blob: a34ea0229d5366012fc0c26b52ae9310cba2fd10 [file] [log] [blame] [edit]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright 2023 Red Hat
*/
#include "encodings.h"
#include <linux/log2.h>
#include "logger.h"
#include "memory-alloc.h"
#include "permassert.h"
#include "constants.h"
#include "status-codes.h"
#include "types.h"
/** The maximum logical space is 4 petabytes, which is 1 terablock. */
static const block_count_t MAXIMUM_VDO_LOGICAL_BLOCKS = 1024ULL * 1024 * 1024 * 1024;
/** The maximum physical space is 256 terabytes, which is 64 gigablocks. */
static const block_count_t MAXIMUM_VDO_PHYSICAL_BLOCKS = 1024ULL * 1024 * 1024 * 64;
struct geometry_block {
char magic_number[VDO_GEOMETRY_MAGIC_NUMBER_SIZE];
struct packed_header header;
u32 checksum;
} __packed;
static const struct header GEOMETRY_BLOCK_HEADER_5_0 = {
.id = VDO_GEOMETRY_BLOCK,
.version = {
.major_version = 5,
.minor_version = 0,
},
/*
* Note: this size isn't just the payload size following the header, like it is everywhere
* else in VDO.
*/
.size = sizeof(struct geometry_block) + sizeof(struct volume_geometry),
};
static const struct header GEOMETRY_BLOCK_HEADER_4_0 = {
.id = VDO_GEOMETRY_BLOCK,
.version = {
.major_version = 4,
.minor_version = 0,
},
/*
* Note: this size isn't just the payload size following the header, like it is everywhere
* else in VDO.
*/
.size = sizeof(struct geometry_block) + sizeof(struct volume_geometry_4_0),
};
const u8 VDO_GEOMETRY_MAGIC_NUMBER[VDO_GEOMETRY_MAGIC_NUMBER_SIZE + 1] = "dmvdo001";
#define PAGE_HEADER_4_1_SIZE (8 + 8 + 8 + 1 + 1 + 1 + 1)
static const struct version_number BLOCK_MAP_4_1 = {
.major_version = 4,
.minor_version = 1,
};
const struct header VDO_BLOCK_MAP_HEADER_2_0 = {
.id = VDO_BLOCK_MAP,
.version = {
.major_version = 2,
.minor_version = 0,
},
.size = sizeof(struct block_map_state_2_0),
};
const struct header VDO_RECOVERY_JOURNAL_HEADER_7_0 = {
.id = VDO_RECOVERY_JOURNAL,
.version = {
.major_version = 7,
.minor_version = 0,
},
.size = sizeof(struct recovery_journal_state_7_0),
};
const struct header VDO_SLAB_DEPOT_HEADER_2_0 = {
.id = VDO_SLAB_DEPOT,
.version = {
.major_version = 2,
.minor_version = 0,
},
.size = sizeof(struct slab_depot_state_2_0),
};
static const struct header VDO_LAYOUT_HEADER_3_0 = {
.id = VDO_LAYOUT,
.version = {
.major_version = 3,
.minor_version = 0,
},
.size = sizeof(struct layout_3_0) + (sizeof(struct partition_3_0) * VDO_PARTITION_COUNT),
};
static const enum partition_id REQUIRED_PARTITIONS[] = {
VDO_BLOCK_MAP_PARTITION,
VDO_SLAB_DEPOT_PARTITION,
VDO_RECOVERY_JOURNAL_PARTITION,
VDO_SLAB_SUMMARY_PARTITION,
};
/*
* The current version for the data encoded in the super block. This must be changed any time there
* is a change to encoding of the component data of any VDO component.
*/
static const struct version_number VDO_COMPONENT_DATA_41_0 = {
.major_version = 41,
.minor_version = 0,
};
const struct version_number VDO_VOLUME_VERSION_67_0 = {
.major_version = 67,
.minor_version = 0,
};
static const struct header SUPER_BLOCK_HEADER_12_0 = {
.id = VDO_SUPER_BLOCK,
.version = {
.major_version = 12,
.minor_version = 0,
},
/* This is the minimum size, if the super block contains no components. */
.size = VDO_SUPER_BLOCK_FIXED_SIZE - VDO_ENCODED_HEADER_SIZE,
};
/**
* validate_version() - Check whether a version matches an expected version.
* @expected_version: The expected version.
* @actual_version: The version being validated.
* @component_name: The name of the component or the calling function (for error logging).
*
* Logs an error describing a mismatch.
*
* Return: VDO_SUCCESS if the versions are the same,
* VDO_UNSUPPORTED_VERSION if the versions don't match.
*/
static int __must_check validate_version(struct version_number expected_version,
struct version_number actual_version,
const char *component_name)
{
if (!vdo_are_same_version(expected_version, actual_version)) {
return vdo_log_error_strerror(VDO_UNSUPPORTED_VERSION,
"%s version mismatch, expected %d.%d, got %d.%d",
component_name,
expected_version.major_version,
expected_version.minor_version,
actual_version.major_version,
actual_version.minor_version);
}
return VDO_SUCCESS;
}
/**
* vdo_validate_header() - Check whether a header matches expectations.
* @expected_header: The expected header.
* @actual_header: The header being validated.
* @exact_size: If true, the size fields of the two headers must be the same, otherwise it is
* required that actual_header.size >= expected_header.size.
* @name: The name of the component or the calling function (for error logging).
*
* Logs an error describing the first mismatch found.
*
* Return: VDO_SUCCESS if the header meets expectations,
* VDO_INCORRECT_COMPONENT if the component ids don't match,
* VDO_UNSUPPORTED_VERSION if the versions or sizes don't match.
