  | * don't want that. So what we do in process_iter_next_call() when we go on | 
|  | * another ACTIVE iteration, we bump slot->iter.depth, to mark that it's | 
|  | * a different iteration. So when we suspect an infinite loop, we additionally | 
|  | * check if any of the *ACTIVE* iterator states depths differ. If yes, we | 
|  | * pretend we are not looping and wait for next iter_next() call. | 
|  | * | 
|  | * This only applies to ACTIVE state. In DRAINED state we don't expect to | 
|  | * loop, because that would actually mean infinite loop, as DRAINED state is | 
|  | * "sticky", and so we'll keep returning into the same instruction with the | 
|  | * same state (at least in one of possible code paths). | 
|  | * | 
|  | * This approach allows to keep infinite loop heuristic even in the face of | 
|  | * active iterator. E.g., C snippet below is and will be detected as | 
|  | * inifintely looping: | 
|  | * | 
|  | *   struct bpf_iter_num it; | 
|  | *   int *p, x; | 
|  | * | 
|  | *   bpf_iter_num_new(&it, 0, 10); | 
|  | *   while ((p = bpf_iter_num_next(&t))) { | 
|  | *       x = p; | 
|  | *       while (x--) {} // <<-- infinite loop here | 
|  | *   } | 
|  | * | 
|  | */ | 
|  | static bool iter_active_depths_differ(struct bpf_verifier_state *old, struct bpf_verifier_state *cur) | 
|  | { | 
|  | struct bpf_reg_state *slot, *cur_slot; | 
|  | struct bpf_func_state *state; | 
|  | int i, fr; | 
|  |  | 
|  | for (fr = old->curframe; fr >= 0; fr--) { | 
|  | state = old->frame[fr]; | 
|  | for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { | 
|  | if (state->stack[i].slot_type[0] != STACK_ITER) | 
|  | continue; | 
|  |  | 
|  | slot = &state->stack[i].spilled_ptr; | 
|  | if (slot->iter.state != BPF_ITER_STATE_ACTIVE) | 
|  | continue; | 
|  |  | 
|  | cur_slot = &cur->frame[fr]->stack[i].spilled_ptr; | 
|  | if (cur_slot->iter.depth != slot->iter.depth) | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) | 
|  | { | 
|  | struct bpf_verifier_state_list *new_sl; | 
|  | struct bpf_verifier_state_list *sl, **pprev; | 
|  | struct bpf_verifier_state *cur = env->cur_state, *new, *loop_entry; | 
|  | int i, j, n, err, states_cnt = 0; | 
|  | bool force_new_state = env->test_state_freq || is_force_checkpoint(env, insn_idx); | 
|  | bool add_new_state = force_new_state; | 
|  | bool force_exact; | 
|  |  | 
|  | /* bpf progs typically have pruning point every 4 instructions | 
|  | * http://vger.kernel.org/bpfconf2019.html#session-1 | 
|  | * Do not add new state for future pruning if the verifier hasn't seen | 
|  | * at least 2 jumps and at least 8 instructions. | 
|  | * This heuristics helps decrease 'total_states' and 'peak_states' metric. | 
|  | * In tests that amounts to up to 50% reduction into total verifier | 
|  | * memory consumption and 20% verifier time speedup. | 
|  | */ | 
|  | if (env->jmps_processed - env->prev_jmps_processed >= 2 && | 
|  | env->insn_processed - env->prev_insn_processed >= 8) | 
|  | add_new_state = true; | 
|  |  | 
|  | pprev = explored_state(env, insn_idx); | 
|  | sl = *pprev; | 
|  |  | 
|  | clean_live_states(env, insn_idx, cur); | 
|  |  | 
|  | while (sl) { | 
|  | states_cnt++; | 
|  | if (sl->state.insn_idx != insn_idx) | 
|  | goto next; | 
|  |  | 
|  | if (sl->state.branches) { | 
|  | struct bpf_func_state *frame = sl->state.frame[sl->state.curframe]; | 
|  |  | 
|  | if (frame->in_async_callback_fn && | 
|  | frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) { | 
|  | /* Different async_entry_cnt means that the verifier is | 
|  | * processing another entry into async callback. | 
|  | * Seeing the same state is not an indication of infinite | 
|  | * loop or infinite recursion. | 
|  | * But finding the same state doesn't mean that it's safe | 
|  | * to stop processing the current state. The previous state | 
|  | * hasn't yet reached bpf_exit, since state.branches > 0. | 
|  | * Checking in_async_callback_fn alone is not enough either. | 
|  | * Since the verifier still needs to catch infinite loops | 
|  | * inside async callbacks. | 
|  | */ | 
|  | goto skip_inf_loop_check; | 
|  | } | 
|  | /* BPF open-coded iterators loop detection is special. | 
|  | * states_maybe_looping() logic is too simplistic in detecting | 
|  | * states that *might* be equivalent, because it doesn't know | 
|  | * about ID remapping, so don't even perform it. | 
|  | * See process_iter_next_call() and iter_active_depths_differ() | 
|  | * for overview of the logic. When current and one of parent | 
|  | * states are detected as equivalent, it's a good thing: we prove | 
|  | * convergence and can stop simulating further iterations. | 
|  | * It's safe to assume that iterator loop will finish, taking into | 
|  | * account iter_next() contract of eventually returning | 
|  | * sticky NULL result. | 
|  | * | 
|  | * Note, that states have to be compared exactly in this case because | 
|  | * read and precision marks might not be finalized inside the loop. | 
|  | * E.g. as in the program below: | 
|  | * | 
|  | *     1. r7 = -16 | 
|  | *     2. r6 = bpf_get_prandom_u32() | 
|  | *     3. while (bpf_iter_num_next(&fp[-8])) { | 
|  | *     4.   if (r6 != 42) { | 
|  | *     5.     r7 = -32 | 
|  | *     6.     r6 = bpf_get_prandom_u32() | 
|  | *     7.     continue | 
|  | *     8.   } | 
|  | *     9.   r0 = r10 | 
|  | *    10.   r0 += r7 | 
|  | *    11.   r8 = *(u64 *)(r0 + 0) | 
|  | *    12.   r6 = bpf_get_prandom_u32() | 
|  | *    13. } | 
|  | * | 
|  | * Here verifier would first visit path 1-3, create a checkpoint at 3 | 
|  | * with r7=-16, continue to 4-7,3. Existing checkpoint at 3 does | 
|  | * not have read or precision mark for r7 yet, thus inexact states | 
|  | * comparison would discard current state with r7=-32 | 
|  | * => unsafe memory access at 11 would not be caught. | 
|  | */ | 
|  | if (is_iter_next_insn(env, insn_idx)) { | 
|  | if (states_equal(env, &sl->state, cur, RANGE_WITHIN)) { | 
|  | struct bpf_func_state *cur_frame; | 
|  | struct bpf_reg_state *iter_state, *iter_reg; | 
|  | int spi; | 
|  |  | 
|  | cur_frame = cur->frame[cur->curframe]; | 
|  | /* btf_check_iter_kfuncs() enforces that | 
|  | * iter state pointer is always the first arg | 
|  | */ | 
|  | iter_reg = &cur_frame->regs[BPF_REG_1]; | 
|  | /* current state is valid due to states_equal(), | 
|  | * so we can assume valid iter and reg state, | 
|  | * no need for extra (re-)validations | 
|  | */ | 
|  | spi = __get_spi(iter_reg->off + iter_reg->var_off.value); | 
|  | iter_state = &func(env, iter_reg)->stack[spi].spilled_ptr; | 
|  | if (iter_state->iter.state == BPF_ITER_STATE_ACTIVE) { | 
|  | update_loop_entry(cur, &sl->state); | 
|  | goto hit; | 
|  | } | 
|  | } | 
|  | goto skip_inf_loop_check; | 
|  | } | 
|  | if (is_may_goto_insn_at(env, insn_idx)) { | 
|  | if (sl->state.may_goto_depth != cur->may_goto_depth && | 
|  | states_equal(env, &sl->state, cur, RANGE_WITHIN)) { | 
|  | update_loop_entry(cur, &sl->state); | 
|  | goto hit; | 
|  | } | 
|  | } | 
|  | if (calls_callback(env, insn_idx)) { | 
|  | if (states_equal(env, &sl->state, cur, RANGE_WITHIN)) | 
|  | goto hit; | 
|  | goto skip_inf_loop_check; | 
|  | } | 
|  | /* attempt to detect infinite loop to avoid unnecessary doomed work */ | 
|  | if (states_maybe_looping(&sl->state, cur) && | 
|  | states_equal(env, &sl->state, cur, EXACT) && | 
|  | !iter_active_depths_differ(&sl->state, cur) && | 
|  | sl->state.may_goto_depth == cur->may_goto_depth && | 
|  | sl->state.callback_unroll_depth == cur->callback_unroll_depth) { | 
|  | verbose_linfo(env, insn_idx, "; "); | 
|  | verbose(env, "infinite loop detected at insn %d\n", insn_idx); | 
|  | verbose(env, "cur state:"); | 
|  | print_verifier_state(env, cur->frame[cur->curframe], true); | 
|  | verbose(env, "old state:"); | 
|  | print_verifier_state(env, sl->state.frame[cur->curframe], true); | 
|  | return -EINVAL; | 
|  | } | 
|  | /* if the verifier is processing a loop, avoid adding new state | 
|  | * too often, since different loop iterations have distinct | 
|  | * states and may not help future pruning. | 
|  | * This threshold shouldn't be too low to make sure that | 
|  | * a loop with large bound will be rejected quickly. | 
|  | * The most abusive loop will be: | 
|  | * r1 += 1 | 
|  | * if r1 < 1000000 goto pc-2 | 
|  | * 1M insn_procssed limit / 100 == 10k peak states. | 
|  | * This threshold shouldn't be too high either, since states | 
|  | * at the end of the loop are likely to be useful in pruning. | 
|  | */ | 
|  | skip_inf_loop_check: | 
|  | if (!force_new_state && | 
|  | env->jmps_processed - env->prev_jmps_processed < 20 && | 
|  | env->insn_processed - env->prev_insn_processed < 100) | 
|  | add_new_state = false; | 
|  | goto miss; | 
|  | } | 
|  | /* If sl->state is a part of a loop and this loop's entry is a part of | 
|  | * current verification path then states have to be compared exactly. | 
|  | * 'force_exact' is needed to catch the following case: | 
|  | * | 
|  | *                initial     Here state 'succ' was processed first, | 
|  | *                  |         it was eventually tracked to produce a | 
|  | *                  V         state identical to 'hdr'. | 
|  | *     .---------> hdr        All branches from 'succ' had been explored | 
|  | *     |            |         and thus 'succ' has its .branches == 0. | 
|  | *     |            V | 
|  | *     |    .------...        Suppose states 'cur' and 'succ' correspond | 
|  | *     |    |       |         to the same instruction + callsites. | 
|  | *     |    V       V         In such case it is necessary to check | 
|  | *     |   ...     ...        if 'succ' and 'cur' are states_equal(). | 
|  | *     |    |       |         If 'succ' and 'cur' are a part of the | 
|  | *     |    V       V         same loop exact flag has to be set. | 
|  | *     |   succ <- cur        To check if that is the case, verify | 
|  | *     |    |                 if loop entry of 'succ' is in current | 
|  | *     |    V                 DFS path. | 
|  | *     |   ... | 
|  | *     |    | | 
|  | *     '----' | 
|  | * | 
|  | * Additional details are in the comment before get_loop_entry(). | 
|  | */ | 
|  | loop_entry = get_loop_entry(&sl->state); | 
|  | force_exact = loop_entry && loop_entry->branches > 0; | 
|  | if (states_equal(env, &sl->state, cur, force_exact ? RANGE_WITHIN : NOT_EXACT)) { | 
|  | if (force_exact) | 
|  | update_loop_entry(cur, loop_entry); | 
|  | hit: | 
|  | sl->hit_cnt++; | 
|  | /* reached equivalent register/stack state, | 
|  | * prune the search. | 
|  | * Registers read by the continuation are read by us. | 
|  | * If we have any write marks in env->cur_state, they | 
|  | * will prevent corresponding reads in the continuation | 
|  | * from reaching our parent (an explored_state).  Our | 
|  | * own state will get the read marks recorded, but | 
|  | * they'll be immediately forgotten as we're pruning | 
|  | * this state and will pop a new one. | 
|  | */ | 
|  | err = propagate_liveness(env, &sl->state, cur); | 
|  |  | 
|  | /* if previous state reached the exit with precision and | 
|  | * current state is equivalent to it (except precision marks) | 
|  | * the precision needs to be propagated back in | 
|  | * the current state. | 
|  | */ | 
|  | if (is_jmp_point(env, env->insn_idx)) | 
|  | err = err ? : push_jmp_history(env, cur, 0, 0); | 
|  | err = err ? : propagate_precision(env, &sl->state); | 
|  | if (err) | 
|  | return err; | 
|  | return 1; | 
|  | } | 
|  | miss: | 
|  | /* when new state is not going to be added do not increase miss count. | 
|  | * Otherwise several loop iterations will remove the state | 
|  | * recorded earlier. The goal of these heuristics is to have | 
|  | * states from some iterations of the loop (some in the beginning | 
|  | * and some at the end) to help pruning. | 
|  | */ | 
|  | if (add_new_state) | 
|  | sl->miss_cnt++; | 
|  | /* heuristic to determine whether this state is beneficial | 
|  | * to keep checking from state equivalence point of view. | 
|  | * Higher numbers increase max_states_per_insn and verification time, | 
|  | * but do not meaningfully decrease insn_processed. | 
|  | * 'n' controls how many times state could miss before eviction. | 
|  | * Use bigger 'n' for checkpoints because evicting checkpoint states | 
|  | * too early would hinder iterator convergence. | 
|  | */ | 
|  | n = is_force_checkpoint(env, insn_idx) && sl->state.branches > 0 ? 64 : 3; | 
|  | if (sl->miss_cnt > sl->hit_cnt * n + n) { | 
|  | /* the state is unlikely to be useful. Remove it to | 
|  | * speed up verification | 
|  | */ | 
|  | *pprev = sl->next; | 
|  | if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE && | 
|  | !sl->state.used_as_loop_entry) { | 
|  | u32 br = sl->state.branches; | 
|  |  | 
|  | WARN_ONCE(br, | 
|  | "BUG live_done but branches_to_explore %d\n", | 
|  | br); | 
|  | free_verifier_state(&sl->state, false); | 
|  | kfree(sl); | 
|  | env->peak_states--; | 
|  | } else { | 
|  | /* cannot free this state, since parentage chain may | 
|  | * walk it later. Add it for free_list instead to | 
|  | * be freed at the end of verification | 
|  | */ | 
|  | sl->next = env->free_list; | 
|  | env->free_list = sl; | 
|  | } | 
|  | sl = *pprev; | 
|  | continue; | 
|  | } | 
|  | next: | 
|  | pprev = &sl->next; | 
|  | sl = *pprev; | 
|  | } | 
|  |  | 
|  | if (env->max_states_per_insn < states_cnt) | 
|  | env->max_states_per_insn = states_cnt; | 
|  |  | 
|  | if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES) | 
|  | return 0; | 
|  |  | 
|  | if (!add_new_state) | 
|  | return 0; | 
|  |  | 
|  | /* There were no equivalent states, remember the current one. | 
|  | * Technically the current state is not proven to be safe yet, | 
|  | * but it will either reach outer most bpf_exit (which means it's safe) | 
|  | * or it will be rejected. When there are no loops the verifier won't be | 
|  | * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) | 
|  | * again on the way to bpf_exit. | 
|  | * When looping the sl->state.branches will be > 0 and this state | 
|  | * will not be considered for equivalence until branches == 0. | 
|  | */ | 
|  | new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); | 
|  | if (!new_sl) | 
|  | return -ENOMEM; | 
|  | env->total_states++; | 
|  | env->peak_states++; | 
|  | env->prev_jmps_processed = env->jmps_processed; | 
|  | env->prev_insn_processed = env->insn_processed; | 
|  |  | 
|  | /* forget precise markings we inherited, see __mark_chain_precision */ | 
|  | if (env->bpf_capable) | 
|  | mark_all_scalars_imprecise(env, cur); | 
|  |  | 
|  | /* add new state to the head of linked list */ | 
|  | new = &new_sl->state; | 
|  | err = copy_verifier_state(new, cur); | 
|  | if (err) { | 
|  | free_verifier_state(new, false); | 
|  | kfree(new_sl); | 
|  | return err; | 
|  | } | 
|  | new->insn_idx = insn_idx; | 
|  | WARN_ONCE(new->branches != 1, | 
|  | "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx); | 
|  |  | 
|  | cur->parent = new; | 
|  | cur->first_insn_idx = insn_idx; | 
|  | cur->dfs_depth = new->dfs_depth + 1; | 
|  | clear_jmp_history(cur); | 
|  | new_sl->next = *explored_state(env, insn_idx); | 
|  | *explored_state(env, insn_idx) = new_sl; | 
|  | /* connect new state to parentage chain. Current frame needs all | 
|  | * registers connected. Only r6 - r9 of the callers are alive (pushed | 
|  | * to the stack implicitly by JITs) so in callers' frames connect just | 
|  | * r6 - r9 as an optimization. Callers will have r1 - r5 connected to | 
|  | * the state of the call instruction (with WRITTEN set), and r0 comes | 
|  | * from callee with its full parentage chain, anyway. | 
|  | */ | 
|  | /* clear write marks in current state: the writes we did are not writes | 
|  | * our child did, so they don't screen off its reads from us. | 
|  | * (There are no read marks in current state, because reads always mark | 
|  | * their parent and current state never has children yet.  Only | 
|  | * explored_states can get read marks.) | 
|  | */ | 
|  | for (j = 0; j <= cur->curframe; j++) { | 
|  | for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) | 
|  | cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i]; | 
|  | for (i = 0; i < BPF_REG_FP; i++) | 
|  | cur->frame[j]->regs[i].live = REG_LIVE_NONE; | 
|  | } | 
|  |  | 
|  | /* all stack frames are accessible from callee, clear them all */ | 
|  | for (j = 0; j <= cur->curframe; j++) { | 
|  | struct bpf_func_state *frame = cur->frame[j]; | 
|  | struct bpf_func_state *newframe = new->frame[j]; | 
|  |  | 
|  | for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) { | 
|  | frame->stack[i].spilled_ptr.live = REG_LIVE_NONE; | 
|  | frame->stack[i].spilled_ptr.parent = | 
|  | &newframe->stack[i].spilled_ptr; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Return true if it's OK to have the same insn return a different type. */ | 
|  | static bool reg_type_mismatch_ok(enum bpf_reg_type type) | 
|  | { | 
|  | switch (base_type(type)) { | 
|  | case PTR_TO_CTX: | 
|  | case PTR_TO_SOCKET: | 
|  | case PTR_TO_SOCK_COMMON: | 
|  | case PTR_TO_TCP_SOCK: | 
|  | case PTR_TO_XDP_SOCK: | 
|  | case PTR_TO_BTF_ID: | 
|  | case PTR_TO_ARENA: | 
|  | return false; | 
|  | default: | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* If an instruction was previously used with particular pointer types, then we | 
|  | * need to be careful to avoid cases such as the below, where it may be ok | 
|  | * for one branch accessing the pointer, but not ok for the other branch: | 
|  | * | 
|  | * R1 = sock_ptr | 
|  | * goto X; | 
|  | * ... | 
|  | * R1 = some_other_valid_ptr; | 
|  | * goto X; | 
|  | * ... | 
|  | * R2 = *(u32 *)(R1 + 0); | 
|  | */ | 
|  | static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev) | 
|  | { | 
|  | return src != prev && (!reg_type_mismatch_ok(src) || | 
|  | !reg_type_mismatch_ok(prev)); | 
|  | } | 
|  |  | 
|  | static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type, | 
|  | bool allow_trust_mismatch) | 
|  | { | 
|  | enum bpf_reg_type *prev_type = &env->insn_aux_data[env->insn_idx].ptr_type; | 
|  |  | 
|  | if (*prev_type == NOT_INIT) { | 
|  | /* Saw a valid insn | 
|  | * dst_reg = *(u32 *)(src_reg + off) | 
|  | * save type to validate intersecting paths | 
|  | */ | 
|  | *prev_type = type; | 
|  | } else if (reg_type_mismatch(type, *prev_type)) { | 
|  | /* Abuser program is trying to use the same insn | 
|  | * dst_reg = *(u32*) (src_reg + off) | 
|  | * with different pointer types: | 
|  | * src_reg == ctx in one branch and | 
|  | * src_reg == stack|map in some other branch. | 
|  | * Reject it. | 
|  | */ | 
|  | if (allow_trust_mismatch && | 
|  | base_type(type) == PTR_TO_BTF_ID && | 
|  | base_type(*prev_type) == PTR_TO_BTF_ID) { | 
|  | /* | 
|  | * Have to support a use case when one path through | 
|  | * the program yields TRUSTED pointer while another | 
|  | * is UNTRUSTED. Fallback to UNTRUSTED to generate | 
|  | * BPF_PROBE_MEM/BPF_PROBE_MEMSX. | 
|  | */ | 
|  | *prev_type = PTR_TO_BTF_ID | PTR_UNTRUSTED; | 
|  | } else { | 
|  | verbose(env, "same insn cannot be used with different pointers\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int do_check(struct bpf_verifier_env *env) | 
|  | { | 
|  | bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); | 
|  | struct bpf_verifier_state *state = env->cur_state; | 
|  | struct bpf_insn *insns = env->prog->insnsi; | 
|  | struct bpf_reg_state *regs; | 
|  | int insn_cnt = env->prog->len; | 
|  | bool do_print_state = false; | 
|  | int prev_insn_idx = -1; | 
|  |  | 
|  | for (;;) { | 
|  | bool exception_exit = false; | 
|  | struct bpf_insn *insn; | 
|  | u8 class; | 
|  | int err; | 
|  |  | 
|  | /* reset current history entry on each new instruction */ | 
|  | env->cur_hist_ent = NULL; | 
|  |  | 
|  | env->prev_insn_idx = prev_insn_idx; | 
|  | if (env->insn_idx >= insn_cnt) { | 
|  | verbose(env, "invalid insn idx %d insn_cnt %d\n", | 
|  | env->insn_idx, insn_cnt); | 
|  | return -EFAULT; | 
|  | } | 
|  |  | 
|  | insn = &insns[env->insn_idx]; | 
|  | class = BPF_CLASS(insn->code); | 
|  |  | 
|  | if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { | 
|  | verbose(env, | 
|  | "BPF program is too large. Processed %d insn\n", | 
|  | env->insn_processed); | 
|  | return -E2BIG; | 
|  | } | 
|  |  | 
|  | state->last_insn_idx = env->prev_insn_idx; | 
|  |  | 
|  | if (is_prune_point(env, env->insn_idx)) { | 
|  | err = is_state_visited(env, env->insn_idx); | 
|  | if (err < 0) | 
|  | return err; | 
|  | if (err == 1) { | 
|  | /* found equivalent state, can prune the search */ | 
|  | if (env->log.level & BPF_LOG_LEVEL) { | 
|  | if (do_print_state) | 
