|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | /* | 
|  | * A power allocator to manage temperature | 
|  | * | 
|  | * Copyright (C) 2014 ARM Ltd. | 
|  | * | 
|  | */ | 
|  |  | 
|  | #define pr_fmt(fmt) "Power allocator: " fmt | 
|  |  | 
|  | #include <linux/slab.h> | 
|  | #include <linux/thermal.h> | 
|  |  | 
|  | #define CREATE_TRACE_POINTS | 
|  | #include "thermal_trace_ipa.h" | 
|  |  | 
|  | #include "thermal_core.h" | 
|  |  | 
|  | #define FRAC_BITS 10 | 
|  | #define int_to_frac(x) ((x) << FRAC_BITS) | 
|  | #define frac_to_int(x) ((x) >> FRAC_BITS) | 
|  |  | 
|  | /** | 
|  | * mul_frac() - multiply two fixed-point numbers | 
|  | * @x:	first multiplicand | 
|  | * @y:	second multiplicand | 
|  | * | 
|  | * Return: the result of multiplying two fixed-point numbers.  The | 
|  | * result is also a fixed-point number. | 
|  | */ | 
|  | static inline s64 mul_frac(s64 x, s64 y) | 
|  | { | 
|  | return (x * y) >> FRAC_BITS; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * div_frac() - divide two fixed-point numbers | 
|  | * @x:	the dividend | 
|  | * @y:	the divisor | 
|  | * | 
|  | * Return: the result of dividing two fixed-point numbers.  The | 
|  | * result is also a fixed-point number. | 
|  | */ | 
|  | static inline s64 div_frac(s64 x, s64 y) | 
|  | { | 
|  | return div_s64(x << FRAC_BITS, y); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * struct power_actor - internal power information for power actor | 
|  | * @req_power:		requested power value (not weighted) | 
|  | * @max_power:		max allocatable power for this actor | 
|  | * @granted_power:	granted power for this actor | 
|  | * @extra_actor_power:	extra power that this actor can receive | 
|  | * @weighted_req_power:	weighted requested power as input to IPA | 
|  | */ | 
|  | struct power_actor { | 
|  | u32 req_power; | 
|  | u32 max_power; | 
|  | u32 granted_power; | 
|  | u32 extra_actor_power; | 
|  | u32 weighted_req_power; | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * struct power_allocator_params - parameters for the power allocator governor | 
|  | * @allocated_tzp:	whether we have allocated tzp for this thermal zone and | 
|  | *			it needs to be freed on unbind | 
|  | * @update_cdevs:	whether or not update cdevs on the next run | 
|  | * @err_integral:	accumulated error in the PID controller. | 
|  | * @prev_err:	error in the previous iteration of the PID controller. | 
|  | *		Used to calculate the derivative term. | 
|  | * @sustainable_power:	Sustainable power (heat) that this thermal zone can | 
|  | *			dissipate | 
|  | * @trip_switch_on:	first passive trip point of the thermal zone.  The | 
|  | *			governor switches on when this trip point is crossed. | 
|  | *			If the thermal zone only has one passive trip point, | 
|  | *			@trip_switch_on should be NULL. | 
|  | * @trip_max:		last passive trip point of the thermal zone. The | 
|  | *			temperature we are controlling for. | 
|  | * @total_weight:	Sum of all thermal instances weights | 
|  | * @num_actors:		number of cooling devices supporting IPA callbacks | 
|  | * @buffer_size:	internal buffer size, to avoid runtime re-calculation | 
|  | * @power:		buffer for all power actors internal power information | 
|  | */ | 
|  | struct power_allocator_params { | 
|  | bool allocated_tzp; | 
|  | bool update_cdevs; | 
|  | s64 err_integral; | 
|  | s32 prev_err; | 
|  | u32 sustainable_power; | 
|  | const struct thermal_trip *trip_switch_on; | 
|  | const struct thermal_trip *trip_max; | 
|  | int total_weight; | 
|  | unsigned int num_actors; | 
|  | unsigned int buffer_size; | 
|  | struct power_actor *power; | 
|  | }; | 
|  |  | 
|  | static bool power_actor_is_valid(struct power_allocator_params *params, | 
|  | struct thermal_instance *instance) | 
|  | { | 
|  | return (instance->trip == params->trip_max && | 
