| // SPDX-License-Identifier: GPL-2.0 | 
 | /* | 
 |  * | 
 |  * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved. | 
 |  * | 
 |  * TODO: try to use extents tree (instead of array) | 
 |  */ | 
 |  | 
 | #include <linux/blkdev.h> | 
 | #include <linux/fs.h> | 
 | #include <linux/log2.h> | 
 |  | 
 | #include "debug.h" | 
 | #include "ntfs.h" | 
 | #include "ntfs_fs.h" | 
 |  | 
 | /* runs_tree is a continues memory. Try to avoid big size. */ | 
 | #define NTFS3_RUN_MAX_BYTES 0x10000 | 
 |  | 
 | struct ntfs_run { | 
 | 	CLST vcn; /* Virtual cluster number. */ | 
 | 	CLST len; /* Length in clusters. */ | 
 | 	CLST lcn; /* Logical cluster number. */ | 
 | }; | 
 |  | 
 | /* | 
 |  * run_lookup - Lookup the index of a MCB entry that is first <= vcn. | 
 |  * | 
 |  * Case of success it will return non-zero value and set | 
 |  * @index parameter to index of entry been found. | 
 |  * Case of entry missing from list 'index' will be set to | 
 |  * point to insertion position for the entry question. | 
 |  */ | 
 | static bool run_lookup(const struct runs_tree *run, CLST vcn, size_t *index) | 
 | { | 
 | 	size_t min_idx, max_idx, mid_idx; | 
 | 	struct ntfs_run *r; | 
 |  | 
 | 	if (!run->count) { | 
 | 		*index = 0; | 
 | 		return false; | 
 | 	} | 
 |  | 
 | 	min_idx = 0; | 
 | 	max_idx = run->count - 1; | 
 |  | 
 | 	/* Check boundary cases specially, 'cause they cover the often requests. */ | 
 | 	r = run->runs; | 
 | 	if (vcn < r->vcn) { | 
 | 		*index = 0; | 
 | 		return false; | 
 | 	} | 
 |  | 
 | 	if (vcn < r->vcn + r->len) { | 
 | 		*index = 0; | 
 | 		return true; | 
 | 	} | 
 |  | 
 | 	r += max_idx; | 
 | 	if (vcn >= r->vcn + r->len) { | 
 | 		*index = run->count; | 
 | 		return false; | 
 | 	} | 
 |  | 
 | 	if (vcn >= r->vcn) { | 
 | 		*index = max_idx; | 
 | 		return true; | 
 | 	} | 
 |  | 
 | 	do { | 
 | 		mid_idx = min_idx + ((max_idx - min_idx) >> 1); | 
 | 		r = run->runs + mid_idx; | 
 |  | 
 | 		if (vcn < r->vcn) { | 
 | 			max_idx = mid_idx - 1; | 
 | 			if (!mid_idx) | 
 | 				break; | 
 | 		} else if (vcn >= r->vcn + r->len) { | 
 | 			min_idx = mid_idx + 1; | 
 | 		} else { | 
 | 			*index = mid_idx; | 
 | 			return true; | 
 | 		} | 
 | 	} while (min_idx <= max_idx); | 
 |  | 
 | 	*index = max_idx + 1; | 
 | 	return false; | 
 | } | 
 |  | 
 | /* | 
 |  * run_consolidate - Consolidate runs starting from a given one. | 
 |  */ | 
 | static void run_consolidate(struct runs_tree *run, size_t index) | 
 | { | 
 | 	size_t i; | 
 | 	struct ntfs_run *r = run->runs + index; | 
 |  | 
 | 	while (index + 1 < run->count) { | 
 | 		/* | 
 | 		 * I should merge current run with next | 
 | 		 * if start of the next run lies inside one being tested. | 
 | 		 */ | 
 | 		struct ntfs_run *n = r + 1; | 
 | 		CLST end = r->vcn + r->len; | 
 | 		CLST dl; | 
 |  | 
 | 		/* Stop if runs are not aligned one to another. */ | 
 | 		if (n->vcn > end) | 
 | 			break; | 
 |  | 
 | 		dl = end - n->vcn; | 
 |  | 
 | 		/* | 
 | 		 * If range at index overlaps with next one | 
 | 		 * then I will either adjust it's start position | 
 | 		 * or (if completely matches) dust remove one from the list. | 
 | 		 */ | 
 | 		if (dl > 0) { | 
 | 			if (n->len <= dl) | 
 | 				goto remove_next_range; | 
 |  | 
 | 			n->len -= dl; | 
 | 			n->vcn += dl; | 
 | 			if (n->lcn != SPARSE_LCN) | 
 | 				n->lcn += dl; | 
 | 			dl = 0; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Stop if sparse mode does not match | 
 | 		 * both current and next runs. | 
 | 		 */ | 
 | 		if ((n->lcn == SPARSE_LCN) != (r->lcn == SPARSE_LCN)) { | 
 | 			index += 1; | 
 | 			r = n; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Check if volume block | 
 | 		 * of a next run lcn does not match | 
 | 		 * last volume block of the current run. | 
 | 		 */ | 
 | 		if (n->lcn != SPARSE_LCN && n->lcn != r->lcn + r->len) | 
