| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * PowerMac G5 SMU driver |
| * |
| * Copyright 2004 J. Mayer <l_indien@magic.fr> |
| * Copyright 2005 Benjamin Herrenschmidt, IBM Corp. |
| */ |
| |
| /* |
| * TODO: |
| * - maybe add timeout to commands ? |
| * - blocking version of time functions |
| * - polling version of i2c commands (including timer that works with |
| * interrupts off) |
| * - maybe avoid some data copies with i2c by directly using the smu cmd |
| * buffer and a lower level internal interface |
| * - understand SMU -> CPU events and implement reception of them via |
| * the userland interface |
| */ |
| |
| #include <linux/types.h> |
| #include <linux/kernel.h> |
| #include <linux/device.h> |
| #include <linux/dmapool.h> |
| #include <linux/memblock.h> |
| #include <linux/vmalloc.h> |
| #include <linux/highmem.h> |
| #include <linux/jiffies.h> |
| #include <linux/interrupt.h> |
| #include <linux/rtc.h> |
| #include <linux/completion.h> |
| #include <linux/miscdevice.h> |
| #include <linux/delay.h> |
| #include <linux/poll.h> |
| #include <linux/mutex.h> |
| #include <linux/of.h> |
| #include <linux/of_address.h> |
| #include <linux/of_irq.h> |
| #include <linux/of_platform.h> |
| #include <linux/platform_device.h> |
| #include <linux/slab.h> |
| #include <linux/sched/signal.h> |
| |
| #include <asm/byteorder.h> |
| #include <asm/io.h> |
| #include <asm/machdep.h> |
| #include <asm/pmac_feature.h> |
| #include <asm/smu.h> |
| #include <asm/sections.h> |
| #include <linux/uaccess.h> |
| |
| #define VERSION "0.7" |
| #define AUTHOR "(c) 2005 Benjamin Herrenschmidt, IBM Corp." |
| |
| #undef DEBUG_SMU |
| |
| #ifdef DEBUG_SMU |
| #define DPRINTK(fmt, args...) do { printk(KERN_DEBUG fmt , ##args); } while (0) |
| #else |
| #define DPRINTK(fmt, args...) do { } while (0) |
| #endif |
| |
| /* |
| * This is the command buffer passed to the SMU hardware |
| */ |
| #define SMU_MAX_DATA 254 |
| |
| struct smu_cmd_buf { |
| u8 cmd; |
| u8 length; |
| u8 data[SMU_MAX_DATA]; |
| }; |
| |
| struct smu_device { |
| spinlock_t lock; |
| struct device_node *of_node; |
| struct platform_device *of_dev; |
| int doorbell; /* doorbell gpio */ |
| u32 __iomem *db_buf; /* doorbell buffer */ |
| struct device_node *db_node; |
| unsigned int db_irq; |
| int msg; |
| struct device_node *msg_node; |
| unsigned int msg_irq; |
| struct smu_cmd_buf *cmd_buf; /* command buffer virtual */ |
| u32 cmd_buf_abs; /* command buffer absolute */ |
| struct list_head cmd_list; |
| struct smu_cmd *cmd_cur; /* pending command */ |
| int broken_nap; |
| struct list_head cmd_i2c_list; |
| struct smu_i2c_cmd *cmd_i2c_cur; /* pending i2c command */ |
| struct timer_list i2c_timer; |
| }; |
| |
| /* |
| * I don't think there will ever be more than one SMU, so |
| * for now, just hard code that |
| */ |
| static DEFINE_MUTEX(smu_mutex); |
| static struct smu_device *smu; |
| static DEFINE_MUTEX(smu_part_access); |
| static int smu_irq_inited; |
| static unsigned long smu_cmdbuf_abs; |
| |
| static void smu_i2c_retry(struct timer_list *t); |
| |
| /* |
| * SMU driver low level stuff |
| */ |
| |
| static void smu_start_cmd(void) |
| { |
| unsigned long faddr, fend; |
| struct smu_cmd *cmd; |
| |
| if (list_empty(&smu->cmd_list)) |
| return; |
| |
| /* Fetch first command in queue */ |
| cmd = list_entry(smu->cmd_list.next, struct smu_cmd, link); |
| smu->cmd_cur = cmd; |
| list_del(&cmd->link); |
| |
| DPRINTK("SMU: starting cmd %x, %d bytes data\n", cmd->cmd, |
| cmd->data_len); |
| DPRINTK("SMU: data buffer: %8ph\n", cmd->data_buf); |
| |
| /* Fill the SMU command buffer */ |
| smu->cmd_buf->cmd = cmd->cmd; |
| smu->cmd_buf->length = cmd->data_len; |
| memcpy(smu->cmd_buf->data, cmd->data_buf, cmd->data_len); |
| |
| /* Flush command and data to RAM */ |
| faddr = (unsigned long)smu->cmd_buf; |
| fend = faddr + smu->cmd_buf->length + 2; |
| flush_dcache_range(faddr, fend); |
| |
| |
| /* We also disable NAP mode for the duration of the command |
| * on U3 based machines. |
| * This is slightly racy as it can be written back to 1 by a sysctl |
| * but that never happens in practice. There seem to be an issue with |
| * U3 based machines such as the iMac G5 where napping for the |
| * whole duration of the command prevents the SMU from fetching it |
| * from memory. This might be related to the strange i2c based |