|  | verbose(env, "\nfrom %d to %d%s: safe\n", | 
|  | env->prev_insn_idx, env->insn_idx, | 
|  | env->cur_state->speculative ? | 
|  | " (speculative execution)" : ""); | 
|  | else | 
|  | verbose(env, "%d: safe\n", env->insn_idx); | 
|  | } | 
|  | goto process_bpf_exit; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (is_jmp_point(env, env->insn_idx)) { | 
|  | err = push_jmp_history(env, state, 0, 0); | 
|  | if (err) | 
|  | return err; | 
|  | } | 
|  |  | 
|  | if (signal_pending(current)) | 
|  | return -EAGAIN; | 
|  |  | 
|  | if (need_resched()) | 
|  | cond_resched(); | 
|  |  | 
|  | if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) { | 
|  | verbose(env, "\nfrom %d to %d%s:", | 
|  | env->prev_insn_idx, env->insn_idx, | 
|  | env->cur_state->speculative ? | 
|  | " (speculative execution)" : ""); | 
|  | print_verifier_state(env, state->frame[state->curframe], true); | 
|  | do_print_state = false; | 
|  | } | 
|  |  | 
|  | if (env->log.level & BPF_LOG_LEVEL) { | 
|  | const struct bpf_insn_cbs cbs = { | 
|  | .cb_call	= disasm_kfunc_name, | 
|  | .cb_print	= verbose, | 
|  | .private_data	= env, | 
|  | }; | 
|  |  | 
|  | if (verifier_state_scratched(env)) | 
|  | print_insn_state(env, state->frame[state->curframe]); | 
|  |  | 
|  | verbose_linfo(env, env->insn_idx, "; "); | 
|  | env->prev_log_pos = env->log.end_pos; | 
|  | verbose(env, "%d: ", env->insn_idx); | 
|  | print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); | 
|  | env->prev_insn_print_pos = env->log.end_pos - env->prev_log_pos; | 
|  | env->prev_log_pos = env->log.end_pos; | 
|  | } | 
|  |  | 
|  | if (bpf_prog_is_offloaded(env->prog->aux)) { | 
|  | err = bpf_prog_offload_verify_insn(env, env->insn_idx, | 
|  | env->prev_insn_idx); | 
|  | if (err) | 
|  | return err; | 
|  | } | 
|  |  | 
|  | regs = cur_regs(env); | 
|  | sanitize_mark_insn_seen(env); | 
|  | prev_insn_idx = env->insn_idx; | 
|  |  | 
|  | if (class == BPF_ALU || class == BPF_ALU64) { | 
|  | err = check_alu_op(env, insn); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | } else if (class == BPF_LDX) { | 
|  | enum bpf_reg_type src_reg_type; | 
|  |  | 
|  | /* check for reserved fields is already done */ | 
|  |  | 
|  | /* check src operand */ | 
|  | err = check_reg_arg(env, insn->src_reg, SRC_OP); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | src_reg_type = regs[insn->src_reg].type; | 
|  |  | 
|  | /* check that memory (src_reg + off) is readable, | 
|  | * the state of dst_reg will be updated by this func | 
|  | */ | 
|  | err = check_mem_access(env, env->insn_idx, insn->src_reg, | 
|  | insn->off, BPF_SIZE(insn->code), | 
|  | BPF_READ, insn->dst_reg, false, | 
|  | BPF_MODE(insn->code) == BPF_MEMSX); | 
|  | err = err ?: save_aux_ptr_type(env, src_reg_type, true); | 
|  | err = err ?: reg_bounds_sanity_check(env, ®s[insn->dst_reg], "ldx"); | 
|  | if (err) | 
|  | return err; | 
|  | } else if (class == BPF_STX) { | 
|  | enum bpf_reg_type dst_reg_type; | 
|  |  | 
|  | if (BPF_MODE(insn->code) == BPF_ATOMIC) { | 
|  | err = check_atomic(env, env->insn_idx, insn); | 
|  | if (err) | 
|  | return err; | 
|  | env->insn_idx++; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) { | 
|  | verbose(env, "BPF_STX uses reserved fields\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* check src1 operand */ | 
|  | err = check_reg_arg(env, insn->src_reg, SRC_OP); | 
|  | if (err) | 
|  | return err; | 
|  | /* check src2 operand */ | 
|  | err = check_reg_arg(env, insn->dst_reg, SRC_OP); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | dst_reg_type = regs[insn->dst_reg].type; | 
|  |  | 
|  | /* check that memory (dst_reg + off) is writeable */ | 
|  | err = check_mem_access(env, env->insn_idx, insn->dst_reg, | 
|  | insn->off, BPF_SIZE(insn->code), | 
|  | BPF_WRITE, insn->src_reg, false, false); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | err = save_aux_ptr_type(env, dst_reg_type, false); | 
|  | if (err) | 
|  | return err; | 
|  | } else if (class == BPF_ST) { | 
|  | enum bpf_reg_type dst_reg_type; | 
|  |  | 
|  | if (BPF_MODE(insn->code) != BPF_MEM || | 
|  | insn->src_reg != BPF_REG_0) { | 
|  | verbose(env, "BPF_ST uses reserved fields\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | /* check src operand */ | 
|  | err = check_reg_arg(env, insn->dst_reg, SRC_OP); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | dst_reg_type = regs[insn->dst_reg].type; | 
|  |  | 
|  | /* check that memory (dst_reg + off) is writeable */ | 
|  | err = check_mem_access(env, env->insn_idx, insn->dst_reg, | 
|  | insn->off, BPF_SIZE(insn->code), | 
|  | BPF_WRITE, -1, false, false); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | err = save_aux_ptr_type(env, dst_reg_type, false); | 
|  | if (err) | 
|  | return err; | 
|  | } else if (class == BPF_JMP || class == BPF_JMP32) { | 
|  | u8 opcode = BPF_OP(insn->code); | 
|  |  | 
|  | env->jmps_processed++; | 
|  | if (opcode == BPF_CALL) { | 
|  | if (BPF_SRC(insn->code) != BPF_K || | 
|  | (insn->src_reg != BPF_PSEUDO_KFUNC_CALL | 
|  | && insn->off != 0) || | 
|  | (insn->src_reg != BPF_REG_0 && | 
|  | insn->src_reg != BPF_PSEUDO_CALL && | 
|  | insn->src_reg != BPF_PSEUDO_KFUNC_CALL) || | 
|  | insn->dst_reg != BPF_REG_0 || | 
|  | class == BPF_JMP32) { | 
|  | verbose(env, "BPF_CALL uses reserved fields\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (env->cur_state->active_lock.ptr) { | 
|  | if ((insn->src_reg == BPF_REG_0 && insn->imm != BPF_FUNC_spin_unlock) || | 
|  | (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && | 
|  | (insn->off != 0 || !is_bpf_graph_api_kfunc(insn->imm)))) { | 
|  | verbose(env, "function calls are not allowed while holding a lock\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  | if (insn->src_reg == BPF_PSEUDO_CALL) { | 
|  | err = check_func_call(env, insn, &env->insn_idx); | 
|  | } else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { | 
|  | err = check_kfunc_call(env, insn, &env->insn_idx); | 
|  | if (!err && is_bpf_throw_kfunc(insn)) { | 
|  | exception_exit = true; | 
|  | goto process_bpf_exit_full; | 
|  | } | 
|  | } else { | 
|  | err = check_helper_call(env, insn, &env->insn_idx); | 
|  | } | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | mark_reg_scratched(env, BPF_REG_0); | 
|  | } else if (opcode == BPF_JA) { | 
|  | if (BPF_SRC(insn->code) != BPF_K || | 
|  | insn->src_reg != BPF_REG_0 || | 
|  | insn->dst_reg != BPF_REG_0 || | 
|  | (class == BPF_JMP && insn->imm != 0) || | 
|  | (class == BPF_JMP32 && insn->off != 0)) { | 
|  | verbose(env, "BPF_JA uses reserved fields\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (class == BPF_JMP) | 
|  | env->insn_idx += insn->off + 1; | 
|  | else | 
|  | env->insn_idx += insn->imm + 1; | 
|  | continue; | 
|  |  | 
|  | } else if (opcode == BPF_EXIT) { | 
|  | if (BPF_SRC(insn->code) != BPF_K || | 
|  | insn->imm != 0 || | 
|  | insn->src_reg != BPF_REG_0 || | 
|  | insn->dst_reg != BPF_REG_0 || | 
|  | class == BPF_JMP32) { | 
|  | verbose(env, "BPF_EXIT uses reserved fields\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | process_bpf_exit_full: | 
|  | if (env->cur_state->active_lock.ptr && !env->cur_state->curframe) { | 
|  | verbose(env, "bpf_spin_unlock is missing\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (env->cur_state->active_rcu_lock && !env->cur_state->curframe) { | 
|  | verbose(env, "bpf_rcu_read_unlock is missing\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (env->cur_state->active_preempt_lock && !env->cur_state->curframe) { | 
|  | verbose(env, "%d bpf_preempt_enable%s missing\n", | 
|  | env->cur_state->active_preempt_lock, | 
|  | env->cur_state->active_preempt_lock == 1 ? " is" : "(s) are"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* We must do check_reference_leak here before | 
|  | * prepare_func_exit to handle the case when | 
|  | * state->curframe > 0, it may be a callback | 
|  | * function, for which reference_state must | 
|  | * match caller reference state when it exits. | 
|  | */ | 
|  | err = check_reference_leak(env, exception_exit); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | /* The side effect of the prepare_func_exit | 
|  | * which is being skipped is that it frees | 
|  | * bpf_func_state. Typically, process_bpf_exit | 
|  | * will only be hit with outermost exit. | 
|  | * copy_verifier_state in pop_stack will handle | 
|  | * freeing of any extra bpf_func_state left over | 
|  | * from not processing all nested function | 
|  | * exits. We also skip return code checks as | 
|  | * they are not needed for exceptional exits. | 
|  | */ | 
|  | if (exception_exit) | 
|  | goto process_bpf_exit; | 
|  |  | 
|  | if (state->curframe) { | 
|  | /* exit from nested function */ | 
|  | err = prepare_func_exit(env, &env->insn_idx); | 
|  | if (err) | 
|  | return err; | 
|  | do_print_state = true; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | err = check_return_code(env, BPF_REG_0, "R0"); | 
|  | if (err) | 
|  | return err; | 
|  | process_bpf_exit: | 
|  | mark_verifier_state_scratched(env); | 
|  | update_branch_counts(env, env->cur_state); | 
|  | err = pop_stack(env, &prev_insn_idx, | 
|  | &env->insn_idx, pop_log); | 
|  | if (err < 0) { | 
|  | if (err != -ENOENT) | 
|  | return err; | 
|  | break; | 
|  | } else { | 
|  | do_print_state = true; | 
|  | continue; | 
|  | } | 
|  | } else { | 
|  | err = check_cond_jmp_op(env, insn, &env->insn_idx); | 
|  | if (err) | 
|  | return err; | 
|  | } | 
|  | } else if (class == BPF_LD) { | 
|  | u8 mode = BPF_MODE(insn->code); | 
|  |  | 
|  | if (mode == BPF_ABS || mode == BPF_IND) { | 
|  | err = check_ld_abs(env, insn); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | } else if (mode == BPF_IMM) { | 
|  | err = check_ld_imm(env, insn); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | env->insn_idx++; | 
|  | sanitize_mark_insn_seen(env); | 
|  | } else { | 
|  | verbose(env, "invalid BPF_LD mode\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | } else { | 
|  | verbose(env, "unknown insn class %d\n", class); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | env->insn_idx++; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int find_btf_percpu_datasec(struct btf *btf) | 
|  | { | 
|  | const struct btf_type *t; | 
|  | const char *tname; | 
|  | int i, n; | 
|  |  | 
|  | /* | 
|  | * Both vmlinux and module each have their own ".data..percpu" | 
|  | * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF | 
|  | * types to look at only module's own BTF types. | 
|  | */ | 
|  | n = btf_nr_types(btf); | 
|  | if (btf_is_module(btf)) | 
|  | i = btf_nr_types(btf_vmlinux); | 
|  | else | 
|  | i = 1; | 
|  |  | 
|  | for(; i < n; i++) { | 
|  | t = btf_type_by_id(btf, i); | 
|  | if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC) | 
|  | continue; | 
|  |  | 
|  | tname = btf_name_by_offset(btf, t->name_off); | 
|  | if (!strcmp(tname, ".data..percpu")) | 
|  | return i; | 
|  | } | 
|  |  | 
|  | return -ENOENT; | 
|  | } | 
|  |  | 
|  | /* replace pseudo btf_id with kernel symbol address */ | 
|  | static int check_pseudo_btf_id(struct bpf_verifier_env *env, | 
|  | struct bpf_insn *insn, | 
|  | struct bpf_insn_aux_data *aux) | 
|  | { | 
|  | const struct btf_var_secinfo *vsi; | 
|  | const struct btf_type *datasec; | 
|  | struct btf_mod_pair *btf_mod; | 
|  | const struct btf_type *t; | 
|  | const char *sym_name; | 
|  | bool percpu = false; | 
|  | u32 type, id = insn->imm; | 
|  | struct btf *btf; | 
|  | s32 datasec_id; | 
|  | u64 addr; | 
|  | int i, btf_fd, err; | 
|  |  | 
|  | btf_fd = insn[1].imm; | 
|  | if (btf_fd) { | 
|  | btf = btf_get_by_fd(btf_fd); | 
|  | if (IS_ERR(btf)) { | 
|  | verbose(env, "invalid module BTF object FD specified.\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | } else { | 
|  | if (!btf_vmlinux) { | 
|  | verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | btf = btf_vmlinux; | 
|  | btf_get(btf); | 
|  | } | 
|  |  | 
|  | t = btf_type_by_id(btf, id); | 
|  | if (!t) { | 
|  | verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id); | 
|  | err = -ENOENT; | 
|  | goto err_put; | 
|  | } | 
|  |  | 
|  | if (!btf_type_is_var(t) && !btf_type_is_func(t)) { | 
|  | verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR or KIND_FUNC\n", id); | 
|  | err = -EINVAL; | 
|  | goto err_put; | 
|  | } | 
|  |  | 
|  | sym_name = btf_name_by_offset(btf, t->name_off); | 
|  | addr = kallsyms_lookup_name(sym_name); | 
|  | if (!addr) { | 
|  | verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n", | 
|  | sym_name); | 
|  | err = -ENOENT; | 
|  | goto err_put; | 
|  | } | 
|  | insn[0].imm = (u32)addr; | 
|  | insn[1].imm = addr >> 32; | 
|  |  | 
|  | if (btf_type_is_func(t)) { | 
|  | aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY; | 
|  | aux->btf_var.mem_size = 0; | 
|  | goto check_btf; | 
|  | } | 
|  |  | 
|  | datasec_id = find_btf_percpu_datasec(btf); | 
|  | if (datasec_id > 0) { | 
|  | datasec = btf_type_by_id(btf, datasec_id); | 
|  | for_each_vsi(i, datasec, vsi) { | 
|  | if (vsi->type == id) { | 
|  | percpu = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | type = t->type; | 
|  | t = btf_type_skip_modifiers(btf, type, NULL); | 
|  | if (percpu) { | 
|  | aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU; | 
|  | aux->btf_var.btf = btf; | 
|  | aux->btf_var.btf_id = type; | 
|  | } else if (!btf_type_is_struct(t)) { | 
|  | const struct btf_type *ret; | 
|  | const char *tname; | 
|  | u32 tsize; | 
|  |  | 
|  | /* resolve the type size of ksym. */ | 
|  | ret = btf_resolve_size(btf, t, &tsize); | 
|  | if (IS_ERR(ret)) { | 
|  | tname = btf_name_by_offset(btf, t->name_off); | 
|  | verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n", | 
|  | tname, PTR_ERR(ret)); | 
|  | err = -EINVAL; | 
|  | goto err_put; | 
|  | } | 
|  | aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY; | 
|  | aux->btf_var.mem_size = tsize; | 
|  | } else { | 
|  | aux->btf_var.reg_type = PTR_TO_BTF_ID; | 
|  | aux->btf_var.btf = btf; | 
|  | aux->btf_var.btf_id = type; | 
|  | } | 
|  | check_btf: | 
|  | /* check whether we recorded this BTF (and maybe module) already */ | 
|  | for (i = 0; i < env->used_btf_cnt; i++) { | 
|  | if (env->used_btfs[i].btf == btf) { | 
|  | btf_put(btf); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (env->used_btf_cnt >= MAX_USED_BTFS) { | 
|  | err = -E2BIG; | 
|  | goto err_put; | 
|  | } | 
|  |  | 
|  | btf_mod = &env->used_btfs[env->used_btf_cnt]; | 
|  | btf_mod->btf = btf; | 
|  | btf_mod->module = NULL; | 
|  |  | 
|  | /* if we reference variables from kernel module, bump its refcount */ | 
|  | if (btf_is_module(btf)) { | 
|  | btf_mod->module = btf_try_get_module(btf); | 
|  | if (!btf_mod->module) { | 
|  | err = -ENXIO; | 
|  | goto err_put; | 
|  | } | 
|  | } | 
|  |  | 
|  | env->used_btf_cnt++; | 
|  |  | 
|  | return 0; | 
|  | err_put: | 
|  | btf_put(btf); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static bool is_tracing_prog_type(enum bpf_prog_type type) | 
|  | { | 
|  | switch (type) { | 
|  | case BPF_PROG_TYPE_KPROBE: | 
|  | case BPF_PROG_TYPE_TRACEPOINT: | 
|  | case BPF_PROG_TYPE_PERF_EVENT: | 
|  | case BPF_PROG_TYPE_RAW_TRACEPOINT: | 
|  | case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE: | 
|  | return true; | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int check_map_prog_compatibility(struct bpf_verifier_env *env, | 
|  | struct bpf_map *map, | 
|  | struct bpf_prog *prog) | 
|  |  | 
|  | { | 
|  | enum bpf_prog_type prog_type = resolve_prog_type(prog); | 
|  |  | 
|  | if (btf_record_has_field(map->record, BPF_LIST_HEAD) || | 
|  | btf_record_has_field(map->record, BPF_RB_ROOT)) { | 
|  | if (is_tracing_prog_type(prog_type)) { | 
|  | verbose(env, "tracing progs cannot use bpf_{list_head,rb_root} yet\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (btf_record_has_field(map->record, BPF_SPIN_LOCK)) { | 
|  | if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) { | 
|  | verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (is_tracing_prog_type(prog_type)) { | 
|  | verbose(env, "tracing progs cannot use bpf_spin_lock yet\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (btf_record_has_field(map->record, BPF_TIMER)) { | 
|  | if (is_tracing_prog_type(prog_type)) { | 
|  | verbose(env, "tracing progs cannot use bpf_timer yet\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (btf_record_has_field(map->record, BPF_WORKQUEUE)) { | 
|  | if (is_tracing_prog_type(prog_type)) { | 
|  | verbose(env, "tracing progs cannot use bpf_wq yet\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  |  | 
|  | if ((bpf_prog_is_offloaded(prog->aux) || bpf_map_is_offloaded(map)) && | 
|  | !bpf_offload_prog_map_match(prog, map)) { | 
|  | verbose(env, "offload device mismatch between prog and map\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) { | 
|  | verbose(env, "bpf_struct_ops map cannot be used in prog\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (prog->sleepable) | 
|  | switch (map->map_type) { | 
|  | case BPF_MAP_TYPE_HASH: | 
|  | case BPF_MAP_TYPE_LRU_HASH: | 
|  | case BPF_MAP_TYPE_ARRAY: | 
|  | case BPF_MAP_TYPE_PERCPU_HASH: | 
|  | case BPF_MAP_TYPE_PERCPU_ARRAY: | 
|  | case BPF_MAP_TYPE_LRU_PERCPU_HASH: | 
|  | case BPF_MAP_TYPE_ARRAY_OF_MAPS: | 
|  | case BPF_MAP_TYPE_HASH_OF_MAPS: | 
|  | case BPF_MAP_TYPE_RINGBUF: | 
|  | case BPF_MAP_TYPE_USER_RINGBUF: | 
|  | case BPF_MAP_TYPE_INODE_STORAGE: | 
|  | case BPF_MAP_TYPE_SK_STORAGE: | 
|  | case BPF_MAP_TYPE_TASK_STORAGE: | 
|  | case BPF_MAP_TYPE_CGRP_STORAGE: | 
|  | case BPF_MAP_TYPE_QUEUE: | 
|  | case BPF_MAP_TYPE_STACK: | 
|  | case BPF_MAP_TYPE_ARENA: | 
|  | break; | 
|  | default: | 
|  | verbose(env, | 
|  | "Sleepable programs can only use array, hash, ringbuf and local storage maps\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static bool bpf_map_is_cgroup_storage(struct bpf_map *map) | 
|  | { | 
|  | return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE || | 
|  | map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE); | 
|  | } | 
|  |  | 
|  | /* Add map behind fd to used maps list, if it's not already there, and return | 
|  | * its index. Also set *reused to true if this map was already in the list of | 
|  | * used maps. | 
|  | * Returns <0 on error, or >= 0 index, on success. | 
|  | */ | 
|  | static int add_used_map_from_fd(struct bpf_verifier_env *env, int fd, bool *reused) | 
|  | { | 
|  | CLASS(fd, f)(fd); | 
|  | struct bpf_map *map; | 
|  | int i; | 
|  |  | 
|  | map = __bpf_map_get(f); | 
|  | if (IS_ERR(map)) { | 
|  | verbose(env, "fd %d is not pointing to valid bpf_map\n", fd); | 
|  | return PTR_ERR(map); | 
|  | } | 
|  |  | 
|  | /* check whether we recorded this map already */ | 
|  | for (i = 0; i < env->used_map_cnt; i++) { | 
|  | if (env->used_maps[i] == map) { | 
|  | *reused = true; | 
|  | return i; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (env->used_map_cnt >= MAX_USED_MAPS) { | 
|  | verbose(env, "The total number of maps per program has reached the limit of %u\n", | 
|  | MAX_USED_MAPS); | 
|  | return -E2BIG; | 
|  | } | 
|  |  | 
|  | if (env->prog->sleepable) | 
|  | atomic64_inc(&map->sleepable_refcnt); | 
|  |  | 
|  | /* hold the map. If the program is rejected by verifier, | 
|  | * the map will be released by release_maps() or it | 
|  | * will be used by the valid program until it's unloaded | 
|  | * and all maps are released in bpf_free_used_maps() | 
|  | */ | 
|  | bpf_map_inc(map); | 
|  |  | 
|  | *reused = false; | 
|  | env->used_maps[env->used_map_cnt++] = map; | 
|  |  | 
|  | return env->used_map_cnt - 1; | 
|  | } | 
|  |  | 
|  | /* find and rewrite pseudo imm in ld_imm64 instructions: | 
|  | * | 
|  | * 1. if it accesses map FD, replace it with actual map pointer. | 
|  | * 2. if it accesses btf_id of a VAR, replace it with pointer to the var. | 
|  | * | 
|  | * NOTE: btf_vmlinux is required for converting pseudo btf_id. | 
|  | */ | 
|  | static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env) | 
|  | { | 
|  | struct bpf_insn *insn = env->prog->insnsi; | 
|  | int insn_cnt = env->prog->len; | 
|  | int i, err; | 
|  |  | 
|  | err = bpf_prog_calc_tag(env->prog); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | for (i = 0; i < insn_cnt; i++, insn++) { | 
|  | if (BPF_CLASS(insn->code) == BPF_LDX && | 
|  | ((BPF_MODE(insn->code) != BPF_MEM && BPF_MODE(insn->code) != BPF_MEMSX) || | 
|  | insn->imm != 0)) { | 
|  | verbose(env, "BPF_LDX uses reserved fields\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { | 
|  | struct bpf_insn_aux_data *aux; | 
|  | struct bpf_map *map; | 
|  | int map_idx; | 
|  | u64 addr; | 
|  | u32 fd; | 
|  | bool reused; | 
|  |  | 
|  | if (i == insn_cnt - 1 || insn[1].code != 0 || | 