 | 			break; | 
 |  | 
 | 		/* | 
 | 		 * Next and current are siblings. | 
 | 		 * Eat/join. | 
 | 		 */ | 
 | 		r->len += n->len - dl; | 
 |  | 
 | remove_next_range: | 
 | 		i = run->count - (index + 1); | 
 | 		if (i > 1) | 
 | 			memmove(n, n + 1, sizeof(*n) * (i - 1)); | 
 |  | 
 | 		run->count -= 1; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * run_is_mapped_full | 
 |  * | 
 |  * Return: True if range [svcn - evcn] is mapped. | 
 |  */ | 
 | bool run_is_mapped_full(const struct runs_tree *run, CLST svcn, CLST evcn) | 
 | { | 
 | 	size_t i; | 
 | 	const struct ntfs_run *r, *end; | 
 | 	CLST next_vcn; | 
 |  | 
 | 	if (!run_lookup(run, svcn, &i)) | 
 | 		return false; | 
 |  | 
 | 	end = run->runs + run->count; | 
 | 	r = run->runs + i; | 
 |  | 
 | 	for (;;) { | 
 | 		next_vcn = r->vcn + r->len; | 
 | 		if (next_vcn > evcn) | 
 | 			return true; | 
 |  | 
 | 		if (++r >= end) | 
 | 			return false; | 
 |  | 
 | 		if (r->vcn != next_vcn) | 
 | 			return false; | 
 | 	} | 
 | } | 
 |  | 
 | bool run_lookup_entry(const struct runs_tree *run, CLST vcn, CLST *lcn, | 
 | 		      CLST *len, size_t *index) | 
 | { | 
 | 	size_t idx; | 
 | 	CLST gap; | 
 | 	struct ntfs_run *r; | 
 |  | 
 | 	/* Fail immediately if nrun was not touched yet. */ | 
 | 	if (!run->runs) | 
 | 		return false; | 
 |  | 
 | 	if (!run_lookup(run, vcn, &idx)) | 
 | 		return false; | 
 |  | 
 | 	r = run->runs + idx; | 
 |  | 
 | 	if (vcn >= r->vcn + r->len) | 
 | 		return false; | 
 |  | 
 | 	gap = vcn - r->vcn; | 
 | 	if (r->len <= gap) | 
 | 		return false; | 
 |  | 
 | 	*lcn = r->lcn == SPARSE_LCN ? SPARSE_LCN : (r->lcn + gap); | 
 |  | 
 | 	if (len) | 
 | 		*len = r->len - gap; | 
 | 	if (index) | 
 | 		*index = idx; | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | /* | 
 |  * run_truncate_head - Decommit the range before vcn. | 
 |  */ | 
 | void run_truncate_head(struct runs_tree *run, CLST vcn) | 
 | { | 
 | 	size_t index; | 
 | 	struct ntfs_run *r; | 
 |  | 
 | 	if (run_lookup(run, vcn, &index)) { | 
 | 		r = run->runs + index; | 
 |  | 
 | 		if (vcn > r->vcn) { | 
 | 			CLST dlen = vcn - r->vcn; | 
 |  | 
 | 			r->vcn = vcn; | 
 | 			r->len -= dlen; | 
 | 			if (r->lcn != SPARSE_LCN) | 
 | 				r->lcn += dlen; | 
 | 		} | 
 |  | 
 | 		if (!index) | 
 | 			return; | 
 | 	} | 
 | 	r = run->runs; | 
 | 	memmove(r, r + index, sizeof(*r) * (run->count - index)); | 
 |  | 
 | 	run->count -= index; | 
 |  | 
 | 	if (!run->count) { | 
 | 		kvfree(run->runs); | 
 | 		run->runs = NULL; | 
 | 		run->allocated = 0; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * run_truncate - Decommit the range after vcn. | 
 |  */ | 
 | void run_truncate(struct runs_tree *run, CLST vcn) | 
 | { | 
 | 	size_t index; | 
 |  | 
 | 	/* | 
 | 	 * If I hit the range then | 
 | 	 * I have to truncate one. | 
 | 	 * If range to be truncated is becoming empty | 
 | 	 * then it will entirely be removed. | 
 | 	 */ | 
 | 	if (run_lookup(run, vcn, &index)) { | 
 | 		struct ntfs_run *r = run->runs + index; | 
 |  | 
 | 		r->len = vcn - r->vcn; | 
 |  | 
 | 		if (r->len > 0) | 
 | 			index += 1; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * At this point 'index' is set to position that | 
 | 	 * should be thrown away (including index itself) | 
 | 	 * Simple one - just set the limit. | 
 | 	 */ | 
 | 	run->count = index; | 
 |  | 
 | 	/* Do not reallocate array 'runs'. Only free if possible. */ | 
 | 	if (!index) { | 
 | 		kvfree(run->runs); | 
 | 		run->runs = NULL; | 
 | 		run->allocated = 0; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * run_truncate_around - Trim head and tail if necessary. | 
 |  */ | 
 | void run_truncate_around(struct runs_tree *run, CLST vcn) | 
 | { | 
 | 	run_truncate_head(run, vcn); | 
 |  | 
 | 	if (run->count >= NTFS3_RUN_MAX_BYTES / sizeof(struct ntfs_run) / 2) | 