*/
int vdo_validate_header(const struct header *expected_header,
const struct header *actual_header, bool exact_size,
const char *name)
{
int result;
if (expected_header->id != actual_header->id) {
return vdo_log_error_strerror(VDO_INCORRECT_COMPONENT,
"%s ID mismatch, expected %d, got %d",
name, expected_header->id,
actual_header->id);
}
result = validate_version(expected_header->version, actual_header->version,
name);
if (result != VDO_SUCCESS)
return result;
if ((expected_header->size > actual_header->size) ||
(exact_size && (expected_header->size < actual_header->size))) {
return vdo_log_error_strerror(VDO_UNSUPPORTED_VERSION,
"%s size mismatch, expected %zu, got %zu",
name, expected_header->size,
actual_header->size);
}
return VDO_SUCCESS;
}
static void encode_version_number(u8 *buffer, size_t *offset,
struct version_number version)
{
struct packed_version_number packed = vdo_pack_version_number(version);
memcpy(buffer + *offset, &packed, sizeof(packed));
*offset += sizeof(packed);
}
void vdo_encode_header(u8 *buffer, size_t *offset, const struct header *header)
{
struct packed_header packed = vdo_pack_header(header);
memcpy(buffer + *offset, &packed, sizeof(packed));
*offset += sizeof(packed);
}
static void decode_version_number(u8 *buffer, size_t *offset,
struct version_number *version)
{
struct packed_version_number packed;
memcpy(&packed, buffer + *offset, sizeof(packed));
*offset += sizeof(packed);
*version = vdo_unpack_version_number(packed);
}
void vdo_decode_header(u8 *buffer, size_t *offset, struct header *header)
{
struct packed_header packed;
memcpy(&packed, buffer + *offset, sizeof(packed));
*offset += sizeof(packed);
*header = vdo_unpack_header(&packed);
}
/**
* decode_volume_geometry() - Decode the on-disk representation of a volume geometry from a buffer.
* @buffer: A buffer to decode from.
* @offset: The offset in the buffer at which to decode.
* @geometry: The structure to receive the decoded fields.
* @version: The geometry block version to decode.
*/
static void decode_volume_geometry(u8 *buffer, size_t *offset,
struct volume_geometry *geometry, u32 version)
{
u32 unused, mem;
enum volume_region_id id;
nonce_t nonce;
block_count_t bio_offset = 0;
bool sparse;
/* This is for backwards compatibility. */
decode_u32_le(buffer, offset, &unused);
geometry->unused = unused;
decode_u64_le(buffer, offset, &nonce);
geometry->nonce = nonce;
memcpy((unsigned char *) &geometry->uuid, buffer + *offset, sizeof(uuid_t));
*offset += sizeof(uuid_t);
if (version > 4)
decode_u64_le(buffer, offset, &bio_offset);
geometry->bio_offset = bio_offset;
for (id = 0; id < VDO_VOLUME_REGION_COUNT; id++) {
physical_block_number_t start_block;
enum volume_region_id saved_id;
decode_u32_le(buffer, offset, &saved_id);
decode_u64_le(buffer, offset, &start_block);
geometry->regions[id] = (struct volume_region) {
.id = saved_id,
.start_block = start_block,
};
}
decode_u32_le(buffer, offset, &mem);
*offset += sizeof(u32);
sparse = buffer[(*offset)++];
geometry->index_config = (struct index_config) {
.mem = mem,
.sparse = sparse,
};
}
/**
* vdo_parse_geometry_block() - Decode and validate an encoded geometry block.
* @block: The encoded geometry block.
* @geometry: The structure to receive the decoded fields.
*/
int __must_check vdo_parse_geometry_block(u8 *block, struct volume_geometry *geometry)
{
u32 checksum, saved_checksum;
struct header header;
size_t offset = 0;
int result;
if (memcmp(block, VDO_GEOMETRY_MAGIC_NUMBER, VDO_GEOMETRY_MAGIC_NUMBER_SIZE) != 0)
return VDO_BAD_MAGIC;
offset += VDO_GEOMETRY_MAGIC_NUMBER_SIZE;
vdo_decode_header(block, &offset, &header);
if (header.version.major_version <= 4) {
result = vdo_validate_header(&GEOMETRY_BLOCK_HEADER_4_0, &header,
true, __func__);
} else {
result = vdo_validate_header(&GEOMETRY_BLOCK_HEADER_5_0, &header,
true, __func__);
}
if (result != VDO_SUCCESS)
return result;
decode_volume_geometry(block, &offset, geometry, header.version.major_version);
result = VDO_ASSERT(header.size == offset + sizeof(u32),
"should have decoded up to the geometry checksum");
if (result != VDO_SUCCESS)
return result;
/* Decode and verify the checksum. */
checksum = vdo_crc32(block, offset);
decode_u32_le(block, &offset, &saved_checksum);
return ((checksum == saved_checksum) ? VDO_SUCCESS : VDO_CHECKSUM_MISMATCH);
}
struct block_map_page *vdo_format_block_map_page(void *buffer, nonce_t nonce,
physical_block_number_t pbn,
bool initialized)
{
struct block_map_page *page = buffer;
memset(buffer, 0, VDO_BLOCK_SIZE);
page->version = vdo_pack_version_number(BLOCK_MAP_4_1);
page->header.nonce = __cpu_to_le64(nonce);
page->header.pbn = __cpu_to_le64(pbn);
page->header.initialized = initialized;
return page;
}
enum block_map_page_validity vdo_validate_block_map_page(struct block_map_page *page,
nonce_t nonce,
physical_block_number_t pbn)
{
BUILD_BUG_ON(sizeof(struct block_map_page_header) != PAGE_HEADER_4_1_SIZE);
if (!vdo_are_same_version(BLOCK_MAP_4_1,
vdo_unpack_version_number(page->version)) ||
!page->header.initialized || (nonce != __le64_to_cpu(page->header.nonce)))
return VDO_BLOCK_MAP_PAGE_INVALID;
if (pbn != vdo_get_block_map_page_pbn(page))
return VDO_BLOCK_MAP_PAGE_BAD;
return VDO_BLOCK_MAP_PAGE_VALID;
}
static int decode_block_map_state_2_0(u8 *buffer, size_t *offset,
struct block_map_state_2_0 *state)
{
size_t initial_offset;
block_count_t flat_page_count, root_count;
physical_block_number_t flat_page_origin, root_origin;
struct header header;
int result;
vdo_decode_header(buffer, offset, &header);
result = vdo_validate_header(&VDO_BLOCK_MAP_HEADER_2_0, &header, true, __func__);
if (result != VDO_SUCCESS)
return result;
initial_offset = *offset;
decode_u64_le(buffer, offset, &flat_page_origin);
result = VDO_ASSERT(flat_page_origin == VDO_BLOCK_MAP_FLAT_PAGE_ORIGIN,
"Flat page origin must be %u (recorded as %llu)",
VDO_BLOCK_MAP_FLAT_PAGE_ORIGIN,
(unsigned long long) state->flat_page_origin);
if (result != VDO_SUCCESS)
return result;
decode_u64_le(buffer, offset, &flat_page_count);
result = VDO_ASSERT(flat_page_count == 0,
"Flat page count must be 0 (recorded as %llu)",
(unsigned long long) state->flat_page_count);
if (result != VDO_SUCCESS)
return result;
decode_u64_le(buffer, offset, &root_origin);
decode_u64_le(buffer, offset, &root_count);
result = VDO_ASSERT(VDO_BLOCK_MAP_HEADER_2_0.size == *offset - initial_offset,
"decoded block map component size must match header size");
if (result != VDO_SUCCESS)
return result;
*state = (struct block_map_state_2_0) {
.flat_page_origin = flat_page_origin,
.flat_page_count = flat_page_count,
.root_origin = root_origin,
.root_count = root_count,
};
return VDO_SUCCESS;
}
static void encode_block_map_state_2_0(u8 *buffer, size_t *offset,
struct block_map_state_2_0 state)
{
size_t initial_offset;
vdo_encode_header(buffer, offset, &VDO_BLOCK_MAP_HEADER_2_0);
initial_offset = *offset;
encode_u64_le(buffer, offset, state.flat_page_origin);
encode_u64_le(buffer, offset, state.flat_page_count);
encode_u64_le(buffer, offset, state.root_origin);
encode_u64_le(buffer, offset, state.root_count);
VDO_ASSERT_LOG_ONLY(VDO_BLOCK_MAP_HEADER_2_0.size == *offset - initial_offset,
"encoded block map component size must match header size");
}
/**
* vdo_compute_new_forest_pages() - Compute the number of pages which must be allocated at each
* level in order to grow the forest to a new number of entries.