|  | insn[1].dst_reg != 0 || insn[1].src_reg != 0 || | 
|  | insn[1].off != 0) { | 
|  | verbose(env, "invalid bpf_ld_imm64 insn\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (insn[0].src_reg == 0) | 
|  | /* valid generic load 64-bit imm */ | 
|  | goto next_insn; | 
|  |  | 
|  | if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) { | 
|  | aux = &env->insn_aux_data[i]; | 
|  | err = check_pseudo_btf_id(env, insn, aux); | 
|  | if (err) | 
|  | return err; | 
|  | goto next_insn; | 
|  | } | 
|  |  | 
|  | if (insn[0].src_reg == BPF_PSEUDO_FUNC) { | 
|  | aux = &env->insn_aux_data[i]; | 
|  | aux->ptr_type = PTR_TO_FUNC; | 
|  | goto next_insn; | 
|  | } | 
|  |  | 
|  | /* In final convert_pseudo_ld_imm64() step, this is | 
|  | * converted into regular 64-bit imm load insn. | 
|  | */ | 
|  | switch (insn[0].src_reg) { | 
|  | case BPF_PSEUDO_MAP_VALUE: | 
|  | case BPF_PSEUDO_MAP_IDX_VALUE: | 
|  | break; | 
|  | case BPF_PSEUDO_MAP_FD: | 
|  | case BPF_PSEUDO_MAP_IDX: | 
|  | if (insn[1].imm == 0) | 
|  | break; | 
|  | fallthrough; | 
|  | default: | 
|  | verbose(env, "unrecognized bpf_ld_imm64 insn\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | switch (insn[0].src_reg) { | 
|  | case BPF_PSEUDO_MAP_IDX_VALUE: | 
|  | case BPF_PSEUDO_MAP_IDX: | 
|  | if (bpfptr_is_null(env->fd_array)) { | 
|  | verbose(env, "fd_idx without fd_array is invalid\n"); | 
|  | return -EPROTO; | 
|  | } | 
|  | if (copy_from_bpfptr_offset(&fd, env->fd_array, | 
|  | insn[0].imm * sizeof(fd), | 
|  | sizeof(fd))) | 
|  | return -EFAULT; | 
|  | break; | 
|  | default: | 
|  | fd = insn[0].imm; | 
|  | break; | 
|  | } | 
|  |  | 
|  | map_idx = add_used_map_from_fd(env, fd, &reused); | 
|  | if (map_idx < 0) | 
|  | return map_idx; | 
|  | map = env->used_maps[map_idx]; | 
|  |  | 
|  | aux = &env->insn_aux_data[i]; | 
|  | aux->map_index = map_idx; | 
|  |  | 
|  | err = check_map_prog_compatibility(env, map, env->prog); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | if (insn[0].src_reg == BPF_PSEUDO_MAP_FD || | 
|  | insn[0].src_reg == BPF_PSEUDO_MAP_IDX) { | 
|  | addr = (unsigned long)map; | 
|  | } else { | 
|  | u32 off = insn[1].imm; | 
|  |  | 
|  | if (off >= BPF_MAX_VAR_OFF) { | 
|  | verbose(env, "direct value offset of %u is not allowed\n", off); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (!map->ops->map_direct_value_addr) { | 
|  | verbose(env, "no direct value access support for this map type\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | err = map->ops->map_direct_value_addr(map, &addr, off); | 
|  | if (err) { | 
|  | verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n", | 
|  | map->value_size, off); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | aux->map_off = off; | 
|  | addr += off; | 
|  | } | 
|  |  | 
|  | insn[0].imm = (u32)addr; | 
|  | insn[1].imm = addr >> 32; | 
|  |  | 
|  | /* proceed with extra checks only if its newly added used map */ | 
|  | if (reused) | 
|  | goto next_insn; | 
|  |  | 
|  | if (bpf_map_is_cgroup_storage(map) && | 
|  | bpf_cgroup_storage_assign(env->prog->aux, map)) { | 
|  | verbose(env, "only one cgroup storage of each type is allowed\n"); | 
|  | return -EBUSY; | 
|  | } | 
|  | if (map->map_type == BPF_MAP_TYPE_ARENA) { | 
|  | if (env->prog->aux->arena) { | 
|  | verbose(env, "Only one arena per program\n"); | 
|  | return -EBUSY; | 
|  | } | 
|  | if (!env->allow_ptr_leaks || !env->bpf_capable) { | 
|  | verbose(env, "CAP_BPF and CAP_PERFMON are required to use arena\n"); | 
|  | return -EPERM; | 
|  | } | 
|  | if (!env->prog->jit_requested) { | 
|  | verbose(env, "JIT is required to use arena\n"); | 
|  | return -EOPNOTSUPP; | 
|  | } | 
|  | if (!bpf_jit_supports_arena()) { | 
|  | verbose(env, "JIT doesn't support arena\n"); | 
|  | return -EOPNOTSUPP; | 
|  | } | 
|  | env->prog->aux->arena = (void *)map; | 
|  | if (!bpf_arena_get_user_vm_start(env->prog->aux->arena)) { | 
|  | verbose(env, "arena's user address must be set via map_extra or mmap()\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  |  | 
|  | next_insn: | 
|  | insn++; | 
|  | i++; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* Basic sanity check before we invest more work here. */ | 
|  | if (!bpf_opcode_in_insntable(insn->code)) { | 
|  | verbose(env, "unknown opcode %02x\n", insn->code); | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* now all pseudo BPF_LD_IMM64 instructions load valid | 
|  | * 'struct bpf_map *' into a register instead of user map_fd. | 
|  | * These pointers will be used later by verifier to validate map access. | 
|  | */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* drop refcnt of maps used by the rejected program */ | 
|  | static void release_maps(struct bpf_verifier_env *env) | 
|  | { | 
|  | __bpf_free_used_maps(env->prog->aux, env->used_maps, | 
|  | env->used_map_cnt); | 
|  | } | 
|  |  | 
|  | /* drop refcnt of maps used by the rejected program */ | 
|  | static void release_btfs(struct bpf_verifier_env *env) | 
|  | { | 
|  | __bpf_free_used_btfs(env->used_btfs, env->used_btf_cnt); | 
|  | } | 
|  |  | 
|  | /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ | 
|  | static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) | 
|  | { | 
|  | struct bpf_insn *insn = env->prog->insnsi; | 
|  | int insn_cnt = env->prog->len; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < insn_cnt; i++, insn++) { | 
|  | if (insn->code != (BPF_LD | BPF_IMM | BPF_DW)) | 
|  | continue; | 
|  | if (insn->src_reg == BPF_PSEUDO_FUNC) | 
|  | continue; | 
|  | insn->src_reg = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* single env->prog->insni[off] instruction was replaced with the range | 
|  | * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying | 
|  | * [0, off) and [off, end) to new locations, so the patched range stays zero | 
|  | */ | 
|  | static void adjust_insn_aux_data(struct bpf_verifier_env *env, | 
|  | struct bpf_insn_aux_data *new_data, | 
|  | struct bpf_prog *new_prog, u32 off, u32 cnt) | 
|  | { | 
|  | struct bpf_insn_aux_data *old_data = env->insn_aux_data; | 
|  | struct bpf_insn *insn = new_prog->insnsi; | 
|  | u32 old_seen = old_data[off].seen; | 
|  | u32 prog_len; | 
|  | int i; | 
|  |  | 
|  | /* aux info at OFF always needs adjustment, no matter fast path | 
|  | * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the | 
|  | * original insn at old prog. | 
|  | */ | 
|  | old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1); | 
|  |  | 
|  | if (cnt == 1) | 
|  | return; | 
|  | prog_len = new_prog->len; | 
|  |  | 
|  | memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); | 
|  | memcpy(new_data + off + cnt - 1, old_data + off, | 
|  | sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); | 
|  | for (i = off; i < off + cnt - 1; i++) { | 
|  | /* Expand insni[off]'s seen count to the patched range. */ | 
|  | new_data[i].seen = old_seen; | 
|  | new_data[i].zext_dst = insn_has_def32(env, insn + i); | 
|  | } | 
|  | env->insn_aux_data = new_data; | 
|  | vfree(old_data); | 
|  | } | 
|  |  | 
|  | static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | if (len == 1) | 
|  | return; | 
|  | /* NOTE: fake 'exit' subprog should be updated as well. */ | 
|  | for (i = 0; i <= env->subprog_cnt; i++) { | 
|  | if (env->subprog_info[i].start <= off) | 
|  | continue; | 
|  | env->subprog_info[i].start += len - 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len) | 
|  | { | 
|  | struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab; | 
|  | int i, sz = prog->aux->size_poke_tab; | 
|  | struct bpf_jit_poke_descriptor *desc; | 
|  |  | 
|  | for (i = 0; i < sz; i++) { | 
|  | desc = &tab[i]; | 
|  | if (desc->insn_idx <= off) | 
|  | continue; | 
|  | desc->insn_idx += len - 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, | 
|  | const struct bpf_insn *patch, u32 len) | 
|  | { | 
|  | struct bpf_prog *new_prog; | 
|  | struct bpf_insn_aux_data *new_data = NULL; | 
|  |  | 
|  | if (len > 1) { | 
|  | new_data = vzalloc(array_size(env->prog->len + len - 1, | 
|  | sizeof(struct bpf_insn_aux_data))); | 
|  | if (!new_data) | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | new_prog = bpf_patch_insn_single(env->prog, off, patch, len); | 
|  | if (IS_ERR(new_prog)) { | 
|  | if (PTR_ERR(new_prog) == -ERANGE) | 
|  | verbose(env, | 
|  | "insn %d cannot be patched due to 16-bit range\n", | 
|  | env->insn_aux_data[off].orig_idx); | 
|  | vfree(new_data); | 
|  | return NULL; | 
|  | } | 
|  | adjust_insn_aux_data(env, new_data, new_prog, off, len); | 
|  | adjust_subprog_starts(env, off, len); | 
|  | adjust_poke_descs(new_prog, off, len); | 
|  | return new_prog; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * For all jmp insns in a given 'prog' that point to 'tgt_idx' insn adjust the | 
|  | * jump offset by 'delta'. | 
|  | */ | 
|  | static int adjust_jmp_off(struct bpf_prog *prog, u32 tgt_idx, u32 delta) | 
|  | { | 
|  | struct bpf_insn *insn = prog->insnsi; | 
|  | u32 insn_cnt = prog->len, i; | 
|  | s32 imm; | 
|  | s16 off; | 
|  |  | 
|  | for (i = 0; i < insn_cnt; i++, insn++) { | 
|  | u8 code = insn->code; | 
|  |  | 
|  | if (tgt_idx <= i && i < tgt_idx + delta) | 
|  | continue; | 
|  |  | 
|  | if ((BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) || | 
|  | BPF_OP(code) == BPF_CALL || BPF_OP(code) == BPF_EXIT) | 
|  | continue; | 
|  |  | 
|  | if (insn->code == (BPF_JMP32 | BPF_JA)) { | 
|  | if (i + 1 + insn->imm != tgt_idx) | 
|  | continue; | 
|  | if (check_add_overflow(insn->imm, delta, &imm)) | 
|  | return -ERANGE; | 
|  | insn->imm = imm; | 
|  | } else { | 
|  | if (i + 1 + insn->off != tgt_idx) | 
|  | continue; | 
|  | if (check_add_overflow(insn->off, delta, &off)) | 
|  | return -ERANGE; | 
|  | insn->off = off; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env, | 
|  | u32 off, u32 cnt) | 
|  | { | 
|  | int i, j; | 
|  |  | 
|  | /* find first prog starting at or after off (first to remove) */ | 
|  | for (i = 0; i < env->subprog_cnt; i++) | 
|  | if (env->subprog_info[i].start >= off) | 
|  | break; | 
|  | /* find first prog starting at or after off + cnt (first to stay) */ | 
|  | for (j = i; j < env->subprog_cnt; j++) | 
|  | if (env->subprog_info[j].start >= off + cnt) | 
|  | break; | 
|  | /* if j doesn't start exactly at off + cnt, we are just removing | 
|  | * the front of previous prog | 
|  | */ | 
|  | if (env->subprog_info[j].start != off + cnt) | 
|  | j--; | 
|  |  | 
|  | if (j > i) { | 
|  | struct bpf_prog_aux *aux = env->prog->aux; | 
|  | int move; | 
|  |  | 
|  | /* move fake 'exit' subprog as well */ | 
|  | move = env->subprog_cnt + 1 - j; | 
|  |  | 
|  | memmove(env->subprog_info + i, | 
|  | env->subprog_info + j, | 
|  | sizeof(*env->subprog_info) * move); | 
|  | env->subprog_cnt -= j - i; | 
|  |  | 
|  | /* remove func_info */ | 
|  | if (aux->func_info) { | 
|  | move = aux->func_info_cnt - j; | 
|  |  | 
|  | memmove(aux->func_info + i, | 
|  | aux->func_info + j, | 
|  | sizeof(*aux->func_info) * move); | 
|  | aux->func_info_cnt -= j - i; | 
|  | /* func_info->insn_off is set after all code rewrites, | 
|  | * in adjust_btf_func() - no need to adjust | 
|  | */ | 
|  | } | 
|  | } else { | 
|  | /* convert i from "first prog to remove" to "first to adjust" */ | 
|  | if (env->subprog_info[i].start == off) | 
|  | i++; | 
|  | } | 
|  |  | 
|  | /* update fake 'exit' subprog as well */ | 
|  | for (; i <= env->subprog_cnt; i++) | 
|  | env->subprog_info[i].start -= cnt; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off, | 
|  | u32 cnt) | 
|  | { | 
|  | struct bpf_prog *prog = env->prog; | 
|  | u32 i, l_off, l_cnt, nr_linfo; | 
|  | struct bpf_line_info *linfo; | 
|  |  | 
|  | nr_linfo = prog->aux->nr_linfo; | 
|  | if (!nr_linfo) | 
|  | return 0; | 
|  |  | 
|  | linfo = prog->aux->linfo; | 
|  |  | 
|  | /* find first line info to remove, count lines to be removed */ | 
|  | for (i = 0; i < nr_linfo; i++) | 
|  | if (linfo[i].insn_off >= off) | 
|  | break; | 
|  |  | 
|  | l_off = i; | 
|  | l_cnt = 0; | 
|  | for (; i < nr_linfo; i++) | 
|  | if (linfo[i].insn_off < off + cnt) | 
|  | l_cnt++; | 
|  | else | 
|  | break; | 
|  |  | 
|  | /* First live insn doesn't match first live linfo, it needs to "inherit" | 
|  | * last removed linfo.  prog is already modified, so prog->len == off | 
|  | * means no live instructions after (tail of the program was removed). | 
|  | */ | 
|  | if (prog->len != off && l_cnt && | 
|  | (i == nr_linfo || linfo[i].insn_off != off + cnt)) { | 
|  | l_cnt--; | 
|  | linfo[--i].insn_off = off + cnt; | 
|  | } | 
|  |  | 
|  | /* remove the line info which refer to the removed instructions */ | 
|  | if (l_cnt) { | 
|  | memmove(linfo + l_off, linfo + i, | 
|  | sizeof(*linfo) * (nr_linfo - i)); | 
|  |  | 
|  | prog->aux->nr_linfo -= l_cnt; | 
|  | nr_linfo = prog->aux->nr_linfo; | 
|  | } | 
|  |  | 
|  | /* pull all linfo[i].insn_off >= off + cnt in by cnt */ | 
|  | for (i = l_off; i < nr_linfo; i++) | 
|  | linfo[i].insn_off -= cnt; | 
|  |  | 
|  | /* fix up all subprogs (incl. 'exit') which start >= off */ | 
|  | for (i = 0; i <= env->subprog_cnt; i++) | 
|  | if (env->subprog_info[i].linfo_idx > l_off) { | 
|  | /* program may have started in the removed region but | 
|  | * may not be fully removed | 
|  | */ | 
|  | if (env->subprog_info[i].linfo_idx >= l_off + l_cnt) | 
|  | env->subprog_info[i].linfo_idx -= l_cnt; | 
|  | else | 
|  | env->subprog_info[i].linfo_idx = l_off; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt) | 
|  | { | 
|  | struct bpf_insn_aux_data *aux_data = env->insn_aux_data; | 
|  | unsigned int orig_prog_len = env->prog->len; | 
|  | int err; | 
|  |  | 
|  | if (bpf_prog_is_offloaded(env->prog->aux)) | 
|  | bpf_prog_offload_remove_insns(env, off, cnt); | 
|  |  | 
|  | err = bpf_remove_insns(env->prog, off, cnt); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | err = adjust_subprog_starts_after_remove(env, off, cnt); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | err = bpf_adj_linfo_after_remove(env, off, cnt); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | memmove(aux_data + off,	aux_data + off + cnt, | 
|  | sizeof(*aux_data) * (orig_prog_len - off - cnt)); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* The verifier does more data flow analysis than llvm and will not | 
|  | * explore branches that are dead at run time. Malicious programs can | 
|  | * have dead code too. Therefore replace all dead at-run-time code | 
|  | * with 'ja -1'. | 
|  | * | 
|  | * Just nops are not optimal, e.g. if they would sit at the end of the | 
|  | * program and through another bug we would manage to jump there, then | 
|  | * we'd execute beyond program memory otherwise. Returning exception | 
|  | * code also wouldn't work since we can have subprogs where the dead | 
|  | * code could be located. | 
|  | */ | 
|  | static void sanitize_dead_code(struct bpf_verifier_env *env) | 
|  | { | 
|  | struct bpf_insn_aux_data *aux_data = env->insn_aux_data; | 
|  | struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); | 
|  | struct bpf_insn *insn = env->prog->insnsi; | 
|  | const int insn_cnt = env->prog->len; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < insn_cnt; i++) { | 
|  | if (aux_data[i].seen) | 
|  | continue; | 
|  | memcpy(insn + i, &trap, sizeof(trap)); | 
|  | aux_data[i].zext_dst = false; | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool insn_is_cond_jump(u8 code) | 
|  | { | 
|  | u8 op; | 
|  |  | 
|  | op = BPF_OP(code); | 
|  | if (BPF_CLASS(code) == BPF_JMP32) | 
|  | return op != BPF_JA; | 
|  |  | 
|  | if (BPF_CLASS(code) != BPF_JMP) | 
|  | return false; | 
|  |  | 
|  | return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL; | 
|  | } | 
|  |  | 
|  | static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env) | 
|  | { | 
|  | struct bpf_insn_aux_data *aux_data = env->insn_aux_data; | 
|  | struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); | 
|  | struct bpf_insn *insn = env->prog->insnsi; | 
|  | const int insn_cnt = env->prog->len; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < insn_cnt; i++, insn++) { | 
|  | if (!insn_is_cond_jump(insn->code)) | 
|  | continue; | 
|  |  | 
|  | if (!aux_data[i + 1].seen) | 
|  | ja.off = insn->off; | 
|  | else if (!aux_data[i + 1 + insn->off].seen) | 
|  | ja.off = 0; | 
|  | else | 
|  | continue; | 
|  |  | 
|  | if (bpf_prog_is_offloaded(env->prog->aux)) | 
|  | bpf_prog_offload_replace_insn(env, i, &ja); | 
|  |  | 
|  | memcpy(insn, &ja, sizeof(ja)); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int opt_remove_dead_code(struct bpf_verifier_env *env) | 
|  | { | 
|  | struct bpf_insn_aux_data *aux_data = env->insn_aux_data; | 
|  | int insn_cnt = env->prog->len; | 
|  | int i, err; | 
|  |  | 
|  | for (i = 0; i < insn_cnt; i++) { | 
|  | int j; | 
|  |  | 
|  | j = 0; | 
|  | while (i + j < insn_cnt && !aux_data[i + j].seen) | 
|  | j++; | 
|  | if (!j) | 
|  | continue; | 
|  |  | 
|  | err = verifier_remove_insns(env, i, j); | 
|  | if (err) | 
|  | return err; | 
|  | insn_cnt = env->prog->len; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const struct bpf_insn NOP = BPF_JMP_IMM(BPF_JA, 0, 0, 0); | 
|  |  | 
|  | static int opt_remove_nops(struct bpf_verifier_env *env) | 
|  | { | 
|  | const struct bpf_insn ja = NOP; | 
|  | struct bpf_insn *insn = env->prog->insnsi; | 
|  | int insn_cnt = env->prog->len; | 
|  | int i, err; | 
|  |  | 
|  | for (i = 0; i < insn_cnt; i++) { | 
|  | if (memcmp(&insn[i], &ja, sizeof(ja))) | 
|  | continue; | 
|  |  | 
|  | err = verifier_remove_insns(env, i, 1); | 
|  | if (err) | 
|  | return err; | 
|  | insn_cnt--; | 
|  | i--; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env, | 
|  | const union bpf_attr *attr) | 
|  | { | 
|  | struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4]; | 
|  | struct bpf_insn_aux_data *aux = env->insn_aux_data; | 
|  | int i, patch_len, delta = 0, len = env->prog->len; | 
|  | struct bpf_insn *insns = env->prog->insnsi; | 
|  | struct bpf_prog *new_prog; | 
|  | bool rnd_hi32; | 
|  |  | 
|  | rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32; | 
|  | zext_patch[1] = BPF_ZEXT_REG(0); | 
|  | rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0); | 
|  | rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32); | 
|  | rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX); | 
|  | for (i = 0; i < len; i++) { | 
|  | int adj_idx = i + delta; | 
|  | struct bpf_insn insn; | 
|  | int load_reg; | 
|  |  | 
|  | insn = insns[adj_idx]; | 
|  | load_reg = insn_def_regno(&insn); | 
|  | if (!aux[adj_idx].zext_dst) { | 
|  | u8 code, class; | 
|  | u32 imm_rnd; | 
|  |  | 
|  | if (!rnd_hi32) | 
|  | continue; | 
|  |  | 
|  | code = insn.code; | 
|  | class = BPF_CLASS(code); | 
|  | if (load_reg == -1) | 
|  | continue; | 
|  |  | 
|  | /* NOTE: arg "reg" (the fourth one) is only used for | 
|  | *       BPF_STX + SRC_OP, so it is safe to pass NULL | 
|  | *       here. | 
|  | */ | 
|  | if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) { | 
|  | if (class == BPF_LD && | 
|  | BPF_MODE(code) == BPF_IMM) | 
|  | i++; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* ctx load could be transformed into wider load. */ | 
|  | if (class == BPF_LDX && | 
|  | aux[adj_idx].ptr_type == PTR_TO_CTX) | 
|  | continue; | 
|  |  | 
|  | imm_rnd = get_random_u32(); | 
|  | rnd_hi32_patch[0] = insn; | 
|  | rnd_hi32_patch[1].imm = imm_rnd; | 
|  | rnd_hi32_patch[3].dst_reg = load_reg; | 
|  | patch = rnd_hi32_patch; | 
|  | patch_len = 4; | 
|  | goto apply_patch_buffer; | 
|  | } | 
|  |  | 
|  | /* Add in an zero-extend instruction if a) the JIT has requested | 
|  | * it or b) it's a CMPXCHG. | 
|  | * | 
|  | * The latter is because: BPF_CMPXCHG always loads a value into | 
|  | * R0, therefore always zero-extends. However some archs' | 
|  | * equivalent instruction only does this load when the | 
|  | * comparison is successful. This detail of CMPXCHG is | 
|  | * orthogonal to the general zero-extension behaviour of the | 
|  | * CPU, so it's treated independently of bpf_jit_needs_zext. | 
|  | */ | 
|  | if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn)) | 
|  | continue; | 
|  |  | 
|  | /* Zero-extension is done by the caller. */ | 
|  | if (bpf_pseudo_kfunc_call(&insn)) | 
|  | continue; | 
|  |  | 
|  | if (WARN_ON(load_reg == -1)) { | 
|  | verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n"); | 
|  | return -EFAULT; | 
|  | } | 
|  |  | 
|  | zext_patch[0] = insn; | 
|  | zext_patch[1].dst_reg = load_reg; | 
|  | zext_patch[1].src_reg = load_reg; | 
|  | patch = zext_patch; | 
|  | patch_len = 2; | 
|  | apply_patch_buffer: | 
|  | new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len); | 