 | 		run_truncate(run, (run->runs + (run->count >> 1))->vcn); | 
 | } | 
 |  | 
 | /* | 
 |  * run_add_entry | 
 |  * | 
 |  * Sets location to known state. | 
 |  * Run to be added may overlap with existing location. | 
 |  * | 
 |  * Return: false if of memory. | 
 |  */ | 
 | bool run_add_entry(struct runs_tree *run, CLST vcn, CLST lcn, CLST len, | 
 | 		   bool is_mft) | 
 | { | 
 | 	size_t used, index; | 
 | 	struct ntfs_run *r; | 
 | 	bool inrange; | 
 | 	CLST tail_vcn = 0, tail_len = 0, tail_lcn = 0; | 
 | 	bool should_add_tail = false; | 
 |  | 
 | 	/* | 
 | 	 * Lookup the insertion point. | 
 | 	 * | 
 | 	 * Execute bsearch for the entry containing | 
 | 	 * start position question. | 
 | 	 */ | 
 | 	inrange = run_lookup(run, vcn, &index); | 
 |  | 
 | 	/* | 
 | 	 * Shortcut here would be case of | 
 | 	 * range not been found but one been added | 
 | 	 * continues previous run. | 
 | 	 * This case I can directly make use of | 
 | 	 * existing range as my start point. | 
 | 	 */ | 
 | 	if (!inrange && index > 0) { | 
 | 		struct ntfs_run *t = run->runs + index - 1; | 
 |  | 
 | 		if (t->vcn + t->len == vcn && | 
 | 		    (t->lcn == SPARSE_LCN) == (lcn == SPARSE_LCN) && | 
 | 		    (lcn == SPARSE_LCN || lcn == t->lcn + t->len)) { | 
 | 			inrange = true; | 
 | 			index -= 1; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * At this point 'index' either points to the range | 
 | 	 * containing start position or to the insertion position | 
 | 	 * for a new range. | 
 | 	 * So first let's check if range I'm probing is here already. | 
 | 	 */ | 
 | 	if (!inrange) { | 
 | requires_new_range: | 
 | 		/* | 
 | 		 * Range was not found. | 
 | 		 * Insert at position 'index' | 
 | 		 */ | 
 | 		used = run->count * sizeof(struct ntfs_run); | 
 |  | 
 | 		/* | 
 | 		 * Check allocated space. | 
 | 		 * If one is not enough to get one more entry | 
 | 		 * then it will be reallocated. | 
 | 		 */ | 
 | 		if (run->allocated < used + sizeof(struct ntfs_run)) { | 
 | 			size_t bytes; | 
 | 			struct ntfs_run *new_ptr; | 
 |  | 
 | 			/* Use power of 2 for 'bytes'. */ | 
 | 			if (!used) { | 
 | 				bytes = 64; | 
 | 			} else if (used <= 16 * PAGE_SIZE) { | 
 | 				if (is_power_of_2(run->allocated)) | 
 | 					bytes = run->allocated << 1; | 
 | 				else | 
 | 					bytes = (size_t)1 | 
 | 						<< (2 + blksize_bits(used)); | 
 | 			} else { | 
 | 				bytes = run->allocated + (16 * PAGE_SIZE); | 
 | 			} | 
 |  | 
 | 			WARN_ON(!is_mft && bytes > NTFS3_RUN_MAX_BYTES); | 
 |  | 
 | 			new_ptr = kvmalloc(bytes, GFP_KERNEL); | 
 |  | 
 | 			if (!new_ptr) | 
 | 				return false; | 
 |  | 
 | 			r = new_ptr + index; | 
 | 			memcpy(new_ptr, run->runs, | 
 | 			       index * sizeof(struct ntfs_run)); | 
 | 			memcpy(r + 1, run->runs + index, | 
 | 			       sizeof(struct ntfs_run) * (run->count - index)); | 
 |  | 
 | 			kvfree(run->runs); | 
 | 			run->runs = new_ptr; | 
 | 			run->allocated = bytes; | 
 |  | 
 | 		} else { | 
 | 			size_t i = run->count - index; | 
 |  | 
 | 			r = run->runs + index; | 
 |  | 
 | 			/* memmove appears to be a bottle neck here... */ | 
 | 			if (i > 0) | 
 | 				memmove(r + 1, r, sizeof(struct ntfs_run) * i); | 
 | 		} | 
 |  | 
 | 		r->vcn = vcn; | 
 | 		r->lcn = lcn; | 
 | 		r->len = len; | 
 | 		run->count += 1; | 
 | 	} else { | 
 | 		r = run->runs + index; | 
 |  | 
 | 		/* | 
 | 		 * If one of ranges was not allocated then we | 
 | 		 * have to split location we just matched and | 
 | 		 * insert current one. | 
 | 		 * A common case this requires tail to be reinserted | 
 | 		 * a recursive call. | 
 | 		 */ | 
 | 		if (((lcn == SPARSE_LCN) != (r->lcn == SPARSE_LCN)) || | 
 | 		    (lcn != SPARSE_LCN && lcn != r->lcn + (vcn - r->vcn))) { | 
 | 			CLST to_eat = vcn - r->vcn; | 
 | 			CLST Tovcn = to_eat + len; | 
 |  | 
 | 			should_add_tail = Tovcn < r->len; | 