* @entries: The new number of entries the block map must address.
*
* Return: The total number of non-leaf pages required.
*/
block_count_t vdo_compute_new_forest_pages(root_count_t root_count,
struct boundary *old_sizes,
block_count_t entries,
struct boundary *new_sizes)
{
page_count_t leaf_pages = max(vdo_compute_block_map_page_count(entries), 1U);
page_count_t level_size = DIV_ROUND_UP(leaf_pages, root_count);
block_count_t total_pages = 0;
height_t height;
for (height = 0; height < VDO_BLOCK_MAP_TREE_HEIGHT; height++) {
block_count_t new_pages;
level_size = DIV_ROUND_UP(level_size, VDO_BLOCK_MAP_ENTRIES_PER_PAGE);
new_sizes->levels[height] = level_size;
new_pages = level_size;
if (old_sizes != NULL)
new_pages -= old_sizes->levels[height];
total_pages += (new_pages * root_count);
}
return total_pages;
}
/**
* encode_recovery_journal_state_7_0() - Encode the state of a recovery journal.
*
* Return: VDO_SUCCESS or an error code.
*/
static void encode_recovery_journal_state_7_0(u8 *buffer, size_t *offset,
struct recovery_journal_state_7_0 state)
{
size_t initial_offset;
vdo_encode_header(buffer, offset, &VDO_RECOVERY_JOURNAL_HEADER_7_0);
initial_offset = *offset;
encode_u64_le(buffer, offset, state.journal_start);
encode_u64_le(buffer, offset, state.logical_blocks_used);
encode_u64_le(buffer, offset, state.block_map_data_blocks);
VDO_ASSERT_LOG_ONLY(VDO_RECOVERY_JOURNAL_HEADER_7_0.size == *offset - initial_offset,
"encoded recovery journal component size must match header size");
}
/**
* decode_recovery_journal_state_7_0() - Decode the state of a recovery journal saved in a buffer.
* @buffer: The buffer containing the saved state.
* @state: A pointer to a recovery journal state to hold the result of a successful decode.
*
* Return: VDO_SUCCESS or an error code.
*/
static int __must_check decode_recovery_journal_state_7_0(u8 *buffer, size_t *offset,
struct recovery_journal_state_7_0 *state)
{
struct header header;
int result;
size_t initial_offset;
sequence_number_t journal_start;
block_count_t logical_blocks_used, block_map_data_blocks;
vdo_decode_header(buffer, offset, &header);
result = vdo_validate_header(&VDO_RECOVERY_JOURNAL_HEADER_7_0, &header, true,
__func__);
if (result != VDO_SUCCESS)
return result;
initial_offset = *offset;
decode_u64_le(buffer, offset, &journal_start);
decode_u64_le(buffer, offset, &logical_blocks_used);
decode_u64_le(buffer, offset, &block_map_data_blocks);
result = VDO_ASSERT(VDO_RECOVERY_JOURNAL_HEADER_7_0.size == *offset - initial_offset,
"decoded recovery journal component size must match header size");
if (result != VDO_SUCCESS)
return result;
*state = (struct recovery_journal_state_7_0) {
.journal_start = journal_start,
.logical_blocks_used = logical_blocks_used,
.block_map_data_blocks = block_map_data_blocks,
};
return VDO_SUCCESS;
}
/**
* vdo_get_journal_operation_name() - Get the name of a journal operation.
* @operation: The operation to name.
*
* Return: The name of the operation.
*/
const char *vdo_get_journal_operation_name(enum journal_operation operation)
{
switch (operation) {
case VDO_JOURNAL_DATA_REMAPPING:
return "data remapping";
case VDO_JOURNAL_BLOCK_MAP_REMAPPING:
return "block map remapping";
default:
return "unknown journal operation";
}
}
/**
* encode_slab_depot_state_2_0() - Encode the state of a slab depot into a buffer.
*/
static void encode_slab_depot_state_2_0(u8 *buffer, size_t *offset,
struct slab_depot_state_2_0 state)
{
size_t initial_offset;
vdo_encode_header(buffer, offset, &VDO_SLAB_DEPOT_HEADER_2_0);
initial_offset = *offset;
encode_u64_le(buffer, offset, state.slab_config.slab_blocks);
encode_u64_le(buffer, offset, state.slab_config.data_blocks);
encode_u64_le(buffer, offset, state.slab_config.reference_count_blocks);
encode_u64_le(buffer, offset, state.slab_config.slab_journal_blocks);
encode_u64_le(buffer, offset, state.slab_config.slab_journal_flushing_threshold);
encode_u64_le(buffer, offset, state.slab_config.slab_journal_blocking_threshold);
encode_u64_le(buffer, offset, state.slab_config.slab_journal_scrubbing_threshold);
encode_u64_le(buffer, offset, state.first_block);
encode_u64_le(buffer, offset, state.last_block);
buffer[(*offset)++] = state.zone_count;
VDO_ASSERT_LOG_ONLY(VDO_SLAB_DEPOT_HEADER_2_0.size == *offset - initial_offset,
"encoded block map component size must match header size");
}
/**
* decode_slab_depot_state_2_0() - Decode slab depot component state version 2.0 from a buffer.