| * mechanism the SMU uses to access memory. |
| */ |
| if (smu->broken_nap) |
| powersave_nap = 0; |
| |
| /* This isn't exactly a DMA mapping here, I suspect |
| * the SMU is actually communicating with us via i2c to the |
| * northbridge or the CPU to access RAM. |
| */ |
| writel(smu->cmd_buf_abs, smu->db_buf); |
| |
| /* Ring the SMU doorbell */ |
| pmac_do_feature_call(PMAC_FTR_WRITE_GPIO, NULL, smu->doorbell, 4); |
| } |
| |
| |
| static irqreturn_t smu_db_intr(int irq, void *arg) |
| { |
| unsigned long flags; |
| struct smu_cmd *cmd; |
| void (*done)(struct smu_cmd *cmd, void *misc) = NULL; |
| void *misc = NULL; |
| u8 gpio; |
| int rc = 0; |
| |
| /* SMU completed the command, well, we hope, let's make sure |
| * of it |
| */ |
| spin_lock_irqsave(&smu->lock, flags); |
| |
| gpio = pmac_do_feature_call(PMAC_FTR_READ_GPIO, NULL, smu->doorbell); |
| if ((gpio & 7) != 7) { |
| spin_unlock_irqrestore(&smu->lock, flags); |
| return IRQ_HANDLED; |
| } |
| |
| cmd = smu->cmd_cur; |
| smu->cmd_cur = NULL; |
| if (cmd == NULL) |
| goto bail; |
| |
| if (rc == 0) { |
| unsigned long faddr; |
| int reply_len; |
| u8 ack; |
| |
| /* CPU might have brought back the cache line, so we need |
| * to flush again before peeking at the SMU response. We |
| * flush the entire buffer for now as we haven't read the |
| * reply length (it's only 2 cache lines anyway) |
| */ |
| faddr = (unsigned long)smu->cmd_buf; |
| flush_dcache_range(faddr, faddr + 256); |
| |
| /* Now check ack */ |
| ack = (~cmd->cmd) & 0xff; |
| if (ack != smu->cmd_buf->cmd) { |
| DPRINTK("SMU: incorrect ack, want %x got %x\n", |
| ack, smu->cmd_buf->cmd); |
| rc = -EIO; |
| } |
| reply_len = rc == 0 ? smu->cmd_buf->length : 0; |
| DPRINTK("SMU: reply len: %d\n", reply_len); |
| if (reply_len > cmd->reply_len) { |
| printk(KERN_WARNING "SMU: reply buffer too small," |
| "got %d bytes for a %d bytes buffer\n", |
| reply_len, cmd->reply_len); |
| reply_len = cmd->reply_len; |
| } |
| cmd->reply_len = reply_len; |
| if (cmd->reply_buf && reply_len) |
| memcpy(cmd->reply_buf, smu->cmd_buf->data, reply_len); |
| } |
| |
| /* Now complete the command. Write status last in order as we lost |
| * ownership of the command structure as soon as it's no longer -1 |
| */ |
| done = cmd->done; |
| misc = cmd->misc; |
| mb(); |
| cmd->status = rc; |
| |
| /* Re-enable NAP mode */ |
| if (smu->broken_nap) |
| powersave_nap = 1; |
| bail: |
| /* Start next command if any */ |
| smu_start_cmd(); |
| spin_unlock_irqrestore(&smu->lock, flags); |
| |
| /* Call command completion handler if any */ |
| if (done) |
| done(cmd, misc); |
| |
| /* It's an edge interrupt, nothing to do */ |
| return IRQ_HANDLED; |
| } |
| |
| |
| static irqreturn_t smu_msg_intr(int irq, void *arg) |
| { |
| /* I don't quite know what to do with this one, we seem to never |
| * receive it, so I suspect we have to arm it someway in the SMU |
| * to start getting events that way. |
| */ |
| |
| printk(KERN_INFO "SMU: message interrupt !\n"); |
| |
| /* It's an edge interrupt, nothing to do */ |
| return IRQ_HANDLED; |
| } |
| |
| |
| /* |
| * Queued command management. |
| * |
| */ |
| |
| int smu_queue_cmd(struct smu_cmd *cmd) |
| { |
| unsigned long flags; |
| |
| if (smu == NULL) |
| return -ENODEV; |
| if (cmd->data_len > SMU_MAX_DATA || |
| cmd->reply_len > SMU_MAX_DATA) |
| return -EINVAL; |
| |
| cmd->status = 1; |
| spin_lock_irqsave(&smu->lock, flags); |
| list_add_tail(&cmd->link, &smu->cmd_list); |
| if (smu->cmd_cur == NULL) |
| smu_start_cmd(); |
| spin_unlock_irqrestore(&smu->lock, flags); |
| |
| /* Workaround for early calls when irq isn't available */ |
| if (!smu_irq_inited || !smu->db_irq) |
| smu_spinwait_cmd(cmd); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(smu_queue_cmd); |
| |
| |
| int smu_queue_simple(struct smu_simple_cmd *scmd, u8 command, |
| unsigned int data_len, |
| void (*done)(struct smu_cmd *cmd, void *misc), |
| void *misc, ...) |
| { |
| struct smu_cmd *cmd = &scmd->cmd; |
| va_list list; |
| int i; |
| |
| if (data_len > sizeof(scmd->buffer)) |
| return -EINVAL; |
| |
| memset(scmd, 0, sizeof(*scmd)); |
| cmd->cmd = command; |
| cmd->data_len = data_len; |
| cmd->data_buf = scmd->buffer; |
| cmd->reply_len = sizeof(scmd->buffer); |
| cmd->reply_buf = scmd->buffer; |
