| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Interconnect framework core driver |
| * |
| * Copyright (c) 2017-2019, Linaro Ltd. |
| * Author: Georgi Djakov <georgi.djakov@linaro.org> |
| */ |
| |
| #include <linux/debugfs.h> |
| #include <linux/device.h> |
| #include <linux/idr.h> |
| #include <linux/init.h> |
| #include <linux/interconnect.h> |
| #include <linux/interconnect-provider.h> |
| #include <linux/list.h> |
| #include <linux/mutex.h> |
| #include <linux/slab.h> |
| #include <linux/of.h> |
| #include <linux/overflow.h> |
| |
| #include "internal.h" |
| |
| #define CREATE_TRACE_POINTS |
| #include "trace.h" |
| |
| static DEFINE_IDR(icc_idr); |
| static LIST_HEAD(icc_providers); |
| static int providers_count; |
| static bool synced_state; |
| static DEFINE_MUTEX(icc_lock); |
| static DEFINE_MUTEX(icc_bw_lock); |
| static struct dentry *icc_debugfs_dir; |
| |
| static void icc_summary_show_one(struct seq_file *s, struct icc_node *n) |
| { |
| if (!n) |
| return; |
| |
| seq_printf(s, "%-42s %12u %12u\n", |
| n->name, n->avg_bw, n->peak_bw); |
| } |
| |
| static int icc_summary_show(struct seq_file *s, void *data) |
| { |
| struct icc_provider *provider; |
| |
| seq_puts(s, " node tag avg peak\n"); |
| seq_puts(s, "--------------------------------------------------------------------\n"); |
| |
| mutex_lock(&icc_lock); |
| |
| list_for_each_entry(provider, &icc_providers, provider_list) { |
| struct icc_node *n; |
| |
| list_for_each_entry(n, &provider->nodes, node_list) { |
| struct icc_req *r; |
| |
| icc_summary_show_one(s, n); |
| hlist_for_each_entry(r, &n->req_list, req_node) { |
| u32 avg_bw = 0, peak_bw = 0; |
| |
| if (!r->dev) |
| continue; |
| |
| if (r->enabled) { |
| avg_bw = r->avg_bw; |
| peak_bw = r->peak_bw; |
| } |
| |
| seq_printf(s, " %-27s %12u %12u %12u\n", |
| dev_name(r->dev), r->tag, avg_bw, peak_bw); |
| } |
| } |
| } |
| |
| mutex_unlock(&icc_lock); |
| |
| return 0; |
| } |
| DEFINE_SHOW_ATTRIBUTE(icc_summary); |
| |
| static void icc_graph_show_link(struct seq_file *s, int level, |
| struct icc_node *n, struct icc_node *m) |
| { |
| seq_printf(s, "%s\"%d:%s\" -> \"%d:%s\"\n", |
| level == 2 ? "\t\t" : "\t", |
| n->id, n->name, m->id, m->name); |
| } |
| |
| static void icc_graph_show_node(struct seq_file *s, struct icc_node *n) |
| { |
| seq_printf(s, "\t\t\"%d:%s\" [label=\"%d:%s", |
| n->id, n->name, n->id, n->name); |
| seq_printf(s, "\n\t\t\t|avg_bw=%ukBps", n->avg_bw); |
| seq_printf(s, "\n\t\t\t|peak_bw=%ukBps", n->peak_bw); |
| seq_puts(s, "\"]\n"); |
| } |
| |
| static int icc_graph_show(struct seq_file *s, void *data) |
| { |
| struct icc_provider *provider; |
| struct icc_node *n; |
| int cluster_index = 0; |
| int i; |
| |
| seq_puts(s, "digraph {\n\trankdir = LR\n\tnode [shape = record]\n"); |
| mutex_lock(&icc_lock); |
| |
| /* draw providers as cluster subgraphs */ |
| cluster_index = 0; |
| list_for_each_entry(provider, &icc_providers, provider_list) { |
| seq_printf(s, "\tsubgraph cluster_%d {\n", ++cluster_index); |
| if (provider->dev) |
| seq_printf(s, "\t\tlabel = \"%s\"\n", |
| dev_name(provider->dev)); |
| |
| /* draw nodes */ |
| list_for_each_entry(n, &provider->nodes, node_list) |
| icc_graph_show_node(s, n); |
| |
| /* draw internal links */ |
| list_for_each_entry(n, &provider->nodes, node_list) |
| for (i = 0; i < n->num_links; ++i) |
| if (n->provider == n->links[i]->provider) |
| icc_graph_show_link(s, 2, n, |
| n->links[i]); |
| |
| seq_puts(s, "\t}\n"); |
| } |
| |
| /* draw external links */ |
| list_for_each_entry(provider, &icc_providers, provider_list) |
| list_for_each_entry(n, &provider->nodes, node_list) |
| for (i = 0; i < n->num_links; ++i) |
| if (n->provider != n->links[i]->provider) |
| icc_graph_show_link(s, 1, n, |
| n->links[i]); |
| |