|  | cdev_is_power_actor(instance->cdev)); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * estimate_sustainable_power() - Estimate the sustainable power of a thermal zone | 
|  | * @tz: thermal zone we are operating in | 
|  | * | 
|  | * For thermal zones that don't provide a sustainable_power in their | 
|  | * thermal_zone_params, estimate one.  Calculate it using the minimum | 
|  | * power of all the cooling devices as that gives a valid value that | 
|  | * can give some degree of functionality.  For optimal performance of | 
|  | * this governor, provide a sustainable_power in the thermal zone's | 
|  | * thermal_zone_params. | 
|  | */ | 
|  | static u32 estimate_sustainable_power(struct thermal_zone_device *tz) | 
|  | { | 
|  | struct power_allocator_params *params = tz->governor_data; | 
|  | struct thermal_cooling_device *cdev; | 
|  | struct thermal_instance *instance; | 
|  | u32 sustainable_power = 0; | 
|  | u32 min_power; | 
|  |  | 
|  | list_for_each_entry(instance, &tz->thermal_instances, tz_node) { | 
|  | if (!power_actor_is_valid(params, instance)) | 
|  | continue; | 
|  |  | 
|  | cdev = instance->cdev; | 
|  | if (cdev->ops->state2power(cdev, instance->upper, &min_power)) | 
|  | continue; | 
|  |  | 
|  | sustainable_power += min_power; | 
|  | } | 
|  |  | 
|  | return sustainable_power; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * estimate_pid_constants() - Estimate the constants for the PID controller | 
|  | * @tz:		thermal zone for which to estimate the constants | 
|  | * @sustainable_power:	sustainable power for the thermal zone | 
|  | * @trip_switch_on:	trip point for the switch on temperature | 
|  | * @control_temp:	target temperature for the power allocator governor | 
|  | * | 
|  | * This function is used to update the estimation of the PID | 
|  | * controller constants in struct thermal_zone_parameters. | 
|  | */ | 
|  | static void estimate_pid_constants(struct thermal_zone_device *tz, | 
|  | u32 sustainable_power, | 
|  | const struct thermal_trip *trip_switch_on, | 
|  | int control_temp) | 
|  | { | 
|  | u32 temperature_threshold = control_temp; | 
|  | s32 k_i; | 
|  |  | 
|  | if (trip_switch_on) | 
|  | temperature_threshold -= trip_switch_on->temperature; | 
|  |  | 
|  | /* | 
|  | * estimate_pid_constants() tries to find appropriate default | 
|  | * values for thermal zones that don't provide them. If a | 
|  | * system integrator has configured a thermal zone with two | 
|  | * passive trip points at the same temperature, that person | 
|  | * hasn't put any effort to set up the thermal zone properly | 
|  | * so just give up. | 
|  | */ | 
|  | if (!temperature_threshold) | 
|  | return; | 
|  |  | 
|  | tz->tzp->k_po = int_to_frac(sustainable_power) / | 
|  | temperature_threshold; | 
|  |  | 
|  | tz->tzp->k_pu = int_to_frac(2 * sustainable_power) / | 
|  | temperature_threshold; | 
|  |  | 
|  | k_i = tz->tzp->k_pu / 10; | 
|  | tz->tzp->k_i = k_i > 0 ? k_i : 1; | 
|  |  | 
|  | /* | 
|  | * The default for k_d and integral_cutoff is 0, so we can | 
|  | * leave them as they are. | 
|  | */ | 
|  | } | 
|  |  | 
|  | /** | 
|  | * get_sustainable_power() - Get the right sustainable power | 
|  | * @tz:		thermal zone for which to estimate the constants | 
|  | * @params:	parameters for the power allocator governor | 
|  | * @control_temp:	target temperature for the power allocator governor | 
|  | * | 
|  | * This function is used for getting the proper sustainable power value based | 
|  | * on variables which might be updated by the user sysfs interface. If that | 
|  | * happen the new value is going to be estimated and updated. It is also used | 
|  | * after thermal zone binding, where the initial values where set to 0. | 
|  | */ | 
|  | static u32 get_sustainable_power(struct thermal_zone_device *tz, | 
|  | struct power_allocator_params *params, | 
|  | int control_temp) | 
|  | { | 
|  | u32 sustainable_power; | 