| cmd->done = done; |
| cmd->misc = misc; |
| |
| va_start(list, misc); |
| for (i = 0; i < data_len; ++i) |
| scmd->buffer[i] = (u8)va_arg(list, int); |
| va_end(list); |
| |
| return smu_queue_cmd(cmd); |
| } |
| EXPORT_SYMBOL(smu_queue_simple); |
| |
| |
| void smu_poll(void) |
| { |
| u8 gpio; |
| |
| if (smu == NULL) |
| return; |
| |
| gpio = pmac_do_feature_call(PMAC_FTR_READ_GPIO, NULL, smu->doorbell); |
| if ((gpio & 7) == 7) |
| smu_db_intr(smu->db_irq, smu); |
| } |
| EXPORT_SYMBOL(smu_poll); |
| |
| |
| void smu_done_complete(struct smu_cmd *cmd, void *misc) |
| { |
| struct completion *comp = misc; |
| |
| complete(comp); |
| } |
| EXPORT_SYMBOL(smu_done_complete); |
| |
| |
| void smu_spinwait_cmd(struct smu_cmd *cmd) |
| { |
| while(cmd->status == 1) |
| smu_poll(); |
| } |
| EXPORT_SYMBOL(smu_spinwait_cmd); |
| |
| |
| /* RTC low level commands */ |
| static inline int bcd2hex (int n) |
| { |
| return (((n & 0xf0) >> 4) * 10) + (n & 0xf); |
| } |
| |
| |
| static inline int hex2bcd (int n) |
| { |
| return ((n / 10) << 4) + (n % 10); |
| } |
| |
| |
| static inline void smu_fill_set_rtc_cmd(struct smu_cmd_buf *cmd_buf, |
| struct rtc_time *time) |
| { |
| cmd_buf->cmd = 0x8e; |
| cmd_buf->length = 8; |
| cmd_buf->data[0] = 0x80; |
| cmd_buf->data[1] = hex2bcd(time->tm_sec); |
| cmd_buf->data[2] = hex2bcd(time->tm_min); |
| cmd_buf->data[3] = hex2bcd(time->tm_hour); |
| cmd_buf->data[4] = time->tm_wday; |
| cmd_buf->data[5] = hex2bcd(time->tm_mday); |
| cmd_buf->data[6] = hex2bcd(time->tm_mon) + 1; |
| cmd_buf->data[7] = hex2bcd(time->tm_year - 100); |
| } |
| |
| |
| int smu_get_rtc_time(struct rtc_time *time, int spinwait) |
| { |
| struct smu_simple_cmd cmd; |
| int rc; |
| |
| if (smu == NULL) |
| return -ENODEV; |
| |
| memset(time, 0, sizeof(struct rtc_time)); |
| rc = smu_queue_simple(&cmd, SMU_CMD_RTC_COMMAND, 1, NULL, NULL, |
| SMU_CMD_RTC_GET_DATETIME); |
| if (rc) |
| return rc; |
| smu_spinwait_simple(&cmd); |
| |
| time->tm_sec = bcd2hex(cmd.buffer[0]); |
| time->tm_min = bcd2hex(cmd.buffer[1]); |
| time->tm_hour = bcd2hex(cmd.buffer[2]); |
| time->tm_wday = bcd2hex(cmd.buffer[3]); |
| time->tm_mday = bcd2hex(cmd.buffer[4]); |
| time->tm_mon = bcd2hex(cmd.buffer[5]) - 1; |
| time->tm_year = bcd2hex(cmd.buffer[6]) + 100; |
| |
| return 0; |
| } |
| |
| |
| int smu_set_rtc_time(struct rtc_time *time, int spinwait) |
| { |
| struct smu_simple_cmd cmd; |
| int rc; |
| |
| if (smu == NULL) |
| return -ENODEV; |
| |
| rc = smu_queue_simple(&cmd, SMU_CMD_RTC_COMMAND, 8, NULL, NULL, |
| SMU_CMD_RTC_SET_DATETIME, |
| hex2bcd(time->tm_sec), |
| hex2bcd(time->tm_min), |
| hex2bcd(time->tm_hour), |
| time->tm_wday, |
| hex2bcd(time->tm_mday), |
| hex2bcd(time->tm_mon) + 1, |
| hex2bcd(time->tm_year - 100)); |
| if (rc) |
| return rc; |
| smu_spinwait_simple(&cmd); |
| |
| return 0; |
| } |
| |
| |
| void smu_shutdown(void) |
| { |
| struct smu_simple_cmd cmd; |
| |
| if (smu == NULL) |
| return; |
| |
| if (smu_queue_simple(&cmd, SMU_CMD_POWER_COMMAND, 9, NULL, NULL, |
| 'S', 'H', 'U', 'T', 'D', 'O', 'W', 'N', 0)) |
| return; |
| smu_spinwait_simple(&cmd); |
| for (;;) |
| ; |
| } |
| |
| |
| void smu_restart(void) |
| { |
| struct smu_simple_cmd cmd; |
| |
| if (smu == NULL) |
| return; |
| |
| if (smu_queue_simple(&cmd, SMU_CMD_POWER_COMMAND, 8, NULL, NULL, |
| 'R', 'E', 'S', 'T', 'A', 'R', 'T', 0)) |
| return; |
| smu_spinwait_simple(&cmd); |
| for (;;) |
| ; |
| } |
| |
| |
| int smu_present(void) |
| { |
| return smu != NULL; |
| } |
| EXPORT_SYMBOL(smu_present); |
| |
| |
| int __init smu_init (void) |
| { |
| struct device_node *np; |
| u64 data; |
| int ret = 0; |
| |
| np = of_find_node_by_type(NULL, "smu"); |
| if (np == NULL) |
| return -ENODEV; |
| |
| printk(KERN_INFO "SMU: Driver %s %s\n", VERSION, AUTHOR); |
| |
| /* |
| * SMU based G5s need some memory below 2Gb. Thankfully this is |
| * called at a time where memblock is still available. |
| */ |
| smu_cmdbuf_abs = memblock_phys_alloc_range(4096, 4096, 0, 0x80000000UL); |
| if (smu_cmdbuf_abs == 0) { |
| printk(KERN_ERR "SMU: Command buffer allocation failed !\n"); |
| ret = -EINVAL; |
| goto fail_np; |
| } |
| |
| smu = memblock_alloc(sizeof(struct smu_device), SMP_CACHE_BYTES); |
| if (!smu) |
| panic("%s: Failed to allocate %zu bytes\n", __func__, |
| sizeof(struct smu_device)); |