| mutex_unlock(&icc_lock); |
| seq_puts(s, "}"); |
| |
| return 0; |
| } |
| DEFINE_SHOW_ATTRIBUTE(icc_graph); |
| |
| static struct icc_node *node_find(const int id) |
| { |
| return idr_find(&icc_idr, id); |
| } |
| |
| static struct icc_node *node_find_by_name(const char *name) |
| { |
| struct icc_provider *provider; |
| struct icc_node *n; |
| |
| list_for_each_entry(provider, &icc_providers, provider_list) { |
| list_for_each_entry(n, &provider->nodes, node_list) { |
| if (!strcmp(n->name, name)) |
| return n; |
| } |
| } |
| |
| return NULL; |
| } |
| |
| static struct icc_path *path_init(struct device *dev, struct icc_node *dst, |
| ssize_t num_nodes) |
| { |
| struct icc_node *node = dst; |
| struct icc_path *path; |
| int i; |
| |
| path = kzalloc(struct_size(path, reqs, num_nodes), GFP_KERNEL); |
| if (!path) |
| return ERR_PTR(-ENOMEM); |
| |
| path->num_nodes = num_nodes; |
| |
| mutex_lock(&icc_bw_lock); |
| |
| for (i = num_nodes - 1; i >= 0; i--) { |
| node->provider->users++; |
| hlist_add_head(&path->reqs[i].req_node, &node->req_list); |
| path->reqs[i].node = node; |
| path->reqs[i].dev = dev; |
| path->reqs[i].enabled = true; |
| /* reference to previous node was saved during path traversal */ |
| node = node->reverse; |
| } |
| |
| mutex_unlock(&icc_bw_lock); |
| |
| return path; |
| } |
| |
| static struct icc_path *path_find(struct device *dev, struct icc_node *src, |
| struct icc_node *dst) |
| { |
| struct icc_path *path = ERR_PTR(-EPROBE_DEFER); |
| struct icc_node *n, *node = NULL; |
| struct list_head traverse_list; |
| struct list_head edge_list; |
| struct list_head visited_list; |
| size_t i, depth = 1; |
| bool found = false; |
| |
| INIT_LIST_HEAD(&traverse_list); |
| INIT_LIST_HEAD(&edge_list); |
| INIT_LIST_HEAD(&visited_list); |
| |
| list_add(&src->search_list, &traverse_list); |
| src->reverse = NULL; |
| |
| do { |
| list_for_each_entry_safe(node, n, &traverse_list, search_list) { |
| if (node == dst) { |
| found = true; |
| list_splice_init(&edge_list, &visited_list); |
| list_splice_init(&traverse_list, &visited_list); |
| break; |
| } |
| for (i = 0; i < node->num_links; i++) { |
| struct icc_node *tmp = node->links[i]; |
| |
| if (!tmp) { |
| path = ERR_PTR(-ENOENT); |
| goto out; |
| } |
| |
| if (tmp->is_traversed) |
| continue; |
| |
| tmp->is_traversed = true; |
| tmp->reverse = node; |
| list_add_tail(&tmp->search_list, &edge_list); |
| } |
| } |
| |
| if (found) |
| break; |
| |
| list_splice_init(&traverse_list, &visited_list); |
| list_splice_init(&edge_list, &traverse_list); |
| |
| /* count the hops including the source */ |
| depth++; |
| |
| } while (!list_empty(&traverse_list)); |
| |
| out: |
| |
| /* reset the traversed state */ |
| list_for_each_entry_reverse(n, &visited_list, search_list) |
| n->is_traversed = false; |
| |
| if (found) |
| path = path_init(dev, dst, depth); |
| |
| return path; |
| } |
| |
| /* |
| * We want the path to honor all bandwidth requests, so the average and peak |
| * bandwidth requirements from each consumer are aggregated at each node. |
| * The aggregation is platform specific, so each platform can customize it by |
| * implementing its own aggregate() function. |
| */ |
| |
| static int aggregate_requests(struct icc_node *node) |
| { |
| struct icc_provider *p = node->provider; |
| struct icc_req *r; |
| u32 avg_bw, peak_bw; |
| |
| node->avg_bw = 0; |
| node->peak_bw = 0; |
| |
| if (p->pre_aggregate) |
| p->pre_aggregate(node); |
| |
| hlist_for_each_entry(r, &node->req_list, req_node) { |
| if (r->enabled) { |
| avg_bw = r->avg_bw; |
| peak_bw = r->peak_bw; |
| } else { |
| avg_bw = 0; |
| peak_bw = 0; |
| } |
| p->aggregate(node, r->tag, avg_bw, peak_bw, |
| &node->avg_bw, &node->peak_bw); |
| |
| /* during boot use the initial bandwidth as a floor value */ |