|  |  | 
|  | if (!tz->tzp->sustainable_power) | 
|  | sustainable_power = estimate_sustainable_power(tz); | 
|  | else | 
|  | sustainable_power = tz->tzp->sustainable_power; | 
|  |  | 
|  | /* Check if it's init value 0 or there was update via sysfs */ | 
|  | if (sustainable_power != params->sustainable_power) { | 
|  | estimate_pid_constants(tz, sustainable_power, | 
|  | params->trip_switch_on, control_temp); | 
|  |  | 
|  | /* Do the estimation only once and make available in sysfs */ | 
|  | tz->tzp->sustainable_power = sustainable_power; | 
|  | params->sustainable_power = sustainable_power; | 
|  | } | 
|  |  | 
|  | return sustainable_power; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pid_controller() - PID controller | 
|  | * @tz:	thermal zone we are operating in | 
|  | * @control_temp:	the target temperature in millicelsius | 
|  | * @max_allocatable_power:	maximum allocatable power for this thermal zone | 
|  | * | 
|  | * This PID controller increases the available power budget so that the | 
|  | * temperature of the thermal zone gets as close as possible to | 
|  | * @control_temp and limits the power if it exceeds it.  k_po is the | 
|  | * proportional term when we are overshooting, k_pu is the | 
|  | * proportional term when we are undershooting.  integral_cutoff is a | 
|  | * threshold below which we stop accumulating the error.  The | 
|  | * accumulated error is only valid if the requested power will make | 
|  | * the system warmer.  If the system is mostly idle, there's no point | 
|  | * in accumulating positive error. | 
|  | * | 
|  | * Return: The power budget for the next period. | 
|  | */ | 
|  | static u32 pid_controller(struct thermal_zone_device *tz, | 
|  | int control_temp, | 
|  | u32 max_allocatable_power) | 
|  | { | 
|  | struct power_allocator_params *params = tz->governor_data; | 
|  | s64 p, i, d, power_range; | 
|  | s32 err, max_power_frac; | 
|  | u32 sustainable_power; | 
|  |  | 
|  | max_power_frac = int_to_frac(max_allocatable_power); | 
|  |  | 
|  | sustainable_power = get_sustainable_power(tz, params, control_temp); | 
|  |  | 
|  | err = control_temp - tz->temperature; | 
|  | err = int_to_frac(err); | 
|  |  | 
|  | /* Calculate the proportional term */ | 
|  | p = mul_frac(err < 0 ? tz->tzp->k_po : tz->tzp->k_pu, err); | 
|  |  | 
|  | /* | 
|  | * Calculate the integral term | 
|  | * | 
|  | * if the error is less than cut off allow integration (but | 
|  | * the integral is limited to max power) | 
|  | */ | 
|  | i = mul_frac(tz->tzp->k_i, params->err_integral); | 
|  |  | 
|  | if (err < int_to_frac(tz->tzp->integral_cutoff)) { | 
|  | s64 i_next = i + mul_frac(tz->tzp->k_i, err); | 
|  |  | 
|  | if (abs(i_next) < max_power_frac) { | 
|  | i = i_next; | 
|  | params->err_integral += err; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Calculate the derivative term | 
|  | * | 
|  | * We do err - prev_err, so with a positive k_d, a decreasing | 
|  | * error (i.e. driving closer to the line) results in less | 
|  | * power being applied, slowing down the controller) | 
|  | */ | 
|  | d = mul_frac(tz->tzp->k_d, err - params->prev_err); | 
|  | d = div_frac(d, jiffies_to_msecs(tz->passive_delay_jiffies)); | 
|  | params->prev_err = err; | 
|  |  | 
|  | power_range = p + i + d; | 
|  |  | 
|  | /* feed-forward the known sustainable dissipatable power */ | 
|  | power_range = sustainable_power + frac_to_int(power_range); | 
|  |  | 
|  | power_range = clamp(power_range, (s64)0, (s64)max_allocatable_power); | 
|  |  | 
|  | trace_thermal_power_allocator_pid(tz, frac_to_int(err), | 
|  | frac_to_int(params->err_integral), | 
|  | frac_to_int(p), frac_to_int(i), | 
|  | frac_to_int(d), power_range); | 
|  |  | 
|  | return power_range; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * power_actor_set_power() - limit the maximum power a cooling device consumes | 