|  | if (!new_prog) | 
|  | return -ENOMEM; | 
|  | env->prog = new_prog; | 
|  | insns = new_prog->insnsi; | 
|  | aux = env->insn_aux_data; | 
|  | delta += patch_len - 1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* convert load instructions that access fields of a context type into a | 
|  | * sequence of instructions that access fields of the underlying structure: | 
|  | *     struct __sk_buff    -> struct sk_buff | 
|  | *     struct bpf_sock_ops -> struct sock | 
|  | */ | 
|  | static int convert_ctx_accesses(struct bpf_verifier_env *env) | 
|  | { | 
|  | struct bpf_subprog_info *subprogs = env->subprog_info; | 
|  | const struct bpf_verifier_ops *ops = env->ops; | 
|  | int i, cnt, size, ctx_field_size, delta = 0, epilogue_cnt = 0; | 
|  | const int insn_cnt = env->prog->len; | 
|  | struct bpf_insn *epilogue_buf = env->epilogue_buf; | 
|  | struct bpf_insn *insn_buf = env->insn_buf; | 
|  | struct bpf_insn *insn; | 
|  | u32 target_size, size_default, off; | 
|  | struct bpf_prog *new_prog; | 
|  | enum bpf_access_type type; | 
|  | bool is_narrower_load; | 
|  | int epilogue_idx = 0; | 
|  |  | 
|  | if (ops->gen_epilogue) { | 
|  | epilogue_cnt = ops->gen_epilogue(epilogue_buf, env->prog, | 
|  | -(subprogs[0].stack_depth + 8)); | 
|  | if (epilogue_cnt >= INSN_BUF_SIZE) { | 
|  | verbose(env, "bpf verifier is misconfigured\n"); | 
|  | return -EINVAL; | 
|  | } else if (epilogue_cnt) { | 
|  | /* Save the ARG_PTR_TO_CTX for the epilogue to use */ | 
|  | cnt = 0; | 
|  | subprogs[0].stack_depth += 8; | 
|  | insn_buf[cnt++] = BPF_STX_MEM(BPF_DW, BPF_REG_FP, BPF_REG_1, | 
|  | -subprogs[0].stack_depth); | 
|  | insn_buf[cnt++] = env->prog->insnsi[0]; | 
|  | new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); | 
|  | if (!new_prog) | 
|  | return -ENOMEM; | 
|  | env->prog = new_prog; | 
|  | delta += cnt - 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (ops->gen_prologue || env->seen_direct_write) { | 
|  | if (!ops->gen_prologue) { | 
|  | verbose(env, "bpf verifier is misconfigured\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, | 
|  | env->prog); | 
|  | if (cnt >= INSN_BUF_SIZE) { | 
|  | verbose(env, "bpf verifier is misconfigured\n"); | 
|  | return -EINVAL; | 
|  | } else if (cnt) { | 
|  | new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); | 
|  | if (!new_prog) | 
|  | return -ENOMEM; | 
|  |  | 
|  | env->prog = new_prog; | 
|  | delta += cnt - 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (delta) | 
|  | WARN_ON(adjust_jmp_off(env->prog, 0, delta)); | 
|  |  | 
|  | if (bpf_prog_is_offloaded(env->prog->aux)) | 
|  | return 0; | 
|  |  | 
|  | insn = env->prog->insnsi + delta; | 
|  |  | 
|  | for (i = 0; i < insn_cnt; i++, insn++) { | 
|  | bpf_convert_ctx_access_t convert_ctx_access; | 
|  | u8 mode; | 
|  |  | 
|  | if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || | 
|  | insn->code == (BPF_LDX | BPF_MEM | BPF_H) || | 
|  | insn->code == (BPF_LDX | BPF_MEM | BPF_W) || | 
|  | insn->code == (BPF_LDX | BPF_MEM | BPF_DW) || | 
|  | insn->code == (BPF_LDX | BPF_MEMSX | BPF_B) || | 
|  | insn->code == (BPF_LDX | BPF_MEMSX | BPF_H) || | 
|  | insn->code == (BPF_LDX | BPF_MEMSX | BPF_W)) { | 
|  | type = BPF_READ; | 
|  | } else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || | 
|  | insn->code == (BPF_STX | BPF_MEM | BPF_H) || | 
|  | insn->code == (BPF_STX | BPF_MEM | BPF_W) || | 
|  | insn->code == (BPF_STX | BPF_MEM | BPF_DW) || | 
|  | insn->code == (BPF_ST | BPF_MEM | BPF_B) || | 
|  | insn->code == (BPF_ST | BPF_MEM | BPF_H) || | 
|  | insn->code == (BPF_ST | BPF_MEM | BPF_W) || | 
|  | insn->code == (BPF_ST | BPF_MEM | BPF_DW)) { | 
|  | type = BPF_WRITE; | 
|  | } else if ((insn->code == (BPF_STX | BPF_ATOMIC | BPF_W) || | 
|  | insn->code == (BPF_STX | BPF_ATOMIC | BPF_DW)) && | 
|  | env->insn_aux_data[i + delta].ptr_type == PTR_TO_ARENA) { | 
|  | insn->code = BPF_STX | BPF_PROBE_ATOMIC | BPF_SIZE(insn->code); | 
|  | env->prog->aux->num_exentries++; | 
|  | continue; | 
|  | } else if (insn->code == (BPF_JMP | BPF_EXIT) && | 
|  | epilogue_cnt && | 
|  | i + delta < subprogs[1].start) { | 
|  | /* Generate epilogue for the main prog */ | 
|  | if (epilogue_idx) { | 
|  | /* jump back to the earlier generated epilogue */ | 
|  | insn_buf[0] = BPF_JMP32_A(epilogue_idx - i - delta - 1); | 
|  | cnt = 1; | 
|  | } else { | 
|  | memcpy(insn_buf, epilogue_buf, | 
|  | epilogue_cnt * sizeof(*epilogue_buf)); | 
|  | cnt = epilogue_cnt; | 
|  | /* epilogue_idx cannot be 0. It must have at | 
|  | * least one ctx ptr saving insn before the | 
|  | * epilogue. | 
|  | */ | 
|  | epilogue_idx = i + delta; | 
|  | } | 
|  | goto patch_insn_buf; | 
|  | } else { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (type == BPF_WRITE && | 
|  | env->insn_aux_data[i + delta].sanitize_stack_spill) { | 
|  | struct bpf_insn patch[] = { | 
|  | *insn, | 
|  | BPF_ST_NOSPEC(), | 
|  | }; | 
|  |  | 
|  | cnt = ARRAY_SIZE(patch); | 
|  | new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt); | 
|  | if (!new_prog) | 
|  | return -ENOMEM; | 
|  |  | 
|  | delta    += cnt - 1; | 
|  | env->prog = new_prog; | 
|  | insn      = new_prog->insnsi + i + delta; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | switch ((int)env->insn_aux_data[i + delta].ptr_type) { | 
|  | case PTR_TO_CTX: | 
|  | if (!ops->convert_ctx_access) | 
|  | continue; | 
|  | convert_ctx_access = ops->convert_ctx_access; | 
|  | break; | 
|  | case PTR_TO_SOCKET: | 
|  | case PTR_TO_SOCK_COMMON: | 
|  | convert_ctx_access = bpf_sock_convert_ctx_access; | 
|  | break; | 
|  | case PTR_TO_TCP_SOCK: | 
|  | convert_ctx_access = bpf_tcp_sock_convert_ctx_access; | 
|  | break; | 
|  | case PTR_TO_XDP_SOCK: | 
|  | convert_ctx_access = bpf_xdp_sock_convert_ctx_access; | 
|  | break; | 
|  | case PTR_TO_BTF_ID: | 
|  | case PTR_TO_BTF_ID | PTR_UNTRUSTED: | 
|  | /* PTR_TO_BTF_ID | MEM_ALLOC always has a valid lifetime, unlike | 
|  | * PTR_TO_BTF_ID, and an active ref_obj_id, but the same cannot | 
|  | * be said once it is marked PTR_UNTRUSTED, hence we must handle | 
|  | * any faults for loads into such types. BPF_WRITE is disallowed | 
|  | * for this case. | 
|  | */ | 
|  | case PTR_TO_BTF_ID | MEM_ALLOC | PTR_UNTRUSTED: | 
|  | if (type == BPF_READ) { | 
|  | if (BPF_MODE(insn->code) == BPF_MEM) | 
|  | insn->code = BPF_LDX | BPF_PROBE_MEM | | 
|  | BPF_SIZE((insn)->code); | 
|  | else | 
|  | insn->code = BPF_LDX | BPF_PROBE_MEMSX | | 
|  | BPF_SIZE((insn)->code); | 
|  | env->prog->aux->num_exentries++; | 
|  | } | 
|  | continue; | 
|  | case PTR_TO_ARENA: | 
|  | if (BPF_MODE(insn->code) == BPF_MEMSX) { | 
|  | verbose(env, "sign extending loads from arena are not supported yet\n"); | 
|  | return -EOPNOTSUPP; | 
|  | } | 
|  | insn->code = BPF_CLASS(insn->code) | BPF_PROBE_MEM32 | BPF_SIZE(insn->code); | 
|  | env->prog->aux->num_exentries++; | 
|  | continue; | 
|  | default: | 
|  | continue; | 
|  | } | 
|  |  | 
|  | ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; | 
|  | size = BPF_LDST_BYTES(insn); | 
|  | mode = BPF_MODE(insn->code); | 
|  |  | 
|  | /* If the read access is a narrower load of the field, | 
|  | * convert to a 4/8-byte load, to minimum program type specific | 
|  | * convert_ctx_access changes. If conversion is successful, | 
|  | * we will apply proper mask to the result. | 
|  | */ | 
|  | is_narrower_load = size < ctx_field_size; | 
|  | size_default = bpf_ctx_off_adjust_machine(ctx_field_size); | 
|  | off = insn->off; | 
|  | if (is_narrower_load) { | 
|  | u8 size_code; | 
|  |  | 
|  | if (type == BPF_WRITE) { | 
|  | verbose(env, "bpf verifier narrow ctx access misconfigured\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | size_code = BPF_H; | 
|  | if (ctx_field_size == 4) | 
|  | size_code = BPF_W; | 
|  | else if (ctx_field_size == 8) | 
|  | size_code = BPF_DW; | 
|  |  | 
|  | insn->off = off & ~(size_default - 1); | 
|  | insn->code = BPF_LDX | BPF_MEM | size_code; | 
|  | } | 
|  |  | 
|  | target_size = 0; | 
|  | cnt = convert_ctx_access(type, insn, insn_buf, env->prog, | 
|  | &target_size); | 
|  | if (cnt == 0 || cnt >= INSN_BUF_SIZE || | 
|  | (ctx_field_size && !target_size)) { | 
|  | verbose(env, "bpf verifier is misconfigured\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (is_narrower_load && size < target_size) { | 
|  | u8 shift = bpf_ctx_narrow_access_offset( | 
|  | off, size, size_default) * 8; | 
|  | if (shift && cnt + 1 >= INSN_BUF_SIZE) { | 
|  | verbose(env, "bpf verifier narrow ctx load misconfigured\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | if (ctx_field_size <= 4) { | 
|  | if (shift) | 
|  | insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH, | 
|  | insn->dst_reg, | 
|  | shift); | 
|  | insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, | 
|  | (1 << size * 8) - 1); | 
|  | } else { | 
|  | if (shift) | 
|  | insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH, | 
|  | insn->dst_reg, | 
|  | shift); | 
|  | insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, | 
|  | (1ULL << size * 8) - 1); | 
|  | } | 
|  | } | 
|  | if (mode == BPF_MEMSX) | 
|  | insn_buf[cnt++] = BPF_RAW_INSN(BPF_ALU64 | BPF_MOV | BPF_X, | 
|  | insn->dst_reg, insn->dst_reg, | 
|  | size * 8, 0); | 
|  |  | 
|  | patch_insn_buf: | 
|  | new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); | 
|  | if (!new_prog) | 
|  | return -ENOMEM; | 
|  |  | 
|  | delta += cnt - 1; | 
|  |  | 
|  | /* keep walking new program and skip insns we just inserted */ | 
|  | env->prog = new_prog; | 
|  | insn      = new_prog->insnsi + i + delta; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int jit_subprogs(struct bpf_verifier_env *env) | 
|  | { | 
|  | struct bpf_prog *prog = env->prog, **func, *tmp; | 
|  | int i, j, subprog_start, subprog_end = 0, len, subprog; | 
|  | struct bpf_map *map_ptr; | 
|  | struct bpf_insn *insn; | 
|  | void *old_bpf_func; | 
|  | int err, num_exentries; | 
|  |  | 
|  | if (env->subprog_cnt <= 1) | 
|  | return 0; | 
|  |  | 
|  | for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { | 
|  | if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn)) | 
|  | continue; | 
|  |  | 
|  | /* Upon error here we cannot fall back to interpreter but | 
|  | * need a hard reject of the program. Thus -EFAULT is | 
|  | * propagated in any case. | 
|  | */ | 
|  | subprog = find_subprog(env, i + insn->imm + 1); | 
|  | if (subprog < 0) { | 
|  | WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", | 
|  | i + insn->imm + 1); | 
|  | return -EFAULT; | 
|  | } | 
|  | /* temporarily remember subprog id inside insn instead of | 
|  | * aux_data, since next loop will split up all insns into funcs | 
|  | */ | 
|  | insn->off = subprog; | 
|  | /* remember original imm in case JIT fails and fallback | 
|  | * to interpreter will be needed | 
|  | */ | 
|  | env->insn_aux_data[i].call_imm = insn->imm; | 
|  | /* point imm to __bpf_call_base+1 from JITs point of view */ | 
|  | insn->imm = 1; | 
|  | if (bpf_pseudo_func(insn)) { | 
|  | #if defined(MODULES_VADDR) | 
|  | u64 addr = MODULES_VADDR; | 
|  | #else | 
|  | u64 addr = VMALLOC_START; | 
|  | #endif | 
|  | /* jit (e.g. x86_64) may emit fewer instructions | 
|  | * if it learns a u32 imm is the same as a u64 imm. | 
|  | * Set close enough to possible prog address. | 
|  | */ | 
|  | insn[0].imm = (u32)addr; | 
|  | insn[1].imm = addr >> 32; | 
|  | } | 
|  | } | 
|  |  | 
|  | err = bpf_prog_alloc_jited_linfo(prog); | 
|  | if (err) | 
|  | goto out_undo_insn; | 
|  |  | 
|  | err = -ENOMEM; | 
|  | func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL); | 
|  | if (!func) | 
|  | goto out_undo_insn; | 
|  |  | 
|  | for (i = 0; i < env->subprog_cnt; i++) { | 
|  | subprog_start = subprog_end; | 
|  | subprog_end = env->subprog_info[i + 1].start; | 
|  |  | 
|  | len = subprog_end - subprog_start; | 
|  | /* bpf_prog_run() doesn't call subprogs directly, | 
|  | * hence main prog stats include the runtime of subprogs. | 
|  | * subprogs don't have IDs and not reachable via prog_get_next_id | 
|  | * func[i]->stats will never be accessed and stays NULL | 
|  | */ | 
|  | func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER); | 
|  | if (!func[i]) | 
|  | goto out_free; | 
|  | memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], | 
|  | len * sizeof(struct bpf_insn)); | 
|  | func[i]->type = prog->type; | 
|  | func[i]->len = len; | 
|  | if (bpf_prog_calc_tag(func[i])) | 
|  | goto out_free; | 
|  | func[i]->is_func = 1; | 
|  | func[i]->sleepable = prog->sleepable; | 
|  | func[i]->aux->func_idx = i; | 
|  | /* Below members will be freed only at prog->aux */ | 
|  | func[i]->aux->btf = prog->aux->btf; | 
|  | func[i]->aux->func_info = prog->aux->func_info; | 
|  | func[i]->aux->func_info_cnt = prog->aux->func_info_cnt; | 
|  | func[i]->aux->poke_tab = prog->aux->poke_tab; | 
|  | func[i]->aux->size_poke_tab = prog->aux->size_poke_tab; | 
|  |  | 
|  | for (j = 0; j < prog->aux->size_poke_tab; j++) { | 
|  | struct bpf_jit_poke_descriptor *poke; | 
|  |  | 
|  | poke = &prog->aux->poke_tab[j]; | 
|  | if (poke->insn_idx < subprog_end && | 
|  | poke->insn_idx >= subprog_start) | 
|  | poke->aux = func[i]->aux; | 
|  | } | 
|  |  | 
|  | func[i]->aux->name[0] = 'F'; | 
|  | func[i]->aux->stack_depth = env->subprog_info[i].stack_depth; | 
|  | func[i]->jit_requested = 1; | 
|  | func[i]->blinding_requested = prog->blinding_requested; | 
|  | func[i]->aux->kfunc_tab = prog->aux->kfunc_tab; | 
|  | func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab; | 
|  | func[i]->aux->linfo = prog->aux->linfo; | 
|  | func[i]->aux->nr_linfo = prog->aux->nr_linfo; | 
|  | func[i]->aux->jited_linfo = prog->aux->jited_linfo; | 
|  | func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx; | 
|  | func[i]->aux->arena = prog->aux->arena; | 
|  | num_exentries = 0; | 
|  | insn = func[i]->insnsi; | 
|  | for (j = 0; j < func[i]->len; j++, insn++) { | 
|  | if (BPF_CLASS(insn->code) == BPF_LDX && | 
|  | (BPF_MODE(insn->code) == BPF_PROBE_MEM || | 
|  | BPF_MODE(insn->code) == BPF_PROBE_MEM32 || | 
|  | BPF_MODE(insn->code) == BPF_PROBE_MEMSX)) | 
|  | num_exentries++; | 
|  | if ((BPF_CLASS(insn->code) == BPF_STX || | 
|  | BPF_CLASS(insn->code) == BPF_ST) && | 
|  | BPF_MODE(insn->code) == BPF_PROBE_MEM32) | 
|  | num_exentries++; | 
|  | if (BPF_CLASS(insn->code) == BPF_STX && | 
|  | BPF_MODE(insn->code) == BPF_PROBE_ATOMIC) | 
|  | num_exentries++; | 
|  | } | 
|  | func[i]->aux->num_exentries = num_exentries; | 
|  | func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable; | 
|  | func[i]->aux->exception_cb = env->subprog_info[i].is_exception_cb; | 
|  | if (!i) | 
|  | func[i]->aux->exception_boundary = env->seen_exception; | 
|  | func[i] = bpf_int_jit_compile(func[i]); | 
|  | if (!func[i]->jited) { | 
|  | err = -ENOTSUPP; | 
|  | goto out_free; | 
|  | } | 
|  | cond_resched(); | 
|  | } | 
|  |  | 
|  | /* at this point all bpf functions were successfully JITed | 
|  | * now populate all bpf_calls with correct addresses and | 
|  | * run last pass of JIT | 
|  | */ | 
|  | for (i = 0; i < env->subprog_cnt; i++) { | 
|  | insn = func[i]->insnsi; | 
|  | for (j = 0; j < func[i]->len; j++, insn++) { | 
|  | if (bpf_pseudo_func(insn)) { | 
|  | subprog = insn->off; | 
|  | insn[0].imm = (u32)(long)func[subprog]->bpf_func; | 
|  | insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32; | 
|  | continue; | 
|  | } | 
|  | if (!bpf_pseudo_call(insn)) | 
|  | continue; | 
|  | subprog = insn->off; | 
|  | insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func); | 
|  | } | 
|  |  | 
|  | /* we use the aux data to keep a list of the start addresses | 
|  | * of the JITed images for each function in the program | 
|  | * | 
|  | * for some architectures, such as powerpc64, the imm field | 
|  | * might not be large enough to hold the offset of the start | 
|  | * address of the callee's JITed image from __bpf_call_base | 
|  | * | 
|  | * in such cases, we can lookup the start address of a callee | 
|  | * by using its subprog id, available from the off field of | 
|  | * the call instruction, as an index for this list | 
|  | */ | 
|  | func[i]->aux->func = func; | 
|  | func[i]->aux->func_cnt = env->subprog_cnt - env->hidden_subprog_cnt; | 
|  | func[i]->aux->real_func_cnt = env->subprog_cnt; | 
|  | } | 
|  | for (i = 0; i < env->subprog_cnt; i++) { | 
|  | old_bpf_func = func[i]->bpf_func; | 
|  | tmp = bpf_int_jit_compile(func[i]); | 
|  | if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { | 
|  | verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); | 
|  | err = -ENOTSUPP; | 
|  | goto out_free; | 
|  | } | 
|  | cond_resched(); | 
|  | } | 
|  |  | 
|  | /* finally lock prog and jit images for all functions and | 
|  | * populate kallsysm. Begin at the first subprogram, since | 
|  | * bpf_prog_load will add the kallsyms for the main program. | 
|  | */ | 
|  | for (i = 1; i < env->subprog_cnt; i++) { | 
|  | err = bpf_prog_lock_ro(func[i]); | 
|  | if (err) | 
|  | goto out_free; | 
|  | } | 
|  |  | 
|  | for (i = 1; i < env->subprog_cnt; i++) | 
|  | bpf_prog_kallsyms_add(func[i]); | 
|  |  | 
|  | /* Last step: make now unused interpreter insns from main | 
|  | * prog consistent for later dump requests, so they can | 
|  | * later look the same as if they were interpreted only. | 
|  | */ | 
|  | for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { | 
|  | if (bpf_pseudo_func(insn)) { | 
|  | insn[0].imm = env->insn_aux_data[i].call_imm; | 
|  | insn[1].imm = insn->off; | 
|  | insn->off = 0; | 
|  | continue; | 
|  | } | 
|  | if (!bpf_pseudo_call(insn)) | 
|  | continue; | 
|  | insn->off = env->insn_aux_data[i].call_imm; | 
|  | subprog = find_subprog(env, i + insn->off + 1); | 
|  | insn->imm = subprog; | 
|  | } | 
|  |  | 
|  | prog->jited = 1; | 
|  | prog->bpf_func = func[0]->bpf_func; | 
|  | prog->jited_len = func[0]->jited_len; | 
|  | prog->aux->extable = func[0]->aux->extable; | 
|  | prog->aux->num_exentries = func[0]->aux->num_exentries; | 
|  | prog->aux->func = func; | 
|  | prog->aux->func_cnt = env->subprog_cnt - env->hidden_subprog_cnt; | 
|  | prog->aux->real_func_cnt = env->subprog_cnt; | 
|  | prog->aux->bpf_exception_cb = (void *)func[env->exception_callback_subprog]->bpf_func; | 
|  | prog->aux->exception_boundary = func[0]->aux->exception_boundary; | 
|  | bpf_prog_jit_attempt_done(prog); | 
|  | return 0; | 
|  | out_free: | 
|  | /* We failed JIT'ing, so at this point we need to unregister poke | 
|  | * descriptors from subprogs, so that kernel is not attempting to | 
|  | * patch it anymore as we're freeing the subprog JIT memory. | 
|  | */ | 
|  | for (i = 0; i < prog->aux->size_poke_tab; i++) { | 
|  | map_ptr = prog->aux->poke_tab[i].tail_call.map; | 
|  | map_ptr->ops->map_poke_untrack(map_ptr, prog->aux); | 
|  | } | 
|  | /* At this point we're guaranteed that poke descriptors are not | 
|  | * live anymore. We can just unlink its descriptor table as it's | 
|  | * released with the main prog. | 
|  | */ | 
|  | for (i = 0; i < env->subprog_cnt; i++) { | 
|  | if (!func[i]) | 
|  | continue; | 
|  | func[i]->aux->poke_tab = NULL; | 
|  | bpf_jit_free(func[i]); | 
|  | } | 
|  | kfree(func); | 
|  | out_undo_insn: | 
|  | /* cleanup main prog to be interpreted */ | 
|  | prog->jit_requested = 0; | 
|  | prog->blinding_requested = 0; | 
|  | for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { | 
|  | if (!bpf_pseudo_call(insn)) | 
|  | continue; | 
|  | insn->off = 0; | 
|  | insn->imm = env->insn_aux_data[i].call_imm; | 
|  | } | 
|  | bpf_prog_jit_attempt_done(prog); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int fixup_call_args(struct bpf_verifier_env *env) | 
|  | { | 
|  | #ifndef CONFIG_BPF_JIT_ALWAYS_ON | 
|  | struct bpf_prog *prog = env->prog; | 
|  | struct bpf_insn *insn = prog->insnsi; | 
|  | bool has_kfunc_call = bpf_prog_has_kfunc_call(prog); | 
|  | int i, depth; | 
|  | #endif | 
|  | int err = 0; | 
|  |  | 
|  | if (env->prog->jit_requested && | 
|  | !bpf_prog_is_offloaded(env->prog->aux)) { | 
|  | err = jit_subprogs(env); | 
|  | if (err == 0) | 
|  | return 0; | 
|  | if (err == -EFAULT) | 
|  | return err; | 
|  | } | 
|  | #ifndef CONFIG_BPF_JIT_ALWAYS_ON | 
|  | if (has_kfunc_call) { | 
|  | verbose(env, "calling kernel functions are not allowed in non-JITed programs\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) { | 
|  | /* When JIT fails the progs with bpf2bpf calls and tail_calls | 
|  | * have to be rejected, since interpreter doesn't support them yet. | 
|  | */ | 
|  | verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | for (i = 0; i < prog->len; i++, insn++) { | 
|  | if (bpf_pseudo_func(insn)) { | 
|  | /* When JIT fails the progs with callback calls | 