*
* Return: VDO_SUCCESS or an error code.
*/
static int decode_slab_depot_state_2_0(u8 *buffer, size_t *offset,
struct slab_depot_state_2_0 *state)
{
struct header header;
int result;
size_t initial_offset;
struct slab_config slab_config;
block_count_t count;
physical_block_number_t first_block, last_block;
zone_count_t zone_count;
vdo_decode_header(buffer, offset, &header);
result = vdo_validate_header(&VDO_SLAB_DEPOT_HEADER_2_0, &header, true,
__func__);
if (result != VDO_SUCCESS)
return result;
initial_offset = *offset;
decode_u64_le(buffer, offset, &count);
slab_config.slab_blocks = count;
decode_u64_le(buffer, offset, &count);
slab_config.data_blocks = count;
decode_u64_le(buffer, offset, &count);
slab_config.reference_count_blocks = count;
decode_u64_le(buffer, offset, &count);
slab_config.slab_journal_blocks = count;
decode_u64_le(buffer, offset, &count);
slab_config.slab_journal_flushing_threshold = count;
decode_u64_le(buffer, offset, &count);
slab_config.slab_journal_blocking_threshold = count;
decode_u64_le(buffer, offset, &count);
slab_config.slab_journal_scrubbing_threshold = count;
decode_u64_le(buffer, offset, &first_block);
decode_u64_le(buffer, offset, &last_block);
zone_count = buffer[(*offset)++];
result = VDO_ASSERT(VDO_SLAB_DEPOT_HEADER_2_0.size == *offset - initial_offset,
"decoded slab depot component size must match header size");
if (result != VDO_SUCCESS)
return result;
*state = (struct slab_depot_state_2_0) {
.slab_config = slab_config,
.first_block = first_block,
.last_block = last_block,
.zone_count = zone_count,
};
return VDO_SUCCESS;
}
/**
* vdo_configure_slab_depot() - Configure the slab depot.
* @partition: The slab depot partition
* @slab_config: The configuration of a single slab.
* @zone_count: The number of zones the depot will use.
* @state: The state structure to be configured.
*
* Configures the slab_depot for the specified storage capacity, finding the number of data blocks
* that will fit and still leave room for the depot metadata, then return the saved state for that
* configuration.
*
* Return: VDO_SUCCESS or an error code.
*/
int vdo_configure_slab_depot(const struct partition *partition,
struct slab_config slab_config, zone_count_t zone_count,
struct slab_depot_state_2_0 *state)
{
block_count_t total_slab_blocks, total_data_blocks;
size_t slab_count;
physical_block_number_t last_block;
block_count_t slab_size = slab_config.slab_blocks;
vdo_log_debug("slabDepot %s(block_count=%llu, first_block=%llu, slab_size=%llu, zone_count=%u)",
__func__, (unsigned long long) partition->count,
(unsigned long long) partition->offset,
(unsigned long long) slab_size, zone_count);
/* We do not allow runt slabs, so we waste up to a slab's worth. */
slab_count = (partition->count / slab_size);
if (slab_count == 0)
return VDO_NO_SPACE;
if (slab_count > MAX_VDO_SLABS)
return VDO_TOO_MANY_SLABS;
total_slab_blocks = slab_count * slab_config.slab_blocks;
total_data_blocks = slab_count * slab_config.data_blocks;
last_block = partition->offset + total_slab_blocks;
*state = (struct slab_depot_state_2_0) {
.slab_config = slab_config,
.first_block = partition->offset,
.last_block = last_block,
.zone_count = zone_count,
};
vdo_log_debug("slab_depot last_block=%llu, total_data_blocks=%llu, slab_count=%zu, left_over=%llu",
(unsigned long long) last_block,
(unsigned long long) total_data_blocks, slab_count,
(unsigned long long) (partition->count - (last_block - partition->offset)));
return VDO_SUCCESS;
}
/**
* vdo_configure_slab() - Measure and initialize the configuration to use for each slab.
* @slab_size: The number of blocks per slab.
* @slab_journal_blocks: The number of blocks for the slab journal.
* @slab_config: The slab configuration to initialize.
*
* Return: VDO_SUCCESS or an error code.
*/
int vdo_configure_slab(block_count_t slab_size, block_count_t slab_journal_blocks,
struct slab_config *slab_config)
{
block_count_t ref_blocks, meta_blocks, data_blocks;
block_count_t flushing_threshold, remaining, blocking_threshold;
block_count_t minimal_extra_space, scrubbing_threshold;
if (slab_journal_blocks >= slab_size)
return VDO_BAD_CONFIGURATION;
/*
* This calculation should technically be a recurrence, but the total number of metadata
* blocks is currently less than a single block of ref_counts, so we'd gain at most one
* data block in each slab with more iteration.
*/
ref_blocks = vdo_get_saved_reference_count_size(slab_size - slab_journal_blocks);
meta_blocks = (ref_blocks + slab_journal_blocks);
/* Make sure test code hasn't configured slabs to be too small. */
if (meta_blocks >= slab_size)
return VDO_BAD_CONFIGURATION;
/*
* If the slab size is very small, assume this must be a unit test and override the number
* of data blocks to be a power of two (wasting blocks in the slab). Many tests need their
* data_blocks fields to be the exact capacity of the configured volume, and that used to
* fall out since they use a power of two for the number of data blocks, the slab size was
* a power of two, and every block in a slab was a data block.
*
* TODO: Try to figure out some way of structuring testParameters and unit tests so this
* hack isn't needed without having to edit several unit tests every time the metadata size
* changes by one block.