|  | * @cdev:	pointer to &thermal_cooling_device | 
|  | * @instance:	thermal instance to update | 
|  | * @power:	the power in milliwatts | 
|  | * | 
|  | * Set the cooling device to consume at most @power milliwatts. The limit is | 
|  | * expected to be a cap at the maximum power consumption. | 
|  | * | 
|  | * Return: 0 on success, -EINVAL if the cooling device does not | 
|  | * implement the power actor API or -E* for other failures. | 
|  | */ | 
|  | static int | 
|  | power_actor_set_power(struct thermal_cooling_device *cdev, | 
|  | struct thermal_instance *instance, u32 power) | 
|  | { | 
|  | unsigned long state; | 
|  | int ret; | 
|  |  | 
|  | ret = cdev->ops->power2state(cdev, power, &state); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | instance->target = clamp_val(state, instance->lower, instance->upper); | 
|  | mutex_lock(&cdev->lock); | 
|  | __thermal_cdev_update(cdev); | 
|  | mutex_unlock(&cdev->lock); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * divvy_up_power() - divvy the allocated power between the actors | 
|  | * @power:		buffer for all power actors internal power information | 
|  | * @num_actors:		number of power actors in this thermal zone | 
|  | * @total_req_power:	sum of all weighted requested power for all actors | 
|  | * @power_range:	total allocated power | 
|  | * | 
|  | * This function divides the total allocated power (@power_range) | 
|  | * fairly between the actors.  It first tries to give each actor a | 
|  | * share of the @power_range according to how much power it requested | 
|  | * compared to the rest of the actors.  For example, if only one actor | 
|  | * requests power, then it receives all the @power_range.  If | 
|  | * three actors each requests 1mW, each receives a third of the | 
|  | * @power_range. | 
|  | * | 
|  | * If any actor received more than their maximum power, then that | 
|  | * surplus is re-divvied among the actors based on how far they are | 
|  | * from their respective maximums. | 
|  | */ | 
|  | static void divvy_up_power(struct power_actor *power, int num_actors, | 
|  | u32 total_req_power, u32 power_range) | 
|  | { | 
|  | u32 capped_extra_power = 0; | 
|  | u32 extra_power = 0; | 
|  | int i; | 
|  |  | 
|  | /* | 
|  | * Prevent division by 0 if none of the actors request power. | 
|  | */ | 
|  | if (!total_req_power) | 
|  | total_req_power = 1; | 
|  |  | 
|  | for (i = 0; i < num_actors; i++) { | 
|  | struct power_actor *pa = &power[i]; | 
|  | u64 req_range = (u64)pa->req_power * power_range; | 
|  |  | 
|  | pa->granted_power = DIV_ROUND_CLOSEST_ULL(req_range, | 
|  | total_req_power); | 
|  |  | 
|  | if (pa->granted_power > pa->max_power) { | 
|  | extra_power += pa->granted_power - pa->max_power; | 
|  | pa->granted_power = pa->max_power; | 
|  | } | 
|  |  | 
|  | pa->extra_actor_power = pa->max_power - pa->granted_power; | 
|  | capped_extra_power += pa->extra_actor_power; | 
|  | } | 
|  |  | 
|  | if (!extra_power || !capped_extra_power) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Re-divvy the reclaimed extra among actors based on | 
|  | * how far they are from the max | 
|  | */ | 
|  | extra_power = min(extra_power, capped_extra_power); | 
|  |  | 
|  | for (i = 0; i < num_actors; i++) { | 
|  | struct power_actor *pa = &power[i]; | 
|  | u64 extra_range = pa->extra_actor_power; | 
|  |  | 
|  | extra_range *= extra_power; | 
|  | pa->granted_power += DIV_ROUND_CLOSEST_ULL(extra_range, | 
|  | capped_extra_power); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void allocate_power(struct thermal_zone_device *tz, int control_temp) | 
|  | { | 
|  | struct power_allocator_params *params = tz->governor_data; | 
|  | unsigned int num_actors = params->num_actors; | 
|  | struct power_actor *power = params->power; | 
|  | struct thermal_cooling_device *cdev; | 
|  | struct thermal_instance *instance; | 
