| /* SPDX-License-Identifier: GPL-2.0 */ |
| #include <linux/jump_label.h> |
| #include <asm/unwind_hints.h> |
| #include <asm/cpufeatures.h> |
| #include <asm/page_types.h> |
| #include <asm/percpu.h> |
| #include <asm/asm-offsets.h> |
| #include <asm/processor-flags.h> |
| |
| /* |
| |
| x86 function call convention, 64-bit: |
| ------------------------------------- |
| arguments | callee-saved | extra caller-saved | return |
| [callee-clobbered] | | [callee-clobbered] | |
| --------------------------------------------------------------------------- |
| rdi rsi rdx rcx r8-9 | rbx rbp [*] r12-15 | r10-11 | rax, rdx [**] |
| |
| ( rsp is obviously invariant across normal function calls. (gcc can 'merge' |
| functions when it sees tail-call optimization possibilities) rflags is |
| clobbered. Leftover arguments are passed over the stack frame.) |
| |
| [*] In the frame-pointers case rbp is fixed to the stack frame. |
| |
| [**] for struct return values wider than 64 bits the return convention is a |
| bit more complex: up to 128 bits width we return small structures |
| straight in rax, rdx. For structures larger than that (3 words or |
| larger) the caller puts a pointer to an on-stack return struct |
| [allocated in the caller's stack frame] into the first argument - i.e. |
| into rdi. All other arguments shift up by one in this case. |
| Fortunately this case is rare in the kernel. |
| |
| For 32-bit we have the following conventions - kernel is built with |
| -mregparm=3 and -freg-struct-return: |
| |
| x86 function calling convention, 32-bit: |
| ---------------------------------------- |
| arguments | callee-saved | extra caller-saved | return |
| [callee-clobbered] | | [callee-clobbered] | |
| ------------------------------------------------------------------------- |
| eax edx ecx | ebx edi esi ebp [*] | <none> | eax, edx [**] |
| |
| ( here too esp is obviously invariant across normal function calls. eflags |
| is clobbered. Leftover arguments are passed over the stack frame. ) |
| |
| [*] In the frame-pointers case ebp is fixed to the stack frame. |
| |
| [**] We build with -freg-struct-return, which on 32-bit means similar |
| semantics as on 64-bit: edx can be used for a second return value |
| (i.e. covering integer and structure sizes up to 64 bits) - after that |
| it gets more complex and more expensive: 3-word or larger struct returns |
| get done in the caller's frame and the pointer to the return struct goes |
| into regparm0, i.e. eax - the other arguments shift up and the |
| function's register parameters degenerate to regparm=2 in essence. |
| |
| */ |
| |
| #ifdef CONFIG_X86_64 |
| |
| /* |
| * 64-bit system call stack frame layout defines and helpers, |
| * for assembly code: |
| */ |
| |
| /* The layout forms the "struct pt_regs" on the stack: */ |
| /* |
| * C ABI says these regs are callee-preserved. They aren't saved on kernel entry |
| * unless syscall needs a complete, fully filled "struct pt_regs". |
| */ |
| #define R15 0*8 |
| #define R14 1*8 |
