| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * PCI VPD support |
| * |
| * Copyright (C) 2010 Broadcom Corporation. |
| */ |
| |
| #include <linux/pci.h> |
| #include <linux/delay.h> |
| #include <linux/export.h> |
| #include <linux/sched/signal.h> |
| #include <linux/unaligned.h> |
| #include "pci.h" |
| |
| #define PCI_VPD_LRDT_TAG_SIZE 3 |
| #define PCI_VPD_SRDT_LEN_MASK 0x07 |
| #define PCI_VPD_SRDT_TAG_SIZE 1 |
| #define PCI_VPD_STIN_END 0x0f |
| #define PCI_VPD_INFO_FLD_HDR_SIZE 3 |
| |
| static u16 pci_vpd_lrdt_size(const u8 *lrdt) |
| { |
| return get_unaligned_le16(lrdt + 1); |
| } |
| |
| static u8 pci_vpd_srdt_tag(const u8 *srdt) |
| { |
| return *srdt >> 3; |
| } |
| |
| static u8 pci_vpd_srdt_size(const u8 *srdt) |
| { |
| return *srdt & PCI_VPD_SRDT_LEN_MASK; |
| } |
| |
| static u8 pci_vpd_info_field_size(const u8 *info_field) |
| { |
| return info_field[2]; |
| } |
| |
| /* VPD access through PCI 2.2+ VPD capability */ |
| |
| static struct pci_dev *pci_get_func0_dev(struct pci_dev *dev) |
| { |
| return pci_get_slot(dev->bus, PCI_DEVFN(PCI_SLOT(dev->devfn), 0)); |
| } |
| |
| #define PCI_VPD_MAX_SIZE (PCI_VPD_ADDR_MASK + 1) |
| #define PCI_VPD_SZ_INVALID UINT_MAX |
| |
| /** |
| * pci_vpd_size - determine actual size of Vital Product Data |
| * @dev: pci device struct |
| */ |
| static size_t pci_vpd_size(struct pci_dev *dev) |
| { |
| size_t off = 0, size; |
| unsigned char tag, header[1+2]; /* 1 byte tag, 2 bytes length */ |
| |
| while (pci_read_vpd_any(dev, off, 1, header) == 1) { |
| size = 0; |
| |
| if (off == 0 && (header[0] == 0x00 || header[0] == 0xff)) |
| goto error; |
| |
| if (header[0] & PCI_VPD_LRDT) { |
| /* Large Resource Data Type Tag */ |
| if (pci_read_vpd_any(dev, off + 1, 2, &header[1]) != 2) { |
| pci_warn(dev, "failed VPD read at offset %zu\n", |
| off + 1); |
| return off ?: PCI_VPD_SZ_INVALID; |
| } |
| size = pci_vpd_lrdt_size(header); |
| if (off + size > PCI_VPD_MAX_SIZE) |
| goto error; |
| |
| off += PCI_VPD_LRDT_TAG_SIZE + size; |
| } else { |
| /* Short Resource Data Type Tag */ |
| tag = pci_vpd_srdt_tag(header); |
| size = pci_vpd_srdt_size(header); |
| if (off + size > PCI_VPD_MAX_SIZE) |
| goto error; |
| |
| off += PCI_VPD_SRDT_TAG_SIZE + size; |
| if (tag == PCI_VPD_STIN_END) /* End tag descriptor */ |
| return off; |
| } |
| } |
| return off; |
| |
| error: |
| pci_info(dev, "invalid VPD tag %#04x (size %zu) at offset %zu%s\n", |
| header[0], size, off, off == 0 ? |
| "; assume missing optional EEPROM" : ""); |
| return off ?: PCI_VPD_SZ_INVALID; |
| } |
| |
| static bool pci_vpd_available(struct pci_dev *dev, bool check_size) |
| { |
| struct pci_vpd *vpd = &dev->vpd; |
| |
| if (!vpd->cap) |
| return false; |
| |
| if (vpd->len == 0 && check_size) { |
| vpd->len = pci_vpd_size(dev); |
| if (vpd->len == PCI_VPD_SZ_INVALID) { |
| vpd->cap = 0; |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| /* |