*/
data_blocks = slab_size - meta_blocks;
if ((slab_size < 1024) && !is_power_of_2(data_blocks))
data_blocks = ((block_count_t) 1 << ilog2(data_blocks));
/*
* Configure the slab journal thresholds. The flush threshold is 168 of 224 blocks in
* production, or 3/4ths, so we use this ratio for all sizes.
*/
flushing_threshold = ((slab_journal_blocks * 3) + 3) / 4;
/*
* The blocking threshold should be far enough from the flushing threshold to not produce
* delays, but far enough from the end of the journal to allow multiple successive recovery
* failures.
*/
remaining = slab_journal_blocks - flushing_threshold;
blocking_threshold = flushing_threshold + ((remaining * 5) / 7);
/* The scrubbing threshold should be at least 2048 entries before the end of the journal. */
minimal_extra_space = 1 + (MAXIMUM_VDO_USER_VIOS / VDO_SLAB_JOURNAL_FULL_ENTRIES_PER_BLOCK);
scrubbing_threshold = blocking_threshold;
if (slab_journal_blocks > minimal_extra_space)
scrubbing_threshold = slab_journal_blocks - minimal_extra_space;
if (blocking_threshold > scrubbing_threshold)
blocking_threshold = scrubbing_threshold;
*slab_config = (struct slab_config) {
.slab_blocks = slab_size,
.data_blocks = data_blocks,
.reference_count_blocks = ref_blocks,
.slab_journal_blocks = slab_journal_blocks,
.slab_journal_flushing_threshold = flushing_threshold,
.slab_journal_blocking_threshold = blocking_threshold,
.slab_journal_scrubbing_threshold = scrubbing_threshold};
return VDO_SUCCESS;
}
/**
* vdo_decode_slab_journal_entry() - Decode a slab journal entry.
* @block: The journal block holding the entry.
* @entry_count: The number of the entry.
*
* Return: The decoded entry.
*/
struct slab_journal_entry vdo_decode_slab_journal_entry(struct packed_slab_journal_block *block,
journal_entry_count_t entry_count)
{
struct slab_journal_entry entry =
vdo_unpack_slab_journal_entry(&block->payload.entries[entry_count]);
if (block->header.has_block_map_increments &&
((block->payload.full_entries.entry_types[entry_count / 8] &
((u8) 1 << (entry_count % 8))) != 0))
entry.operation = VDO_JOURNAL_BLOCK_MAP_REMAPPING;
return entry;
}
/**
* allocate_partition() - Allocate a partition and add it to a layout.
* @layout: The layout containing the partition.
* @id: The id of the partition.
* @offset: The offset into the layout at which the partition begins.
* @size: The size of the partition in blocks.
*
* Return: VDO_SUCCESS or an error.
*/
static int allocate_partition(struct layout *layout, u8 id,
physical_block_number_t offset, block_count_t size)
{
struct partition *partition;
int result;
result = vdo_allocate(1, struct partition, __func__, &partition);
if (result != VDO_SUCCESS)
return result;
partition->id = id;
partition->offset = offset;
partition->count = size;
partition->next = layout->head;
layout->head = partition;
return VDO_SUCCESS;
}
/**
* make_partition() - Create a new partition from the beginning or end of the unused space in a
* layout.
* @layout: The layout.
* @id: The id of the partition to make.
* @size: The number of blocks to carve out; if 0, all remaining space will be used.
* @beginning: True if the partition should start at the beginning of the unused space.
*
* Return: A success or error code, particularly VDO_NO_SPACE if there are fewer than size blocks
* remaining.
*/
static int __must_check make_partition(struct layout *layout, enum partition_id id,
block_count_t size, bool beginning)
{
int result;
physical_block_number_t offset;
block_count_t free_blocks = layout->last_free - layout->first_free;
if (size == 0) {
if (free_blocks == 0)
return VDO_NO_SPACE;
size = free_blocks;
} else if (size > free_blocks) {
return VDO_NO_SPACE;
}
result = vdo_get_partition(layout, id, NULL);
if (result != VDO_UNKNOWN_PARTITION)
return VDO_PARTITION_EXISTS;
offset = beginning ? layout->first_free : (layout->last_free - size);
result = allocate_partition(layout, id, offset, size);
if (result != VDO_SUCCESS)
return result;
layout->num_partitions++;
if (beginning)
layout->first_free += size;
else
layout->last_free = layout->last_free - size;
return VDO_SUCCESS;
}
/**
* vdo_initialize_layout() - Lay out the partitions of a vdo.
* @size: The entire size of the vdo.
* @origin: The start of the layout on the underlying storage in blocks.
* @block_map_blocks: The size of the block map partition.
* @journal_blocks: The size of the journal partition.
* @summary_blocks: The size of the slab summary partition.
* @layout: The layout to initialize.
*
* Return: VDO_SUCCESS or an error.
*/
int vdo_initialize_layout(block_count_t size, physical_block_number_t offset,
block_count_t block_map_blocks, block_count_t journal_blocks,
block_count_t summary_blocks, struct layout *layout)
{
int result;
block_count_t necessary_size =
(offset + block_map_blocks + journal_blocks + summary_blocks);
if (necessary_size > size)
return vdo_log_error_strerror(VDO_NO_SPACE,
"Not enough space to make a VDO");
*layout = (struct layout) {
.start = offset,
.size = size,
.first_free = offset,
.last_free = size,
.num_partitions = 0,
.head = NULL,
};
result = make_partition(layout, VDO_BLOCK_MAP_PARTITION, block_map_blocks, true);
if (result != VDO_SUCCESS) {
vdo_uninitialize_layout(layout);
return result;
}
result = make_partition(layout, VDO_SLAB_SUMMARY_PARTITION, summary_blocks,
false);
if (result != VDO_SUCCESS) {
vdo_uninitialize_layout(layout);
return result;
}
result = make_partition(layout, VDO_RECOVERY_JOURNAL_PARTITION, journal_blocks,
false);
if (result != VDO_SUCCESS) {
vdo_uninitialize_layout(layout);
return result;
}
result = make_partition(layout, VDO_SLAB_DEPOT_PARTITION, 0, true);
if (result != VDO_SUCCESS)
vdo_uninitialize_layout(layout);
return result;
}
/**
* vdo_uninitialize_layout() - Clean up a layout.
* @layout: The layout to clean up.
*
* All partitions created by this layout become invalid pointers.