| if (!synced_state) { |
| node->avg_bw = max(node->avg_bw, node->init_avg); |
| node->peak_bw = max(node->peak_bw, node->init_peak); |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int apply_constraints(struct icc_path *path) |
| { |
| struct icc_node *next, *prev = NULL; |
| struct icc_provider *p; |
| int ret = -EINVAL; |
| int i; |
| |
| for (i = 0; i < path->num_nodes; i++) { |
| next = path->reqs[i].node; |
| p = next->provider; |
| |
| /* both endpoints should be valid master-slave pairs */ |
| if (!prev || (p != prev->provider && !p->inter_set)) { |
| prev = next; |
| continue; |
| } |
| |
| /* set the constraints */ |
| ret = p->set(prev, next); |
| if (ret) |
| goto out; |
| |
| prev = next; |
| } |
| out: |
| return ret; |
| } |
| |
| int icc_std_aggregate(struct icc_node *node, u32 tag, u32 avg_bw, |
| u32 peak_bw, u32 *agg_avg, u32 *agg_peak) |
| { |
| *agg_avg += avg_bw; |
| *agg_peak = max(*agg_peak, peak_bw); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(icc_std_aggregate); |
| |
| /* of_icc_xlate_onecell() - Translate function using a single index. |
| * @spec: OF phandle args to map into an interconnect node. |
| * @data: private data (pointer to struct icc_onecell_data) |
| * |
| * This is a generic translate function that can be used to model simple |
| * interconnect providers that have one device tree node and provide |
| * multiple interconnect nodes. A single cell is used as an index into |
| * an array of icc nodes specified in the icc_onecell_data struct when |
| * registering the provider. |
| */ |
| struct icc_node *of_icc_xlate_onecell(const struct of_phandle_args *spec, |
| void *data) |
| { |
| struct icc_onecell_data *icc_data = data; |
| unsigned int idx = spec->args[0]; |
| |
| if (idx >= icc_data->num_nodes) { |
| pr_err("%s: invalid index %u\n", __func__, idx); |
| return ERR_PTR(-EINVAL); |
| } |
| |
| return icc_data->nodes[idx]; |
| } |
| EXPORT_SYMBOL_GPL(of_icc_xlate_onecell); |
| |
| /** |
| * of_icc_get_from_provider() - Look-up interconnect node |
| * @spec: OF phandle args to use for look-up |
| * |
| * Looks for interconnect provider under the node specified by @spec and if |
| * found, uses xlate function of the provider to map phandle args to node. |
| * |
| * Returns a valid pointer to struct icc_node_data on success or ERR_PTR() |
| * on failure. |
| */ |
| struct icc_node_data *of_icc_get_from_provider(const struct of_phandle_args *spec) |
| { |
| struct icc_node *node = ERR_PTR(-EPROBE_DEFER); |
| struct icc_node_data *data = NULL; |
| struct icc_provider *provider; |
| |
| if (!spec) |
| return ERR_PTR(-EINVAL); |
| |
| mutex_lock(&icc_lock); |
| list_for_each_entry(provider, &icc_providers, provider_list) { |
| if (provider->dev->of_node == spec->np) { |
| if (provider->xlate_extended) { |
| data = provider->xlate_extended(spec, provider->data); |
| if (!IS_ERR(data)) { |
| node = data->node; |
| break; |
| } |
| } else { |
| node = provider->xlate(spec, provider->data); |
| if (!IS_ERR(node)) |
| break; |
| } |
| } |
| } |
| mutex_unlock(&icc_lock); |
| |
| if (!node) |
| return ERR_PTR(-EINVAL); |
| |
| if (IS_ERR(node)) |
| return ERR_CAST(node); |
| |
| if (!data) { |
| data = kzalloc(sizeof(*data), GFP_KERNEL); |
| if (!data) |
| return ERR_PTR(-ENOMEM); |
| data->node = node; |
| } |
| |
| return data; |
| } |
| EXPORT_SYMBOL_GPL(of_icc_get_from_provider); |
| |
| static void devm_icc_release(struct device *dev, void *res) |
| { |
| icc_put(*(struct icc_path **)res); |
| } |
| |
| struct icc_path *devm_of_icc_get(struct device *dev, const char *name) |
| { |
| struct icc_path **ptr, *path; |
| |
| ptr = devres_alloc(devm_icc_release, sizeof(*ptr), GFP_KERNEL); |
| if (!ptr) |
| return ERR_PTR(-ENOMEM); |
| |
| path = of_icc_get(dev, name); |