| * Wait for last operation to complete. |
| * This code has to spin since there is no other notification from the PCI |
| * hardware. Since the VPD is often implemented by serial attachment to an |
| * EEPROM, it may take many milliseconds to complete. |
| * @set: if true wait for flag to be set, else wait for it to be cleared |
| * |
| * Returns 0 on success, negative values indicate error. |
| */ |
| static int pci_vpd_wait(struct pci_dev *dev, bool set) |
| { |
| struct pci_vpd *vpd = &dev->vpd; |
| unsigned long timeout = jiffies + msecs_to_jiffies(125); |
| unsigned long max_sleep = 16; |
| u16 status; |
| int ret; |
| |
| do { |
| ret = pci_user_read_config_word(dev, vpd->cap + PCI_VPD_ADDR, |
| &status); |
| if (ret < 0) |
| return ret; |
| |
| if (!!(status & PCI_VPD_ADDR_F) == set) |
| return 0; |
| |
| if (time_after(jiffies, timeout)) |
| break; |
| |
| usleep_range(10, max_sleep); |
| if (max_sleep < 1024) |
| max_sleep *= 2; |
| } while (true); |
| |
| pci_warn(dev, "VPD access failed. This is likely a firmware bug on this device. Contact the card vendor for a firmware update\n"); |
| return -ETIMEDOUT; |
| } |
| |
| static ssize_t pci_vpd_read(struct pci_dev *dev, loff_t pos, size_t count, |
| void *arg, bool check_size) |
| { |
| struct pci_vpd *vpd = &dev->vpd; |
| unsigned int max_len; |
| int ret = 0; |
| loff_t end = pos + count; |
| u8 *buf = arg; |
| |
| if (!pci_vpd_available(dev, check_size)) |
| return -ENODEV; |
| |
| if (pos < 0) |
| return -EINVAL; |
| |
| max_len = check_size ? vpd->len : PCI_VPD_MAX_SIZE; |
| |
| if (pos >= max_len) |
| return 0; |
| |
| if (end > max_len) { |
| end = max_len; |
| count = end - pos; |
| } |
| |
| if (mutex_lock_killable(&vpd->lock)) |
| return -EINTR; |
| |
| while (pos < end) { |
| u32 val; |
| unsigned int i, skip; |
| |
| if (fatal_signal_pending(current)) { |
| ret = -EINTR; |
| break; |
| } |
| |
| ret = pci_user_write_config_word(dev, vpd->cap + PCI_VPD_ADDR, |
| pos & ~3); |
| if (ret < 0) |
| break; |
| ret = pci_vpd_wait(dev, true); |
| if (ret < 0) |
| break; |
| |
| ret = pci_user_read_config_dword(dev, vpd->cap + PCI_VPD_DATA, &val); |
| if (ret < 0) |
| break; |
| |
| skip = pos & 3; |
| for (i = 0; i < sizeof(u32); i++) { |
| if (i >= skip) { |
| *buf++ = val; |
| if (++pos == end) |
| break; |
| } |
| val >>= 8; |
| } |
| } |
| |
| mutex_unlock(&vpd->lock); |
| return ret ? ret : count; |
| } |
| |
| static ssize_t pci_vpd_write(struct pci_dev *dev, loff_t pos, size_t count, |
| const void *arg, bool check_size) |
| { |
| struct pci_vpd *vpd = &dev->vpd; |
| unsigned int max_len; |
| const u8 *buf = arg; |
| loff_t end = pos + count; |
| int ret = 0; |
| |
| if (!pci_vpd_available(dev, check_size)) |
| return -ENODEV; |
| |
| if (pos < 0 || (pos & 3) || (count & 3)) |
| return -EINVAL; |
| |
| max_len = check_size ? vpd->len : PCI_VPD_MAX_SIZE; |
| |
| if (end > max_len) |