| |
| spin_lock_init(&smu->lock); |
| INIT_LIST_HEAD(&smu->cmd_list); |
| INIT_LIST_HEAD(&smu->cmd_i2c_list); |
| smu->of_node = np; |
| smu->db_irq = 0; |
| smu->msg_irq = 0; |
| |
| /* smu_cmdbuf_abs is in the low 2G of RAM, can be converted to a |
| * 32 bits value safely |
| */ |
| smu->cmd_buf_abs = (u32)smu_cmdbuf_abs; |
| smu->cmd_buf = __va(smu_cmdbuf_abs); |
| |
| smu->db_node = of_find_node_by_name(NULL, "smu-doorbell"); |
| if (smu->db_node == NULL) { |
| printk(KERN_ERR "SMU: Can't find doorbell GPIO !\n"); |
| ret = -ENXIO; |
| goto fail_bootmem; |
| } |
| if (of_property_read_reg(smu->db_node, 0, &data, NULL)) { |
| printk(KERN_ERR "SMU: Can't find doorbell GPIO address !\n"); |
| ret = -ENXIO; |
| goto fail_db_node; |
| } |
| |
| /* Current setup has one doorbell GPIO that does both doorbell |
| * and ack. GPIOs are at 0x50, best would be to find that out |
| * in the device-tree though. |
| */ |
| smu->doorbell = data; |
| if (smu->doorbell < 0x50) |
| smu->doorbell += 0x50; |
| |
| /* Now look for the smu-interrupt GPIO */ |
| do { |
| smu->msg_node = of_find_node_by_name(NULL, "smu-interrupt"); |
| if (smu->msg_node == NULL) |
| break; |
| if (of_property_read_reg(smu->msg_node, 0, &data, NULL)) { |
| of_node_put(smu->msg_node); |
| smu->msg_node = NULL; |
| break; |
| } |
| smu->msg = data; |
| if (smu->msg < 0x50) |
| smu->msg += 0x50; |
| } while(0); |
| |
| /* Doorbell buffer is currently hard-coded, I didn't find a proper |
| * device-tree entry giving the address. Best would probably to use |
| * an offset for K2 base though, but let's do it that way for now. |
| */ |
| smu->db_buf = ioremap(0x8000860c, 0x1000); |
| if (smu->db_buf == NULL) { |
| printk(KERN_ERR "SMU: Can't map doorbell buffer pointer !\n"); |
| ret = -ENXIO; |
| goto fail_msg_node; |
| } |
| |
| /* U3 has an issue with NAP mode when issuing SMU commands */ |
| smu->broken_nap = pmac_get_uninorth_variant() < 4; |
| if (smu->broken_nap) |
| printk(KERN_INFO "SMU: using NAP mode workaround\n"); |
| |
| sys_ctrler = SYS_CTRLER_SMU; |
| return 0; |
| |
| fail_msg_node: |
| of_node_put(smu->msg_node); |
| fail_db_node: |
| of_node_put(smu->db_node); |
| fail_bootmem: |
| memblock_free(smu, sizeof(struct smu_device)); |
| smu = NULL; |
| fail_np: |
| of_node_put(np); |
| return ret; |
| } |
| |
| |
| static int smu_late_init(void) |
| { |
| if (!smu) |
| return 0; |
| |
| timer_setup(&smu->i2c_timer, smu_i2c_retry, 0); |
| |
| if (smu->db_node) { |
| smu->db_irq = irq_of_parse_and_map(smu->db_node, 0); |
| if (!smu->db_irq) |
| printk(KERN_ERR "smu: failed to map irq for node %pOF\n", |
| smu->db_node); |
| } |
| if (smu->msg_node) { |
| smu->msg_irq = irq_of_parse_and_map(smu->msg_node, 0); |
| if (!smu->msg_irq) |
| printk(KERN_ERR "smu: failed to map irq for node %pOF\n", |
| smu->msg_node); |
| } |
| |
| /* |
| * Try to request the interrupts |
| */ |
| |
| if (smu->db_irq) { |
| if (request_irq(smu->db_irq, smu_db_intr, |
| IRQF_SHARED, "SMU doorbell", smu) < 0) { |
| printk(KERN_WARNING "SMU: can't " |
| "request interrupt %d\n", |
| smu->db_irq); |
| smu->db_irq = 0; |
| } |
| } |
| |
| if (smu->msg_irq) { |
| if (request_irq(smu->msg_irq, smu_msg_intr, |
| IRQF_SHARED, "SMU message", smu) < 0) { |
| printk(KERN_WARNING "SMU: can't " |
| "request interrupt %d\n", |
| smu->msg_irq); |
| smu->msg_irq = 0; |
| } |
| } |
| |
| smu_irq_inited = 1; |
| return 0; |
| } |
| /* This has to be before arch_initcall as the low i2c stuff relies on the |
| * above having been done before we reach arch_initcalls |
| */ |
| core_initcall(smu_late_init); |
| |
| /* |
| * sysfs visibility |
| */ |
| |
| static void smu_expose_childs(struct work_struct *unused) |
| { |
| struct device_node *np; |
| |
| for_each_child_of_node(smu->of_node, np) |
| if (of_device_is_compatible(np, "smu-sensors")) |
| of_platform_device_create(np, "smu-sensors", |
| &smu->of_dev->dev); |
| } |
| |
| static DECLARE_WORK(smu_expose_childs_work, smu_expose_childs); |
| |
| static int smu_platform_probe(struct platform_device* dev) |
| { |
| if (!smu) |
| return -ENODEV; |
| smu->of_dev = dev; |
| |
| /* |
| * Ok, we are matched, now expose all i2c busses. We have to defer |
| * that unfortunately or it would deadlock inside the device model |
| */ |
| schedule_work(&smu_expose_childs_work); |
| |
| return 0; |