 |  | 
 | 			if (should_add_tail) { | 
 | 				tail_lcn = r->lcn == SPARSE_LCN ? | 
 | 						   SPARSE_LCN : | 
 | 						   (r->lcn + Tovcn); | 
 | 				tail_vcn = r->vcn + Tovcn; | 
 | 				tail_len = r->len - Tovcn; | 
 | 			} | 
 |  | 
 | 			if (to_eat > 0) { | 
 | 				r->len = to_eat; | 
 | 				inrange = false; | 
 | 				index += 1; | 
 | 				goto requires_new_range; | 
 | 			} | 
 |  | 
 | 			/* lcn should match one were going to add. */ | 
 | 			r->lcn = lcn; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * If existing range fits then were done. | 
 | 		 * Otherwise extend found one and fall back to range jocode. | 
 | 		 */ | 
 | 		if (r->vcn + r->len < vcn + len) | 
 | 			r->len += len - ((r->vcn + r->len) - vcn); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * And normalize it starting from insertion point. | 
 | 	 * It's possible that no insertion needed case if | 
 | 	 * start point lies within the range of an entry | 
 | 	 * that 'index' points to. | 
 | 	 */ | 
 | 	if (inrange && index > 0) | 
 | 		index -= 1; | 
 | 	run_consolidate(run, index); | 
 | 	run_consolidate(run, index + 1); | 
 |  | 
 | 	/* | 
 | 	 * A special case. | 
 | 	 * We have to add extra range a tail. | 
 | 	 */ | 
 | 	if (should_add_tail && | 
 | 	    !run_add_entry(run, tail_vcn, tail_lcn, tail_len, is_mft)) | 
 | 		return false; | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | /* run_collapse_range | 
 |  * | 
 |  * Helper for attr_collapse_range(), | 
 |  * which is helper for fallocate(collapse_range). | 
 |  */ | 
 | bool run_collapse_range(struct runs_tree *run, CLST vcn, CLST len) | 
 | { | 
 | 	size_t index, eat; | 
 | 	struct ntfs_run *r, *e, *eat_start, *eat_end; | 
 | 	CLST end; | 
 |  | 
 | 	if (WARN_ON(!run_lookup(run, vcn, &index))) | 
 | 		return true; /* Should never be here. */ | 
 |  | 
 | 	e = run->runs + run->count; | 
 | 	r = run->runs + index; | 
 | 	end = vcn + len; | 
 |  | 
 | 	if (vcn > r->vcn) { | 
 | 		if (r->vcn + r->len <= end) { | 
 | 			/* Collapse tail of run .*/ | 
 | 			r->len = vcn - r->vcn; | 
 | 		} else if (r->lcn == SPARSE_LCN) { | 
 | 			/* Collapse a middle part of sparsed run. */ | 
 | 			r->len -= len; | 
 | 		} else { | 
 | 			/* Collapse a middle part of normal run, split. */ | 
 | 			if (!run_add_entry(run, vcn, SPARSE_LCN, len, false)) | 
 | 				return false; | 
 | 			return run_collapse_range(run, vcn, len); | 
 | 		} | 
 |  | 
 | 		r += 1; | 
 | 	} | 
 |  | 
 | 	eat_start = r; | 
 | 	eat_end = r; | 
 |  | 
 | 	for (; r < e; r++) { | 
 | 		CLST d; | 
 |  | 
 | 		if (r->vcn >= end) { | 
 | 			r->vcn -= len; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		if (r->vcn + r->len <= end) { | 
 | 			/* Eat this run. */ | 
 | 			eat_end = r + 1; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		d = end - r->vcn; | 
 | 		if (r->lcn != SPARSE_LCN) | 
 | 			r->lcn += d; | 
 | 		r->len -= d; | 
 | 		r->vcn -= len - d; | 
 | 	} | 
 |  | 
 | 	eat = eat_end - eat_start; | 
 | 	memmove(eat_start, eat_end, (e - eat_end) * sizeof(*r)); | 
 | 	run->count -= eat; | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | /* run_insert_range | 
 |  * | 
 |  * Helper for attr_insert_range(), | 
 |  * which is helper for fallocate(insert_range). | 
 |  */ | 
 | bool run_insert_range(struct runs_tree *run, CLST vcn, CLST len) | 
 | { | 
 | 	size_t index; | 
 | 	struct ntfs_run *r, *e; | 
 |  | 
 | 	if (WARN_ON(!run_lookup(run, vcn, &index))) | 
 | 		return false; /* Should never be here. */ | 
 |  | 
 | 	e = run->runs + run->count; | 
 | 	r = run->runs + index; | 
 |  | 
 | 	if (vcn > r->vcn) | 
 | 		r += 1; | 
 |  | 
 | 	for (; r < e; r++) | 
 | 		r->vcn += len; | 
 |  | 
 | 	r = run->runs + index; | 
 |  | 
 | 	if (vcn > r->vcn) { | 
 | 		/* split fragment. */ | 
 | 		CLST len1 = vcn - r->vcn; | 
 | 		CLST len2 = r->len - len1; | 