*/
void vdo_uninitialize_layout(struct layout *layout)
{
while (layout->head != NULL) {
struct partition *part = layout->head;
layout->head = part->next;
vdo_free(part);
}
memset(layout, 0, sizeof(struct layout));
}
/**
* vdo_get_partition() - Get a partition by id.
* @layout: The layout from which to get a partition.
* @id: The id of the partition.
* @partition_ptr: A pointer to hold the partition.
*
* Return: VDO_SUCCESS or an error.
*/
int vdo_get_partition(struct layout *layout, enum partition_id id,
struct partition **partition_ptr)
{
struct partition *partition;
for (partition = layout->head; partition != NULL; partition = partition->next) {
if (partition->id == id) {
if (partition_ptr != NULL)
*partition_ptr = partition;
return VDO_SUCCESS;
}
}
return VDO_UNKNOWN_PARTITION;
}
/**
* vdo_get_known_partition() - Get a partition by id from a validated layout.
* @layout: The layout from which to get a partition.
* @id: The id of the partition.
*
* Return: the partition
*/
struct partition *vdo_get_known_partition(struct layout *layout, enum partition_id id)
{
struct partition *partition;
int result = vdo_get_partition(layout, id, &partition);
VDO_ASSERT_LOG_ONLY(result == VDO_SUCCESS, "layout has expected partition: %u", id);
return partition;
}
static void encode_layout(u8 *buffer, size_t *offset, const struct layout *layout)
{
const struct partition *partition;
size_t initial_offset;
struct header header = VDO_LAYOUT_HEADER_3_0;
BUILD_BUG_ON(sizeof(enum partition_id) != sizeof(u8));
VDO_ASSERT_LOG_ONLY(layout->num_partitions <= U8_MAX,
"layout partition count must fit in a byte");
vdo_encode_header(buffer, offset, &header);
initial_offset = *offset;
encode_u64_le(buffer, offset, layout->first_free);
encode_u64_le(buffer, offset, layout->last_free);
buffer[(*offset)++] = layout->num_partitions;
VDO_ASSERT_LOG_ONLY(sizeof(struct layout_3_0) == *offset - initial_offset,
"encoded size of a layout header must match structure");
for (partition = layout->head; partition != NULL; partition = partition->next) {
buffer[(*offset)++] = partition->id;
encode_u64_le(buffer, offset, partition->offset);
/* This field only exists for backwards compatibility */
encode_u64_le(buffer, offset, 0);
encode_u64_le(buffer, offset, partition->count);
}
VDO_ASSERT_LOG_ONLY(header.size == *offset - initial_offset,
"encoded size of a layout must match header size");
}
static int decode_layout(u8 *buffer, size_t *offset, physical_block_number_t start,
block_count_t size, struct layout *layout)
{
struct header header;
struct layout_3_0 layout_header;
struct partition *partition;
size_t initial_offset;
physical_block_number_t first_free, last_free;
u8 partition_count;
u8 i;
int result;
vdo_decode_header(buffer, offset, &header);
/* Layout is variable size, so only do a minimum size check here. */
result = vdo_validate_header(&VDO_LAYOUT_HEADER_3_0, &header, false, __func__);
if (result != VDO_SUCCESS)
return result;
initial_offset = *offset;
decode_u64_le(buffer, offset, &first_free);
decode_u64_le(buffer, offset, &last_free);
partition_count = buffer[(*offset)++];
layout_header = (struct layout_3_0) {
.first_free = first_free,
.last_free = last_free,
.partition_count = partition_count,
};
result = VDO_ASSERT(sizeof(struct layout_3_0) == *offset - initial_offset,
"decoded size of a layout header must match structure");
if (result != VDO_SUCCESS)
return result;
layout->start = start;
layout->size = size;
layout->first_free = layout_header.first_free;
layout->last_free = layout_header.last_free;
layout->num_partitions = layout_header.partition_count;
if (layout->num_partitions > VDO_PARTITION_COUNT) {
return vdo_log_error_strerror(VDO_UNKNOWN_PARTITION,
"layout has extra partitions");
}
for (i = 0; i < layout->num_partitions; i++) {
u8 id;
u64 partition_offset, count;
id = buffer[(*offset)++];
decode_u64_le(buffer, offset, &partition_offset);
*offset += sizeof(u64);
decode_u64_le(buffer, offset, &count);
result = allocate_partition(layout, id, partition_offset, count);
if (result != VDO_SUCCESS) {
vdo_uninitialize_layout(layout);
return result;
}
}
/* Validate that the layout has all (and only) the required partitions */
for (i = 0; i < VDO_PARTITION_COUNT; i++) {
result = vdo_get_partition(layout, REQUIRED_PARTITIONS[i], &partition);
if (result != VDO_SUCCESS) {
vdo_uninitialize_layout(layout);
return vdo_log_error_strerror(result,
"layout is missing required partition %u",
REQUIRED_PARTITIONS[i]);
}
start += partition->count;
}
if (start != size) {
vdo_uninitialize_layout(layout);
return vdo_log_error_strerror(UDS_BAD_STATE,
"partitions do not cover the layout");
}
return VDO_SUCCESS;
}
/**
* pack_vdo_config() - Convert a vdo_config to its packed on-disk representation.
* @config: The vdo config to convert.
*
* Return: The platform-independent representation of the config.
*/
static struct packed_vdo_config pack_vdo_config(struct vdo_config config)
{
return (struct packed_vdo_config) {
.logical_blocks = __cpu_to_le64(config.logical_blocks),
.physical_blocks = __cpu_to_le64(config.physical_blocks),
.slab_size = __cpu_to_le64(config.slab_size),
.recovery_journal_size = __cpu_to_le64(config.recovery_journal_size),
.slab_journal_blocks = __cpu_to_le64(config.slab_journal_blocks),
};
}
/**
* pack_vdo_component() - Convert a vdo_component to its packed on-disk representation.
* @component: The VDO component data to convert.
*
* Return: The platform-independent representation of the component.