| } |
| |
| static const struct of_device_id smu_platform_match[] = |
| { |
| { |
| .type = "smu", |
| }, |
| {}, |
| }; |
| |
| static struct platform_driver smu_of_platform_driver = |
| { |
| .driver = { |
| .name = "smu", |
| .of_match_table = smu_platform_match, |
| }, |
| .probe = smu_platform_probe, |
| }; |
| |
| static int __init smu_init_sysfs(void) |
| { |
| /* |
| * For now, we don't power manage machines with an SMU chip, |
| * I'm a bit too far from figuring out how that works with those |
| * new chipsets, but that will come back and bite us |
| */ |
| platform_driver_register(&smu_of_platform_driver); |
| return 0; |
| } |
| |
| device_initcall(smu_init_sysfs); |
| |
| struct platform_device *smu_get_ofdev(void) |
| { |
| if (!smu) |
| return NULL; |
| return smu->of_dev; |
| } |
| |
| EXPORT_SYMBOL_GPL(smu_get_ofdev); |
| |
| /* |
| * i2c interface |
| */ |
| |
| static void smu_i2c_complete_command(struct smu_i2c_cmd *cmd, int fail) |
| { |
| void (*done)(struct smu_i2c_cmd *cmd, void *misc) = cmd->done; |
| void *misc = cmd->misc; |
| unsigned long flags; |
| |
| /* Check for read case */ |
| if (!fail && cmd->read) { |
| if (cmd->pdata[0] < 1) |
| fail = 1; |
| else |
| memcpy(cmd->info.data, &cmd->pdata[1], |
| cmd->info.datalen); |
| } |
| |
| DPRINTK("SMU: completing, success: %d\n", !fail); |
| |
| /* Update status and mark no pending i2c command with lock |
| * held so nobody comes in while we dequeue an eventual |
| * pending next i2c command |
| */ |
| spin_lock_irqsave(&smu->lock, flags); |
| smu->cmd_i2c_cur = NULL; |
| wmb(); |
| cmd->status = fail ? -EIO : 0; |
| |
| /* Is there another i2c command waiting ? */ |
| if (!list_empty(&smu->cmd_i2c_list)) { |
| struct smu_i2c_cmd *newcmd; |
| |
| /* Fetch it, new current, remove from list */ |
| newcmd = list_entry(smu->cmd_i2c_list.next, |
| struct smu_i2c_cmd, link); |
| smu->cmd_i2c_cur = newcmd; |
| list_del(&cmd->link); |
| |
| /* Queue with low level smu */ |
| list_add_tail(&cmd->scmd.link, &smu->cmd_list); |
| if (smu->cmd_cur == NULL) |
| smu_start_cmd(); |
| } |
| spin_unlock_irqrestore(&smu->lock, flags); |
| |
| /* Call command completion handler if any */ |
| if (done) |
| done(cmd, misc); |
| |
| } |
| |
| |
| static void smu_i2c_retry(struct timer_list *unused) |
| { |
| struct smu_i2c_cmd *cmd = smu->cmd_i2c_cur; |
| |
| DPRINTK("SMU: i2c failure, requeuing...\n"); |
| |
| /* requeue command simply by resetting reply_len */ |
| cmd->pdata[0] = 0xff; |
| cmd->scmd.reply_len = sizeof(cmd->pdata); |
| smu_queue_cmd(&cmd->scmd); |
| } |
| |
| |
| static void smu_i2c_low_completion(struct smu_cmd *scmd, void *misc) |
| { |
| struct smu_i2c_cmd *cmd = misc; |
| int fail = 0; |
| |
| DPRINTK("SMU: i2c compl. stage=%d status=%x pdata[0]=%x rlen: %x\n", |
| cmd->stage, scmd->status, cmd->pdata[0], scmd->reply_len); |
| |
| /* Check for possible status */ |
| if (scmd->status < 0) |
| fail = 1; |
| else if (cmd->read) { |
| if (cmd->stage == 0) |
| fail = cmd->pdata[0] != 0; |
| else |
| fail = cmd->pdata[0] >= 0x80; |
| } else { |
| fail = cmd->pdata[0] != 0; |
| } |
| |
| /* Handle failures by requeuing command, after 5ms interval |
| */ |
| if (fail && --cmd->retries > 0) { |
| DPRINTK("SMU: i2c failure, starting timer...\n"); |
| BUG_ON(cmd != smu->cmd_i2c_cur); |
| if (!smu_irq_inited) { |
| mdelay(5); |
| smu_i2c_retry(NULL); |
| return; |
| } |
| mod_timer(&smu->i2c_timer, jiffies + msecs_to_jiffies(5)); |
| return; |
| } |
| |
| /* If failure or stage 1, command is complete */ |
| if (fail || cmd->stage != 0) { |
| smu_i2c_complete_command(cmd, fail); |
| return; |
| } |
| |
| DPRINTK("SMU: going to stage 1\n"); |
| |
| /* Ok, initial command complete, now poll status */ |
| scmd->reply_buf = cmd->pdata; |
| scmd->reply_len = sizeof(cmd->pdata); |
| scmd->data_buf = cmd->pdata; |
| scmd->data_len = 1; |
| cmd->pdata[0] = 0; |
| cmd->stage = 1; |
| cmd->retries = 20; |
| smu_queue_cmd(scmd); |
| } |
| |
| |
| int smu_queue_i2c(struct smu_i2c_cmd *cmd) |
| { |
| unsigned long flags; |
| |
| if (smu == NULL) |
| return -ENODEV; |
| |
| /* Fill most fields of scmd */ |
| cmd->scmd.cmd = SMU_CMD_I2C_COMMAND; |
| cmd->scmd.done = smu_i2c_low_completion; |
| cmd->scmd.misc = cmd; |
| cmd->scmd.reply_buf = cmd->pdata; |
| cmd->scmd.reply_len = sizeof(cmd->pdata); |