|  | * have to be rejected, since interpreter doesn't support them yet. | 
|  | */ | 
|  | verbose(env, "callbacks are not allowed in non-JITed programs\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (!bpf_pseudo_call(insn)) | 
|  | continue; | 
|  | depth = get_callee_stack_depth(env, insn, i); | 
|  | if (depth < 0) | 
|  | return depth; | 
|  | bpf_patch_call_args(insn, depth); | 
|  | } | 
|  | err = 0; | 
|  | #endif | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* replace a generic kfunc with a specialized version if necessary */ | 
|  | static void specialize_kfunc(struct bpf_verifier_env *env, | 
|  | u32 func_id, u16 offset, unsigned long *addr) | 
|  | { | 
|  | struct bpf_prog *prog = env->prog; | 
|  | bool seen_direct_write; | 
|  | void *xdp_kfunc; | 
|  | bool is_rdonly; | 
|  |  | 
|  | if (bpf_dev_bound_kfunc_id(func_id)) { | 
|  | xdp_kfunc = bpf_dev_bound_resolve_kfunc(prog, func_id); | 
|  | if (xdp_kfunc) { | 
|  | *addr = (unsigned long)xdp_kfunc; | 
|  | return; | 
|  | } | 
|  | /* fallback to default kfunc when not supported by netdev */ | 
|  | } | 
|  |  | 
|  | if (offset) | 
|  | return; | 
|  |  | 
|  | if (func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) { | 
|  | seen_direct_write = env->seen_direct_write; | 
|  | is_rdonly = !may_access_direct_pkt_data(env, NULL, BPF_WRITE); | 
|  |  | 
|  | if (is_rdonly) | 
|  | *addr = (unsigned long)bpf_dynptr_from_skb_rdonly; | 
|  |  | 
|  | /* restore env->seen_direct_write to its original value, since | 
|  | * may_access_direct_pkt_data mutates it | 
|  | */ | 
|  | env->seen_direct_write = seen_direct_write; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void __fixup_collection_insert_kfunc(struct bpf_insn_aux_data *insn_aux, | 
|  | u16 struct_meta_reg, | 
|  | u16 node_offset_reg, | 
|  | struct bpf_insn *insn, | 
|  | struct bpf_insn *insn_buf, | 
|  | int *cnt) | 
|  | { | 
|  | struct btf_struct_meta *kptr_struct_meta = insn_aux->kptr_struct_meta; | 
|  | struct bpf_insn addr[2] = { BPF_LD_IMM64(struct_meta_reg, (long)kptr_struct_meta) }; | 
|  |  | 
|  | insn_buf[0] = addr[0]; | 
|  | insn_buf[1] = addr[1]; | 
|  | insn_buf[2] = BPF_MOV64_IMM(node_offset_reg, insn_aux->insert_off); | 
|  | insn_buf[3] = *insn; | 
|  | *cnt = 4; | 
|  | } | 
|  |  | 
|  | static int fixup_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn, | 
|  | struct bpf_insn *insn_buf, int insn_idx, int *cnt) | 
|  | { | 
|  | const struct bpf_kfunc_desc *desc; | 
|  |  | 
|  | if (!insn->imm) { | 
|  | verbose(env, "invalid kernel function call not eliminated in verifier pass\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | *cnt = 0; | 
|  |  | 
|  | /* insn->imm has the btf func_id. Replace it with an offset relative to | 
|  | * __bpf_call_base, unless the JIT needs to call functions that are | 
|  | * further than 32 bits away (bpf_jit_supports_far_kfunc_call()). | 
|  | */ | 
|  | desc = find_kfunc_desc(env->prog, insn->imm, insn->off); | 
|  | if (!desc) { | 
|  | verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n", | 
|  | insn->imm); | 
|  | return -EFAULT; | 
|  | } | 
|  |  | 
|  | if (!bpf_jit_supports_far_kfunc_call()) | 
|  | insn->imm = BPF_CALL_IMM(desc->addr); | 
|  | if (insn->off) | 
|  | return 0; | 
|  | if (desc->func_id == special_kfunc_list[KF_bpf_obj_new_impl] || | 
|  | desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) { | 
|  | struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; | 
|  | struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) }; | 
|  | u64 obj_new_size = env->insn_aux_data[insn_idx].obj_new_size; | 
|  |  | 
|  | if (desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl] && kptr_struct_meta) { | 
|  | verbose(env, "verifier internal error: NULL kptr_struct_meta expected at insn_idx %d\n", | 
|  | insn_idx); | 
|  | return -EFAULT; | 
|  | } | 
|  |  | 
|  | insn_buf[0] = BPF_MOV64_IMM(BPF_REG_1, obj_new_size); | 
|  | insn_buf[1] = addr[0]; | 
|  | insn_buf[2] = addr[1]; | 
|  | insn_buf[3] = *insn; | 
|  | *cnt = 4; | 
|  | } else if (desc->func_id == special_kfunc_list[KF_bpf_obj_drop_impl] || | 
|  | desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl] || | 
|  | desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) { | 
|  | struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; | 
|  | struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) }; | 
|  |  | 
|  | if (desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl] && kptr_struct_meta) { | 
|  | verbose(env, "verifier internal error: NULL kptr_struct_meta expected at insn_idx %d\n", | 
|  | insn_idx); | 
|  | return -EFAULT; | 
|  | } | 
|  |  | 
|  | if (desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] && | 
|  | !kptr_struct_meta) { | 
|  | verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n", | 
|  | insn_idx); | 
|  | return -EFAULT; | 
|  | } | 
|  |  | 
|  | insn_buf[0] = addr[0]; | 
|  | insn_buf[1] = addr[1]; | 
|  | insn_buf[2] = *insn; | 
|  | *cnt = 3; | 
|  | } else if (desc->func_id == special_kfunc_list[KF_bpf_list_push_back_impl] || | 
|  | desc->func_id == special_kfunc_list[KF_bpf_list_push_front_impl] || | 
|  | desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { | 
|  | struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; | 
|  | int struct_meta_reg = BPF_REG_3; | 
|  | int node_offset_reg = BPF_REG_4; | 
|  |  | 
|  | /* rbtree_add has extra 'less' arg, so args-to-fixup are in diff regs */ | 
|  | if (desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { | 
|  | struct_meta_reg = BPF_REG_4; | 
|  | node_offset_reg = BPF_REG_5; | 
|  | } | 
|  |  | 
|  | if (!kptr_struct_meta) { | 
|  | verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n", | 
|  | insn_idx); | 
|  | return -EFAULT; | 
|  | } | 
|  |  | 
|  | __fixup_collection_insert_kfunc(&env->insn_aux_data[insn_idx], struct_meta_reg, | 
|  | node_offset_reg, insn, insn_buf, cnt); | 
|  | } else if (desc->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx] || | 
|  | desc->func_id == special_kfunc_list[KF_bpf_rdonly_cast]) { | 
|  | insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_1); | 
|  | *cnt = 1; | 
|  | } else if (is_bpf_wq_set_callback_impl_kfunc(desc->func_id)) { | 
|  | struct bpf_insn ld_addrs[2] = { BPF_LD_IMM64(BPF_REG_4, (long)env->prog->aux) }; | 
|  |  | 
|  | insn_buf[0] = ld_addrs[0]; | 
|  | insn_buf[1] = ld_addrs[1]; | 
|  | insn_buf[2] = *insn; | 
|  | *cnt = 3; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* The function requires that first instruction in 'patch' is insnsi[prog->len - 1] */ | 
|  | static int add_hidden_subprog(struct bpf_verifier_env *env, struct bpf_insn *patch, int len) | 
|  | { | 
|  | struct bpf_subprog_info *info = env->subprog_info; | 
|  | int cnt = env->subprog_cnt; | 
|  | struct bpf_prog *prog; | 
|  |  | 
|  | /* We only reserve one slot for hidden subprogs in subprog_info. */ | 
|  | if (env->hidden_subprog_cnt) { | 
|  | verbose(env, "verifier internal error: only one hidden subprog supported\n"); | 
|  | return -EFAULT; | 
|  | } | 
|  | /* We're not patching any existing instruction, just appending the new | 
|  | * ones for the hidden subprog. Hence all of the adjustment operations | 
|  | * in bpf_patch_insn_data are no-ops. | 
|  | */ | 
|  | prog = bpf_patch_insn_data(env, env->prog->len - 1, patch, len); | 
|  | if (!prog) | 
|  | return -ENOMEM; | 
|  | env->prog = prog; | 
|  | info[cnt + 1].start = info[cnt].start; | 
|  | info[cnt].start = prog->len - len + 1; | 
|  | env->subprog_cnt++; | 
|  | env->hidden_subprog_cnt++; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Do various post-verification rewrites in a single program pass. | 
|  | * These rewrites simplify JIT and interpreter implementations. | 
|  | */ | 
|  | static int do_misc_fixups(struct bpf_verifier_env *env) | 
|  | { | 
|  | struct bpf_prog *prog = env->prog; | 
|  | enum bpf_attach_type eatype = prog->expected_attach_type; | 
|  | enum bpf_prog_type prog_type = resolve_prog_type(prog); | 
|  | struct bpf_insn *insn = prog->insnsi; | 
|  | const struct bpf_func_proto *fn; | 
|  | const int insn_cnt = prog->len; | 
|  | const struct bpf_map_ops *ops; | 
|  | struct bpf_insn_aux_data *aux; | 
|  | struct bpf_insn *insn_buf = env->insn_buf; | 
|  | struct bpf_prog *new_prog; | 
|  | struct bpf_map *map_ptr; | 
|  | int i, ret, cnt, delta = 0, cur_subprog = 0; | 
|  | struct bpf_subprog_info *subprogs = env->subprog_info; | 
|  | u16 stack_depth = subprogs[cur_subprog].stack_depth; | 
|  | u16 stack_depth_extra = 0; | 
|  |  | 
|  | if (env->seen_exception && !env->exception_callback_subprog) { | 
|  | struct bpf_insn patch[] = { | 
|  | env->prog->insnsi[insn_cnt - 1], | 
|  | BPF_MOV64_REG(BPF_REG_0, BPF_REG_1), | 
|  | BPF_EXIT_INSN(), | 
|  | }; | 
|  |  | 
|  | ret = add_hidden_subprog(env, patch, ARRAY_SIZE(patch)); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | prog = env->prog; | 
|  | insn = prog->insnsi; | 
|  |  | 
|  | env->exception_callback_subprog = env->subprog_cnt - 1; | 
|  | /* Don't update insn_cnt, as add_hidden_subprog always appends insns */ | 
|  | mark_subprog_exc_cb(env, env->exception_callback_subprog); | 
|  | } | 
|  |  | 
|  | for (i = 0; i < insn_cnt;) { | 
|  | if (insn->code == (BPF_ALU64 | BPF_MOV | BPF_X) && insn->imm) { | 
|  | if ((insn->off == BPF_ADDR_SPACE_CAST && insn->imm == 1) || | 
|  | (((struct bpf_map *)env->prog->aux->arena)->map_flags & BPF_F_NO_USER_CONV)) { | 
|  | /* convert to 32-bit mov that clears upper 32-bit */ | 
|  | insn->code = BPF_ALU | BPF_MOV | BPF_X; | 
|  | /* clear off and imm, so it's a normal 'wX = wY' from JIT pov */ | 
|  | insn->off = 0; | 
|  | insn->imm = 0; | 
|  | } /* cast from as(0) to as(1) should be handled by JIT */ | 
|  | goto next_insn; | 
|  | } | 
|  |  | 
|  | if (env->insn_aux_data[i + delta].needs_zext) | 
|  | /* Convert BPF_CLASS(insn->code) == BPF_ALU64 to 32-bit ALU */ | 
|  | insn->code = BPF_ALU | BPF_OP(insn->code) | BPF_SRC(insn->code); | 
|  |  | 
|  | /* Make sdiv/smod divide-by-minus-one exceptions impossible. */ | 
|  | if ((insn->code == (BPF_ALU64 | BPF_MOD | BPF_K) || | 
|  | insn->code == (BPF_ALU64 | BPF_DIV | BPF_K) || | 
|  | insn->code == (BPF_ALU | BPF_MOD | BPF_K) || | 
|  | insn->code == (BPF_ALU | BPF_DIV | BPF_K)) && | 
|  | insn->off == 1 && insn->imm == -1) { | 
|  | bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; | 
|  | bool isdiv = BPF_OP(insn->code) == BPF_DIV; | 
|  | struct bpf_insn *patchlet; | 
|  | struct bpf_insn chk_and_sdiv[] = { | 
|  | BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) | | 
|  | BPF_NEG | BPF_K, insn->dst_reg, | 
|  | 0, 0, 0), | 
|  | }; | 
|  | struct bpf_insn chk_and_smod[] = { | 
|  | BPF_MOV32_IMM(insn->dst_reg, 0), | 
|  | }; | 
|  |  | 
|  | patchlet = isdiv ? chk_and_sdiv : chk_and_smod; | 
|  | cnt = isdiv ? ARRAY_SIZE(chk_and_sdiv) : ARRAY_SIZE(chk_and_smod); | 
|  |  | 
|  | new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); | 
|  | if (!new_prog) | 
|  | return -ENOMEM; | 
|  |  | 
|  | delta    += cnt - 1; | 
|  | env->prog = prog = new_prog; | 
|  | insn      = new_prog->insnsi + i + delta; | 
|  | goto next_insn; | 
|  | } | 
|  |  | 
|  | /* Make divide-by-zero and divide-by-minus-one exceptions impossible. */ | 
|  | if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || | 
|  | insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || | 
|  | insn->code == (BPF_ALU | BPF_MOD | BPF_X) || | 
|  | insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { | 
|  | bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; | 
|  | bool isdiv = BPF_OP(insn->code) == BPF_DIV; | 
|  | bool is_sdiv = isdiv && insn->off == 1; | 
|  | bool is_smod = !isdiv && insn->off == 1; | 
|  | struct bpf_insn *patchlet; | 
|  | struct bpf_insn chk_and_div[] = { | 
|  | /* [R,W]x div 0 -> 0 */ | 
|  | BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | | 
|  | BPF_JNE | BPF_K, insn->src_reg, | 
|  | 0, 2, 0), | 
|  | BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg), | 
|  | BPF_JMP_IMM(BPF_JA, 0, 0, 1), | 
|  | *insn, | 
|  | }; | 
|  | struct bpf_insn chk_and_mod[] = { | 
|  | /* [R,W]x mod 0 -> [R,W]x */ | 
|  | BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | | 
|  | BPF_JEQ | BPF_K, insn->src_reg, | 
|  | 0, 1 + (is64 ? 0 : 1), 0), | 
|  | *insn, | 
|  | BPF_JMP_IMM(BPF_JA, 0, 0, 1), | 
|  | BPF_MOV32_REG(insn->dst_reg, insn->dst_reg), | 
|  | }; | 
|  | struct bpf_insn chk_and_sdiv[] = { | 
|  | /* [R,W]x sdiv 0 -> 0 | 
|  | * LLONG_MIN sdiv -1 -> LLONG_MIN | 
|  | * INT_MIN sdiv -1 -> INT_MIN | 
|  | */ | 
|  | BPF_MOV64_REG(BPF_REG_AX, insn->src_reg), | 
|  | BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) | | 
|  | BPF_ADD | BPF_K, BPF_REG_AX, | 
|  | 0, 0, 1), | 
|  | BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | | 
|  | BPF_JGT | BPF_K, BPF_REG_AX, | 
|  | 0, 4, 1), | 
|  | BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | | 
|  | BPF_JEQ | BPF_K, BPF_REG_AX, | 
|  | 0, 1, 0), | 
|  | BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) | | 
|  | BPF_MOV | BPF_K, insn->dst_reg, | 
|  | 0, 0, 0), | 
|  | /* BPF_NEG(LLONG_MIN) == -LLONG_MIN == LLONG_MIN */ | 
|  | BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) | | 
|  | BPF_NEG | BPF_K, insn->dst_reg, | 
|  | 0, 0, 0), | 
|  | BPF_JMP_IMM(BPF_JA, 0, 0, 1), | 
|  | *insn, | 
|  | }; | 
|  | struct bpf_insn chk_and_smod[] = { | 
|  | /* [R,W]x mod 0 -> [R,W]x */ | 
|  | /* [R,W]x mod -1 -> 0 */ | 
|  | BPF_MOV64_REG(BPF_REG_AX, insn->src_reg), | 
|  | BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) | | 
|  | BPF_ADD | BPF_K, BPF_REG_AX, | 
|  | 0, 0, 1), | 
|  | BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | | 
|  | BPF_JGT | BPF_K, BPF_REG_AX, | 
|  | 0, 3, 1), | 
|  | BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | | 
|  | BPF_JEQ | BPF_K, BPF_REG_AX, | 
|  | 0, 3 + (is64 ? 0 : 1), 1), | 
|  | BPF_MOV32_IMM(insn->dst_reg, 0), | 
|  | BPF_JMP_IMM(BPF_JA, 0, 0, 1), | 
|  | *insn, | 
|  | BPF_JMP_IMM(BPF_JA, 0, 0, 1), | 
|  | BPF_MOV32_REG(insn->dst_reg, insn->dst_reg), | 
|  | }; | 
|  |  | 
|  | if (is_sdiv) { | 
|  | patchlet = chk_and_sdiv; | 
|  | cnt = ARRAY_SIZE(chk_and_sdiv); | 
|  | } else if (is_smod) { | 
|  | patchlet = chk_and_smod; | 
|  | cnt = ARRAY_SIZE(chk_and_smod) - (is64 ? 2 : 0); | 
|  | } else { | 
|  | patchlet = isdiv ? chk_and_div : chk_and_mod; | 
|  | cnt = isdiv ? ARRAY_SIZE(chk_and_div) : | 
|  | ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0); | 
|  | } | 
|  |  | 
|  | new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); | 
|  | if (!new_prog) | 
|  | return -ENOMEM; | 
|  |  | 
|  | delta    += cnt - 1; | 
|  | env->prog = prog = new_prog; | 
|  | insn      = new_prog->insnsi + i + delta; | 
|  | goto next_insn; | 
|  | } | 
|  |  | 
|  | /* Make it impossible to de-reference a userspace address */ | 
|  | if (BPF_CLASS(insn->code) == BPF_LDX && | 
|  | (BPF_MODE(insn->code) == BPF_PROBE_MEM || | 
|  | BPF_MODE(insn->code) == BPF_PROBE_MEMSX)) { | 
|  | struct bpf_insn *patch = &insn_buf[0]; | 
|  | u64 uaddress_limit = bpf_arch_uaddress_limit(); | 
|  |  | 
|  | if (!uaddress_limit) | 
|  | goto next_insn; | 
|  |  | 
|  | *patch++ = BPF_MOV64_REG(BPF_REG_AX, insn->src_reg); | 
|  | if (insn->off) | 
|  | *patch++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_AX, insn->off); | 
|  | *patch++ = BPF_ALU64_IMM(BPF_RSH, BPF_REG_AX, 32); | 
|  | *patch++ = BPF_JMP_IMM(BPF_JLE, BPF_REG_AX, uaddress_limit >> 32, 2); | 
|  | *patch++ = *insn; | 
|  | *patch++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1); | 
|  | *patch++ = BPF_MOV64_IMM(insn->dst_reg, 0); | 
|  |  | 
|  | cnt = patch - insn_buf; | 
|  | new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); | 
|  | if (!new_prog) | 
|  | return -ENOMEM; | 
|  |  | 
|  | delta    += cnt - 1; | 
|  | env->prog = prog = new_prog; | 
|  | insn      = new_prog->insnsi + i + delta; | 
|  | goto next_insn; | 
|  | } | 
|  |  | 
|  | /* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */ | 
|  | if (BPF_CLASS(insn->code) == BPF_LD && | 
|  | (BPF_MODE(insn->code) == BPF_ABS || | 
|  | BPF_MODE(insn->code) == BPF_IND)) { | 
|  | cnt = env->ops->gen_ld_abs(insn, insn_buf); | 
|  | if (cnt == 0 || cnt >= INSN_BUF_SIZE) { | 
|  | verbose(env, "bpf verifier is misconfigured\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); | 
|  | if (!new_prog) | 
|  | return -ENOMEM; | 
|  |  | 
|  | delta    += cnt - 1; | 
|  | env->prog = prog = new_prog; | 
|  | insn      = new_prog->insnsi + i + delta; | 
|  | goto next_insn; | 
|  | } | 
|  |  | 
|  | /* Rewrite pointer arithmetic to mitigate speculation attacks. */ | 
|  | if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) || | 
|  | insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) { | 
|  | const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X; | 
|  | const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X; | 
|  | struct bpf_insn *patch = &insn_buf[0]; | 
|  | bool issrc, isneg, isimm; | 
|  | u32 off_reg; | 
|  |  | 
|  | aux = &env->insn_aux_data[i + delta]; | 
|  | if (!aux->alu_state || | 
|  | aux->alu_state == BPF_ALU_NON_POINTER) | 
|  | goto next_insn; | 
|  |  | 
|  | isneg = aux->alu_state & BPF_ALU_NEG_VALUE; | 
|  | issrc = (aux->alu_state & BPF_ALU_SANITIZE) == | 
|  | BPF_ALU_SANITIZE_SRC; | 
|  | isimm = aux->alu_state & BPF_ALU_IMMEDIATE; | 
|  |  | 
|  | off_reg = issrc ? insn->src_reg : insn->dst_reg; | 
|  | if (isimm) { | 
|  | *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); | 
|  | } else { | 
|  | if (isneg) | 
|  | *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); | 
|  | *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); | 
|  | *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg); | 
|  | *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg); | 
|  | *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0); | 
|  | *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63); | 
|  | *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg); | 
|  | } | 
|  | if (!issrc) | 
|  | *patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg); | 
|  | insn->src_reg = BPF_REG_AX; | 
|  | if (isneg) | 
|  | insn->code = insn->code == code_add ? | 
|  | code_sub : code_add; | 
|  | *patch++ = *insn; | 
|  | if (issrc && isneg && !isimm) | 
|  | *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); | 
|  | cnt = patch - insn_buf; | 
|  |  | 
|  | new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); | 
|  | if (!new_prog) | 
|  | return -ENOMEM; | 
|  |  | 
|  | delta    += cnt - 1; | 
|  | env->prog = prog = new_prog; | 
|  | insn      = new_prog->insnsi + i + delta; | 
|  | goto next_insn; | 
|  | } | 
|  |  | 
|  | if (is_may_goto_insn(insn)) { | 
|  | int stack_off = -stack_depth - 8; | 
|  |  | 
|  | stack_depth_extra = 8; | 
|  | insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_AX, BPF_REG_10, stack_off); | 
|  | if (insn->off >= 0) | 
|  | insn_buf[1] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_AX, 0, insn->off + 2); | 
|  | else | 
|  | insn_buf[1] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_AX, 0, insn->off - 1); | 
|  | insn_buf[2] = BPF_ALU64_IMM(BPF_SUB, BPF_REG_AX, 1); | 
|  | insn_buf[3] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_AX, stack_off); | 
|  | cnt = 4; | 
|  |  | 
|  | new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); | 
|  | if (!new_prog) | 
|  | return -ENOMEM; | 
|  |  | 
|  | delta += cnt - 1; | 
|  | env->prog = prog = new_prog; | 
|  | insn = new_prog->insnsi + i + delta; | 
|  | goto next_insn; | 
|  | } | 
|  |  | 
|  | if (insn->code != (BPF_JMP | BPF_CALL)) | 
|  | goto next_insn; | 
|  | if (insn->src_reg == BPF_PSEUDO_CALL) | 
|  | goto next_insn; | 
|  | if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { | 
|  | ret = fixup_kfunc_call(env, insn, insn_buf, i + delta, &cnt); | 
|  | if (ret) | 
|  | return ret; | 
|  | if (cnt == 0) | 
|  | goto next_insn; | 
|  |  | 
|  | new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); | 
|  | if (!new_prog) | 
|  | return -ENOMEM; | 
|  |  | 
|  | delta	 += cnt - 1; | 
|  | env->prog = prog = new_prog; | 
|  | insn	  = new_prog->insnsi + i + delta; | 
|  | goto next_insn; | 
|  | } | 
|  |  | 
|  | /* Skip inlining the helper call if the JIT does it. */ | 
|  | if (bpf_jit_inlines_helper_call(insn->imm)) | 
|  | goto next_insn; | 
|  |  | 
|  | if (insn->imm == BPF_FUNC_get_route_realm) | 
|  | prog->dst_needed = 1; | 
|  | if (insn->imm == BPF_FUNC_get_prandom_u32) | 
|  | bpf_user_rnd_init_once(); | 
|  | if (insn->imm == BPF_FUNC_override_return) | 
|  | prog->kprobe_override = 1; | 
|  | if (insn->imm == BPF_FUNC_tail_call) { | 
|  | /* If we tail call into other programs, we | 
|  | * cannot make any assumptions since they can | 