| if (!IS_ERR(path)) { |
| *ptr = path; |
| devres_add(dev, ptr); |
| } else { |
| devres_free(ptr); |
| } |
| |
| return path; |
| } |
| EXPORT_SYMBOL_GPL(devm_of_icc_get); |
| |
| /** |
| * of_icc_get_by_index() - get a path handle from a DT node based on index |
| * @dev: device pointer for the consumer device |
| * @idx: interconnect path index |
| * |
| * This function will search for a path between two endpoints and return an |
| * icc_path handle on success. Use icc_put() to release constraints when they |
| * are not needed anymore. |
| * If the interconnect API is disabled, NULL is returned and the consumer |
| * drivers will still build. Drivers are free to handle this specifically, |
| * but they don't have to. |
| * |
| * Return: icc_path pointer on success or ERR_PTR() on error. NULL is returned |
| * when the API is disabled or the "interconnects" DT property is missing. |
| */ |
| struct icc_path *of_icc_get_by_index(struct device *dev, int idx) |
| { |
| struct icc_path *path; |
| struct icc_node_data *src_data, *dst_data; |
| struct device_node *np; |
| struct of_phandle_args src_args, dst_args; |
| int ret; |
| |
| if (!dev || !dev->of_node) |
| return ERR_PTR(-ENODEV); |
| |
| np = dev->of_node; |
| |
| /* |
| * When the consumer DT node do not have "interconnects" property |
| * return a NULL path to skip setting constraints. |
| */ |
| if (!of_property_present(np, "interconnects")) |
| return NULL; |
| |
| /* |
| * We use a combination of phandle and specifier for endpoint. For now |
| * lets support only global ids and extend this in the future if needed |
| * without breaking DT compatibility. |
| */ |
| ret = of_parse_phandle_with_args(np, "interconnects", |
| "#interconnect-cells", idx * 2, |
| &src_args); |
| if (ret) |
| return ERR_PTR(ret); |
| |
| of_node_put(src_args.np); |
| |
| ret = of_parse_phandle_with_args(np, "interconnects", |
| "#interconnect-cells", idx * 2 + 1, |
| &dst_args); |
| if (ret) |
| return ERR_PTR(ret); |
| |
| of_node_put(dst_args.np); |
| |
| src_data = of_icc_get_from_provider(&src_args); |
| |
| if (IS_ERR(src_data)) { |
| dev_err_probe(dev, PTR_ERR(src_data), "error finding src node\n"); |
| return ERR_CAST(src_data); |
| } |
| |
| dst_data = of_icc_get_from_provider(&dst_args); |
| |
| if (IS_ERR(dst_data)) { |
| dev_err_probe(dev, PTR_ERR(dst_data), "error finding dst node\n"); |
| kfree(src_data); |
| return ERR_CAST(dst_data); |
| } |
| |
| mutex_lock(&icc_lock); |
| path = path_find(dev, src_data->node, dst_data->node); |
| mutex_unlock(&icc_lock); |
| if (IS_ERR(path)) { |
| dev_err(dev, "%s: invalid path=%ld\n", __func__, PTR_ERR(path)); |
| goto free_icc_data; |
| } |
| |
| if (src_data->tag && src_data->tag == dst_data->tag) |
| icc_set_tag(path, src_data->tag); |
| |
| path->name = kasprintf(GFP_KERNEL, "%s-%s", |
| src_data->node->name, dst_data->node->name); |
| if (!path->name) { |
| kfree(path); |
| path = ERR_PTR(-ENOMEM); |
| } |
| |
| free_icc_data: |
| kfree(src_data); |
| kfree(dst_data); |
| return path; |
| } |
| EXPORT_SYMBOL_GPL(of_icc_get_by_index); |
| |
| /** |
| * of_icc_get() - get a path handle from a DT node based on name |
| * @dev: device pointer for the consumer device |
| * @name: interconnect path name |
| * |
| * This function will search for a path between two endpoints and return an |
| * icc_path handle on success. Use icc_put() to release constraints when they |
| * are not needed anymore. |
| * If the interconnect API is disabled, NULL is returned and the consumer |
| * drivers will still build. Drivers are free to handle this specifically, |
| * but they don't have to. |
| * |
| * Return: icc_path pointer on success or ERR_PTR() on error. NULL is returned |
| * when the API is disabled or the "interconnects" DT property is missing. |
| */ |