| cmd->scmd.data_buf = (u8 *)(char *)&cmd->info; |
| cmd->scmd.status = 1; |
| cmd->stage = 0; |
| cmd->pdata[0] = 0xff; |
| cmd->retries = 20; |
| cmd->status = 1; |
| |
| /* Check transfer type, sanitize some "info" fields |
| * based on transfer type and do more checking |
| */ |
| cmd->info.caddr = cmd->info.devaddr; |
| cmd->read = cmd->info.devaddr & 0x01; |
| switch(cmd->info.type) { |
| case SMU_I2C_TRANSFER_SIMPLE: |
| cmd->info.sublen = 0; |
| memset(cmd->info.subaddr, 0, sizeof(cmd->info.subaddr)); |
| break; |
| case SMU_I2C_TRANSFER_COMBINED: |
| cmd->info.devaddr &= 0xfe; |
| fallthrough; |
| case SMU_I2C_TRANSFER_STDSUB: |
| if (cmd->info.sublen > 3) |
| return -EINVAL; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| /* Finish setting up command based on transfer direction |
| */ |
| if (cmd->read) { |
| if (cmd->info.datalen > SMU_I2C_READ_MAX) |
| return -EINVAL; |
| memset(cmd->info.data, 0xff, cmd->info.datalen); |
| cmd->scmd.data_len = 9; |
| } else { |
| if (cmd->info.datalen > SMU_I2C_WRITE_MAX) |
| return -EINVAL; |
| cmd->scmd.data_len = 9 + cmd->info.datalen; |
| } |
| |
| DPRINTK("SMU: i2c enqueuing command\n"); |
| DPRINTK("SMU: %s, len=%d bus=%x addr=%x sub0=%x type=%x\n", |
| cmd->read ? "read" : "write", cmd->info.datalen, |
| cmd->info.bus, cmd->info.caddr, |
| cmd->info.subaddr[0], cmd->info.type); |
| |
| |
| /* Enqueue command in i2c list, and if empty, enqueue also in |
| * main command list |
| */ |
| spin_lock_irqsave(&smu->lock, flags); |
| if (smu->cmd_i2c_cur == NULL) { |
| smu->cmd_i2c_cur = cmd; |
| list_add_tail(&cmd->scmd.link, &smu->cmd_list); |
| if (smu->cmd_cur == NULL) |
| smu_start_cmd(); |
| } else |
| list_add_tail(&cmd->link, &smu->cmd_i2c_list); |
| spin_unlock_irqrestore(&smu->lock, flags); |
| |
| return 0; |
| } |
| |
| /* |
| * Handling of "partitions" |
| */ |
| |
| static int smu_read_datablock(u8 *dest, unsigned int addr, unsigned int len) |
| { |
| DECLARE_COMPLETION_ONSTACK(comp); |
| unsigned int chunk; |
| struct smu_cmd cmd; |
| int rc; |
| u8 params[8]; |
| |
| /* We currently use a chunk size of 0xe. We could check the |
| * SMU firmware version and use bigger sizes though |
| */ |
| chunk = 0xe; |
| |
| while (len) { |
| unsigned int clen = min(len, chunk); |
| |
| cmd.cmd = SMU_CMD_MISC_ee_COMMAND; |
| cmd.data_len = 7; |
| cmd.data_buf = params; |
| cmd.reply_len = chunk; |
| cmd.reply_buf = dest; |
| cmd.done = smu_done_complete; |
| cmd.misc = ∁ |
| params[0] = SMU_CMD_MISC_ee_GET_DATABLOCK_REC; |
| params[1] = 0x4; |
| *((u32 *)¶ms[2]) = addr; |
| params[6] = clen; |
| |
| rc = smu_queue_cmd(&cmd); |
| if (rc) |
| return rc; |
| wait_for_completion(&comp); |
| if (cmd.status != 0) |
| return rc; |
| if (cmd.reply_len != clen) { |
| printk(KERN_DEBUG "SMU: short read in " |
| "smu_read_datablock, got: %d, want: %d\n", |
| cmd.reply_len, clen); |
| return -EIO; |
| } |
| len -= clen; |
| addr += clen; |
| dest += clen; |
| } |
| return 0; |
| } |
| |
| static struct smu_sdbp_header *smu_create_sdb_partition(int id) |
| { |
| DECLARE_COMPLETION_ONSTACK(comp); |
| struct smu_simple_cmd cmd; |
| unsigned int addr, len, tlen; |
| struct smu_sdbp_header *hdr; |
| struct property *prop; |
| |
| /* First query the partition info */ |
| DPRINTK("SMU: Query partition infos ... (irq=%d)\n", smu->db_irq); |
| smu_queue_simple(&cmd, SMU_CMD_PARTITION_COMMAND, 2, |
| smu_done_complete, &comp, |
| SMU_CMD_PARTITION_LATEST, id); |
| wait_for_completion(&comp); |
| DPRINTK("SMU: done, status: %d, reply_len: %d\n", |
| cmd.cmd.status, cmd.cmd.reply_len); |
| |
| /* Partition doesn't exist (or other error) */ |
| if (cmd.cmd.status != 0 || cmd.cmd.reply_len != 6) |
| return NULL; |
| |
| /* Fetch address and length from reply */ |
| addr = *((u16 *)cmd.buffer); |
| len = cmd.buffer[3] << 2; |
| /* Calucluate total length to allocate, including the 17 bytes |
| * for "sdb-partition-XX" that we append at the end of the buffer |
| */ |
| tlen = sizeof(struct property) + len + 18; |
| |
| prop = kzalloc(tlen, GFP_KERNEL); |
| if (prop == NULL) |
| return NULL; |
| hdr = (struct smu_sdbp_header *)(prop + 1); |
| prop->name = ((char *)prop) + tlen - 18; |
| sprintf(prop->name, "sdb-partition-%02x", id); |
| prop->length = len; |
| prop->value = hdr; |
| prop->next = NULL; |
| |
| /* Read the datablock */ |