|  | * be replaced dynamically during runtime in | 
|  | * the program array. | 
|  | */ | 
|  | prog->cb_access = 1; | 
|  | if (!allow_tail_call_in_subprogs(env)) | 
|  | prog->aux->stack_depth = MAX_BPF_STACK; | 
|  | prog->aux->max_pkt_offset = MAX_PACKET_OFF; | 
|  |  | 
|  | /* mark bpf_tail_call as different opcode to avoid | 
|  | * conditional branch in the interpreter for every normal | 
|  | * call and to prevent accidental JITing by JIT compiler | 
|  | * that doesn't support bpf_tail_call yet | 
|  | */ | 
|  | insn->imm = 0; | 
|  | insn->code = BPF_JMP | BPF_TAIL_CALL; | 
|  |  | 
|  | aux = &env->insn_aux_data[i + delta]; | 
|  | if (env->bpf_capable && !prog->blinding_requested && | 
|  | prog->jit_requested && | 
|  | !bpf_map_key_poisoned(aux) && | 
|  | !bpf_map_ptr_poisoned(aux) && | 
|  | !bpf_map_ptr_unpriv(aux)) { | 
|  | struct bpf_jit_poke_descriptor desc = { | 
|  | .reason = BPF_POKE_REASON_TAIL_CALL, | 
|  | .tail_call.map = aux->map_ptr_state.map_ptr, | 
|  | .tail_call.key = bpf_map_key_immediate(aux), | 
|  | .insn_idx = i + delta, | 
|  | }; | 
|  |  | 
|  | ret = bpf_jit_add_poke_descriptor(prog, &desc); | 
|  | if (ret < 0) { | 
|  | verbose(env, "adding tail call poke descriptor failed\n"); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | insn->imm = ret + 1; | 
|  | goto next_insn; | 
|  | } | 
|  |  | 
|  | if (!bpf_map_ptr_unpriv(aux)) | 
|  | goto next_insn; | 
|  |  | 
|  | /* instead of changing every JIT dealing with tail_call | 
|  | * emit two extra insns: | 
|  | * if (index >= max_entries) goto out; | 
|  | * index &= array->index_mask; | 
|  | * to avoid out-of-bounds cpu speculation | 
|  | */ | 
|  | if (bpf_map_ptr_poisoned(aux)) { | 
|  | verbose(env, "tail_call abusing map_ptr\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | map_ptr = aux->map_ptr_state.map_ptr; | 
|  | insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, | 
|  | map_ptr->max_entries, 2); | 
|  | insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, | 
|  | container_of(map_ptr, | 
|  | struct bpf_array, | 
|  | map)->index_mask); | 
|  | insn_buf[2] = *insn; | 
|  | cnt = 3; | 
|  | new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); | 
|  | if (!new_prog) | 
|  | return -ENOMEM; | 
|  |  | 
|  | delta    += cnt - 1; | 
|  | env->prog = prog = new_prog; | 
|  | insn      = new_prog->insnsi + i + delta; | 
|  | goto next_insn; | 
|  | } | 
|  |  | 
|  | if (insn->imm == BPF_FUNC_timer_set_callback) { | 
|  | /* The verifier will process callback_fn as many times as necessary | 
|  | * with different maps and the register states prepared by | 
|  | * set_timer_callback_state will be accurate. | 
|  | * | 
|  | * The following use case is valid: | 
|  | *   map1 is shared by prog1, prog2, prog3. | 
|  | *   prog1 calls bpf_timer_init for some map1 elements | 
|  | *   prog2 calls bpf_timer_set_callback for some map1 elements. | 
|  | *     Those that were not bpf_timer_init-ed will return -EINVAL. | 
|  | *   prog3 calls bpf_timer_start for some map1 elements. | 
|  | *     Those that were not both bpf_timer_init-ed and | 
|  | *     bpf_timer_set_callback-ed will return -EINVAL. | 
|  | */ | 
|  | struct bpf_insn ld_addrs[2] = { | 
|  | BPF_LD_IMM64(BPF_REG_3, (long)prog->aux), | 
|  | }; | 
|  |  | 
|  | insn_buf[0] = ld_addrs[0]; | 
|  | insn_buf[1] = ld_addrs[1]; | 
|  | insn_buf[2] = *insn; | 
|  | cnt = 3; | 
|  |  | 
|  | new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); | 
|  | if (!new_prog) | 
|  | return -ENOMEM; | 
|  |  | 
|  | delta    += cnt - 1; | 
|  | env->prog = prog = new_prog; | 
|  | insn      = new_prog->insnsi + i + delta; | 
|  | goto patch_call_imm; | 
|  | } | 
|  |  | 
|  | if (is_storage_get_function(insn->imm)) { | 
|  | if (!in_sleepable(env) || | 
|  | env->insn_aux_data[i + delta].storage_get_func_atomic) | 
|  | insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC); | 
|  | else | 
|  | insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL); | 
|  | insn_buf[1] = *insn; | 
|  | cnt = 2; | 
|  |  | 
|  | new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); | 
|  | if (!new_prog) | 
|  | return -ENOMEM; | 
|  |  | 
|  | delta += cnt - 1; | 
|  | env->prog = prog = new_prog; | 
|  | insn = new_prog->insnsi + i + delta; | 
|  | goto patch_call_imm; | 
|  | } | 
|  |  | 
|  | /* bpf_per_cpu_ptr() and bpf_this_cpu_ptr() */ | 
|  | if (env->insn_aux_data[i + delta].call_with_percpu_alloc_ptr) { | 
|  | /* patch with 'r1 = *(u64 *)(r1 + 0)' since for percpu data, | 
|  | * bpf_mem_alloc() returns a ptr to the percpu data ptr. | 
|  | */ | 
|  | insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_1, 0); | 
|  | insn_buf[1] = *insn; | 
|  | cnt = 2; | 
|  |  | 
|  | new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); | 
|  | if (!new_prog) | 
|  | return -ENOMEM; | 
|  |  | 
|  | delta += cnt - 1; | 
|  | env->prog = prog = new_prog; | 
|  | insn = new_prog->insnsi + i + delta; | 
|  | goto patch_call_imm; | 
|  | } | 
|  |  | 
|  | /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup | 
|  | * and other inlining handlers are currently limited to 64 bit | 
|  | * only. | 
|  | */ | 
|  | if (prog->jit_requested && BITS_PER_LONG == 64 && | 
|  | (insn->imm == BPF_FUNC_map_lookup_elem || | 
|  | insn->imm == BPF_FUNC_map_update_elem || | 
|  | insn->imm == BPF_FUNC_map_delete_elem || | 
|  | insn->imm == BPF_FUNC_map_push_elem   || | 
|  | insn->imm == BPF_FUNC_map_pop_elem    || | 
|  | insn->imm == BPF_FUNC_map_peek_elem   || | 
|  | insn->imm == BPF_FUNC_redirect_map    || | 
|  | insn->imm == BPF_FUNC_for_each_map_elem || | 
|  | insn->imm == BPF_FUNC_map_lookup_percpu_elem)) { | 
|  | aux = &env->insn_aux_data[i + delta]; | 
|  | if (bpf_map_ptr_poisoned(aux)) | 
|  | goto patch_call_imm; | 
|  |  | 
|  | map_ptr = aux->map_ptr_state.map_ptr; | 
|  | ops = map_ptr->ops; | 
|  | if (insn->imm == BPF_FUNC_map_lookup_elem && | 
|  | ops->map_gen_lookup) { | 
|  | cnt = ops->map_gen_lookup(map_ptr, insn_buf); | 
|  | if (cnt == -EOPNOTSUPP) | 
|  | goto patch_map_ops_generic; | 
|  | if (cnt <= 0 || cnt >= INSN_BUF_SIZE) { | 
|  | verbose(env, "bpf verifier is misconfigured\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | new_prog = bpf_patch_insn_data(env, i + delta, | 
|  | insn_buf, cnt); | 
|  | if (!new_prog) | 
|  | return -ENOMEM; | 
|  |  | 
|  | delta    += cnt - 1; | 
|  | env->prog = prog = new_prog; | 
|  | insn      = new_prog->insnsi + i + delta; | 
|  | goto next_insn; | 
|  | } | 
|  |  | 
|  | BUILD_BUG_ON(!__same_type(ops->map_lookup_elem, | 
|  | (void *(*)(struct bpf_map *map, void *key))NULL)); | 
|  | BUILD_BUG_ON(!__same_type(ops->map_delete_elem, | 
|  | (long (*)(struct bpf_map *map, void *key))NULL)); | 
|  | BUILD_BUG_ON(!__same_type(ops->map_update_elem, | 
|  | (long (*)(struct bpf_map *map, void *key, void *value, | 
|  | u64 flags))NULL)); | 
|  | BUILD_BUG_ON(!__same_type(ops->map_push_elem, | 
|  | (long (*)(struct bpf_map *map, void *value, | 
|  | u64 flags))NULL)); | 
|  | BUILD_BUG_ON(!__same_type(ops->map_pop_elem, | 
|  | (long (*)(struct bpf_map *map, void *value))NULL)); | 
|  | BUILD_BUG_ON(!__same_type(ops->map_peek_elem, | 
|  | (long (*)(struct bpf_map *map, void *value))NULL)); | 
|  | BUILD_BUG_ON(!__same_type(ops->map_redirect, | 
|  | (long (*)(struct bpf_map *map, u64 index, u64 flags))NULL)); | 
|  | BUILD_BUG_ON(!__same_type(ops->map_for_each_callback, | 
|  | (long (*)(struct bpf_map *map, | 
|  | bpf_callback_t callback_fn, | 
|  | void *callback_ctx, | 
|  | u64 flags))NULL)); | 
|  | BUILD_BUG_ON(!__same_type(ops->map_lookup_percpu_elem, | 
|  | (void *(*)(struct bpf_map *map, void *key, u32 cpu))NULL)); | 
|  |  | 
|  | patch_map_ops_generic: | 
|  | switch (insn->imm) { | 
|  | case BPF_FUNC_map_lookup_elem: | 
|  | insn->imm = BPF_CALL_IMM(ops->map_lookup_elem); | 
|  | goto next_insn; | 
|  | case BPF_FUNC_map_update_elem: | 
|  | insn->imm = BPF_CALL_IMM(ops->map_update_elem); | 
|  | goto next_insn; | 
|  | case BPF_FUNC_map_delete_elem: | 
|  | insn->imm = BPF_CALL_IMM(ops->map_delete_elem); | 
|  | goto next_insn; | 
|  | case BPF_FUNC_map_push_elem: | 
|  | insn->imm = BPF_CALL_IMM(ops->map_push_elem); | 
|  | goto next_insn; | 
|  | case BPF_FUNC_map_pop_elem: | 
|  | insn->imm = BPF_CALL_IMM(ops->map_pop_elem); | 
|  | goto next_insn; | 
|  | case BPF_FUNC_map_peek_elem: | 
|  | insn->imm = BPF_CALL_IMM(ops->map_peek_elem); | 
|  | goto next_insn; | 
|  | case BPF_FUNC_redirect_map: | 
|  | insn->imm = BPF_CALL_IMM(ops->map_redirect); | 
|  | goto next_insn; | 
|  | case BPF_FUNC_for_each_map_elem: | 
|  | insn->imm = BPF_CALL_IMM(ops->map_for_each_callback); | 
|  | goto next_insn; | 
|  | case BPF_FUNC_map_lookup_percpu_elem: | 
|  | insn->imm = BPF_CALL_IMM(ops->map_lookup_percpu_elem); | 
|  | goto next_insn; | 
|  | } | 
|  |  | 
|  | goto patch_call_imm; | 
|  | } | 
|  |  | 
|  | /* Implement bpf_jiffies64 inline. */ | 
|  | if (prog->jit_requested && BITS_PER_LONG == 64 && | 
|  | insn->imm == BPF_FUNC_jiffies64) { | 
|  | struct bpf_insn ld_jiffies_addr[2] = { | 
|  | BPF_LD_IMM64(BPF_REG_0, | 
|  | (unsigned long)&jiffies), | 
|  | }; | 
|  |  | 
|  | insn_buf[0] = ld_jiffies_addr[0]; | 
|  | insn_buf[1] = ld_jiffies_addr[1]; | 
|  | insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, | 
|  | BPF_REG_0, 0); | 
|  | cnt = 3; | 
|  |  | 
|  | new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, | 
|  | cnt); | 
|  | if (!new_prog) | 
|  | return -ENOMEM; | 
|  |  | 
|  | delta    += cnt - 1; | 
|  | env->prog = prog = new_prog; | 
|  | insn      = new_prog->insnsi + i + delta; | 
|  | goto next_insn; | 
|  | } | 
|  |  | 
|  | #if defined(CONFIG_X86_64) && !defined(CONFIG_UML) | 
|  | /* Implement bpf_get_smp_processor_id() inline. */ | 
|  | if (insn->imm == BPF_FUNC_get_smp_processor_id && | 
|  | verifier_inlines_helper_call(env, insn->imm)) { | 
|  | /* BPF_FUNC_get_smp_processor_id inlining is an | 
|  | * optimization, so if pcpu_hot.cpu_number is ever | 
|  | * changed in some incompatible and hard to support | 
|  | * way, it's fine to back out this inlining logic | 
|  | */ | 
|  | insn_buf[0] = BPF_MOV32_IMM(BPF_REG_0, (u32)(unsigned long)&pcpu_hot.cpu_number); | 
|  | insn_buf[1] = BPF_MOV64_PERCPU_REG(BPF_REG_0, BPF_REG_0); | 
|  | insn_buf[2] = BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_0, 0); | 
|  | cnt = 3; | 
|  |  | 
|  | new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); | 
|  | if (!new_prog) | 
|  | return -ENOMEM; | 
|  |  | 
|  | delta    += cnt - 1; | 
|  | env->prog = prog = new_prog; | 
|  | insn      = new_prog->insnsi + i + delta; | 
|  | goto next_insn; | 
|  | } | 
|  | #endif | 
|  | /* Implement bpf_get_func_arg inline. */ | 
|  | if (prog_type == BPF_PROG_TYPE_TRACING && | 
|  | insn->imm == BPF_FUNC_get_func_arg) { | 
|  | /* Load nr_args from ctx - 8 */ | 
|  | insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); | 
|  | insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6); | 
|  | insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3); | 
|  | insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1); | 
|  | insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0); | 
|  | insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); | 
|  | insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0); | 
|  | insn_buf[7] = BPF_JMP_A(1); | 
|  | insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL); | 
|  | cnt = 9; | 
|  |  | 
|  | new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); | 
|  | if (!new_prog) | 
|  | return -ENOMEM; | 
|  |  | 
|  | delta    += cnt - 1; | 
|  | env->prog = prog = new_prog; | 
|  | insn      = new_prog->insnsi + i + delta; | 
|  | goto next_insn; | 
|  | } | 
|  |  | 
|  | /* Implement bpf_get_func_ret inline. */ | 
|  | if (prog_type == BPF_PROG_TYPE_TRACING && | 
|  | insn->imm == BPF_FUNC_get_func_ret) { | 
|  | if (eatype == BPF_TRACE_FEXIT || | 
|  | eatype == BPF_MODIFY_RETURN) { | 
|  | /* Load nr_args from ctx - 8 */ | 
|  | insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); | 
|  | insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3); | 
|  | insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1); | 
|  | insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); | 
|  | insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0); | 
|  | insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0); | 
|  | cnt = 6; | 
|  | } else { | 
|  | insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP); | 
|  | cnt = 1; | 
|  | } | 
|  |  | 
|  | new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); | 
|  | if (!new_prog) | 
|  | return -ENOMEM; | 
|  |  | 
|  | delta    += cnt - 1; | 
|  | env->prog = prog = new_prog; | 
|  | insn      = new_prog->insnsi + i + delta; | 
|  | goto next_insn; | 
|  | } | 
|  |  | 
|  | /* Implement get_func_arg_cnt inline. */ | 
|  | if (prog_type == BPF_PROG_TYPE_TRACING && | 
|  | insn->imm == BPF_FUNC_get_func_arg_cnt) { | 
|  | /* Load nr_args from ctx - 8 */ | 
|  | insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); | 
|  |  | 
|  | new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); | 
|  | if (!new_prog) | 
|  | return -ENOMEM; | 
|  |  | 
|  | env->prog = prog = new_prog; | 
|  | insn      = new_prog->insnsi + i + delta; | 
|  | goto next_insn; | 
|  | } | 
|  |  | 
|  | /* Implement bpf_get_func_ip inline. */ | 
|  | if (prog_type == BPF_PROG_TYPE_TRACING && | 
|  | insn->imm == BPF_FUNC_get_func_ip) { | 
|  | /* Load IP address from ctx - 16 */ | 
|  | insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16); | 
|  |  | 
|  | new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); | 
|  | if (!new_prog) | 
|  | return -ENOMEM; | 
|  |  | 
|  | env->prog = prog = new_prog; | 
|  | insn      = new_prog->insnsi + i + delta; | 
|  | goto next_insn; | 
|  | } | 
|  |  | 
|  | /* Implement bpf_get_branch_snapshot inline. */ | 
|  | if (IS_ENABLED(CONFIG_PERF_EVENTS) && | 
|  | prog->jit_requested && BITS_PER_LONG == 64 && | 
|  | insn->imm == BPF_FUNC_get_branch_snapshot) { | 
|  | /* We are dealing with the following func protos: | 
|  | * u64 bpf_get_branch_snapshot(void *buf, u32 size, u64 flags); | 
|  | * int perf_snapshot_branch_stack(struct perf_branch_entry *entries, u32 cnt); | 
|  | */ | 
|  | const u32 br_entry_size = sizeof(struct perf_branch_entry); | 
|  |  | 
|  | /* struct perf_branch_entry is part of UAPI and is | 
|  | * used as an array element, so extremely unlikely to | 
|  | * ever grow or shrink | 
|  | */ | 
|  | BUILD_BUG_ON(br_entry_size != 24); | 
|  |  | 
|  | /* if (unlikely(flags)) return -EINVAL */ | 
|  | insn_buf[0] = BPF_JMP_IMM(BPF_JNE, BPF_REG_3, 0, 7); | 
|  |  | 
|  | /* Transform size (bytes) into number of entries (cnt = size / 24). | 
|  | * But to avoid expensive division instruction, we implement | 
|  | * divide-by-3 through multiplication, followed by further | 
|  | * division by 8 through 3-bit right shift. | 
|  | * Refer to book "Hacker's Delight, 2nd ed." by Henry S. Warren, Jr., | 
|  | * p. 227, chapter "Unsigned Division by 3" for details and proofs. | 
|  | * | 
|  | * N / 3 <=> M * N / 2^33, where M = (2^33 + 1) / 3 = 0xaaaaaaab. | 
|  | */ | 
|  | insn_buf[1] = BPF_MOV32_IMM(BPF_REG_0, 0xaaaaaaab); | 
|  | insn_buf[2] = BPF_ALU64_REG(BPF_MUL, BPF_REG_2, BPF_REG_0); | 
|  | insn_buf[3] = BPF_ALU64_IMM(BPF_RSH, BPF_REG_2, 36); | 
|  |  | 
|  | /* call perf_snapshot_branch_stack implementation */ | 
|  | insn_buf[4] = BPF_EMIT_CALL(static_call_query(perf_snapshot_branch_stack)); | 
|  | /* if (entry_cnt == 0) return -ENOENT */ | 
|  | insn_buf[5] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4); | 
|  | /* return entry_cnt * sizeof(struct perf_branch_entry) */ | 
|  | insn_buf[6] = BPF_ALU32_IMM(BPF_MUL, BPF_REG_0, br_entry_size); | 
|  | insn_buf[7] = BPF_JMP_A(3); | 
|  | /* return -EINVAL; */ | 
|  | insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL); | 
|  | insn_buf[9] = BPF_JMP_A(1); | 
|  | /* return -ENOENT; */ | 
|  | insn_buf[10] = BPF_MOV64_IMM(BPF_REG_0, -ENOENT); | 
|  | cnt = 11; | 
|  |  | 
|  | new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); | 
|  | if (!new_prog) | 
|  | return -ENOMEM; | 
|  |  | 
|  | delta    += cnt - 1; | 
|  | env->prog = prog = new_prog; | 
|  | insn      = new_prog->insnsi + i + delta; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* Implement bpf_kptr_xchg inline */ | 
|  | if (prog->jit_requested && BITS_PER_LONG == 64 && | 
|  | insn->imm == BPF_FUNC_kptr_xchg && | 
|  | bpf_jit_supports_ptr_xchg()) { | 
|  | insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_2); | 
|  | insn_buf[1] = BPF_ATOMIC_OP(BPF_DW, BPF_XCHG, BPF_REG_1, BPF_REG_0, 0); | 
|  | cnt = 2; | 
|  |  | 
|  | new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); | 
|  | if (!new_prog) | 
|  | return -ENOMEM; | 
|  |  | 
|  | delta    += cnt - 1; | 
|  | env->prog = prog = new_prog; | 
|  | insn      = new_prog->insnsi + i + delta; | 
|  | goto next_insn; | 
|  | } | 
|  | patch_call_imm: | 
|  | fn = env->ops->get_func_proto(insn->imm, env->prog); | 
|  | /* all functions that have prototype and verifier allowed | 
|  | * programs to call them, must be real in-kernel functions | 
|  | */ | 
|  | if (!fn->func) { | 
|  | verbose(env, | 
|  | "kernel subsystem misconfigured func %s#%d\n", | 
|  | func_id_name(insn->imm), insn->imm); | 
|  | return -EFAULT; | 
|  | } | 
|  | insn->imm = fn->func - __bpf_call_base; | 
|  | next_insn: | 
|  | if (subprogs[cur_subprog + 1].start == i + delta + 1) { | 
|  | subprogs[cur_subprog].stack_depth += stack_depth_extra; | 
|  | subprogs[cur_subprog].stack_extra = stack_depth_extra; | 
|  | cur_subprog++; | 
|  | stack_depth = subprogs[cur_subprog].stack_depth; | 
|  | stack_depth_extra = 0; | 
|  | } | 
|  | i++; | 
|  | insn++; | 
|  | } | 
|  |  | 
|  | env->prog->aux->stack_depth = subprogs[0].stack_depth; | 
|  | for (i = 0; i < env->subprog_cnt; i++) { | 
|  | int subprog_start = subprogs[i].start; | 
|  | int stack_slots = subprogs[i].stack_extra / 8; | 
|  |  | 
|  | if (!stack_slots) | 
|  | continue; | 
|  | if (stack_slots > 1) { | 
|  | verbose(env, "verifier bug: stack_slots supports may_goto only\n"); | 
|  | return -EFAULT; | 
|  | } | 
|  |  | 
|  | /* Add ST insn to subprog prologue to init extra stack */ | 
|  | insn_buf[0] = BPF_ST_MEM(BPF_DW, BPF_REG_FP, | 
|  | -subprogs[i].stack_depth, BPF_MAX_LOOPS); | 
|  | /* Copy first actual insn to preserve it */ | 
|  | insn_buf[1] = env->prog->insnsi[subprog_start]; | 
|  |  | 
|  | new_prog = bpf_patch_insn_data(env, subprog_start, insn_buf, 2); | 
|  | if (!new_prog) | 
|  | return -ENOMEM; | 
|  | env->prog = prog = new_prog; | 
|  | /* | 
|  | * If may_goto is a first insn of a prog there could be a jmp | 
|  | * insn that points to it, hence adjust all such jmps to point | 
|  | * to insn after BPF_ST that inits may_goto count. | 
|  | * Adjustment will succeed because bpf_patch_insn_data() didn't fail. | 
|  | */ | 
|  | WARN_ON(adjust_jmp_off(env->prog, subprog_start, 1)); | 
|  | } | 
|  |  | 
|  | /* Since poke tab is now finalized, publish aux to tracker. */ | 
|  | for (i = 0; i < prog->aux->size_poke_tab; i++) { | 
|  | map_ptr = prog->aux->poke_tab[i].tail_call.map; | 
|  | if (!map_ptr->ops->map_poke_track || | 
|  | !map_ptr->ops->map_poke_untrack || | 
|  | !map_ptr->ops->map_poke_run) { | 
|  | verbose(env, "bpf verifier is misconfigured\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux); | 
|  | if (ret < 0) { | 
|  | verbose(env, "tracking tail call prog failed\n"); | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | sort_kfunc_descs_by_imm_off(env->prog); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct bpf_prog *inline_bpf_loop(struct bpf_verifier_env *env, | 
|  | int position, | 
|  | s32 stack_base, | 
|  | u32 callback_subprogno, | 
|  | u32 *total_cnt) | 
|  | { | 
|  | s32 r6_offset = stack_base + 0 * BPF_REG_SIZE; | 
|  | s32 r7_offset = stack_base + 1 * BPF_REG_SIZE; | 
|  | s32 r8_offset = stack_base + 2 * BPF_REG_SIZE; | 
|  | int reg_loop_max = BPF_REG_6; | 
|  | int reg_loop_cnt = BPF_REG_7; | 
|  | int reg_loop_ctx = BPF_REG_8; | 
|  |  | 
|  | struct bpf_insn *insn_buf = env->insn_buf; | 
|  | struct bpf_prog *new_prog; | 
|  | u32 callback_start; | 
|  | u32 call_insn_offset; | 
|  | s32 callback_offset; | 
|  | u32 cnt = 0; | 
|  |  | 
|  | /* This represents an inlined version of bpf_iter.c:bpf_loop, | 
|  | * be careful to modify this code in sync. | 
|  | */ | 
|  |  | 
|  | /* Return error and jump to the end of the patch if | 
|  | * expected number of iterations is too big. | 
|  | */ | 
|  | insn_buf[cnt++] = BPF_JMP_IMM(BPF_JLE, BPF_REG_1, BPF_MAX_LOOPS, 2); | 
|  | insn_buf[cnt++] = BPF_MOV32_IMM(BPF_REG_0, -E2BIG); | 
|  | insn_buf[cnt++] = BPF_JMP_IMM(BPF_JA, 0, 0, 16); | 