| struct icc_path *of_icc_get(struct device *dev, const char *name) |
| { |
| struct device_node *np; |
| int idx = 0; |
| |
| if (!dev || !dev->of_node) |
| return ERR_PTR(-ENODEV); |
| |
| np = dev->of_node; |
| |
| /* |
| * When the consumer DT node do not have "interconnects" property |
| * return a NULL path to skip setting constraints. |
| */ |
| if (!of_property_present(np, "interconnects")) |
| return NULL; |
| |
| /* |
| * We use a combination of phandle and specifier for endpoint. For now |
| * lets support only global ids and extend this in the future if needed |
| * without breaking DT compatibility. |
| */ |
| if (name) { |
| idx = of_property_match_string(np, "interconnect-names", name); |
| if (idx < 0) |
| return ERR_PTR(idx); |
| } |
| |
| return of_icc_get_by_index(dev, idx); |
| } |
| EXPORT_SYMBOL_GPL(of_icc_get); |
| |
| /** |
| * icc_get() - get a path handle between two endpoints |
| * @dev: device pointer for the consumer device |
| * @src: source node name |
| * @dst: destination node name |
| * |
| * This function will search for a path between two endpoints and return an |
| * icc_path handle on success. Use icc_put() to release constraints when they |
| * are not needed anymore. |
| * |
| * Return: icc_path pointer on success or ERR_PTR() on error. NULL is returned |
| * when the API is disabled. |
| */ |
| struct icc_path *icc_get(struct device *dev, const char *src, const char *dst) |
| { |
| struct icc_node *src_node, *dst_node; |
| struct icc_path *path = ERR_PTR(-EPROBE_DEFER); |
| |
| mutex_lock(&icc_lock); |
| |
| src_node = node_find_by_name(src); |
| if (!src_node) { |
| dev_err(dev, "%s: invalid src=%s\n", __func__, src); |
| goto out; |
| } |
| |
| dst_node = node_find_by_name(dst); |
| if (!dst_node) { |
| dev_err(dev, "%s: invalid dst=%s\n", __func__, dst); |
| goto out; |
| } |
| |
| path = path_find(dev, src_node, dst_node); |
| if (IS_ERR(path)) { |
| dev_err(dev, "%s: invalid path=%ld\n", __func__, PTR_ERR(path)); |
| goto out; |
| } |
| |
| path->name = kasprintf(GFP_KERNEL, "%s-%s", src_node->name, dst_node->name); |
| if (!path->name) { |
| kfree(path); |
| path = ERR_PTR(-ENOMEM); |
| } |
| out: |
| mutex_unlock(&icc_lock); |
| return path; |
| } |
| |
| /** |
| * icc_set_tag() - set an optional tag on a path |
| * @path: the path we want to tag |
| * @tag: the tag value |
| * |
| * This function allows consumers to append a tag to the requests associated |
| * with a path, so that a different aggregation could be done based on this tag. |
| */ |
| void icc_set_tag(struct icc_path *path, u32 tag) |
| { |
| int i; |
| |
| if (!path) |
| return; |
| |
| mutex_lock(&icc_lock); |
| |
| for (i = 0; i < path->num_nodes; i++) |
| path->reqs[i].tag = tag; |
| |
| mutex_unlock(&icc_lock); |
| } |
| EXPORT_SYMBOL_GPL(icc_set_tag); |
| |
| /** |
| * icc_get_name() - Get name of the icc path |
| * @path: interconnect path |
| * |
| * This function is used by an interconnect consumer to get the name of the icc |
| * path. |
| * |
| * Returns a valid pointer on success, or NULL otherwise. |
| */ |
| const char *icc_get_name(struct icc_path *path) |
| { |
| if (!path) |
| return NULL; |
| |
| return path->name; |
| } |
| EXPORT_SYMBOL_GPL(icc_get_name); |
| |
| /** |
| * icc_set_bw() - set bandwidth constraints on an interconnect path |
| * @path: interconnect path |
| * @avg_bw: average bandwidth in kilobytes per second |
| * @peak_bw: peak bandwidth in kilobytes per second |
| * |
| * This function is used by an interconnect consumer to express its own needs |
| * in terms of bandwidth for a previously requested path between two endpoints. |
| * The requests are aggregated and each node is updated accordingly. The entire |
| * path is locked by a mutex to ensure that the set() is completed. |