| if (smu_read_datablock((u8 *)hdr, addr, len)) { |
| printk(KERN_DEBUG "SMU: datablock read failed while reading " |
| "partition %02x !\n", id); |
| goto failure; |
| } |
| |
| /* Got it, check a few things and create the property */ |
| if (hdr->id != id) { |
| printk(KERN_DEBUG "SMU: Reading partition %02x and got " |
| "%02x !\n", id, hdr->id); |
| goto failure; |
| } |
| if (of_add_property(smu->of_node, prop)) { |
| printk(KERN_DEBUG "SMU: Failed creating sdb-partition-%02x " |
| "property !\n", id); |
| goto failure; |
| } |
| |
| return hdr; |
| failure: |
| kfree(prop); |
| return NULL; |
| } |
| |
| /* Note: Only allowed to return error code in pointers (using ERR_PTR) |
| * when interruptible is 1 |
| */ |
| static const struct smu_sdbp_header *__smu_get_sdb_partition(int id, |
| unsigned int *size, int interruptible) |
| { |
| char pname[32]; |
| const struct smu_sdbp_header *part; |
| |
| if (!smu) |
| return NULL; |
| |
| sprintf(pname, "sdb-partition-%02x", id); |
| |
| DPRINTK("smu_get_sdb_partition(%02x)\n", id); |
| |
| if (interruptible) { |
| int rc; |
| rc = mutex_lock_interruptible(&smu_part_access); |
| if (rc) |
| return ERR_PTR(rc); |
| } else |
| mutex_lock(&smu_part_access); |
| |
| part = of_get_property(smu->of_node, pname, size); |
| if (part == NULL) { |
| DPRINTK("trying to extract from SMU ...\n"); |
| part = smu_create_sdb_partition(id); |
| if (part != NULL && size) |
| *size = part->len << 2; |
| } |
| mutex_unlock(&smu_part_access); |
| return part; |
| } |
| |
| const struct smu_sdbp_header *smu_get_sdb_partition(int id, unsigned int *size) |
| { |
| return __smu_get_sdb_partition(id, size, 0); |
| } |
| EXPORT_SYMBOL(smu_get_sdb_partition); |
| |
| |
| /* |
| * Userland driver interface |
| */ |
| |
| |
| static LIST_HEAD(smu_clist); |
| static DEFINE_SPINLOCK(smu_clist_lock); |
| |
| enum smu_file_mode { |
| smu_file_commands, |
| smu_file_events, |
| smu_file_closing |
| }; |
| |
| struct smu_private |
| { |
| struct list_head list; |
| enum smu_file_mode mode; |
| int busy; |
| struct smu_cmd cmd; |
| spinlock_t lock; |
| wait_queue_head_t wait; |
| u8 buffer[SMU_MAX_DATA]; |
| }; |
| |
| |
| static int smu_open(struct inode *inode, struct file *file) |
| { |
| struct smu_private *pp; |
| unsigned long flags; |
| |
| pp = kzalloc(sizeof(struct smu_private), GFP_KERNEL); |
| if (!pp) |
| return -ENOMEM; |
| spin_lock_init(&pp->lock); |
| pp->mode = smu_file_commands; |
| init_waitqueue_head(&pp->wait); |
| |
| mutex_lock(&smu_mutex); |
| spin_lock_irqsave(&smu_clist_lock, flags); |
| list_add(&pp->list, &smu_clist); |
| spin_unlock_irqrestore(&smu_clist_lock, flags); |
| file->private_data = pp; |
| mutex_unlock(&smu_mutex); |
| |
| return 0; |
| } |
| |
| |
| static void smu_user_cmd_done(struct smu_cmd *cmd, void *misc) |
| { |
| struct smu_private *pp = misc; |
| |
| wake_up_all(&pp->wait); |
| } |
| |
| |
| static ssize_t smu_write(struct file *file, const char __user *buf, |
| size_t count, loff_t *ppos) |
| { |
| struct smu_private *pp = file->private_data; |
| unsigned long flags; |
| struct smu_user_cmd_hdr hdr; |
| int rc = 0; |
| |
| if (pp->busy) |
| return -EBUSY; |
| else if (copy_from_user(&hdr, buf, sizeof(hdr))) |
| return -EFAULT; |
| else if (hdr.cmdtype == SMU_CMDTYPE_WANTS_EVENTS) { |
| pp->mode = smu_file_events; |
| return 0; |
| } else if (hdr.cmdtype == SMU_CMDTYPE_GET_PARTITION) { |
| const struct smu_sdbp_header *part; |
| part = __smu_get_sdb_partition(hdr.cmd, NULL, 1); |
| if (part == NULL) |
| return -EINVAL; |
| else if (IS_ERR(part)) |
| return PTR_ERR(part); |
| return 0; |
| } else if (hdr.cmdtype != SMU_CMDTYPE_SMU) |
| return -EINVAL; |
| else if (pp->mode != smu_file_commands) |
| return -EBADFD; |
| else if (hdr.data_len > SMU_MAX_DATA) |
| return -EINVAL; |
| |
| spin_lock_irqsave(&pp->lock, flags); |
| if (pp->busy) { |
| spin_unlock_irqrestore(&pp->lock, flags); |
| return -EBUSY; |
| } |
| pp->busy = 1; |
| pp->cmd.status = 1; |
| spin_unlock_irqrestore(&pp->lock, flags); |
| |
| if (copy_from_user(pp->buffer, buf + sizeof(hdr), hdr.data_len)) { |
| pp->busy = 0; |
| return -EFAULT; |
| } |
| |
| pp->cmd.cmd = hdr.cmd; |
| pp->cmd.data_len = hdr.data_len; |
| pp->cmd.reply_len = SMU_MAX_DATA; |
| pp->cmd.data_buf = pp->buffer; |
| pp->cmd.reply_buf = pp->buffer; |
| pp->cmd.done = smu_user_cmd_done; |