| return -EINVAL; |
| |
| if (mutex_lock_killable(&vpd->lock)) |
| return -EINTR; |
| |
| while (pos < end) { |
| ret = pci_user_write_config_dword(dev, vpd->cap + PCI_VPD_DATA, |
| get_unaligned_le32(buf)); |
| if (ret < 0) |
| break; |
| ret = pci_user_write_config_word(dev, vpd->cap + PCI_VPD_ADDR, |
| pos | PCI_VPD_ADDR_F); |
| if (ret < 0) |
| break; |
| |
| ret = pci_vpd_wait(dev, false); |
| if (ret < 0) |
| break; |
| |
| buf += sizeof(u32); |
| pos += sizeof(u32); |
| } |
| |
| mutex_unlock(&vpd->lock); |
| return ret ? ret : count; |
| } |
| |
| void pci_vpd_init(struct pci_dev *dev) |
| { |
| if (dev->vpd.len == PCI_VPD_SZ_INVALID) |
| return; |
| |
| dev->vpd.cap = pci_find_capability(dev, PCI_CAP_ID_VPD); |
| mutex_init(&dev->vpd.lock); |
| } |
| |
| static ssize_t vpd_read(struct file *filp, struct kobject *kobj, |
| struct bin_attribute *bin_attr, char *buf, loff_t off, |
| size_t count) |
| { |
| struct pci_dev *dev = to_pci_dev(kobj_to_dev(kobj)); |
| struct pci_dev *vpd_dev = dev; |
| ssize_t ret; |
| |
| if (dev->dev_flags & PCI_DEV_FLAGS_VPD_REF_F0) { |
| vpd_dev = pci_get_func0_dev(dev); |
| if (!vpd_dev) |
| return -ENODEV; |
| } |
| |
| pci_config_pm_runtime_get(vpd_dev); |
| ret = pci_read_vpd(vpd_dev, off, count, buf); |
| pci_config_pm_runtime_put(vpd_dev); |
| |
| if (dev->dev_flags & PCI_DEV_FLAGS_VPD_REF_F0) |
| pci_dev_put(vpd_dev); |
| |
| return ret; |
| } |
| |
| static ssize_t vpd_write(struct file *filp, struct kobject *kobj, |
| struct bin_attribute *bin_attr, char *buf, loff_t off, |
| size_t count) |
| { |
| struct pci_dev *dev = to_pci_dev(kobj_to_dev(kobj)); |
| struct pci_dev *vpd_dev = dev; |
| ssize_t ret; |
| |
| if (dev->dev_flags & PCI_DEV_FLAGS_VPD_REF_F0) { |
| vpd_dev = pci_get_func0_dev(dev); |
| if (!vpd_dev) |
| return -ENODEV; |
| } |
| |
| pci_config_pm_runtime_get(vpd_dev); |
| ret = pci_write_vpd(vpd_dev, off, count, buf); |
| pci_config_pm_runtime_put(vpd_dev); |
| |
| if (dev->dev_flags & PCI_DEV_FLAGS_VPD_REF_F0) |
| pci_dev_put(vpd_dev); |
| |
| return ret; |
| } |
| static BIN_ATTR(vpd, 0600, vpd_read, vpd_write, 0); |
| |
| static struct bin_attribute *vpd_attrs[] = { |
| &bin_attr_vpd, |
| NULL, |
| }; |
| |
| static umode_t vpd_attr_is_visible(struct kobject *kobj, |
| struct bin_attribute *a, int n) |
| { |
| struct pci_dev *pdev = to_pci_dev(kobj_to_dev(kobj)); |
| |
| if (!pdev->vpd.cap) |
| return 0; |
| |
| return a->attr.mode; |
| } |
| |
| const struct attribute_group pci_dev_vpd_attr_group = { |
| .bin_attrs = vpd_attrs, |
| .is_bin_visible = vpd_attr_is_visible, |
| }; |
| |
| void *pci_vpd_alloc(struct pci_dev *dev, unsigned int *size) |
| { |
| unsigned int len; |
| void *buf; |
| int cnt; |
| |
| if (!pci_vpd_available(dev, true)) |
| return ERR_PTR(-ENODEV); |
| |
| len = dev->vpd.len; |
| buf = kmalloc(len, GFP_KERNEL); |
| if (!buf) |
| return ERR_PTR(-ENOMEM); |
| |
| cnt = pci_read_vpd(dev, 0, len, buf); |