|  | u32 total_weighted_req_power = 0; | 
|  | u32 max_allocatable_power = 0; | 
|  | u32 total_granted_power = 0; | 
|  | u32 total_req_power = 0; | 
|  | u32 power_range, weight; | 
|  | int i = 0, ret; | 
|  |  | 
|  | if (!num_actors) | 
|  | return; | 
|  |  | 
|  | /* Clean all buffers for new power estimations */ | 
|  | memset(power, 0, params->buffer_size); | 
|  |  | 
|  | list_for_each_entry(instance, &tz->thermal_instances, tz_node) { | 
|  | struct power_actor *pa = &power[i]; | 
|  |  | 
|  | if (!power_actor_is_valid(params, instance)) | 
|  | continue; | 
|  |  | 
|  | cdev = instance->cdev; | 
|  |  | 
|  | ret = cdev->ops->get_requested_power(cdev, &pa->req_power); | 
|  | if (ret) | 
|  | continue; | 
|  |  | 
|  | if (!params->total_weight) | 
|  | weight = 1 << FRAC_BITS; | 
|  | else | 
|  | weight = instance->weight; | 
|  |  | 
|  | pa->weighted_req_power = frac_to_int(weight * pa->req_power); | 
|  |  | 
|  | ret = cdev->ops->state2power(cdev, instance->lower, | 
|  | &pa->max_power); | 
|  | if (ret) | 
|  | continue; | 
|  |  | 
|  | total_req_power += pa->req_power; | 
|  | max_allocatable_power += pa->max_power; | 
|  | total_weighted_req_power += pa->weighted_req_power; | 
|  |  | 
|  | i++; | 
|  | } | 
|  |  | 
|  | power_range = pid_controller(tz, control_temp, max_allocatable_power); | 
|  |  | 
|  | divvy_up_power(power, num_actors, total_weighted_req_power, | 
|  | power_range); | 
|  |  | 
|  | i = 0; | 
|  | list_for_each_entry(instance, &tz->thermal_instances, tz_node) { | 
|  | struct power_actor *pa = &power[i]; | 
|  |  | 
|  | if (!power_actor_is_valid(params, instance)) | 
|  | continue; | 
|  |  | 
|  | power_actor_set_power(instance->cdev, instance, | 
|  | pa->granted_power); | 
|  | total_granted_power += pa->granted_power; | 
|  |  | 
|  | trace_thermal_power_actor(tz, i, pa->req_power, | 
|  | pa->granted_power); | 
|  | i++; | 
|  | } | 
|  |  | 
|  | trace_thermal_power_allocator(tz, total_req_power, total_granted_power, | 
|  | num_actors, power_range, | 
|  | max_allocatable_power, tz->temperature, | 
|  | control_temp - tz->temperature); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * get_governor_trips() - get the two trip points that are key for this governor | 
|  | * @tz:	thermal zone to operate on | 
|  | * @params:	pointer to private data for this governor | 
|  | * | 
|  | * The power allocator governor works optimally with two trips points: | 
|  | * a "switch on" trip point and a "maximum desired temperature".  These | 
|  | * are defined as the first and last passive trip points. | 
|  | * | 
|  | * If there is only one trip point, then that's considered to be the | 
|  | * "maximum desired temperature" trip point and the governor is always | 
|  | * on.  If there are no passive or active trip points, then the | 
|  | * governor won't do anything.  In fact, its throttle function | 
|  | * won't be called at all. | 
|  | */ | 
|  | static void get_governor_trips(struct thermal_zone_device *tz, | 
|  | struct power_allocator_params *params) | 
|  | { | 
|  | const struct thermal_trip *first_passive = NULL; | 
|  | const struct thermal_trip *last_passive = NULL; | 
|  | const struct thermal_trip *last_active = NULL; | 
|  | const struct thermal_trip_desc *td; | 
|  |  | 
|  | for_each_trip_desc(tz, td) { | 
|  | const struct thermal_trip *trip = &td->trip; | 
|  |  | 
|  | switch (trip->type) { | 
|  | case THERMAL_TRIP_PASSIVE: | 
|  | if (!first_passive) { | 
|  | first_passive = trip; | 
|  | break; | 
|  | } | 
|  | last_passive = trip; | 
|  | break; | 
|  | case THERMAL_TRIP_ACTIVE: | 
|  | last_active = trip; | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (last_passive) { | 
|  | params->trip_switch_on = first_passive; | 
|  | params->trip_max = last_passive; | 
|  | } else if (first_passive) { | 
|  | params->trip_switch_on = NULL; | 
|  | params->trip_max = first_passive; | 