 | 		CLST lcn2 = r->lcn == SPARSE_LCN ? SPARSE_LCN : (r->lcn + len1); | 
 |  | 
 | 		r->len = len1; | 
 |  | 
 | 		if (!run_add_entry(run, vcn + len, lcn2, len2, false)) | 
 | 			return false; | 
 | 	} | 
 |  | 
 | 	if (!run_add_entry(run, vcn, SPARSE_LCN, len, false)) | 
 | 		return false; | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | /* | 
 |  * run_get_entry - Return index-th mapped region. | 
 |  */ | 
 | bool run_get_entry(const struct runs_tree *run, size_t index, CLST *vcn, | 
 | 		   CLST *lcn, CLST *len) | 
 | { | 
 | 	const struct ntfs_run *r; | 
 |  | 
 | 	if (index >= run->count) | 
 | 		return false; | 
 |  | 
 | 	r = run->runs + index; | 
 |  | 
 | 	if (!r->len) | 
 | 		return false; | 
 |  | 
 | 	if (vcn) | 
 | 		*vcn = r->vcn; | 
 | 	if (lcn) | 
 | 		*lcn = r->lcn; | 
 | 	if (len) | 
 | 		*len = r->len; | 
 | 	return true; | 
 | } | 
 |  | 
 | /* | 
 |  * run_packed_size - Calculate the size of packed int64. | 
 |  */ | 
 | #ifdef __BIG_ENDIAN | 
 | static inline int run_packed_size(const s64 n) | 
 | { | 
 | 	const u8 *p = (const u8 *)&n + sizeof(n) - 1; | 
 |  | 
 | 	if (n >= 0) { | 
 | 		if (p[-7] || p[-6] || p[-5] || p[-4]) | 
 | 			p -= 4; | 
 | 		if (p[-3] || p[-2]) | 
 | 			p -= 2; | 
 | 		if (p[-1]) | 
 | 			p -= 1; | 
 | 		if (p[0] & 0x80) | 
 | 			p -= 1; | 
 | 	} else { | 
 | 		if (p[-7] != 0xff || p[-6] != 0xff || p[-5] != 0xff || | 
 | 		    p[-4] != 0xff) | 
 | 			p -= 4; | 
 | 		if (p[-3] != 0xff || p[-2] != 0xff) | 
 | 			p -= 2; | 
 | 		if (p[-1] != 0xff) | 
 | 			p -= 1; | 
 | 		if (!(p[0] & 0x80)) | 
 | 			p -= 1; | 
 | 	} | 
 | 	return (const u8 *)&n + sizeof(n) - p; | 
 | } | 
 |  | 
 | /* Full trusted function. It does not check 'size' for errors. */ | 
 | static inline void run_pack_s64(u8 *run_buf, u8 size, s64 v) | 
 | { | 
 | 	const u8 *p = (u8 *)&v; | 
 |  | 
 | 	switch (size) { | 
 | 	case 8: | 
 | 		run_buf[7] = p[0]; | 
 | 		fallthrough; | 
 | 	case 7: | 
 | 		run_buf[6] = p[1]; | 
 | 		fallthrough; | 
 | 	case 6: | 
 | 		run_buf[5] = p[2]; | 
 | 		fallthrough; | 
 | 	case 5: | 
 | 		run_buf[4] = p[3]; | 
 | 		fallthrough; | 
 | 	case 4: | 
 | 		run_buf[3] = p[4]; | 
 | 		fallthrough; | 
 | 	case 3: | 
 | 		run_buf[2] = p[5]; | 
 | 		fallthrough; | 
 | 	case 2: | 
 | 		run_buf[1] = p[6]; | 
 | 		fallthrough; | 
 | 	case 1: | 
 | 		run_buf[0] = p[7]; | 
 | 	} | 
 | } | 
 |  | 
 | /* Full trusted function. It does not check 'size' for errors. */ | 
 | static inline s64 run_unpack_s64(const u8 *run_buf, u8 size, s64 v) | 
 | { | 
 | 	u8 *p = (u8 *)&v; | 
 |  | 
 | 	switch (size) { | 
 | 	case 8: | 
 | 		p[0] = run_buf[7]; | 
 | 		fallthrough; | 
 | 	case 7: | 
 | 		p[1] = run_buf[6]; | 
 | 		fallthrough; | 
 | 	case 6: | 
 | 		p[2] = run_buf[5]; | 
 | 		fallthrough; | 
 | 	case 5: | 
 | 		p[3] = run_buf[4]; | 
 | 		fallthrough; | 
 | 	case 4: | 
 | 		p[4] = run_buf[3]; | 
 | 		fallthrough; | 
 | 	case 3: | 
 | 		p[5] = run_buf[2]; | 
 | 		fallthrough; | 
 | 	case 2: | 
 | 		p[6] = run_buf[1]; | 
 | 		fallthrough; | 
 | 	case 1: | 
 | 		p[7] = run_buf[0]; | 
 | 	} | 
 | 	return v; | 
 | } | 
 |  | 
 | #else | 
 |  | 
 | static inline int run_packed_size(const s64 n) | 
 | { | 
 | 	const u8 *p = (const u8 *)&n; | 
 |  | 
 | 	if (n >= 0) { | 
 | 		if (p[7] || p[6] || p[5] || p[4]) | 
 | 			p += 4; | 
 | 		if (p[3] || p[2]) | 
 | 			p += 2; | 
 | 		if (p[1]) | 
 | 			p += 1; | 
 | 		if (p[0] & 0x80) | 
 | 			p += 1; | 
 | 	} else { | 
 | 		if (p[7] != 0xff || p[6] != 0xff || p[5] != 0xff || | 
 | 		    p[4] != 0xff) | 
 | 			p += 4; | 
 | 		if (p[3] != 0xff || p[2] != 0xff) | 
 | 			p += 2; | 
 | 		if (p[1] != 0xff) | 
 | 			p += 1; | 
 | 		if (!(p[0] & 0x80)) | 
 | 			p += 1; | 
 | 	} | 
 |  | 
 | 	return 1 + p - (const u8 *)&n; | 
 | } | 
 |  | 
 | /* Full trusted function. It does not check 'size' for errors. */ | 