| if (cnt != len) { |
| kfree(buf); |
| return ERR_PTR(-EIO); |
| } |
| |
| if (size) |
| *size = len; |
| |
| return buf; |
| } |
| EXPORT_SYMBOL_GPL(pci_vpd_alloc); |
| |
| static int pci_vpd_find_tag(const u8 *buf, unsigned int len, u8 rdt, unsigned int *size) |
| { |
| int i = 0; |
| |
| /* look for LRDT tags only, end tag is the only SRDT tag */ |
| while (i + PCI_VPD_LRDT_TAG_SIZE <= len && buf[i] & PCI_VPD_LRDT) { |
| unsigned int lrdt_len = pci_vpd_lrdt_size(buf + i); |
| u8 tag = buf[i]; |
| |
| i += PCI_VPD_LRDT_TAG_SIZE; |
| if (tag == rdt) { |
| if (i + lrdt_len > len) |
| lrdt_len = len - i; |
| if (size) |
| *size = lrdt_len; |
| return i; |
| } |
| |
| i += lrdt_len; |
| } |
| |
| return -ENOENT; |
| } |
| |
| int pci_vpd_find_id_string(const u8 *buf, unsigned int len, unsigned int *size) |
| { |
| return pci_vpd_find_tag(buf, len, PCI_VPD_LRDT_ID_STRING, size); |
| } |
| EXPORT_SYMBOL_GPL(pci_vpd_find_id_string); |
| |
| static int pci_vpd_find_info_keyword(const u8 *buf, unsigned int off, |
| unsigned int len, const char *kw) |
| { |
| int i; |
| |
| for (i = off; i + PCI_VPD_INFO_FLD_HDR_SIZE <= off + len;) { |
| if (buf[i + 0] == kw[0] && |
| buf[i + 1] == kw[1]) |
| return i; |
| |
| i += PCI_VPD_INFO_FLD_HDR_SIZE + |
| pci_vpd_info_field_size(&buf[i]); |
| } |
| |
| return -ENOENT; |
| } |
| |
| static ssize_t __pci_read_vpd(struct pci_dev *dev, loff_t pos, size_t count, void *buf, |
| bool check_size) |
| { |
| ssize_t ret; |
| |
| if (dev->dev_flags & PCI_DEV_FLAGS_VPD_REF_F0) { |
| dev = pci_get_func0_dev(dev); |
| if (!dev) |
| return -ENODEV; |
| |
| ret = pci_vpd_read(dev, pos, count, buf, check_size); |
| pci_dev_put(dev); |
| return ret; |
| } |
| |
| return pci_vpd_read(dev, pos, count, buf, check_size); |
| } |
| |
| /** |
| * pci_read_vpd - Read one entry from Vital Product Data |
| * @dev: PCI device struct |
| * @pos: offset in VPD space |
| * @count: number of bytes to read |
| * @buf: pointer to where to store result |
| */ |
| ssize_t pci_read_vpd(struct pci_dev *dev, loff_t pos, size_t count, void *buf) |
| { |
| return __pci_read_vpd(dev, pos, count, buf, true); |
| } |
| EXPORT_SYMBOL(pci_read_vpd); |
| |
| /* Same, but allow to access any address */ |
| ssize_t pci_read_vpd_any(struct pci_dev *dev, loff_t pos, size_t count, void *buf) |
| { |
| return __pci_read_vpd(dev, pos, count, buf, false); |
| } |
| EXPORT_SYMBOL(pci_read_vpd_any); |
| |
| static ssize_t __pci_write_vpd(struct pci_dev *dev, loff_t pos, size_t count, |
| const void *buf, bool check_size) |
| { |
| ssize_t ret; |
| |
| if (dev->dev_flags & PCI_DEV_FLAGS_VPD_REF_F0) { |
| dev = pci_get_func0_dev(dev); |
| if (!dev) |
| return -ENODEV; |
| |
| ret = pci_vpd_write(dev, pos, count, buf, check_size); |
| pci_dev_put(dev); |
| return ret; |
| } |
| |
| return pci_vpd_write(dev, pos, count, buf, check_size); |
| } |
| |
| /** |