| #define R13 2*8 |
| #define R12 3*8 |
| #define RBP 4*8 |
| #define RBX 5*8 |
| /* These regs are callee-clobbered. Always saved on kernel entry. */ |
| #define R11 6*8 |
| #define R10 7*8 |
| #define R9 8*8 |
| #define R8 9*8 |
| #define RAX 10*8 |
| #define RCX 11*8 |
| #define RDX 12*8 |
| #define RSI 13*8 |
| #define RDI 14*8 |
| /* |
| * On syscall entry, this is syscall#. On CPU exception, this is error code. |
| * On hw interrupt, it's IRQ number: |
| */ |
| #define ORIG_RAX 15*8 |
| /* Return frame for iretq */ |
| #define RIP 16*8 |
| #define CS 17*8 |
| #define EFLAGS 18*8 |
| #define RSP 19*8 |
| #define SS 20*8 |
| |
| #define SIZEOF_PTREGS 21*8 |
| |
| .macro PUSH_AND_CLEAR_REGS rdx=%rdx rax=%rax save_ret=0 |
| .if \save_ret |
| pushq %rsi /* pt_regs->si */ |
| movq 8(%rsp), %rsi /* temporarily store the return address in %rsi */ |
| movq %rdi, 8(%rsp) /* pt_regs->di (overwriting original return address) */ |
| .else |
| pushq %rdi /* pt_regs->di */ |
| pushq %rsi /* pt_regs->si */ |
| .endif |
| pushq \rdx /* pt_regs->dx */ |
| pushq %rcx /* pt_regs->cx */ |
| pushq \rax /* pt_regs->ax */ |
| pushq %r8 /* pt_regs->r8 */ |
| pushq %r9 /* pt_regs->r9 */ |
| pushq %r10 /* pt_regs->r10 */ |
| pushq %r11 /* pt_regs->r11 */ |
| pushq %rbx /* pt_regs->rbx */ |
| pushq %rbp /* pt_regs->rbp */ |
| pushq %r12 /* pt_regs->r12 */ |
| pushq %r13 /* pt_regs->r13 */ |
| pushq %r14 /* pt_regs->r14 */ |
| pushq %r15 /* pt_regs->r15 */ |
| UNWIND_HINT_REGS |
| |
| .if \save_ret |
| pushq %rsi /* return address on top of stack */ |
| .endif |
| |
| /* |
| * Sanitize registers of values that a speculation attack might |
| * otherwise want to exploit. The lower registers are likely clobbered |
| * well before they could be put to use in a speculative execution |
| * gadget. |
| */ |
| xorl %edx, %edx /* nospec dx */ |
| xorl %ecx, %ecx /* nospec cx */ |
| xorl %r8d, %r8d /* nospec r8 */ |
| xorl %r9d, %r9d /* nospec r9 */ |
| xorl %r10d, %r10d /* nospec r10 */ |
| xorl %r11d, %r11d /* nospec r11 */ |
| xorl %ebx, %ebx /* nospec rbx */ |
| xorl %ebp, %ebp /* nospec rbp */ |
| xorl %r12d, %r12d /* nospec r12 */ |
| xorl %r13d, %r13d /* nospec r13 */ |
| xorl %r14d, %r14d /* nospec r14 */ |
| xorl %r15d, %r15d /* nospec r15 */ |
| |
| .endm |
| |
| .macro POP_REGS pop_rdi=1 skip_r11rcx=0 |
| popq %r15 |
| popq %r14 |
| popq %r13 |
| popq %r12 |
| popq %rbp |
| popq %rbx |
| .if \skip_r11rcx |
| popq %rsi |
| .else |
| popq %r11 |
| .endif |
| popq %r10 |
| popq %r9 |
| popq %r8 |
| popq %rax |
| .if \skip_r11rcx |
| popq %rsi |
| .else |
| popq %rcx |
| .endif |
| popq %rdx |
| popq %rsi |
| .if \pop_rdi |
| popq %rdi |
| .endif |
| .endm |
| |
| #ifdef CONFIG_PAGE_TABLE_ISOLATION |
| |
| /* |
| * PAGE_TABLE_ISOLATION PGDs are 8k. Flip bit 12 to switch between the two |
| * halves: |
| */ |
| #define PTI_USER_PGTABLE_BIT PAGE_SHIFT |
| #define PTI_USER_PGTABLE_MASK (1 << PTI_USER_PGTABLE_BIT) |
| #define PTI_USER_PCID_BIT X86_CR3_PTI_PCID_USER_BIT |