 | static inline void run_pack_s64(u8 *run_buf, u8 size, s64 v) | 
 | { | 
 | 	const u8 *p = (u8 *)&v; | 
 |  | 
 | 	/* memcpy( run_buf, &v, size); Is it faster? */ | 
 | 	switch (size) { | 
 | 	case 8: | 
 | 		run_buf[7] = p[7]; | 
 | 		fallthrough; | 
 | 	case 7: | 
 | 		run_buf[6] = p[6]; | 
 | 		fallthrough; | 
 | 	case 6: | 
 | 		run_buf[5] = p[5]; | 
 | 		fallthrough; | 
 | 	case 5: | 
 | 		run_buf[4] = p[4]; | 
 | 		fallthrough; | 
 | 	case 4: | 
 | 		run_buf[3] = p[3]; | 
 | 		fallthrough; | 
 | 	case 3: | 
 | 		run_buf[2] = p[2]; | 
 | 		fallthrough; | 
 | 	case 2: | 
 | 		run_buf[1] = p[1]; | 
 | 		fallthrough; | 
 | 	case 1: | 
 | 		run_buf[0] = p[0]; | 
 | 	} | 
 | } | 
 |  | 
 | /* full trusted function. It does not check 'size' for errors */ | 
 | static inline s64 run_unpack_s64(const u8 *run_buf, u8 size, s64 v) | 
 | { | 
 | 	u8 *p = (u8 *)&v; | 
 |  | 
 | 	/* memcpy( &v, run_buf, size); Is it faster? */ | 
 | 	switch (size) { | 
 | 	case 8: | 
 | 		p[7] = run_buf[7]; | 
 | 		fallthrough; | 
 | 	case 7: | 
 | 		p[6] = run_buf[6]; | 
 | 		fallthrough; | 
 | 	case 6: | 
 | 		p[5] = run_buf[5]; | 
 | 		fallthrough; | 
 | 	case 5: | 
 | 		p[4] = run_buf[4]; | 
 | 		fallthrough; | 
 | 	case 4: | 
 | 		p[3] = run_buf[3]; | 
 | 		fallthrough; | 
 | 	case 3: | 
 | 		p[2] = run_buf[2]; | 
 | 		fallthrough; | 
 | 	case 2: | 
 | 		p[1] = run_buf[1]; | 
 | 		fallthrough; | 
 | 	case 1: | 
 | 		p[0] = run_buf[0]; | 
 | 	} | 
 | 	return v; | 
 | } | 
 | #endif | 
 |  | 
 | /* | 
 |  * run_pack - Pack runs into buffer. | 
 |  * | 
 |  * packed_vcns - How much runs we have packed. | 
 |  * packed_size - How much bytes we have used run_buf. | 
 |  */ | 
 | int run_pack(const struct runs_tree *run, CLST svcn, CLST len, u8 *run_buf, | 
 | 	     u32 run_buf_size, CLST *packed_vcns) | 
 | { | 
 | 	CLST next_vcn, vcn, lcn; | 
 | 	CLST prev_lcn = 0; | 
 | 	CLST evcn1 = svcn + len; | 
 | 	const struct ntfs_run *r, *r_end; | 
 | 	int packed_size = 0; | 
 | 	size_t i; | 
 | 	s64 dlcn; | 
 | 	int offset_size, size_size, tmp; | 
 |  | 
 | 	*packed_vcns = 0; | 
 |  | 
 | 	if (!len) | 
 | 		goto out; | 
 |  | 
 | 	/* Check all required entries [svcn, encv1) available. */ | 
 | 	if (!run_lookup(run, svcn, &i)) | 
 | 		return -ENOENT; | 
 |  | 
 | 	r_end = run->runs + run->count; | 
 | 	r = run->runs + i; | 
 |  | 
 | 	for (next_vcn = r->vcn + r->len; next_vcn < evcn1; | 
 | 	     next_vcn = r->vcn + r->len) { | 
 | 		if (++r >= r_end || r->vcn != next_vcn) | 
 | 			return -ENOENT; | 
 | 	} | 
 |  | 
 | 	/* Repeat cycle above and pack runs. Assume no errors. */ | 
 | 	r = run->runs + i; | 
 | 	len = svcn - r->vcn; | 
 | 	vcn = svcn; | 
 | 	lcn = r->lcn == SPARSE_LCN ? SPARSE_LCN : (r->lcn + len); | 
 | 	len = r->len - len; | 
 |  | 
 | 	for (;;) { | 
 | 		next_vcn = vcn + len; | 
 | 		if (next_vcn > evcn1) | 
 | 			len = evcn1 - vcn; | 
 |  | 
 | 		/* How much bytes required to pack len. */ | 
 | 		size_size = run_packed_size(len); | 
 |  | 
 | 		/* offset_size - How much bytes is packed dlcn. */ | 
 | 		if (lcn == SPARSE_LCN) { | 
 | 			offset_size = 0; | 
 | 			dlcn = 0; | 
 | 		} else { | 
 | 			/* NOTE: lcn can be less than prev_lcn! */ | 
 | 			dlcn = (s64)lcn - prev_lcn; | 
 | 			offset_size = run_packed_size(dlcn); | 
 | 			prev_lcn = lcn; | 
 | 		} | 
 |  | 
 | 		tmp = run_buf_size - packed_size - 2 - offset_size; | 
 | 		if (tmp <= 0) | 
 | 			goto out; | 
 |  | 
 | 		/* Can we store this entire run. */ | 
 | 		if (tmp < size_size) | 
 | 			goto out; | 
 |  | 
 | 		if (run_buf) { | 
 | 			/* Pack run header. */ | 
 | 			run_buf[0] = ((u8)(size_size | (offset_size << 4))); | 
 | 			run_buf += 1; | 
 |  | 
 | 			/* Pack the length of run. */ | 
 | 			run_pack_s64(run_buf, size_size, len); | 
 |  | 
 | 			run_buf += size_size; | 
 | 			/* Pack the offset from previous LCN. */ | 
 | 			run_pack_s64(run_buf, offset_size, dlcn); | 