*/
static struct packed_vdo_component_41_0 pack_vdo_component(const struct vdo_component component)
{
return (struct packed_vdo_component_41_0) {
.state = __cpu_to_le32(component.state),
.complete_recoveries = __cpu_to_le64(component.complete_recoveries),
.read_only_recoveries = __cpu_to_le64(component.read_only_recoveries),
.config = pack_vdo_config(component.config),
.nonce = __cpu_to_le64(component.nonce),
};
}
static void encode_vdo_component(u8 *buffer, size_t *offset,
struct vdo_component component)
{
struct packed_vdo_component_41_0 packed;
encode_version_number(buffer, offset, VDO_COMPONENT_DATA_41_0);
packed = pack_vdo_component(component);
memcpy(buffer + *offset, &packed, sizeof(packed));
*offset += sizeof(packed);
}
/**
* unpack_vdo_config() - Convert a packed_vdo_config to its native in-memory representation.
* @config: The packed vdo config to convert.
*
* Return: The native in-memory representation of the vdo config.
*/
static struct vdo_config unpack_vdo_config(struct packed_vdo_config config)
{
return (struct vdo_config) {
.logical_blocks = __le64_to_cpu(config.logical_blocks),
.physical_blocks = __le64_to_cpu(config.physical_blocks),
.slab_size = __le64_to_cpu(config.slab_size),
.recovery_journal_size = __le64_to_cpu(config.recovery_journal_size),
.slab_journal_blocks = __le64_to_cpu(config.slab_journal_blocks),
};
}
/**
* unpack_vdo_component_41_0() - Convert a packed_vdo_component_41_0 to its native in-memory
* representation.
* @component: The packed vdo component data to convert.
*
* Return: The native in-memory representation of the component.
*/
static struct vdo_component unpack_vdo_component_41_0(struct packed_vdo_component_41_0 component)
{
return (struct vdo_component) {
.state = __le32_to_cpu(component.state),
.complete_recoveries = __le64_to_cpu(component.complete_recoveries),
.read_only_recoveries = __le64_to_cpu(component.read_only_recoveries),
.config = unpack_vdo_config(component.config),
.nonce = __le64_to_cpu(component.nonce),
};
}
/**
* decode_vdo_component() - Decode the component data for the vdo itself out of the super block.
*
* Return: VDO_SUCCESS or an error.
*/
static int decode_vdo_component(u8 *buffer, size_t *offset, struct vdo_component *component)
{
struct version_number version;
struct packed_vdo_component_41_0 packed;
int result;
decode_version_number(buffer, offset, &version);
result = validate_version(version, VDO_COMPONENT_DATA_41_0,
"VDO component data");
if (result != VDO_SUCCESS)
return result;
memcpy(&packed, buffer + *offset, sizeof(packed));
*offset += sizeof(packed);
*component = unpack_vdo_component_41_0(packed);
return VDO_SUCCESS;
}
/**
* vdo_validate_config() - Validate constraints on a VDO config.
* @config: The VDO config.
* @physical_block_count: The minimum block count of the underlying storage.
* @logical_block_count: The expected logical size of the VDO, or 0 if the logical size may be
* unspecified.
*
* Return: A success or error code.
*/
int vdo_validate_config(const struct vdo_config *config,
block_count_t physical_block_count,
block_count_t logical_block_count)
{
struct slab_config slab_config;
int result;
result = VDO_ASSERT(config->slab_size > 0, "slab size unspecified");
if (result != VDO_SUCCESS)
return result;
result = VDO_ASSERT(is_power_of_2(config->slab_size),
"slab size must be a power of two");
if (result != VDO_SUCCESS)
return result;
result = VDO_ASSERT(config->slab_size <= (1 << MAX_VDO_SLAB_BITS),
"slab size must be less than or equal to 2^%d",
MAX_VDO_SLAB_BITS);
if (result != VDO_SUCCESS)
return result;
result = VDO_ASSERT(config->slab_journal_blocks >= MINIMUM_VDO_SLAB_JOURNAL_BLOCKS,
"slab journal size meets minimum size");
if (result != VDO_SUCCESS)
return result;
result = VDO_ASSERT(config->slab_journal_blocks <= config->slab_size,
"slab journal size is within expected bound");
if (result != VDO_SUCCESS)
return result;
result = vdo_configure_slab(config->slab_size, config->slab_journal_blocks,
&slab_config);
if (result != VDO_SUCCESS)
return result;
result = VDO_ASSERT((slab_config.data_blocks >= 1),
"slab must be able to hold at least one block");
if (result != VDO_SUCCESS)
return result;
result = VDO_ASSERT(config->physical_blocks > 0, "physical blocks unspecified");
if (result != VDO_SUCCESS)
return result;
result = VDO_ASSERT(config->physical_blocks <= MAXIMUM_VDO_PHYSICAL_BLOCKS,
"physical block count %llu exceeds maximum %llu",
(unsigned long long) config->physical_blocks,
(unsigned long long) MAXIMUM_VDO_PHYSICAL_BLOCKS);
if (result != VDO_SUCCESS)
return VDO_OUT_OF_RANGE;
if (physical_block_count != config->physical_blocks) {
vdo_log_error("A physical size of %llu blocks was specified, not the %llu blocks configured in the vdo super block",
(unsigned long long) physical_block_count,
(unsigned long long) config->physical_blocks);
return VDO_PARAMETER_MISMATCH;
}
if (logical_block_count > 0) {
result = VDO_ASSERT((config->logical_blocks > 0),
"logical blocks unspecified");
if (result != VDO_SUCCESS)
return result;
if (logical_block_count != config->logical_blocks) {
vdo_log_error("A logical size of %llu blocks was specified, but that differs from the %llu blocks configured in the vdo super block",
(unsigned long long) logical_block_count,
(unsigned long long) config->logical_blocks);
return VDO_PARAMETER_MISMATCH;
}
}
result = VDO_ASSERT(config->logical_blocks <= MAXIMUM_VDO_LOGICAL_BLOCKS,
"logical blocks too large");
if (result != VDO_SUCCESS)
return result;
result = VDO_ASSERT(config->recovery_journal_size > 0,
"recovery journal size unspecified");
if (result != VDO_SUCCESS)
return result;
result = VDO_ASSERT(is_power_of_2(config->recovery_journal_size),
"recovery journal size must be a power of two");
if (result != VDO_SUCCESS)
return result;
return result;
}
/**
* vdo_destroy_component_states() - Clean up any allocations in a vdo_component_states.
* @states: The component states to destroy.
*/
void vdo_destroy_component_states(struct vdo_component_states *states)
{
if (states == NULL)
return;
vdo_uninitialize_layout(&states->layout);
}
/**
* decode_components() - Decode the components now that we know the component data is a version we
* understand.