| #define PTI_USER_PCID_MASK (1 << PTI_USER_PCID_BIT) |
| #define PTI_USER_PGTABLE_AND_PCID_MASK (PTI_USER_PCID_MASK | PTI_USER_PGTABLE_MASK) |
| |
| .macro SET_NOFLUSH_BIT reg:req |
| bts $X86_CR3_PCID_NOFLUSH_BIT, \reg |
| .endm |
| |
| .macro ADJUST_KERNEL_CR3 reg:req |
| ALTERNATIVE "", "SET_NOFLUSH_BIT \reg", X86_FEATURE_PCID |
| /* Clear PCID and "PAGE_TABLE_ISOLATION bit", point CR3 at kernel pagetables: */ |
| andq $(~PTI_USER_PGTABLE_AND_PCID_MASK), \reg |
| .endm |
| |
| .macro SWITCH_TO_KERNEL_CR3 scratch_reg:req |
| ALTERNATIVE "jmp .Lend_\@", "", X86_FEATURE_PTI |
| mov %cr3, \scratch_reg |
| ADJUST_KERNEL_CR3 \scratch_reg |
| mov \scratch_reg, %cr3 |
| .Lend_\@: |
| .endm |
| |
| #define THIS_CPU_user_pcid_flush_mask \ |
| PER_CPU_VAR(cpu_tlbstate) + TLB_STATE_user_pcid_flush_mask |
| |
| .macro SWITCH_TO_USER_CR3_NOSTACK scratch_reg:req scratch_reg2:req |
| ALTERNATIVE "jmp .Lend_\@", "", X86_FEATURE_PTI |
| mov %cr3, \scratch_reg |
| |
| ALTERNATIVE "jmp .Lwrcr3_\@", "", X86_FEATURE_PCID |
| |
| /* |
| * Test if the ASID needs a flush. |
| */ |
| movq \scratch_reg, \scratch_reg2 |
| andq $(0x7FF), \scratch_reg /* mask ASID */ |
| bt \scratch_reg, THIS_CPU_user_pcid_flush_mask |
| jnc .Lnoflush_\@ |
| |
| /* Flush needed, clear the bit */ |
| btr \scratch_reg, THIS_CPU_user_pcid_flush_mask |
| movq \scratch_reg2, \scratch_reg |
| jmp .Lwrcr3_pcid_\@ |
| |
| .Lnoflush_\@: |
| movq \scratch_reg2, \scratch_reg |
| SET_NOFLUSH_BIT \scratch_reg |
| |
| .Lwrcr3_pcid_\@: |
| /* Flip the ASID to the user version */ |
| orq $(PTI_USER_PCID_MASK), \scratch_reg |
| |
| .Lwrcr3_\@: |
| /* Flip the PGD to the user version */ |
| orq $(PTI_USER_PGTABLE_MASK), \scratch_reg |
| mov \scratch_reg, %cr3 |
| .Lend_\@: |
| .endm |
| |
| .macro SWITCH_TO_USER_CR3_STACK scratch_reg:req |
| pushq %rax |
| SWITCH_TO_USER_CR3_NOSTACK scratch_reg=\scratch_reg scratch_reg2=%rax |
| popq %rax |
| .endm |
| |
| .macro SAVE_AND_SWITCH_TO_KERNEL_CR3 scratch_reg:req save_reg:req |
| ALTERNATIVE "jmp .Ldone_\@", "", X86_FEATURE_PTI |
| movq %cr3, \scratch_reg |
| movq \scratch_reg, \save_reg |
| /* |
| * Test the user pagetable bit. If set, then the user page tables |
| * are active. If clear CR3 already has the kernel page table |
| * active. |
| */ |
| bt $PTI_USER_PGTABLE_BIT, \scratch_reg |
| jnc .Ldone_\@ |
| |
| ADJUST_KERNEL_CR3 \scratch_reg |
| movq \scratch_reg, %cr3 |
| |
| .Ldone_\@: |
| .endm |
| |
| .macro RESTORE_CR3 scratch_reg:req save_reg:req |
| ALTERNATIVE "jmp .Lend_\@", "", X86_FEATURE_PTI |
| |
| ALTERNATIVE "jmp .Lwrcr3_\@", "", X86_FEATURE_PCID |
| |
| /* |
| * KERNEL pages can always resume with NOFLUSH as we do |
| * explicit flushes. |
| */ |
| bt $PTI_USER_PGTABLE_BIT, \save_reg |
| jnc .Lnoflush_\@ |
| |
| /* |
| * Check if there's a pending flush for the user ASID we're |
| * about to set. |
| */ |
| movq \save_reg, \scratch_reg |
| andq $(0x7FF), \scratch_reg |
| bt \scratch_reg, THIS_CPU_user_pcid_flush_mask |
| jnc .Lnoflush_\@ |
| |
| btr \scratch_reg, THIS_CPU_user_pcid_flush_mask |