|  | /* spill R6, R7, R8 to use these as loop vars */ | 
|  | insn_buf[cnt++] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, r6_offset); | 
|  | insn_buf[cnt++] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_7, r7_offset); | 
|  | insn_buf[cnt++] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_8, r8_offset); | 
|  | /* initialize loop vars */ | 
|  | insn_buf[cnt++] = BPF_MOV64_REG(reg_loop_max, BPF_REG_1); | 
|  | insn_buf[cnt++] = BPF_MOV32_IMM(reg_loop_cnt, 0); | 
|  | insn_buf[cnt++] = BPF_MOV64_REG(reg_loop_ctx, BPF_REG_3); | 
|  | /* loop header, | 
|  | * if reg_loop_cnt >= reg_loop_max skip the loop body | 
|  | */ | 
|  | insn_buf[cnt++] = BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5); | 
|  | /* callback call, | 
|  | * correct callback offset would be set after patching | 
|  | */ | 
|  | insn_buf[cnt++] = BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt); | 
|  | insn_buf[cnt++] = BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx); | 
|  | insn_buf[cnt++] = BPF_CALL_REL(0); | 
|  | /* increment loop counter */ | 
|  | insn_buf[cnt++] = BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1); | 
|  | /* jump to loop header if callback returned 0 */ | 
|  | insn_buf[cnt++] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6); | 
|  | /* return value of bpf_loop, | 
|  | * set R0 to the number of iterations | 
|  | */ | 
|  | insn_buf[cnt++] = BPF_MOV64_REG(BPF_REG_0, reg_loop_cnt); | 
|  | /* restore original values of R6, R7, R8 */ | 
|  | insn_buf[cnt++] = BPF_LDX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, r6_offset); | 
|  | insn_buf[cnt++] = BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_10, r7_offset); | 
|  | insn_buf[cnt++] = BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_10, r8_offset); | 
|  |  | 
|  | *total_cnt = cnt; | 
|  | new_prog = bpf_patch_insn_data(env, position, insn_buf, cnt); | 
|  | if (!new_prog) | 
|  | return new_prog; | 
|  |  | 
|  | /* callback start is known only after patching */ | 
|  | callback_start = env->subprog_info[callback_subprogno].start; | 
|  | /* Note: insn_buf[12] is an offset of BPF_CALL_REL instruction */ | 
|  | call_insn_offset = position + 12; | 
|  | callback_offset = callback_start - call_insn_offset - 1; | 
|  | new_prog->insnsi[call_insn_offset].imm = callback_offset; | 
|  |  | 
|  | return new_prog; | 
|  | } | 
|  |  | 
|  | static bool is_bpf_loop_call(struct bpf_insn *insn) | 
|  | { | 
|  | return insn->code == (BPF_JMP | BPF_CALL) && | 
|  | insn->src_reg == 0 && | 
|  | insn->imm == BPF_FUNC_loop; | 
|  | } | 
|  |  | 
|  | /* For all sub-programs in the program (including main) check | 
|  | * insn_aux_data to see if there are bpf_loop calls that require | 
|  | * inlining. If such calls are found the calls are replaced with a | 
|  | * sequence of instructions produced by `inline_bpf_loop` function and | 
|  | * subprog stack_depth is increased by the size of 3 registers. | 
|  | * This stack space is used to spill values of the R6, R7, R8.  These | 
|  | * registers are used to store the loop bound, counter and context | 
|  | * variables. | 
|  | */ | 
|  | static int optimize_bpf_loop(struct bpf_verifier_env *env) | 
|  | { | 
|  | struct bpf_subprog_info *subprogs = env->subprog_info; | 
|  | int i, cur_subprog = 0, cnt, delta = 0; | 
|  | struct bpf_insn *insn = env->prog->insnsi; | 
|  | int insn_cnt = env->prog->len; | 
|  | u16 stack_depth = subprogs[cur_subprog].stack_depth; | 
|  | u16 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth; | 
|  | u16 stack_depth_extra = 0; | 
|  |  | 
|  | for (i = 0; i < insn_cnt; i++, insn++) { | 
|  | struct bpf_loop_inline_state *inline_state = | 
|  | &env->insn_aux_data[i + delta].loop_inline_state; | 
|  |  | 
|  | if (is_bpf_loop_call(insn) && inline_state->fit_for_inline) { | 
|  | struct bpf_prog *new_prog; | 
|  |  | 
|  | stack_depth_extra = BPF_REG_SIZE * 3 + stack_depth_roundup; | 
|  | new_prog = inline_bpf_loop(env, | 
|  | i + delta, | 
|  | -(stack_depth + stack_depth_extra), | 
|  | inline_state->callback_subprogno, | 
|  | &cnt); | 
|  | if (!new_prog) | 
|  | return -ENOMEM; | 
|  |  | 
|  | delta     += cnt - 1; | 
|  | env->prog  = new_prog; | 
|  | insn       = new_prog->insnsi + i + delta; | 
|  | } | 
|  |  | 
|  | if (subprogs[cur_subprog + 1].start == i + delta + 1) { | 
|  | subprogs[cur_subprog].stack_depth += stack_depth_extra; | 
|  | cur_subprog++; | 
|  | stack_depth = subprogs[cur_subprog].stack_depth; | 
|  | stack_depth_roundup = round_up(stack_depth, 8) - stack_depth; | 
|  | stack_depth_extra = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Remove unnecessary spill/fill pairs, members of fastcall pattern, | 
|  | * adjust subprograms stack depth when possible. | 
|  | */ | 
|  | static int remove_fastcall_spills_fills(struct bpf_verifier_env *env) | 
|  | { | 
|  | struct bpf_subprog_info *subprog = env->subprog_info; | 
|  | struct bpf_insn_aux_data *aux = env->insn_aux_data; | 
|  | struct bpf_insn *insn = env->prog->insnsi; | 
|  | int insn_cnt = env->prog->len; | 
|  | u32 spills_num; | 
|  | bool modified = false; | 
|  | int i, j; | 
|  |  | 
|  | for (i = 0; i < insn_cnt; i++, insn++) { | 
|  | if (aux[i].fastcall_spills_num > 0) { | 
|  | spills_num = aux[i].fastcall_spills_num; | 
|  | /* NOPs would be removed by opt_remove_nops() */ | 
|  | for (j = 1; j <= spills_num; ++j) { | 
|  | *(insn - j) = NOP; | 
|  | *(insn + j) = NOP; | 
|  | } | 
|  | modified = true; | 
|  | } | 
|  | if ((subprog + 1)->start == i + 1) { | 
|  | if (modified && !subprog->keep_fastcall_stack) | 
|  | subprog->stack_depth = -subprog->fastcall_stack_off; | 
|  | subprog++; | 
|  | modified = false; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void free_states(struct bpf_verifier_env *env) | 
|  | { | 
|  | struct bpf_verifier_state_list *sl, *sln; | 
|  | int i; | 
|  |  | 
|  | sl = env->free_list; | 
|  | while (sl) { | 
|  | sln = sl->next; | 
|  | free_verifier_state(&sl->state, false); | 
|  | kfree(sl); | 
|  | sl = sln; | 
|  | } | 
|  | env->free_list = NULL; | 
|  |  | 
|  | if (!env->explored_states) | 
|  | return; | 
|  |  | 
|  | for (i = 0; i < state_htab_size(env); i++) { | 
|  | sl = env->explored_states[i]; | 
|  |  | 
|  | while (sl) { | 
|  | sln = sl->next; | 
|  | free_verifier_state(&sl->state, false); | 
|  | kfree(sl); | 
|  | sl = sln; | 
|  | } | 
|  | env->explored_states[i] = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int do_check_common(struct bpf_verifier_env *env, int subprog) | 
|  | { | 
|  | bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); | 
|  | struct bpf_subprog_info *sub = subprog_info(env, subprog); | 
|  | struct bpf_verifier_state *state; | 
|  | struct bpf_reg_state *regs; | 
|  | int ret, i; | 
|  |  | 
|  | env->prev_linfo = NULL; | 
|  | env->pass_cnt++; | 
|  |  | 
|  | state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); | 
|  | if (!state) | 
|  | return -ENOMEM; | 
|  | state->curframe = 0; | 
|  | state->speculative = false; | 
|  | state->branches = 1; | 
|  | state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL); | 
|  | if (!state->frame[0]) { | 
|  | kfree(state); | 
|  | return -ENOMEM; | 
|  | } | 
|  | env->cur_state = state; | 
|  | init_func_state(env, state->frame[0], | 
|  | BPF_MAIN_FUNC /* callsite */, | 
|  | 0 /* frameno */, | 
|  | subprog); | 
|  | state->first_insn_idx = env->subprog_info[subprog].start; | 
|  | state->last_insn_idx = -1; | 
|  |  | 
|  | regs = state->frame[state->curframe]->regs; | 
|  | if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) { | 
|  | const char *sub_name = subprog_name(env, subprog); | 
|  | struct bpf_subprog_arg_info *arg; | 
|  | struct bpf_reg_state *reg; | 
|  |  | 
|  | verbose(env, "Validating %s() func#%d...\n", sub_name, subprog); | 
|  | ret = btf_prepare_func_args(env, subprog); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | if (subprog_is_exc_cb(env, subprog)) { | 
|  | state->frame[0]->in_exception_callback_fn = true; | 
|  | /* We have already ensured that the callback returns an integer, just | 
|  | * like all global subprogs. We need to determine it only has a single | 
|  | * scalar argument. | 
|  | */ | 
|  | if (sub->arg_cnt != 1 || sub->args[0].arg_type != ARG_ANYTHING) { | 
|  | verbose(env, "exception cb only supports single integer argument\n"); | 
|  | ret = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  | for (i = BPF_REG_1; i <= sub->arg_cnt; i++) { | 
|  | arg = &sub->args[i - BPF_REG_1]; | 
|  | reg = ®s[i]; | 
|  |  | 
|  | if (arg->arg_type == ARG_PTR_TO_CTX) { | 
|  | reg->type = PTR_TO_CTX; | 
|  | mark_reg_known_zero(env, regs, i); | 
|  | } else if (arg->arg_type == ARG_ANYTHING) { | 
|  | reg->type = SCALAR_VALUE; | 
|  | mark_reg_unknown(env, regs, i); | 
|  | } else if (arg->arg_type == (ARG_PTR_TO_DYNPTR | MEM_RDONLY)) { | 
|  | /* assume unspecial LOCAL dynptr type */ | 
|  | __mark_dynptr_reg(reg, BPF_DYNPTR_TYPE_LOCAL, true, ++env->id_gen); | 
|  | } else if (base_type(arg->arg_type) == ARG_PTR_TO_MEM) { | 
|  | reg->type = PTR_TO_MEM; | 
|  | if (arg->arg_type & PTR_MAYBE_NULL) | 
|  | reg->type |= PTR_MAYBE_NULL; | 
|  | mark_reg_known_zero(env, regs, i); | 
|  | reg->mem_size = arg->mem_size; | 
|  | reg->id = ++env->id_gen; | 
|  | } else if (base_type(arg->arg_type) == ARG_PTR_TO_BTF_ID) { | 
|  | reg->type = PTR_TO_BTF_ID; | 
|  | if (arg->arg_type & PTR_MAYBE_NULL) | 
|  | reg->type |= PTR_MAYBE_NULL; | 
|  | if (arg->arg_type & PTR_UNTRUSTED) | 
|  | reg->type |= PTR_UNTRUSTED; | 
|  | if (arg->arg_type & PTR_TRUSTED) | 
|  | reg->type |= PTR_TRUSTED; | 
|  | mark_reg_known_zero(env, regs, i); | 
|  | reg->btf = bpf_get_btf_vmlinux(); /* can't fail at this point */ | 
|  | reg->btf_id = arg->btf_id; | 
|  | reg->id = ++env->id_gen; | 
|  | } else if (base_type(arg->arg_type) == ARG_PTR_TO_ARENA) { | 
|  | /* caller can pass either PTR_TO_ARENA or SCALAR */ | 
|  | mark_reg_unknown(env, regs, i); | 
|  | } else { | 
|  | WARN_ONCE(1, "BUG: unhandled arg#%d type %d\n", | 
|  | i - BPF_REG_1, arg->arg_type); | 
|  | ret = -EFAULT; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  | } else { | 
|  | /* if main BPF program has associated BTF info, validate that | 
|  | * it's matching expected signature, and otherwise mark BTF | 
|  | * info for main program as unreliable | 
|  | */ | 
|  | if (env->prog->aux->func_info_aux) { | 
|  | ret = btf_prepare_func_args(env, 0); | 
|  | if (ret || sub->arg_cnt != 1 || sub->args[0].arg_type != ARG_PTR_TO_CTX) | 
|  | env->prog->aux->func_info_aux[0].unreliable = true; | 
|  | } | 
|  |  | 
|  | /* 1st arg to a function */ | 
|  | regs[BPF_REG_1].type = PTR_TO_CTX; | 
|  | mark_reg_known_zero(env, regs, BPF_REG_1); | 
|  | } | 
|  |  | 
|  | ret = do_check(env); | 
|  | out: | 
|  | /* check for NULL is necessary, since cur_state can be freed inside | 
|  | * do_check() under memory pressure. | 
|  | */ | 
|  | if (env->cur_state) { | 
|  | free_verifier_state(env->cur_state, true); | 
|  | env->cur_state = NULL; | 
|  | } | 
|  | while (!pop_stack(env, NULL, NULL, false)); | 
|  | if (!ret && pop_log) | 
|  | bpf_vlog_reset(&env->log, 0); | 
|  | free_states(env); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Lazily verify all global functions based on their BTF, if they are called | 
|  | * from main BPF program or any of subprograms transitively. | 
|  | * BPF global subprogs called from dead code are not validated. | 
|  | * All callable global functions must pass verification. | 
|  | * Otherwise the whole program is rejected. | 
|  | * Consider: | 
|  | * int bar(int); | 
|  | * int foo(int f) | 
|  | * { | 
|  | *    return bar(f); | 
|  | * } | 
|  | * int bar(int b) | 
|  | * { | 
|  | *    ... | 
|  | * } | 
|  | * foo() will be verified first for R1=any_scalar_value. During verification it | 
|  | * will be assumed that bar() already verified successfully and call to bar() | 
|  | * from foo() will be checked for type match only. Later bar() will be verified | 
|  | * independently to check that it's safe for R1=any_scalar_value. | 
|  | */ | 
|  | static int do_check_subprogs(struct bpf_verifier_env *env) | 
|  | { | 
|  | struct bpf_prog_aux *aux = env->prog->aux; | 
|  | struct bpf_func_info_aux *sub_aux; | 
|  | int i, ret, new_cnt; | 
|  |  | 
|  | if (!aux->func_info) | 
|  | return 0; | 
|  |  | 
|  | /* exception callback is presumed to be always called */ | 
|  | if (env->exception_callback_subprog) | 
|  | subprog_aux(env, env->exception_callback_subprog)->called = true; | 
|  |  | 
|  | again: | 
|  | new_cnt = 0; | 
|  | for (i = 1; i < env->subprog_cnt; i++) { | 
|  | if (!subprog_is_global(env, i)) | 
|  | continue; | 
|  |  | 
|  | sub_aux = subprog_aux(env, i); | 
|  | if (!sub_aux->called || sub_aux->verified) | 
|  | continue; | 
|  |  | 
|  | env->insn_idx = env->subprog_info[i].start; | 
|  | WARN_ON_ONCE(env->insn_idx == 0); | 
|  | ret = do_check_common(env, i); | 
|  | if (ret) { | 
|  | return ret; | 
|  | } else if (env->log.level & BPF_LOG_LEVEL) { | 
|  | verbose(env, "Func#%d ('%s') is safe for any args that match its prototype\n", | 
|  | i, subprog_name(env, i)); | 
|  | } | 
|  |  | 
|  | /* We verified new global subprog, it might have called some | 
|  | * more global subprogs that we haven't verified yet, so we | 
|  | * need to do another pass over subprogs to verify those. | 
|  | */ | 
|  | sub_aux->verified = true; | 
|  | new_cnt++; | 
|  | } | 
|  |  | 
|  | /* We can't loop forever as we verify at least one global subprog on | 
|  | * each pass. | 
|  | */ | 
|  | if (new_cnt) | 
|  | goto again; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int do_check_main(struct bpf_verifier_env *env) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | env->insn_idx = 0; | 
|  | ret = do_check_common(env, 0); | 
|  | if (!ret) | 
|  | env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  |  | 
|  | static void print_verification_stats(struct bpf_verifier_env *env) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | if (env->log.level & BPF_LOG_STATS) { | 
|  | verbose(env, "verification time %lld usec\n", | 
|  | div_u64(env->verification_time, 1000)); | 
|  | verbose(env, "stack depth "); | 
|  | for (i = 0; i < env->subprog_cnt; i++) { | 
|  | u32 depth = env->subprog_info[i].stack_depth; | 
|  |  | 
|  | verbose(env, "%d", depth); | 
|  | if (i + 1 < env->subprog_cnt) | 
|  | verbose(env, "+"); | 
|  | } | 
|  | verbose(env, "\n"); | 
|  | } | 
|  | verbose(env, "processed %d insns (limit %d) max_states_per_insn %d " | 
|  | "total_states %d peak_states %d mark_read %d\n", | 
|  | env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS, | 
|  | env->max_states_per_insn, env->total_states, | 
|  | env->peak_states, env->longest_mark_read_walk); | 
|  | } | 
|  |  | 
|  | static int check_struct_ops_btf_id(struct bpf_verifier_env *env) | 
|  | { | 
|  | const struct btf_type *t, *func_proto; | 
|  | const struct bpf_struct_ops_desc *st_ops_desc; | 
|  | const struct bpf_struct_ops *st_ops; | 
|  | const struct btf_member *member; | 
|  | struct bpf_prog *prog = env->prog; | 
|  | u32 btf_id, member_idx; | 
|  | struct btf *btf; | 
|  | const char *mname; | 
|  | int err; | 
|  |  | 
|  | if (!prog->gpl_compatible) { | 
|  | verbose(env, "struct ops programs must have a GPL compatible license\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (!prog->aux->attach_btf_id) | 
|  | return -ENOTSUPP; | 
|  |  | 
|  | btf = prog->aux->attach_btf; | 
|  | if (btf_is_module(btf)) { | 
|  | /* Make sure st_ops is valid through the lifetime of env */ | 
|  | env->attach_btf_mod = btf_try_get_module(btf); | 
|  | if (!env->attach_btf_mod) { | 
|  | verbose(env, "struct_ops module %s is not found\n", | 
|  | btf_get_name(btf)); | 
|  | return -ENOTSUPP; | 
|  | } | 
|  | } | 
|  |  | 
|  | btf_id = prog->aux->attach_btf_id; | 
|  | st_ops_desc = bpf_struct_ops_find(btf, btf_id); | 
|  | if (!st_ops_desc) { | 
|  | verbose(env, "attach_btf_id %u is not a supported struct\n", | 
|  | btf_id); | 
|  | return -ENOTSUPP; | 
|  | } | 
|  | st_ops = st_ops_desc->st_ops; | 
|  |  | 
|  | t = st_ops_desc->type; | 
|  | member_idx = prog->expected_attach_type; | 
|  | if (member_idx >= btf_type_vlen(t)) { | 
|  | verbose(env, "attach to invalid member idx %u of struct %s\n", | 
|  | member_idx, st_ops->name); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | member = &btf_type_member(t)[member_idx]; | 
|  | mname = btf_name_by_offset(btf, member->name_off); | 
|  | func_proto = btf_type_resolve_func_ptr(btf, member->type, | 
|  | NULL); | 
|  | if (!func_proto) { | 
|  | verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n", | 
|  | mname, member_idx, st_ops->name); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | err = bpf_struct_ops_supported(st_ops, __btf_member_bit_offset(t, member) / 8); | 
|  | if (err) { | 
|  | verbose(env, "attach to unsupported member %s of struct %s\n", | 
|  | mname, st_ops->name); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | if (st_ops->check_member) { | 
|  | err = st_ops->check_member(t, member, prog); | 
|  |  | 
|  | if (err) { | 
|  | verbose(env, "attach to unsupported member %s of struct %s\n", | 
|  | mname, st_ops->name); | 
|  | return err; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* btf_ctx_access() used this to provide argument type info */ | 
|  | prog->aux->ctx_arg_info = | 
|  | st_ops_desc->arg_info[member_idx].info; | 
|  | prog->aux->ctx_arg_info_size = | 
|  | st_ops_desc->arg_info[member_idx].cnt; | 
|  |  | 
|  | prog->aux->attach_func_proto = func_proto; | 
|  | prog->aux->attach_func_name = mname; | 
|  | env->ops = st_ops->verifier_ops; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | #define SECURITY_PREFIX "security_" | 
|  |  | 
|  | static int check_attach_modify_return(unsigned long addr, const char *func_name) | 
|  | { | 
|  | if (within_error_injection_list(addr) || | 
|  | !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1)) | 
|  | return 0; | 
|  |  | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* list of non-sleepable functions that are otherwise on | 
|  | * ALLOW_ERROR_INJECTION list | 
|  | */ | 
|  | BTF_SET_START(btf_non_sleepable_error_inject) | 
|  | /* Three functions below can be called from sleepable and non-sleepable context. | 
|  | * Assume non-sleepable from bpf safety point of view. | 
|  | */ | 
|  | BTF_ID(func, __filemap_add_folio) | 
|  | #ifdef CONFIG_FAIL_PAGE_ALLOC | 
|  | BTF_ID(func, should_fail_alloc_page) | 
|  | #endif | 
|  | #ifdef CONFIG_FAILSLAB | 
|  | BTF_ID(func, should_failslab) | 
|  | #endif | 
|  | BTF_SET_END(btf_non_sleepable_error_inject) | 
|  |  | 
|  | static int check_non_sleepable_error_inject(u32 btf_id) | 
|  | { | 
|  | return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id); | 
|  | } | 
|  |  | 
|  | int bpf_check_attach_target(struct bpf_verifier_log *log, | 
|  | const struct bpf_prog *prog, | 
|  | const struct bpf_prog *tgt_prog, | 
|  | u32 btf_id, | 
|  | struct bpf_attach_target_info *tgt_info) | 
|  | { | 
|  | bool prog_extension = prog->type == BPF_PROG_TYPE_EXT; | 
|  | bool prog_tracing = prog->type == BPF_PROG_TYPE_TRACING; | 
|  | char trace_symbol[KSYM_SYMBOL_LEN]; | 
|  | const char prefix[] = "btf_trace_"; | 
|  | struct bpf_raw_event_map *btp; | 
|  | int ret = 0, subprog = -1, i; | 
|  | const struct btf_type *t; | 
|  | bool conservative = true; | 
|  | const char *tname, *fname; | 
|  | struct btf *btf; | 
|  | long addr = 0; | 
|  | struct module *mod = NULL; | 
|  |  | 
|  | if (!btf_id) { | 
|  | bpf_log(log, "Tracing programs must provide btf_id\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf; | 
|  | if (!btf) { | 
|  | bpf_log(log, | 
|  | "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | t = btf_type_by_id(btf, btf_id); | 
|  | if (!t) { | 
|  | bpf_log(log, "attach_btf_id %u is invalid\n", btf_id); | 
|  | return -EINVAL; | 
|  | } | 
|  | tname = btf_name_by_offset(btf, t->name_off); | 
|  | if (!tname) { | 
|  | bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id); | 
|  | return -EINVAL; | 
|  | } | 
|  | if (tgt_prog) { | 
|  | struct bpf_prog_aux *aux = tgt_prog->aux; | 
|  |  | 
|  | if (bpf_prog_is_dev_bound(prog->aux) && | 
|  | !bpf_prog_dev_bound_match(prog, tgt_prog)) { | 
|  | bpf_log(log, "Target program bound device mismatch"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < aux->func_info_cnt; i++) | 
|  | if (aux->func_info[i].type_id == btf_id) { | 
|  | subprog = i; | 
|  | break; | 
|  | } | 
|  | if (subprog == -1) { | 
|  | bpf_log(log, "Subprog %s doesn't exist\n", tname); | 
|  | return -EINVAL; | 
|  | } | 
|  | if (aux->func && aux->func[subprog]->aux->exception_cb) { | 
|  | bpf_log(log, | 
|  | "%s programs cannot attach to exception callback\n", | 