| * The @path can be NULL when the "interconnects" DT properties is missing, |
| * which will mean that no constraints will be set. |
| * |
| * Returns 0 on success, or an appropriate error code otherwise. |
| */ |
| int icc_set_bw(struct icc_path *path, u32 avg_bw, u32 peak_bw) |
| { |
| struct icc_node *node; |
| u32 old_avg, old_peak; |
| size_t i; |
| int ret; |
| |
| if (!path) |
| return 0; |
| |
| if (WARN_ON(IS_ERR(path) || !path->num_nodes)) |
| return -EINVAL; |
| |
| mutex_lock(&icc_bw_lock); |
| |
| old_avg = path->reqs[0].avg_bw; |
| old_peak = path->reqs[0].peak_bw; |
| |
| for (i = 0; i < path->num_nodes; i++) { |
| node = path->reqs[i].node; |
| |
| /* update the consumer request for this path */ |
| path->reqs[i].avg_bw = avg_bw; |
| path->reqs[i].peak_bw = peak_bw; |
| |
| /* aggregate requests for this node */ |
| aggregate_requests(node); |
| |
| trace_icc_set_bw(path, node, i, avg_bw, peak_bw); |
| } |
| |
| ret = apply_constraints(path); |
| if (ret) { |
| pr_debug("interconnect: error applying constraints (%d)\n", |
| ret); |
| |
| for (i = 0; i < path->num_nodes; i++) { |
| node = path->reqs[i].node; |
| path->reqs[i].avg_bw = old_avg; |
| path->reqs[i].peak_bw = old_peak; |
| aggregate_requests(node); |
| } |
| apply_constraints(path); |
| } |
| |
| mutex_unlock(&icc_bw_lock); |
| |
| trace_icc_set_bw_end(path, ret); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(icc_set_bw); |
| |
| static int __icc_enable(struct icc_path *path, bool enable) |
| { |
| int i; |
| |
| if (!path) |
| return 0; |
| |
| if (WARN_ON(IS_ERR(path) || !path->num_nodes)) |
| return -EINVAL; |
| |
| mutex_lock(&icc_lock); |
| |
| for (i = 0; i < path->num_nodes; i++) |
| path->reqs[i].enabled = enable; |
| |
| mutex_unlock(&icc_lock); |
| |
| return icc_set_bw(path, path->reqs[0].avg_bw, |
| path->reqs[0].peak_bw); |
| } |
| |
| int icc_enable(struct icc_path *path) |
| { |
| return __icc_enable(path, true); |
| } |
| EXPORT_SYMBOL_GPL(icc_enable); |
| |
| int icc_disable(struct icc_path *path) |
| { |
| return __icc_enable(path, false); |
| } |
| EXPORT_SYMBOL_GPL(icc_disable); |
| |
| /** |
| * icc_put() - release the reference to the icc_path |
| * @path: interconnect path |
| * |
| * Use this function to release the constraints on a path when the path is |
| * no longer needed. The constraints will be re-aggregated. |
| */ |
| void icc_put(struct icc_path *path) |
| { |
| struct icc_node *node; |
| size_t i; |
| int ret; |
| |
| if (!path || WARN_ON(IS_ERR(path))) |
| return; |
| |
| ret = icc_set_bw(path, 0, 0); |
| if (ret) |
| pr_err("%s: error (%d)\n", __func__, ret); |
| |
| mutex_lock(&icc_lock); |
| mutex_lock(&icc_bw_lock); |
| |
| for (i = 0; i < path->num_nodes; i++) { |
| node = path->reqs[i].node; |
| hlist_del(&path->reqs[i].req_node); |
| if (!WARN_ON(!node->provider->users)) |
| node->provider->users--; |
| } |
| |
| mutex_unlock(&icc_bw_lock); |
| mutex_unlock(&icc_lock); |
| |
| kfree_const(path->name); |
| kfree(path); |
| } |
| EXPORT_SYMBOL_GPL(icc_put); |
| |
| static struct icc_node *icc_node_create_nolock(int id) |
| { |
| struct icc_node *node; |
| |
| /* check if node already exists */ |
| node = node_find(id); |
| if (node) |
| return node; |
| |
| node = kzalloc(sizeof(*node), GFP_KERNEL); |
| if (!node) |
| return ERR_PTR(-ENOMEM); |
| |
| id = idr_alloc(&icc_idr, node, id, id + 1, GFP_KERNEL); |
| if (id < 0) { |
| WARN(1, "%s: couldn't get idr\n", __func__); |
| kfree(node); |
| return ERR_PTR(id); |
| } |
| |
| node->id = id; |
| |
| return node; |
| } |
| |
| /** |
| * icc_node_create() - create a node |
| * @id: node id |
| * |
| * Return: icc_node pointer on success, or ERR_PTR() on error |
| */ |
| struct icc_node *icc_node_create(int id) |
| { |
| struct icc_node *node; |
| |
| mutex_lock(&icc_lock); |