| * pci_write_vpd - Write entry to Vital Product Data |
| * @dev: PCI device struct |
| * @pos: offset in VPD space |
| * @count: number of bytes to write |
| * @buf: buffer containing write data |
| */ |
| ssize_t pci_write_vpd(struct pci_dev *dev, loff_t pos, size_t count, const void *buf) |
| { |
| return __pci_write_vpd(dev, pos, count, buf, true); |
| } |
| EXPORT_SYMBOL(pci_write_vpd); |
| |
| /* Same, but allow to access any address */ |
| ssize_t pci_write_vpd_any(struct pci_dev *dev, loff_t pos, size_t count, const void *buf) |
| { |
| return __pci_write_vpd(dev, pos, count, buf, false); |
| } |
| EXPORT_SYMBOL(pci_write_vpd_any); |
| |
| int pci_vpd_find_ro_info_keyword(const void *buf, unsigned int len, |
| const char *kw, unsigned int *size) |
| { |
| int ro_start, infokw_start; |
| unsigned int ro_len, infokw_size; |
| |
| ro_start = pci_vpd_find_tag(buf, len, PCI_VPD_LRDT_RO_DATA, &ro_len); |
| if (ro_start < 0) |
| return ro_start; |
| |
| infokw_start = pci_vpd_find_info_keyword(buf, ro_start, ro_len, kw); |
| if (infokw_start < 0) |
| return infokw_start; |
| |
| infokw_size = pci_vpd_info_field_size(buf + infokw_start); |
| infokw_start += PCI_VPD_INFO_FLD_HDR_SIZE; |
| |
| if (infokw_start + infokw_size > len) |
| return -EINVAL; |
| |
| if (size) |
| *size = infokw_size; |
| |
| return infokw_start; |
| } |
| EXPORT_SYMBOL_GPL(pci_vpd_find_ro_info_keyword); |
| |
| int pci_vpd_check_csum(const void *buf, unsigned int len) |
| { |
| const u8 *vpd = buf; |
| unsigned int size; |
| u8 csum = 0; |
| int rv_start; |
| |
| rv_start = pci_vpd_find_ro_info_keyword(buf, len, PCI_VPD_RO_KEYWORD_CHKSUM, &size); |
| if (rv_start == -ENOENT) /* no checksum in VPD */ |
| return 1; |
| else if (rv_start < 0) |
| return rv_start; |
| |
| if (!size) |
| return -EINVAL; |
| |
| while (rv_start >= 0) |
| csum += vpd[rv_start--]; |
| |
| return csum ? -EILSEQ : 0; |
| } |
| EXPORT_SYMBOL_GPL(pci_vpd_check_csum); |
| |
| #ifdef CONFIG_PCI_QUIRKS |
| /* |
| * Quirk non-zero PCI functions to route VPD access through function 0 for |
| * devices that share VPD resources between functions. The functions are |
| * expected to be identical devices. |
| */ |
| static void quirk_f0_vpd_link(struct pci_dev *dev) |
| { |
| struct pci_dev *f0; |
| |
| if (!PCI_FUNC(dev->devfn)) |
| return; |
| |
| f0 = pci_get_func0_dev(dev); |
| if (!f0) |
| return; |
| |
| if (f0->vpd.cap && dev->class == f0->class && |
| dev->vendor == f0->vendor && dev->device == f0->device) |
| dev->dev_flags |= PCI_DEV_FLAGS_VPD_REF_F0; |
| |
| pci_dev_put(f0); |
| } |
| DECLARE_PCI_FIXUP_CLASS_EARLY(PCI_VENDOR_ID_INTEL, PCI_ANY_ID, |
| PCI_CLASS_NETWORK_ETHERNET, 8, quirk_f0_vpd_link); |
| |
| /* |
| * If a device follows the VPD format spec, the PCI core will not read or |
| * write past the VPD End Tag. But some vendors do not follow the VPD |
| * format spec, so we can't tell how much data is safe to access. Devices |