 | 			run_buf += offset_size; | 
 | 		} | 
 |  | 
 | 		packed_size += 1 + offset_size + size_size; | 
 | 		*packed_vcns += len; | 
 |  | 
 | 		if (packed_size + 1 >= run_buf_size || next_vcn >= evcn1) | 
 | 			goto out; | 
 |  | 
 | 		r += 1; | 
 | 		vcn = r->vcn; | 
 | 		lcn = r->lcn; | 
 | 		len = r->len; | 
 | 	} | 
 |  | 
 | out: | 
 | 	/* Store last zero. */ | 
 | 	if (run_buf) | 
 | 		run_buf[0] = 0; | 
 |  | 
 | 	return packed_size + 1; | 
 | } | 
 |  | 
 | /* | 
 |  * run_unpack - Unpack packed runs from @run_buf. | 
 |  * | 
 |  * Return: Error if negative, or real used bytes. | 
 |  */ | 
 | int run_unpack(struct runs_tree *run, struct ntfs_sb_info *sbi, CLST ino, | 
 | 	       CLST svcn, CLST evcn, CLST vcn, const u8 *run_buf, | 
 | 	       int run_buf_size) | 
 | { | 
 | 	u64 prev_lcn, vcn64, lcn, next_vcn; | 
 | 	const u8 *run_last, *run_0; | 
 | 	bool is_mft = ino == MFT_REC_MFT; | 
 |  | 
 | 	if (run_buf_size < 0) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* Check for empty. */ | 
 | 	if (evcn + 1 == svcn) | 
 | 		return 0; | 
 |  | 
 | 	if (evcn < svcn) | 
 | 		return -EINVAL; | 
 |  | 
 | 	run_0 = run_buf; | 
 | 	run_last = run_buf + run_buf_size; | 
 | 	prev_lcn = 0; | 
 | 	vcn64 = svcn; | 
 |  | 
 | 	/* Read all runs the chain. */ | 
 | 	/* size_size - How much bytes is packed len. */ | 
 | 	while (run_buf < run_last) { | 
 | 		/* size_size - How much bytes is packed len. */ | 
 | 		u8 size_size = *run_buf & 0xF; | 
 | 		/* offset_size - How much bytes is packed dlcn. */ | 
 | 		u8 offset_size = *run_buf++ >> 4; | 
 | 		u64 len; | 
 |  | 
 | 		if (!size_size) | 
 | 			break; | 
 |  | 
 | 		/* | 
 | 		 * Unpack runs. | 
 | 		 * NOTE: Runs are stored little endian order | 
 | 		 * "len" is unsigned value, "dlcn" is signed. | 
 | 		 * Large positive number requires to store 5 bytes | 
 | 		 * e.g.: 05 FF 7E FF FF 00 00 00 | 
 | 		 */ | 
 | 		if (size_size > 8) | 
 | 			return -EINVAL; | 
 |  | 
 | 		len = run_unpack_s64(run_buf, size_size, 0); | 
 | 		/* Skip size_size. */ | 
 | 		run_buf += size_size; | 
 |  | 
 | 		if (!len) | 
 | 			return -EINVAL; | 
 |  | 
 | 		if (!offset_size) | 
 | 			lcn = SPARSE_LCN64; | 
 | 		else if (offset_size <= 8) { | 
 | 			s64 dlcn; | 
 |  | 
 | 			/* Initial value of dlcn is -1 or 0. */ | 
 | 			dlcn = (run_buf[offset_size - 1] & 0x80) ? (s64)-1 : 0; | 
 | 			dlcn = run_unpack_s64(run_buf, offset_size, dlcn); | 
 | 			/* Skip offset_size. */ | 
 | 			run_buf += offset_size; | 
 |  | 
 | 			if (!dlcn) | 
 | 				return -EINVAL; | 
 | 			lcn = prev_lcn + dlcn; | 
 | 			prev_lcn = lcn; | 
 | 		} else | 
 | 			return -EINVAL; | 
 |  | 
 | 		next_vcn = vcn64 + len; | 
 | 		/* Check boundary. */ | 
 | 		if (next_vcn > evcn + 1) | 
 | 			return -EINVAL; | 
 |  | 
 | #ifndef CONFIG_NTFS3_64BIT_CLUSTER | 
 | 		if (next_vcn > 0x100000000ull || (lcn + len) > 0x100000000ull) { | 
 | 			ntfs_err( | 
 | 				sbi->sb, | 
 | 				"This driver is compiled without CONFIG_NTFS3_64BIT_CLUSTER (like windows driver).\n" | 
 | 				"Volume contains 64 bits run: vcn %llx, lcn %llx, len %llx.\n" | 
 | 				"Activate CONFIG_NTFS3_64BIT_CLUSTER to process this case", | 
 | 				vcn64, lcn, len); | 
 | 			return -EOPNOTSUPP; | 
 | 		} | 
 | #endif | 
 | 		if (lcn != SPARSE_LCN64 && lcn + len > sbi->used.bitmap.nbits) { | 
 | 			/* LCN range is out of volume. */ | 
 | 			return -EINVAL; | 
 | 		} | 
 |  | 
 | 		if (!run) | 
 | 			; /* Called from check_attr(fslog.c) to check run. */ | 
 | 		else if (run == RUN_DEALLOCATE) { | 
 | 			/* | 
 | 			 * Called from ni_delete_all to free clusters | 
 | 			 * without storing in run. | 
 | 			 */ | 
 | 			if (lcn != SPARSE_LCN64) | 
 | 				mark_as_free_ex(sbi, lcn, len, true); | 
 | 		} else if (vcn64 >= vcn) { | 
 | 			if (!run_add_entry(run, vcn64, lcn, len, is_mft)) | 
 | 				return -ENOMEM; | 