| |
| node = icc_node_create_nolock(id); |
| |
| mutex_unlock(&icc_lock); |
| |
| return node; |
| } |
| EXPORT_SYMBOL_GPL(icc_node_create); |
| |
| /** |
| * icc_node_destroy() - destroy a node |
| * @id: node id |
| */ |
| void icc_node_destroy(int id) |
| { |
| struct icc_node *node; |
| |
| mutex_lock(&icc_lock); |
| |
| node = node_find(id); |
| if (node) { |
| idr_remove(&icc_idr, node->id); |
| WARN_ON(!hlist_empty(&node->req_list)); |
| } |
| |
| mutex_unlock(&icc_lock); |
| |
| if (!node) |
| return; |
| |
| kfree(node->links); |
| kfree(node); |
| } |
| EXPORT_SYMBOL_GPL(icc_node_destroy); |
| |
| /** |
| * icc_link_create() - create a link between two nodes |
| * @node: source node id |
| * @dst_id: destination node id |
| * |
| * Create a link between two nodes. The nodes might belong to different |
| * interconnect providers and the @dst_id node might not exist (if the |
| * provider driver has not probed yet). So just create the @dst_id node |
| * and when the actual provider driver is probed, the rest of the node |
| * data is filled. |
| * |
| * Return: 0 on success, or an error code otherwise |
| */ |
| int icc_link_create(struct icc_node *node, const int dst_id) |
| { |
| struct icc_node *dst; |
| struct icc_node **new; |
| int ret = 0; |
| |
| if (!node->provider) |
| return -EINVAL; |
| |
| mutex_lock(&icc_lock); |
| |
| dst = node_find(dst_id); |
| if (!dst) { |
| dst = icc_node_create_nolock(dst_id); |
| |
| if (IS_ERR(dst)) { |
| ret = PTR_ERR(dst); |
| goto out; |
| } |
| } |
| |
| new = krealloc(node->links, |
| (node->num_links + 1) * sizeof(*node->links), |
| GFP_KERNEL); |
| if (!new) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| |
| node->links = new; |
| node->links[node->num_links++] = dst; |
| |
| out: |
| mutex_unlock(&icc_lock); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(icc_link_create); |
| |
| /** |
| * icc_node_add() - add interconnect node to interconnect provider |
| * @node: pointer to the interconnect node |
| * @provider: pointer to the interconnect provider |
| */ |
| void icc_node_add(struct icc_node *node, struct icc_provider *provider) |
| { |
| if (WARN_ON(node->provider)) |
| return; |
| |
| mutex_lock(&icc_lock); |
| mutex_lock(&icc_bw_lock); |
| |
| node->provider = provider; |
| list_add_tail(&node->node_list, &provider->nodes); |
| |
| /* get the initial bandwidth values and sync them with hardware */ |
| if (provider->get_bw) { |
| provider->get_bw(node, &node->init_avg, &node->init_peak); |
| } else { |
| node->init_avg = INT_MAX; |
| node->init_peak = INT_MAX; |
| } |
| node->avg_bw = node->init_avg; |
| node->peak_bw = node->init_peak; |
| |
| if (node->avg_bw || node->peak_bw) { |
| if (provider->pre_aggregate) |
| provider->pre_aggregate(node); |
| |
| if (provider->aggregate) |
| provider->aggregate(node, 0, node->init_avg, node->init_peak, |
| &node->avg_bw, &node->peak_bw); |
| if (provider->set) |
| provider->set(node, node); |
| } |
| |
| node->avg_bw = 0; |
| node->peak_bw = 0; |
| |
| mutex_unlock(&icc_bw_lock); |
| mutex_unlock(&icc_lock); |
| } |
| EXPORT_SYMBOL_GPL(icc_node_add); |
| |
| /** |
| * icc_node_del() - delete interconnect node from interconnect provider |
| * @node: pointer to the interconnect node |
| */ |
| void icc_node_del(struct icc_node *node) |
| { |
| mutex_lock(&icc_lock); |
| |
| list_del(&node->node_list); |
| |
| mutex_unlock(&icc_lock); |
| } |
| EXPORT_SYMBOL_GPL(icc_node_del); |
| |
| /** |
| * icc_nodes_remove() - remove all previously added nodes from provider |
| * @provider: the interconnect provider we are removing nodes from |
| * |
| * Return: 0 on success, or an error code otherwise |
| */ |
| int icc_nodes_remove(struct icc_provider *provider) |
| { |
| struct icc_node *n, *tmp; |
| |
| if (WARN_ON(IS_ERR_OR_NULL(provider))) |