| jmp .Lwrcr3_\@ |
| |
| .Lnoflush_\@: |
| SET_NOFLUSH_BIT \save_reg |
| |
| .Lwrcr3_\@: |
| /* |
| * The CR3 write could be avoided when not changing its value, |
| * but would require a CR3 read *and* a scratch register. |
| */ |
| movq \save_reg, %cr3 |
| .Lend_\@: |
| .endm |
| |
| #else /* CONFIG_PAGE_TABLE_ISOLATION=n: */ |
| |
| .macro SWITCH_TO_KERNEL_CR3 scratch_reg:req |
| .endm |
| .macro SWITCH_TO_USER_CR3_NOSTACK scratch_reg:req scratch_reg2:req |
| .endm |
| .macro SWITCH_TO_USER_CR3_STACK scratch_reg:req |
| .endm |
| .macro SAVE_AND_SWITCH_TO_KERNEL_CR3 scratch_reg:req save_reg:req |
| .endm |
| .macro RESTORE_CR3 scratch_reg:req save_reg:req |
| .endm |
| |
| #endif |
| |
| /* |
| * Mitigate Spectre v1 for conditional swapgs code paths. |
| * |
| * FENCE_SWAPGS_USER_ENTRY is used in the user entry swapgs code path, to |
| * prevent a speculative swapgs when coming from kernel space. |
| * |
| * FENCE_SWAPGS_KERNEL_ENTRY is used in the kernel entry non-swapgs code path, |
| * to prevent the swapgs from getting speculatively skipped when coming from |
| * user space. |
| */ |
| .macro FENCE_SWAPGS_USER_ENTRY |
| ALTERNATIVE "", "lfence", X86_FEATURE_FENCE_SWAPGS_USER |
| .endm |
| .macro FENCE_SWAPGS_KERNEL_ENTRY |
| ALTERNATIVE "", "lfence", X86_FEATURE_FENCE_SWAPGS_KERNEL |
| .endm |
| |
| .macro STACKLEAK_ERASE_NOCLOBBER |
| #ifdef CONFIG_GCC_PLUGIN_STACKLEAK |
| PUSH_AND_CLEAR_REGS |
| call stackleak_erase |
| POP_REGS |
| #endif |
| .endm |
| |
| .macro SAVE_AND_SET_GSBASE scratch_reg:req save_reg:req |
| rdgsbase \save_reg |
| GET_PERCPU_BASE \scratch_reg |
| wrgsbase \scratch_reg |
| .endm |
| |
| #else /* CONFIG_X86_64 */ |
| # undef UNWIND_HINT_IRET_REGS |
| # define UNWIND_HINT_IRET_REGS |
| #endif /* !CONFIG_X86_64 */ |
| |
| .macro STACKLEAK_ERASE |
| #ifdef CONFIG_GCC_PLUGIN_STACKLEAK |
| call stackleak_erase |
| #endif |
| .endm |
| |
| #ifdef CONFIG_SMP |
| |
| /* |
| * CPU/node NR is loaded from the limit (size) field of a special segment |
| * descriptor entry in GDT. |
| */ |
| .macro LOAD_CPU_AND_NODE_SEG_LIMIT reg:req |
| movq $__CPUNODE_SEG, \reg |
| #ifdef __clang__ |
| .long 0xc0030f48 |
| #else |
| lsl \reg, \reg |
| #endif |
| .endm |
| |
| /* |
| * Fetch the per-CPU GSBASE value for this processor and put it in @reg. |
| * We normally use %gs for accessing per-CPU data, but we are setting up |
| * %gs here and obviously can not use %gs itself to access per-CPU data. |
| * |
| * Do not use RDPID, because KVM loads guest's TSC_AUX on vm-entry and |
| * may not restore the host's value until the CPU returns to userspace. |
| * Thus the kernel would consume a guest's TSC_AUX if an NMI arrives |
| * while running KVM's run loop. |
| */ |
| .macro GET_PERCPU_BASE reg:req |
| LOAD_CPU_AND_NODE_SEG_LIMIT \reg |
| andq $VDSO_CPUNODE_MASK, \reg |
| movq __per_cpu_offset(, \reg, 8), \reg |
| .endm |
| |
| #else |
| |
| .macro GET_PERCPU_BASE reg:req |
| movq pcpu_unit_offsets(%rip), \reg |
| .endm |
| |
| #endif /* CONFIG_SMP */ |