|  | } else { | 
|  | params->trip_switch_on = NULL; | 
|  | params->trip_max = last_active; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void reset_pid_controller(struct power_allocator_params *params) | 
|  | { | 
|  | params->err_integral = 0; | 
|  | params->prev_err = 0; | 
|  | } | 
|  |  | 
|  | static void allow_maximum_power(struct thermal_zone_device *tz) | 
|  | { | 
|  | struct power_allocator_params *params = tz->governor_data; | 
|  | struct thermal_cooling_device *cdev; | 
|  | struct thermal_instance *instance; | 
|  | u32 req_power; | 
|  |  | 
|  | list_for_each_entry(instance, &tz->thermal_instances, tz_node) { | 
|  | if (!power_actor_is_valid(params, instance)) | 
|  | continue; | 
|  |  | 
|  | cdev = instance->cdev; | 
|  |  | 
|  | instance->target = 0; | 
|  | mutex_lock(&cdev->lock); | 
|  | /* | 
|  | * Call for updating the cooling devices local stats and avoid | 
|  | * periods of dozen of seconds when those have not been | 
|  | * maintained. | 
|  | */ | 
|  | cdev->ops->get_requested_power(cdev, &req_power); | 
|  |  | 
|  | if (params->update_cdevs) | 
|  | __thermal_cdev_update(cdev); | 
|  |  | 
|  | mutex_unlock(&cdev->lock); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * check_power_actors() - Check all cooling devices and warn when they are | 
|  | *			not power actors | 
|  | * @tz:		thermal zone to operate on | 
|  | * @params:	power allocator private data | 
|  | * | 
|  | * Check all cooling devices in the @tz and warn every time they are missing | 
|  | * power actor API. The warning should help to investigate the issue, which | 
|  | * could be e.g. lack of Energy Model for a given device. | 
|  | * | 
|  | * If all of the cooling devices currently attached to @tz implement the power | 
|  | * actor API, return the number of them (which may be 0, because some cooling | 
|  | * devices may be attached later). Otherwise, return -EINVAL. | 
|  | */ | 
|  | static int check_power_actors(struct thermal_zone_device *tz, | 
|  | struct power_allocator_params *params) | 
|  | { | 
|  | struct thermal_instance *instance; | 
|  | int ret = 0; | 
|  |  | 
|  | list_for_each_entry(instance, &tz->thermal_instances, tz_node) { | 
|  | if (instance->trip != params->trip_max) | 
|  | continue; | 
|  |  | 
|  | if (!cdev_is_power_actor(instance->cdev)) { | 
|  | dev_warn(&tz->device, "power_allocator: %s is not a power actor\n", | 
|  | instance->cdev->type); | 
|  | return -EINVAL; | 
|  | } | 
|  | ret++; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int allocate_actors_buffer(struct power_allocator_params *params, | 
|  | int num_actors) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | kfree(params->power); | 
|  |  | 
|  | /* There might be no cooling devices yet. */ | 
|  | if (!num_actors) { | 
|  | ret = 0; | 
|  | goto clean_state; | 
|  | } | 
|  |  | 
|  | params->power = kcalloc(num_actors, sizeof(struct power_actor), | 
|  | GFP_KERNEL); | 
|  | if (!params->power) { | 
|  | ret = -ENOMEM; | 
|  | goto clean_state; | 
|  | } | 
|  |  | 
|  | params->num_actors = num_actors; | 
|  | params->buffer_size = num_actors * sizeof(struct power_actor); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | clean_state: | 
|  | params->num_actors = 0; | 
|  | params->buffer_size = 0; | 
|  | params->power = NULL; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void power_allocator_update_tz(struct thermal_zone_device *tz, | 
|  | enum thermal_notify_event reason) | 
|  | { | 
|  | struct power_allocator_params *params = tz->governor_data; | 
|  | struct thermal_instance *instance; | 
|  | int num_actors = 0; | 
|  |  | 
|  | switch (reason) { | 
|  | case THERMAL_TZ_BIND_CDEV: | 
|  | case THERMAL_TZ_UNBIND_CDEV: | 
|  | list_for_each_entry(instance, &tz->thermal_instances, tz_node) | 
|  | if (power_actor_is_valid(params, instance)) | 
|  | num_actors++; | 
|  |  | 