 | 		} else if (next_vcn > vcn) { | 
 | 			u64 dlen = vcn - vcn64; | 
 |  | 
 | 			if (!run_add_entry(run, vcn, lcn + dlen, len - dlen, | 
 | 					   is_mft)) | 
 | 				return -ENOMEM; | 
 | 		} | 
 |  | 
 | 		vcn64 = next_vcn; | 
 | 	} | 
 |  | 
 | 	if (vcn64 != evcn + 1) { | 
 | 		/* Not expected length of unpacked runs. */ | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	return run_buf - run_0; | 
 | } | 
 |  | 
 | #ifdef NTFS3_CHECK_FREE_CLST | 
 | /* | 
 |  * run_unpack_ex - Unpack packed runs from "run_buf". | 
 |  * | 
 |  * Checks unpacked runs to be used in bitmap. | 
 |  * | 
 |  * Return: Error if negative, or real used bytes. | 
 |  */ | 
 | int run_unpack_ex(struct runs_tree *run, struct ntfs_sb_info *sbi, CLST ino, | 
 | 		  CLST svcn, CLST evcn, CLST vcn, const u8 *run_buf, | 
 | 		  int run_buf_size) | 
 | { | 
 | 	int ret, err; | 
 | 	CLST next_vcn, lcn, len; | 
 | 	size_t index; | 
 | 	bool ok; | 
 | 	struct wnd_bitmap *wnd; | 
 |  | 
 | 	ret = run_unpack(run, sbi, ino, svcn, evcn, vcn, run_buf, run_buf_size); | 
 | 	if (ret <= 0) | 
 | 		return ret; | 
 |  | 
 | 	if (!sbi->used.bitmap.sb || !run || run == RUN_DEALLOCATE) | 
 | 		return ret; | 
 |  | 
 | 	if (ino == MFT_REC_BADCLUST) | 
 | 		return ret; | 
 |  | 
 | 	next_vcn = vcn = svcn; | 
 | 	wnd = &sbi->used.bitmap; | 
 |  | 
 | 	for (ok = run_lookup_entry(run, vcn, &lcn, &len, &index); | 
 | 	     next_vcn <= evcn; | 
 | 	     ok = run_get_entry(run, ++index, &vcn, &lcn, &len)) { | 
 | 		if (!ok || next_vcn != vcn) | 
 | 			return -EINVAL; | 
 |  | 
 | 		next_vcn = vcn + len; | 
 |  | 
 | 		if (lcn == SPARSE_LCN) | 
 | 			continue; | 
 |  | 
 | 		if (sbi->flags & NTFS_FLAGS_NEED_REPLAY) | 
 | 			continue; | 
 |  | 
 | 		down_read_nested(&wnd->rw_lock, BITMAP_MUTEX_CLUSTERS); | 
 | 		/* Check for free blocks. */ | 
 | 		ok = wnd_is_used(wnd, lcn, len); | 
 | 		up_read(&wnd->rw_lock); | 
 | 		if (ok) | 
 | 			continue; | 
 |  | 
 | 		/* Looks like volume is corrupted. */ | 
 | 		ntfs_set_state(sbi, NTFS_DIRTY_ERROR); | 
 |  | 
 | 		if (down_write_trylock(&wnd->rw_lock)) { | 
 | 			/* Mark all zero bits as used in range [lcn, lcn+len). */ | 
 | 			size_t done; | 
 | 			err = wnd_set_used_safe(wnd, lcn, len, &done); | 
 | 			up_write(&wnd->rw_lock); | 
 | 			if (err) | 
 | 				return err; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 | #endif | 
 |  | 
 | /* | 
 |  * run_get_highest_vcn | 
 |  * | 
 |  * Return the highest vcn from a mapping pairs array | 
 |  * it used while replaying log file. | 
 |  */ | 
 | int run_get_highest_vcn(CLST vcn, const u8 *run_buf, u64 *highest_vcn) | 
 | { | 
 | 	u64 vcn64 = vcn; | 
 | 	u8 size_size; | 
 |  | 
 | 	while ((size_size = *run_buf & 0xF)) { | 
 | 		u8 offset_size = *run_buf++ >> 4; | 
 | 		u64 len; | 
 |  | 
 | 		if (size_size > 8 || offset_size > 8) | 
 | 			return -EINVAL; | 
 |  | 
 | 		len = run_unpack_s64(run_buf, size_size, 0); | 
 | 		if (!len) | 
 | 			return -EINVAL; | 
 |  | 
 | 		run_buf += size_size + offset_size; | 
 | 		vcn64 += len; | 
 |  | 
 | #ifndef CONFIG_NTFS3_64BIT_CLUSTER | 
 | 		if (vcn64 > 0x100000000ull) | 
 | 			return -EINVAL; | 
 | #endif | 
 | 	} | 
 |  | 
 | 	*highest_vcn = vcn64 - 1; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * run_clone | 
 |  * | 
 |  * Make a copy of run | 
 |  */ | 
 | int run_clone(const struct runs_tree *run, struct runs_tree *new_run) | 
 | { | 
 | 	size_t bytes = run->count * sizeof(struct ntfs_run); | 
 |  | 
 | 	if (bytes > new_run->allocated) { | 
 | 		struct ntfs_run *new_ptr = kvmalloc(bytes, GFP_KERNEL); | 
 |  | 
 | 		if (!new_ptr) | 
 | 			return -ENOMEM; | 
 |  | 
 | 		kvfree(new_run->runs); | 
 | 		new_run->runs = new_ptr; | 
 | 		new_run->allocated = bytes; | 
 | 	} | 
 |  | 
 | 	memcpy(new_run->runs, run->runs, bytes); | 
 | 	new_run->count = run->count; | 
 | 	return 0; | 
 | } |