| pp->cmd.misc = pp; |
| rc = smu_queue_cmd(&pp->cmd); |
| if (rc < 0) |
| return rc; |
| return count; |
| } |
| |
| |
| static ssize_t smu_read_command(struct file *file, struct smu_private *pp, |
| char __user *buf, size_t count) |
| { |
| DECLARE_WAITQUEUE(wait, current); |
| struct smu_user_reply_hdr hdr; |
| unsigned long flags; |
| int size, rc = 0; |
| |
| if (!pp->busy) |
| return 0; |
| if (count < sizeof(struct smu_user_reply_hdr)) |
| return -EOVERFLOW; |
| spin_lock_irqsave(&pp->lock, flags); |
| if (pp->cmd.status == 1) { |
| if (file->f_flags & O_NONBLOCK) { |
| spin_unlock_irqrestore(&pp->lock, flags); |
| return -EAGAIN; |
| } |
| add_wait_queue(&pp->wait, &wait); |
| for (;;) { |
| set_current_state(TASK_INTERRUPTIBLE); |
| rc = 0; |
| if (pp->cmd.status != 1) |
| break; |
| rc = -ERESTARTSYS; |
| if (signal_pending(current)) |
| break; |
| spin_unlock_irqrestore(&pp->lock, flags); |
| schedule(); |
| spin_lock_irqsave(&pp->lock, flags); |
| } |
| set_current_state(TASK_RUNNING); |
| remove_wait_queue(&pp->wait, &wait); |
| } |
| spin_unlock_irqrestore(&pp->lock, flags); |
| if (rc) |
| return rc; |
| if (pp->cmd.status != 0) |
| pp->cmd.reply_len = 0; |
| size = sizeof(hdr) + pp->cmd.reply_len; |
| if (count < size) |
| size = count; |
| rc = size; |
| hdr.status = pp->cmd.status; |
| hdr.reply_len = pp->cmd.reply_len; |
| if (copy_to_user(buf, &hdr, sizeof(hdr))) |
| return -EFAULT; |
| size -= sizeof(hdr); |
| if (size && copy_to_user(buf + sizeof(hdr), pp->buffer, size)) |
| return -EFAULT; |
| pp->busy = 0; |
| |
| return rc; |
| } |
| |
| |
| static ssize_t smu_read_events(struct file *file, struct smu_private *pp, |
| char __user *buf, size_t count) |
| { |
| /* Not implemented */ |
| msleep_interruptible(1000); |
| return 0; |
| } |
| |
| |
| static ssize_t smu_read(struct file *file, char __user *buf, |
| size_t count, loff_t *ppos) |
| { |
| struct smu_private *pp = file->private_data; |
| |
| if (pp->mode == smu_file_commands) |
| return smu_read_command(file, pp, buf, count); |
| if (pp->mode == smu_file_events) |
| return smu_read_events(file, pp, buf, count); |
| |
| return -EBADFD; |
| } |
| |
| static __poll_t smu_fpoll(struct file *file, poll_table *wait) |
| { |
| struct smu_private *pp = file->private_data; |
| __poll_t mask = 0; |
| unsigned long flags; |
| |
| if (!pp) |
| return 0; |
| |
| if (pp->mode == smu_file_commands) { |
| poll_wait(file, &pp->wait, wait); |
| |
| spin_lock_irqsave(&pp->lock, flags); |
| if (pp->busy && pp->cmd.status != 1) |
| mask |= EPOLLIN; |
| spin_unlock_irqrestore(&pp->lock, flags); |
| } |
| if (pp->mode == smu_file_events) { |
| /* Not yet implemented */ |
| } |
| return mask; |
| } |
| |
| static int smu_release(struct inode *inode, struct file *file) |
| { |
| struct smu_private *pp = file->private_data; |
| unsigned long flags; |
| unsigned int busy; |
| |
| if (!pp) |
| return 0; |
| |
| file->private_data = NULL; |
| |
| /* Mark file as closing to avoid races with new request */ |
| spin_lock_irqsave(&pp->lock, flags); |
| pp->mode = smu_file_closing; |
| busy = pp->busy; |
| |
| /* Wait for any pending request to complete */ |
| if (busy && pp->cmd.status == 1) { |
| DECLARE_WAITQUEUE(wait, current); |
| |
| add_wait_queue(&pp->wait, &wait); |
| for (;;) { |
| set_current_state(TASK_UNINTERRUPTIBLE); |
| if (pp->cmd.status != 1) |
| break; |
| spin_unlock_irqrestore(&pp->lock, flags); |
| schedule(); |
| spin_lock_irqsave(&pp->lock, flags); |
| } |
| set_current_state(TASK_RUNNING); |
| remove_wait_queue(&pp->wait, &wait); |
| } |
| spin_unlock_irqrestore(&pp->lock, flags); |
| |
| spin_lock_irqsave(&smu_clist_lock, flags); |
| list_del(&pp->list); |
| spin_unlock_irqrestore(&smu_clist_lock, flags); |
| kfree(pp); |
| |
| return 0; |
| } |
| |
| |
| static const struct file_operations smu_device_fops = { |
| .read = smu_read, |
| .write = smu_write, |
| .poll = smu_fpoll, |
| .open = smu_open, |
| .release = smu_release, |
| }; |
| |
| static struct miscdevice pmu_device = { |
| MISC_DYNAMIC_MINOR, "smu", &smu_device_fops |
| }; |
| |
| static int smu_device_init(void) |
| { |
| if (!smu) |
| return -ENODEV; |
| if (misc_register(&pmu_device) < 0) |
| printk(KERN_ERR "via-pmu: cannot register misc device.\n"); |
| return 0; |
| } |
| device_initcall(smu_device_init); |