| * may behave unpredictably if we access too much. Blacklist these devices |
| * so we don't touch VPD at all. |
| */ |
| static void quirk_blacklist_vpd(struct pci_dev *dev) |
| { |
| dev->vpd.len = PCI_VPD_SZ_INVALID; |
| pci_warn(dev, FW_BUG "disabling VPD access (can't determine size of non-standard VPD format)\n"); |
| } |
| DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_LSI_LOGIC, 0x0060, quirk_blacklist_vpd); |
| DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_LSI_LOGIC, 0x007c, quirk_blacklist_vpd); |
| DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_LSI_LOGIC, 0x0413, quirk_blacklist_vpd); |
| DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_LSI_LOGIC, 0x0078, quirk_blacklist_vpd); |
| DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_LSI_LOGIC, 0x0079, quirk_blacklist_vpd); |
| DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_LSI_LOGIC, 0x0073, quirk_blacklist_vpd); |
| DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_LSI_LOGIC, 0x0071, quirk_blacklist_vpd); |
| DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_LSI_LOGIC, 0x005b, quirk_blacklist_vpd); |
| DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_LSI_LOGIC, 0x002f, quirk_blacklist_vpd); |
| DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_LSI_LOGIC, 0x005d, quirk_blacklist_vpd); |
| DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_LSI_LOGIC, 0x005f, quirk_blacklist_vpd); |
| DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_ATTANSIC, PCI_ANY_ID, quirk_blacklist_vpd); |
| /* |
| * The Amazon Annapurna Labs 0x0031 device id is reused for other non Root Port |
| * device types, so the quirk is registered for the PCI_CLASS_BRIDGE_PCI class. |
| */ |
| DECLARE_PCI_FIXUP_CLASS_HEADER(PCI_VENDOR_ID_AMAZON_ANNAPURNA_LABS, 0x0031, |
| PCI_CLASS_BRIDGE_PCI, 8, quirk_blacklist_vpd); |
| |
| static void quirk_chelsio_extend_vpd(struct pci_dev *dev) |
| { |
| int chip = (dev->device & 0xf000) >> 12; |
| int func = (dev->device & 0x0f00) >> 8; |
| int prod = (dev->device & 0x00ff) >> 0; |
| |
| /* |
| * If this is a T3-based adapter, there's a 1KB VPD area at offset |
| * 0xc00 which contains the preferred VPD values. If this is a T4 or |
| * later based adapter, the special VPD is at offset 0x400 for the |
| * Physical Functions (the SR-IOV Virtual Functions have no VPD |
| * Capabilities). The PCI VPD Access core routines will normally |
| * compute the size of the VPD by parsing the VPD Data Structure at |
| * offset 0x000. This will result in silent failures when attempting |
| * to accesses these other VPD areas which are beyond those computed |
| * limits. |
| */ |
| if (chip == 0x0 && prod >= 0x20) |
| dev->vpd.len = 8192; |
| else if (chip >= 0x4 && func < 0x8) |
| dev->vpd.len = 2048; |
| } |
| |
| DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_CHELSIO, PCI_ANY_ID, |
| quirk_chelsio_extend_vpd); |
| |
| #endif |