* @buffer: The buffer being decoded.
* @offset: The offset to start decoding from.
* @geometry: The vdo geometry
* @states: An object to hold the successfully decoded state.
*
* Return: VDO_SUCCESS or an error.
*/
static int __must_check decode_components(u8 *buffer, size_t *offset,
struct volume_geometry *geometry,
struct vdo_component_states *states)
{
int result;
decode_vdo_component(buffer, offset, &states->vdo);
result = decode_layout(buffer, offset, vdo_get_data_region_start(*geometry) + 1,
states->vdo.config.physical_blocks, &states->layout);
if (result != VDO_SUCCESS)
return result;
result = decode_recovery_journal_state_7_0(buffer, offset,
&states->recovery_journal);
if (result != VDO_SUCCESS)
return result;
result = decode_slab_depot_state_2_0(buffer, offset, &states->slab_depot);
if (result != VDO_SUCCESS)
return result;
result = decode_block_map_state_2_0(buffer, offset, &states->block_map);
if (result != VDO_SUCCESS)
return result;
VDO_ASSERT_LOG_ONLY(*offset == VDO_COMPONENT_DATA_OFFSET + VDO_COMPONENT_DATA_SIZE,
"All decoded component data was used");
return VDO_SUCCESS;
}
/**
* vdo_decode_component_states() - Decode the payload of a super block.
* @buffer: The buffer containing the encoded super block contents.
* @geometry: The vdo geometry
* @states: A pointer to hold the decoded states.
*
* Return: VDO_SUCCESS or an error.
*/
int vdo_decode_component_states(u8 *buffer, struct volume_geometry *geometry,
struct vdo_component_states *states)
{
int result;
size_t offset = VDO_COMPONENT_DATA_OFFSET;
/* This is for backwards compatibility. */
decode_u32_le(buffer, &offset, &states->unused);
/* Check the VDO volume version */
decode_version_number(buffer, &offset, &states->volume_version);
result = validate_version(VDO_VOLUME_VERSION_67_0, states->volume_version,
"volume");
if (result != VDO_SUCCESS)
return result;
result = decode_components(buffer, &offset, geometry, states);
if (result != VDO_SUCCESS)
vdo_uninitialize_layout(&states->layout);
return result;
}
/**
* vdo_validate_component_states() - Validate the decoded super block configuration.
* @states: The state decoded from the super block.
* @geometry_nonce: The nonce from the geometry block.
* @physical_size: The minimum block count of the underlying storage.
* @logical_size: The expected logical size of the VDO, or 0 if the logical size may be
* unspecified.
*
* Return: VDO_SUCCESS or an error if the configuration is invalid.
*/
int vdo_validate_component_states(struct vdo_component_states *states,
nonce_t geometry_nonce, block_count_t physical_size,
block_count_t logical_size)
{
if (geometry_nonce != states->vdo.nonce) {
return vdo_log_error_strerror(VDO_BAD_NONCE,
"Geometry nonce %llu does not match superblock nonce %llu",
(unsigned long long) geometry_nonce,
(unsigned long long) states->vdo.nonce);
}
return vdo_validate_config(&states->vdo.config, physical_size, logical_size);
}
/**
* vdo_encode_component_states() - Encode the state of all vdo components in the super block.
*/
static void vdo_encode_component_states(u8 *buffer, size_t *offset,
const struct vdo_component_states *states)
{
/* This is for backwards compatibility. */
encode_u32_le(buffer, offset, states->unused);
encode_version_number(buffer, offset, states->volume_version);
encode_vdo_component(buffer, offset, states->vdo);
encode_layout(buffer, offset, &states->layout);
encode_recovery_journal_state_7_0(buffer, offset, states->recovery_journal);
encode_slab_depot_state_2_0(buffer, offset, states->slab_depot);
encode_block_map_state_2_0(buffer, offset, states->block_map);
VDO_ASSERT_LOG_ONLY(*offset == VDO_COMPONENT_DATA_OFFSET + VDO_COMPONENT_DATA_SIZE,
"All super block component data was encoded");
}
/**
* vdo_encode_super_block() - Encode a super block into its on-disk representation.
*/
void vdo_encode_super_block(u8 *buffer, struct vdo_component_states *states)
{
u32 checksum;
struct header header = SUPER_BLOCK_HEADER_12_0;
size_t offset = 0;
header.size += VDO_COMPONENT_DATA_SIZE;
vdo_encode_header(buffer, &offset, &header);
vdo_encode_component_states(buffer, &offset, states);
checksum = vdo_crc32(buffer, offset);
encode_u32_le(buffer, &offset, checksum);
/*
* Even though the buffer is a full block, to avoid the potential corruption from a torn
* write, the entire encoding must fit in the first sector.
*/
VDO_ASSERT_LOG_ONLY(offset <= VDO_SECTOR_SIZE,
"entire superblock must fit in one sector");
}
/**
* vdo_decode_super_block() - Decode a super block from its on-disk representation.
*/
int vdo_decode_super_block(u8 *buffer)
{
struct header header;
int result;
u32 checksum, saved_checksum;
size_t offset = 0;
/* Decode and validate the header. */
vdo_decode_header(buffer, &offset, &header);
result = vdo_validate_header(&SUPER_BLOCK_HEADER_12_0, &header, false, __func__);
if (result != VDO_SUCCESS)
return result;
if (header.size > VDO_COMPONENT_DATA_SIZE + sizeof(u32)) {
/*
* We can't check release version or checksum until we know the content size, so we
* have to assume a version mismatch on unexpected values.
*/
return vdo_log_error_strerror(VDO_UNSUPPORTED_VERSION,
"super block contents too large: %zu",
header.size);
}
/* Skip past the component data for now, to verify the checksum. */
offset += VDO_COMPONENT_DATA_SIZE;
checksum = vdo_crc32(buffer, offset);
decode_u32_le(buffer, &offset, &saved_checksum);
result = VDO_ASSERT(offset == VDO_SUPER_BLOCK_FIXED_SIZE + VDO_COMPONENT_DATA_SIZE,
"must have decoded entire superblock payload");
if (result != VDO_SUCCESS)
return result;
return ((checksum != saved_checksum) ? VDO_CHECKSUM_MISMATCH : VDO_SUCCESS);
}