|  | prog_extension ? "Extension" : "FENTRY/FEXIT"); | 
|  | return -EINVAL; | 
|  | } | 
|  | conservative = aux->func_info_aux[subprog].unreliable; | 
|  | if (prog_extension) { | 
|  | if (conservative) { | 
|  | bpf_log(log, | 
|  | "Cannot replace static functions\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | if (!prog->jit_requested) { | 
|  | bpf_log(log, | 
|  | "Extension programs should be JITed\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  | if (!tgt_prog->jited) { | 
|  | bpf_log(log, "Can attach to only JITed progs\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | if (prog_tracing) { | 
|  | if (aux->attach_tracing_prog) { | 
|  | /* | 
|  | * Target program is an fentry/fexit which is already attached | 
|  | * to another tracing program. More levels of nesting | 
|  | * attachment are not allowed. | 
|  | */ | 
|  | bpf_log(log, "Cannot nest tracing program attach more than once\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | } else if (tgt_prog->type == prog->type) { | 
|  | /* | 
|  | * To avoid potential call chain cycles, prevent attaching of a | 
|  | * program extension to another extension. It's ok to attach | 
|  | * fentry/fexit to extension program. | 
|  | */ | 
|  | bpf_log(log, "Cannot recursively attach\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | if (tgt_prog->type == BPF_PROG_TYPE_TRACING && | 
|  | prog_extension && | 
|  | (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY || | 
|  | tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) { | 
|  | /* Program extensions can extend all program types | 
|  | * except fentry/fexit. The reason is the following. | 
|  | * The fentry/fexit programs are used for performance | 
|  | * analysis, stats and can be attached to any program | 
|  | * type. When extension program is replacing XDP function | 
|  | * it is necessary to allow performance analysis of all | 
|  | * functions. Both original XDP program and its program | 
|  | * extension. Hence attaching fentry/fexit to | 
|  | * BPF_PROG_TYPE_EXT is allowed. If extending of | 
|  | * fentry/fexit was allowed it would be possible to create | 
|  | * long call chain fentry->extension->fentry->extension | 
|  | * beyond reasonable stack size. Hence extending fentry | 
|  | * is not allowed. | 
|  | */ | 
|  | bpf_log(log, "Cannot extend fentry/fexit\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | } else { | 
|  | if (prog_extension) { | 
|  | bpf_log(log, "Cannot replace kernel functions\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  |  | 
|  | switch (prog->expected_attach_type) { | 
|  | case BPF_TRACE_RAW_TP: | 
|  | if (tgt_prog) { | 
|  | bpf_log(log, | 
|  | "Only FENTRY/FEXIT progs are attachable to another BPF prog\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | if (!btf_type_is_typedef(t)) { | 
|  | bpf_log(log, "attach_btf_id %u is not a typedef\n", | 
|  | btf_id); | 
|  | return -EINVAL; | 
|  | } | 
|  | if (strncmp(prefix, tname, sizeof(prefix) - 1)) { | 
|  | bpf_log(log, "attach_btf_id %u points to wrong type name %s\n", | 
|  | btf_id, tname); | 
|  | return -EINVAL; | 
|  | } | 
|  | tname += sizeof(prefix) - 1; | 
|  |  | 
|  | /* The func_proto of "btf_trace_##tname" is generated from typedef without argument | 
|  | * names. Thus using bpf_raw_event_map to get argument names. | 
|  | */ | 
|  | btp = bpf_get_raw_tracepoint(tname); | 
|  | if (!btp) | 
|  | return -EINVAL; | 
|  | fname = kallsyms_lookup((unsigned long)btp->bpf_func, NULL, NULL, NULL, | 
|  | trace_symbol); | 
|  | bpf_put_raw_tracepoint(btp); | 
|  |  | 
|  | if (fname) | 
|  | ret = btf_find_by_name_kind(btf, fname, BTF_KIND_FUNC); | 
|  |  | 
|  | if (!fname || ret < 0) { | 
|  | bpf_log(log, "Cannot find btf of tracepoint template, fall back to %s%s.\n", | 
|  | prefix, tname); | 
|  | t = btf_type_by_id(btf, t->type); | 
|  | if (!btf_type_is_ptr(t)) | 
|  | /* should never happen in valid vmlinux build */ | 
|  | return -EINVAL; | 
|  | } else { | 
|  | t = btf_type_by_id(btf, ret); | 
|  | if (!btf_type_is_func(t)) | 
|  | /* should never happen in valid vmlinux build */ | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | t = btf_type_by_id(btf, t->type); | 
|  | if (!btf_type_is_func_proto(t)) | 
|  | /* should never happen in valid vmlinux build */ | 
|  | return -EINVAL; | 
|  |  | 
|  | break; | 
|  | case BPF_TRACE_ITER: | 
|  | if (!btf_type_is_func(t)) { | 
|  | bpf_log(log, "attach_btf_id %u is not a function\n", | 
|  | btf_id); | 
|  | return -EINVAL; | 
|  | } | 
|  | t = btf_type_by_id(btf, t->type); | 
|  | if (!btf_type_is_func_proto(t)) | 
|  | return -EINVAL; | 
|  | ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); | 
|  | if (ret) | 
|  | return ret; | 
|  | break; | 
|  | default: | 
|  | if (!prog_extension) | 
|  | return -EINVAL; | 
|  | fallthrough; | 
|  | case BPF_MODIFY_RETURN: | 
|  | case BPF_LSM_MAC: | 
|  | case BPF_LSM_CGROUP: | 
|  | case BPF_TRACE_FENTRY: | 
|  | case BPF_TRACE_FEXIT: | 
|  | if (!btf_type_is_func(t)) { | 
|  | bpf_log(log, "attach_btf_id %u is not a function\n", | 
|  | btf_id); | 
|  | return -EINVAL; | 
|  | } | 
|  | if (prog_extension && | 
|  | btf_check_type_match(log, prog, btf, t)) | 
|  | return -EINVAL; | 
|  | t = btf_type_by_id(btf, t->type); | 
|  | if (!btf_type_is_func_proto(t)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) && | 
|  | (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type || | 
|  | prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (tgt_prog && conservative) | 
|  | t = NULL; | 
|  |  | 
|  | ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | if (tgt_prog) { | 
|  | if (subprog == 0) | 
|  | addr = (long) tgt_prog->bpf_func; | 
|  | else | 
|  | addr = (long) tgt_prog->aux->func[subprog]->bpf_func; | 
|  | } else { | 
|  | if (btf_is_module(btf)) { | 
|  | mod = btf_try_get_module(btf); | 
|  | if (mod) | 
|  | addr = find_kallsyms_symbol_value(mod, tname); | 
|  | else | 
|  | addr = 0; | 
|  | } else { | 
|  | addr = kallsyms_lookup_name(tname); | 
|  | } | 
|  | if (!addr) { | 
|  | module_put(mod); | 
|  | bpf_log(log, | 
|  | "The address of function %s cannot be found\n", | 
|  | tname); | 
|  | return -ENOENT; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (prog->sleepable) { | 
|  | ret = -EINVAL; | 
|  | switch (prog->type) { | 
|  | case BPF_PROG_TYPE_TRACING: | 
|  |  | 
|  | /* fentry/fexit/fmod_ret progs can be sleepable if they are | 
|  | * attached to ALLOW_ERROR_INJECTION and are not in denylist. | 
|  | */ | 
|  | if (!check_non_sleepable_error_inject(btf_id) && | 
|  | within_error_injection_list(addr)) | 
|  | ret = 0; | 
|  | /* fentry/fexit/fmod_ret progs can also be sleepable if they are | 
|  | * in the fmodret id set with the KF_SLEEPABLE flag. | 
|  | */ | 
|  | else { | 
|  | u32 *flags = btf_kfunc_is_modify_return(btf, btf_id, | 
|  | prog); | 
|  |  | 
|  | if (flags && (*flags & KF_SLEEPABLE)) | 
|  | ret = 0; | 
|  | } | 
|  | break; | 
|  | case BPF_PROG_TYPE_LSM: | 
|  | /* LSM progs check that they are attached to bpf_lsm_*() funcs. | 
|  | * Only some of them are sleepable. | 
|  | */ | 
|  | if (bpf_lsm_is_sleepable_hook(btf_id)) | 
|  | ret = 0; | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | if (ret) { | 
|  | module_put(mod); | 
|  | bpf_log(log, "%s is not sleepable\n", tname); | 
|  | return ret; | 
|  | } | 
|  | } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) { | 
|  | if (tgt_prog) { | 
|  | module_put(mod); | 
|  | bpf_log(log, "can't modify return codes of BPF programs\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | ret = -EINVAL; | 
|  | if (btf_kfunc_is_modify_return(btf, btf_id, prog) || | 
|  | !check_attach_modify_return(addr, tname)) | 
|  | ret = 0; | 
|  | if (ret) { | 
|  | module_put(mod); | 
|  | bpf_log(log, "%s() is not modifiable\n", tname); | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | break; | 
|  | } | 
|  | tgt_info->tgt_addr = addr; | 
|  | tgt_info->tgt_name = tname; | 
|  | tgt_info->tgt_type = t; | 
|  | tgt_info->tgt_mod = mod; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | BTF_SET_START(btf_id_deny) | 
|  | BTF_ID_UNUSED | 
|  | #ifdef CONFIG_SMP | 
|  | BTF_ID(func, migrate_disable) | 
|  | BTF_ID(func, migrate_enable) | 
|  | #endif | 
|  | #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU | 
|  | BTF_ID(func, rcu_read_unlock_strict) | 
|  | #endif | 
|  | #if defined(CONFIG_DEBUG_PREEMPT) || defined(CONFIG_TRACE_PREEMPT_TOGGLE) | 
|  | BTF_ID(func, preempt_count_add) | 
|  | BTF_ID(func, preempt_count_sub) | 
|  | #endif | 
|  | #ifdef CONFIG_PREEMPT_RCU | 
|  | BTF_ID(func, __rcu_read_lock) | 
|  | BTF_ID(func, __rcu_read_unlock) | 
|  | #endif | 
|  | BTF_SET_END(btf_id_deny) | 
|  |  | 
|  | static bool can_be_sleepable(struct bpf_prog *prog) | 
|  | { | 
|  | if (prog->type == BPF_PROG_TYPE_TRACING) { | 
|  | switch (prog->expected_attach_type) { | 
|  | case BPF_TRACE_FENTRY: | 
|  | case BPF_TRACE_FEXIT: | 
|  | case BPF_MODIFY_RETURN: | 
|  | case BPF_TRACE_ITER: | 
|  | return true; | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  | return prog->type == BPF_PROG_TYPE_LSM || | 
|  | prog->type == BPF_PROG_TYPE_KPROBE /* only for uprobes */ || | 
|  | prog->type == BPF_PROG_TYPE_STRUCT_OPS; | 
|  | } | 
|  |  | 
|  | static int check_attach_btf_id(struct bpf_verifier_env *env) | 
|  | { | 
|  | struct bpf_prog *prog = env->prog; | 
|  | struct bpf_prog *tgt_prog = prog->aux->dst_prog; | 
|  | struct bpf_attach_target_info tgt_info = {}; | 
|  | u32 btf_id = prog->aux->attach_btf_id; | 
|  | struct bpf_trampoline *tr; | 
|  | int ret; | 
|  | u64 key; | 
|  |  | 
|  | if (prog->type == BPF_PROG_TYPE_SYSCALL) { | 
|  | if (prog->sleepable) | 
|  | /* attach_btf_id checked to be zero already */ | 
|  | return 0; | 
|  | verbose(env, "Syscall programs can only be sleepable\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (prog->sleepable && !can_be_sleepable(prog)) { | 
|  | verbose(env, "Only fentry/fexit/fmod_ret, lsm, iter, uprobe, and struct_ops programs can be sleepable\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (prog->type == BPF_PROG_TYPE_STRUCT_OPS) | 
|  | return check_struct_ops_btf_id(env); | 
|  |  | 
|  | if (prog->type != BPF_PROG_TYPE_TRACING && | 
|  | prog->type != BPF_PROG_TYPE_LSM && | 
|  | prog->type != BPF_PROG_TYPE_EXT) | 
|  | return 0; | 
|  |  | 
|  | ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) { | 
|  | /* to make freplace equivalent to their targets, they need to | 
|  | * inherit env->ops and expected_attach_type for the rest of the | 
|  | * verification | 
|  | */ | 
|  | env->ops = bpf_verifier_ops[tgt_prog->type]; | 
|  | prog->expected_attach_type = tgt_prog->expected_attach_type; | 
|  | } | 
|  |  | 
|  | /* store info about the attachment target that will be used later */ | 
|  | prog->aux->attach_func_proto = tgt_info.tgt_type; | 
|  | prog->aux->attach_func_name = tgt_info.tgt_name; | 
|  | prog->aux->mod = tgt_info.tgt_mod; | 
|  |  | 
|  | if (tgt_prog) { | 
|  | prog->aux->saved_dst_prog_type = tgt_prog->type; | 
|  | prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type; | 
|  | } | 
|  |  | 
|  | if (prog->expected_attach_type == BPF_TRACE_RAW_TP) { | 
|  | prog->aux->attach_btf_trace = true; | 
|  | return 0; | 
|  | } else if (prog->expected_attach_type == BPF_TRACE_ITER) { | 
|  | if (!bpf_iter_prog_supported(prog)) | 
|  | return -EINVAL; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (prog->type == BPF_PROG_TYPE_LSM) { | 
|  | ret = bpf_lsm_verify_prog(&env->log, prog); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | } else if (prog->type == BPF_PROG_TYPE_TRACING && | 
|  | btf_id_set_contains(&btf_id_deny, btf_id)) { | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id); | 
|  | tr = bpf_trampoline_get(key, &tgt_info); | 
|  | if (!tr) | 
|  | return -ENOMEM; | 
|  |  | 
|  | if (tgt_prog && tgt_prog->aux->tail_call_reachable) | 
|  | tr->flags = BPF_TRAMP_F_TAIL_CALL_CTX; | 
|  |  | 
|  | prog->aux->dst_trampoline = tr; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | struct btf *bpf_get_btf_vmlinux(void) | 
|  | { | 
|  | if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { | 
|  | mutex_lock(&bpf_verifier_lock); | 
|  | if (!btf_vmlinux) | 
|  | btf_vmlinux = btf_parse_vmlinux(); | 
|  | mutex_unlock(&bpf_verifier_lock); | 
|  | } | 
|  | return btf_vmlinux; | 
|  | } | 
|  |  | 
|  | int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr, __u32 uattr_size) | 
|  | { | 
|  | u64 start_time = ktime_get_ns(); | 
|  | struct bpf_verifier_env *env; | 
|  | int i, len, ret = -EINVAL, err; | 
|  | u32 log_true_size; | 
|  | bool is_priv; | 
|  |  | 
|  | /* no program is valid */ | 
|  | if (ARRAY_SIZE(bpf_verifier_ops) == 0) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* 'struct bpf_verifier_env' can be global, but since it's not small, | 
|  | * allocate/free it every time bpf_check() is called | 
|  | */ | 
|  | env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); | 
|  | if (!env) | 
|  | return -ENOMEM; | 
|  |  | 
|  | env->bt.env = env; | 
|  |  | 
|  | len = (*prog)->len; | 
|  | env->insn_aux_data = | 
|  | vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len)); | 
|  | ret = -ENOMEM; | 
|  | if (!env->insn_aux_data) | 
|  | goto err_free_env; | 
|  | for (i = 0; i < len; i++) | 
|  | env->insn_aux_data[i].orig_idx = i; | 
|  | env->prog = *prog; | 
|  | env->ops = bpf_verifier_ops[env->prog->type]; | 
|  | env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel); | 
|  |  | 
|  | env->allow_ptr_leaks = bpf_allow_ptr_leaks(env->prog->aux->token); | 
|  | env->allow_uninit_stack = bpf_allow_uninit_stack(env->prog->aux->token); | 
|  | env->bypass_spec_v1 = bpf_bypass_spec_v1(env->prog->aux->token); | 
|  | env->bypass_spec_v4 = bpf_bypass_spec_v4(env->prog->aux->token); | 
|  | env->bpf_capable = is_priv = bpf_token_capable(env->prog->aux->token, CAP_BPF); | 
|  |  | 
|  | bpf_get_btf_vmlinux(); | 
|  |  | 
|  | /* grab the mutex to protect few globals used by verifier */ | 
|  | if (!is_priv) | 
|  | mutex_lock(&bpf_verifier_lock); | 
|  |  | 
|  | /* user could have requested verbose verifier output | 
|  | * and supplied buffer to store the verification trace | 
|  | */ | 
|  | ret = bpf_vlog_init(&env->log, attr->log_level, | 
|  | (char __user *) (unsigned long) attr->log_buf, | 
|  | attr->log_size); | 
|  | if (ret) | 
|  | goto err_unlock; | 
|  |  | 
|  | mark_verifier_state_clean(env); | 
|  |  | 
|  | if (IS_ERR(btf_vmlinux)) { | 
|  | /* Either gcc or pahole or kernel are broken. */ | 
|  | verbose(env, "in-kernel BTF is malformed\n"); | 
|  | ret = PTR_ERR(btf_vmlinux); | 
|  | goto skip_full_check; | 
|  | } | 
|  |  | 
|  | env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); | 
|  | if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) | 
|  | env->strict_alignment = true; | 
|  | if (attr->prog_flags & BPF_F_ANY_ALIGNMENT) | 
|  | env->strict_alignment = false; | 
|  |  | 
|  | if (is_priv) | 
|  | env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ; | 
|  | env->test_reg_invariants = attr->prog_flags & BPF_F_TEST_REG_INVARIANTS; | 
|  |  | 
|  | env->explored_states = kvcalloc(state_htab_size(env), | 
|  | sizeof(struct bpf_verifier_state_list *), | 
|  | GFP_USER); | 
|  | ret = -ENOMEM; | 
|  | if (!env->explored_states) | 
|  | goto skip_full_check; | 
|  |  | 
|  | ret = check_btf_info_early(env, attr, uattr); | 
|  | if (ret < 0) | 
|  | goto skip_full_check; | 
|  |  | 
|  | ret = add_subprog_and_kfunc(env); | 
|  | if (ret < 0) | 
|  | goto skip_full_check; | 
|  |  | 
|  | ret = check_subprogs(env); | 
|  | if (ret < 0) | 
|  | goto skip_full_check; | 
|  |  | 
|  | ret = check_btf_info(env, attr, uattr); | 
|  | if (ret < 0) | 
|  | goto skip_full_check; | 
|  |  | 
|  | ret = check_attach_btf_id(env); | 
|  | if (ret) | 
|  | goto skip_full_check; | 
|  |  | 
|  | ret = resolve_pseudo_ldimm64(env); | 
|  | if (ret < 0) | 
|  | goto skip_full_check; | 
|  |  | 
|  | if (bpf_prog_is_offloaded(env->prog->aux)) { | 
|  | ret = bpf_prog_offload_verifier_prep(env->prog); | 
|  | if (ret) | 
|  | goto skip_full_check; | 
|  | } | 
|  |  | 
|  | ret = check_cfg(env); | 
|  | if (ret < 0) | 
|  | goto skip_full_check; | 
|  |  | 
|  | ret = mark_fastcall_patterns(env); | 
|  | if (ret < 0) | 
|  | goto skip_full_check; | 
|  |  | 
|  | ret = do_check_main(env); | 
|  | ret = ret ?: do_check_subprogs(env); | 
|  |  | 
|  | if (ret == 0 && bpf_prog_is_offloaded(env->prog->aux)) | 
|  | ret = bpf_prog_offload_finalize(env); | 
|  |  | 
|  | skip_full_check: | 
|  | kvfree(env->explored_states); | 
|  |  | 
|  | /* might decrease stack depth, keep it before passes that | 
|  | * allocate additional slots. | 
|  | */ | 
|  | if (ret == 0) | 
|  | ret = remove_fastcall_spills_fills(env); | 
|  |  | 
|  | if (ret == 0) | 
|  | ret = check_max_stack_depth(env); | 
|  |  | 
|  | /* instruction rewrites happen after this point */ | 
|  | if (ret == 0) | 
|  | ret = optimize_bpf_loop(env); | 
|  |  | 
|  | if (is_priv) { | 
|  | if (ret == 0) | 
|  | opt_hard_wire_dead_code_branches(env); | 
|  | if (ret == 0) | 
|  | ret = opt_remove_dead_code(env); | 
|  | if (ret == 0) | 
|  | ret = opt_remove_nops(env); | 
|  | } else { | 
|  | if (ret == 0) | 
|  | sanitize_dead_code(env); | 
|  | } | 
|  |  | 
|  | if (ret == 0) | 
|  | /* program is valid, convert *(u32*)(ctx + off) accesses */ | 
|  | ret = convert_ctx_accesses(env); | 
|  |  | 
|  | if (ret == 0) | 
|  | ret = do_misc_fixups(env); | 
|  |  | 
|  | /* do 32-bit optimization after insn patching has done so those patched | 
|  | * insns could be handled correctly. | 
|  | */ | 
|  | if (ret == 0 && !bpf_prog_is_offloaded(env->prog->aux)) { | 
|  | ret = opt_subreg_zext_lo32_rnd_hi32(env, attr); | 
|  | env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret | 
|  | : false; | 
|  | } | 
|  |  | 
|  | if (ret == 0) | 
|  | ret = fixup_call_args(env); | 
|  |  | 
|  | env->verification_time = ktime_get_ns() - start_time; | 
|  | print_verification_stats(env); | 
|  | env->prog->aux->verified_insns = env->insn_processed; | 
|  |  | 
|  | /* preserve original error even if log finalization is successful */ | 
|  | err = bpf_vlog_finalize(&env->log, &log_true_size); | 
|  | if (err) | 
|  | ret = err; | 
|  |  | 
|  | if (uattr_size >= offsetofend(union bpf_attr, log_true_size) && | 
|  | copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, log_true_size), | 
|  | &log_true_size, sizeof(log_true_size))) { | 
|  | ret = -EFAULT; | 
|  | goto err_release_maps; | 
|  | } | 
|  |  | 
|  | if (ret) | 
|  | goto err_release_maps; | 
|  |  | 
|  | if (env->used_map_cnt) { | 
|  | /* if program passed verifier, update used_maps in bpf_prog_info */ | 
|  | env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, | 
|  | sizeof(env->used_maps[0]), | 
|  | GFP_KERNEL); | 
|  |  | 
|  | if (!env->prog->aux->used_maps) { | 
|  | ret = -ENOMEM; | 
|  | goto err_release_maps; | 
|  | } | 
|  |  | 
|  | memcpy(env->prog->aux->used_maps, env->used_maps, | 
|  | sizeof(env->used_maps[0]) * env->used_map_cnt); | 
|  | env->prog->aux->used_map_cnt = env->used_map_cnt; | 
|  | } | 
|  | if (env->used_btf_cnt) { | 
|  | /* if program passed verifier, update used_btfs in bpf_prog_aux */ | 
|  | env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt, | 
|  | sizeof(env->used_btfs[0]), | 
|  | GFP_KERNEL); | 
|  | if (!env->prog->aux->used_btfs) { | 
|  | ret = -ENOMEM; | 
|  | goto err_release_maps; | 
|  | } | 
|  |  | 
|  | memcpy(env->prog->aux->used_btfs, env->used_btfs, | 
|  | sizeof(env->used_btfs[0]) * env->used_btf_cnt); | 
|  | env->prog->aux->used_btf_cnt = env->used_btf_cnt; | 
|  | } | 
|  | if (env->used_map_cnt || env->used_btf_cnt) { | 
|  | /* program is valid. Convert pseudo bpf_ld_imm64 into generic | 
|  | * bpf_ld_imm64 instructions | 
|  | */ | 
|  | convert_pseudo_ld_imm64(env); | 
|  | } | 
|  |  | 
|  | adjust_btf_func(env); | 
|  |  | 
|  | err_release_maps: | 
|  | if (!env->prog->aux->used_maps) | 
|  | /* if we didn't copy map pointers into bpf_prog_info, release | 
|  | * them now. Otherwise free_used_maps() will release them. | 
|  | */ | 
|  | release_maps(env); | 
|  | if (!env->prog->aux->used_btfs) | 
|  | release_btfs(env); | 
|  |  | 
|  | /* extension progs temporarily inherit the attach_type of their targets | 
|  | for verification purposes, so set it back to zero before returning | 
|  | */ | 
|  | if (env->prog->type == BPF_PROG_TYPE_EXT) | 
|  | env->prog->expected_attach_type = 0; | 
|  |  | 
|  | *prog = env->prog; | 
|  |  | 
|  | module_put(env->attach_btf_mod); | 
|  | err_unlock: | 
|  | if (!is_priv) | 
|  | mutex_unlock(&bpf_verifier_lock); | 
|  | vfree(env->insn_aux_data); | 
|  | err_free_env: | 
|  | kfree(env); | 
|  | return ret; | 
|  | } |