|  | if (num_actors == params->num_actors) | 
|  | return; | 
|  |  | 
|  | allocate_actors_buffer(params, num_actors); | 
|  | break; | 
|  | case THERMAL_INSTANCE_WEIGHT_CHANGED: | 
|  | params->total_weight = 0; | 
|  | list_for_each_entry(instance, &tz->thermal_instances, tz_node) | 
|  | if (power_actor_is_valid(params, instance)) | 
|  | params->total_weight += instance->weight; | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * power_allocator_bind() - bind the power_allocator governor to a thermal zone | 
|  | * @tz:	thermal zone to bind it to | 
|  | * | 
|  | * Initialize the PID controller parameters and bind it to the thermal | 
|  | * zone. | 
|  | * | 
|  | * Return: 0 on success, or -ENOMEM if we ran out of memory, or -EINVAL | 
|  | * when there are unsupported cooling devices in the @tz. | 
|  | */ | 
|  | static int power_allocator_bind(struct thermal_zone_device *tz) | 
|  | { | 
|  | struct power_allocator_params *params; | 
|  | int ret; | 
|  |  | 
|  | params = kzalloc(sizeof(*params), GFP_KERNEL); | 
|  | if (!params) | 
|  | return -ENOMEM; | 
|  |  | 
|  | get_governor_trips(tz, params); | 
|  |  | 
|  | ret = check_power_actors(tz, params); | 
|  | if (ret < 0) { | 
|  | dev_warn(&tz->device, "power_allocator: binding failed\n"); | 
|  | kfree(params); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | ret = allocate_actors_buffer(params, ret); | 
|  | if (ret) { | 
|  | dev_warn(&tz->device, "power_allocator: allocation failed\n"); | 
|  | kfree(params); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | if (!tz->tzp) { | 
|  | tz->tzp = kzalloc(sizeof(*tz->tzp), GFP_KERNEL); | 
|  | if (!tz->tzp) { | 
|  | ret = -ENOMEM; | 
|  | goto free_params; | 
|  | } | 
|  |  | 
|  | params->allocated_tzp = true; | 
|  | } | 
|  |  | 
|  | if (!tz->tzp->sustainable_power) | 
|  | dev_warn(&tz->device, "power_allocator: sustainable_power will be estimated\n"); | 
|  | else | 
|  | params->sustainable_power = tz->tzp->sustainable_power; | 
|  |  | 
|  | if (params->trip_max) | 
|  | estimate_pid_constants(tz, tz->tzp->sustainable_power, | 
|  | params->trip_switch_on, | 
|  | params->trip_max->temperature); | 
|  |  | 
|  | reset_pid_controller(params); | 
|  |  | 
|  | tz->governor_data = params; | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | free_params: | 
|  | kfree(params->power); | 
|  | kfree(params); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void power_allocator_unbind(struct thermal_zone_device *tz) | 
|  | { | 
|  | struct power_allocator_params *params = tz->governor_data; | 
|  |  | 
|  | dev_dbg(&tz->device, "Unbinding from thermal zone %d\n", tz->id); | 
|  |  | 
|  | if (params->allocated_tzp) { | 
|  | kfree(tz->tzp); | 
|  | tz->tzp = NULL; | 
|  | } | 
|  |  | 
|  | kfree(params->power); | 
|  | kfree(tz->governor_data); | 
|  | tz->governor_data = NULL; | 
|  | } | 
|  |  | 
|  | static void power_allocator_manage(struct thermal_zone_device *tz) | 
|  | { | 
|  | struct power_allocator_params *params = tz->governor_data; | 
|  | const struct thermal_trip *trip = params->trip_switch_on; | 
|  |  | 
|  | lockdep_assert_held(&tz->lock); | 
|  |  | 
|  | if (trip && tz->temperature < trip->temperature) { | 
|  | reset_pid_controller(params); | 
|  | allow_maximum_power(tz); | 
|  | params->update_cdevs = false; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (!params->trip_max) | 
|  | return; | 
|  |  | 
|  | allocate_power(tz, params->trip_max->temperature); | 
|  | params->update_cdevs = true; | 
|  | } | 
|  |  | 
|  | static struct thermal_governor thermal_gov_power_allocator = { | 
|  | .name		= "power_allocator", | 
|  | .bind_to_tz	= power_allocator_bind, | 
|  | .unbind_from_tz	= power_allocator_unbind, | 
|  | .manage		= power_allocator_manage, | 
|  | .update_tz	= power_allocator_update_tz, | 
|  | }; | 
|  | THERMAL_GOVERNOR_DECLARE(thermal_gov_power_allocator); |