| return -EINVAL; |
| |
| list_for_each_entry_safe_reverse(n, tmp, &provider->nodes, node_list) { |
| icc_node_del(n); |
| icc_node_destroy(n->id); |
| } |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(icc_nodes_remove); |
| |
| /** |
| * icc_provider_init() - initialize a new interconnect provider |
| * @provider: the interconnect provider to initialize |
| * |
| * Must be called before adding nodes to the provider. |
| */ |
| void icc_provider_init(struct icc_provider *provider) |
| { |
| WARN_ON(!provider->set); |
| |
| INIT_LIST_HEAD(&provider->nodes); |
| } |
| EXPORT_SYMBOL_GPL(icc_provider_init); |
| |
| /** |
| * icc_provider_register() - register a new interconnect provider |
| * @provider: the interconnect provider to register |
| * |
| * Return: 0 on success, or an error code otherwise |
| */ |
| int icc_provider_register(struct icc_provider *provider) |
| { |
| if (WARN_ON(!provider->xlate && !provider->xlate_extended)) |
| return -EINVAL; |
| |
| mutex_lock(&icc_lock); |
| list_add_tail(&provider->provider_list, &icc_providers); |
| mutex_unlock(&icc_lock); |
| |
| dev_dbg(provider->dev, "interconnect provider registered\n"); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(icc_provider_register); |
| |
| /** |
| * icc_provider_deregister() - deregister an interconnect provider |
| * @provider: the interconnect provider to deregister |
| */ |
| void icc_provider_deregister(struct icc_provider *provider) |
| { |
| mutex_lock(&icc_lock); |
| WARN_ON(provider->users); |
| |
| list_del(&provider->provider_list); |
| mutex_unlock(&icc_lock); |
| } |
| EXPORT_SYMBOL_GPL(icc_provider_deregister); |
| |
| static const struct of_device_id __maybe_unused ignore_list[] = { |
| { .compatible = "qcom,sc7180-ipa-virt" }, |
| { .compatible = "qcom,sc8180x-ipa-virt" }, |
| { .compatible = "qcom,sdx55-ipa-virt" }, |
| { .compatible = "qcom,sm8150-ipa-virt" }, |
| { .compatible = "qcom,sm8250-ipa-virt" }, |
| {} |
| }; |
| |
| static int of_count_icc_providers(struct device_node *np) |
| { |
| struct device_node *child; |
| int count = 0; |
| |
| for_each_available_child_of_node(np, child) { |
| if (of_property_read_bool(child, "#interconnect-cells") && |
| likely(!of_match_node(ignore_list, child))) |
| count++; |
| count += of_count_icc_providers(child); |
| } |
| |
| return count; |
| } |
| |
| void icc_sync_state(struct device *dev) |
| { |
| struct icc_provider *p; |
| struct icc_node *n; |
| static int count; |
| |
| count++; |
| |
| if (count < providers_count) |
| return; |
| |
| mutex_lock(&icc_lock); |
| mutex_lock(&icc_bw_lock); |
| synced_state = true; |
| list_for_each_entry(p, &icc_providers, provider_list) { |
| dev_dbg(p->dev, "interconnect provider is in synced state\n"); |
| list_for_each_entry(n, &p->nodes, node_list) { |
| if (n->init_avg || n->init_peak) { |
| n->init_avg = 0; |
| n->init_peak = 0; |
| aggregate_requests(n); |
| p->set(n, n); |
| } |
| } |
| } |
| mutex_unlock(&icc_bw_lock); |
| mutex_unlock(&icc_lock); |
| } |
| EXPORT_SYMBOL_GPL(icc_sync_state); |
| |
| static int __init icc_init(void) |
| { |
| struct device_node *root; |
| |
| /* Teach lockdep about lock ordering wrt. shrinker: */ |
| fs_reclaim_acquire(GFP_KERNEL); |
| might_lock(&icc_bw_lock); |
| fs_reclaim_release(GFP_KERNEL); |
| |
| root = of_find_node_by_path("/"); |
| |
| providers_count = of_count_icc_providers(root); |
| of_node_put(root); |
| |
| icc_debugfs_dir = debugfs_create_dir("interconnect", NULL); |
| debugfs_create_file("interconnect_summary", 0444, |
| icc_debugfs_dir, NULL, &icc_summary_fops); |
| debugfs_create_file("interconnect_graph", 0444, |
| icc_debugfs_dir, NULL, &icc_graph_fops); |
| |
| icc_debugfs_client_init(icc_debugfs_dir); |
| |
| return 0; |
| } |
| |
| device_initcall(icc_init); |