| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * AMD Encrypted Register State Support |
| * |
| * Author: Joerg Roedel <jroedel@suse.de> |
| * |
| * This file is not compiled stand-alone. It contains code shared |
| * between the pre-decompression boot code and the running Linux kernel |
| * and is included directly into both code-bases. |
| */ |
| |
| #ifndef __BOOT_COMPRESSED |
| #define error(v) pr_err(v) |
| #define has_cpuflag(f) boot_cpu_has(f) |
| #endif |
| |
| static bool __init sev_es_check_cpu_features(void) |
| { |
| if (!has_cpuflag(X86_FEATURE_RDRAND)) { |
| error("RDRAND instruction not supported - no trusted source of randomness available\n"); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static void sev_es_terminate(unsigned int reason) |
| { |
| u64 val = GHCB_SEV_TERMINATE; |
| |
| /* |
| * Tell the hypervisor what went wrong - only reason-set 0 is |
| * currently supported. |
| */ |
| val |= GHCB_SEV_TERMINATE_REASON(0, reason); |
| |
| /* Request Guest Termination from Hypvervisor */ |
| sev_es_wr_ghcb_msr(val); |
| VMGEXIT(); |
| |
| while (true) |
| asm volatile("hlt\n" : : : "memory"); |
| } |
| |
| static bool sev_es_negotiate_protocol(void) |
| { |
| u64 val; |
| |
| /* Do the GHCB protocol version negotiation */ |
| sev_es_wr_ghcb_msr(GHCB_SEV_INFO_REQ); |
| VMGEXIT(); |
| val = sev_es_rd_ghcb_msr(); |
| |
| if (GHCB_INFO(val) != GHCB_SEV_INFO) |
| return false; |
| |
| if (GHCB_PROTO_MAX(val) < GHCB_PROTO_OUR || |
| GHCB_PROTO_MIN(val) > GHCB_PROTO_OUR) |
| return false; |
| |
| return true; |
| } |
| |
| static __always_inline void vc_ghcb_invalidate(struct ghcb *ghcb) |
| { |
| ghcb->save.sw_exit_code = 0; |
| memset(ghcb->save.valid_bitmap, 0, sizeof(ghcb->save.valid_bitmap)); |
| } |
| |
| static bool vc_decoding_needed(unsigned long exit_code) |
| { |
| /* Exceptions don't require to decode the instruction */ |
| return !(exit_code >= SVM_EXIT_EXCP_BASE && |
| exit_code <= SVM_EXIT_LAST_EXCP); |
| } |
| |
| static enum es_result vc_init_em_ctxt(struct es_em_ctxt *ctxt, |
| struct pt_regs *regs, |
| unsigned long exit_code) |
| { |
| enum es_result ret = ES_OK; |
| |
| memset(ctxt, 0, sizeof(*ctxt)); |
| ctxt->regs = regs; |
| |
| if (vc_decoding_needed(exit_code)) |
| ret = vc_decode_insn(ctxt); |
| |
| return ret; |
| } |
| |
| static void vc_finish_insn(struct es_em_ctxt *ctxt) |
| { |
| ctxt->regs->ip += ctxt->insn.length; |
| } |
| |
| static enum es_result sev_es_ghcb_hv_call(struct ghcb *ghcb, |
| struct es_em_ctxt *ctxt, |
| u64 exit_code, u64 exit_info_1, |
| u64 exit_info_2) |
| { |
| enum es_result ret; |
| |
| /* Fill in protocol and format specifiers */ |
| ghcb->protocol_version = GHCB_PROTOCOL_MAX; |
| ghcb->ghcb_usage = GHCB_DEFAULT_USAGE; |
| |
| ghcb_set_sw_exit_code(ghcb, exit_code); |
| ghcb_set_sw_exit_info_1(ghcb, exit_info_1); |
| ghcb_set_sw_exit_info_2(ghcb, exit_info_2); |
| |
| sev_es_wr_ghcb_msr(__pa(ghcb)); |
| VMGEXIT(); |
| |
| if ((ghcb->save.sw_exit_info_1 & 0xffffffff) == 1) { |
| u64 info = ghcb->save.sw_exit_info_2; |
| unsigned long v; |
| |
| info = ghcb->save.sw_exit_info_2; |
| v = info & SVM_EVTINJ_VEC_MASK; |
| |
| /* Check if exception information from hypervisor is sane. */ |
| if ((info & SVM_EVTINJ_VALID) && |
| ((v == X86_TRAP_GP) || (v == X86_TRAP_UD)) && |
| ((info & SVM_EVTINJ_TYPE_MASK) == SVM_EVTINJ_TYPE_EXEPT)) { |
| ctxt->fi.vector = v; |
| if (info & SVM_EVTINJ_VALID_ERR) |
| ctxt->fi.error_code = info >> 32; |
| ret = ES_EXCEPTION; |
| } else { |
| ret = ES_VMM_ERROR; |
| } |
| } else if (ghcb->save.sw_exit_info_1 & 0xffffffff) { |
| ret = ES_VMM_ERROR; |
| } else { |
| ret = ES_OK; |
| } |
| |
| return ret; |
| } |
| |
| /* |
| * Boot VC Handler - This is the first VC handler during boot, there is no GHCB |
| * page yet, so it only supports the MSR based communication with the |
| * hypervisor and only the CPUID exit-code. |
| */ |
| void __init do_vc_no_ghcb(struct pt_regs *regs, unsigned long exit_code) |
| { |
| unsigned int fn = lower_bits(regs->ax, 32); |
| unsigned long val; |
| |
| /* Only CPUID is supported via MSR protocol */ |
| if (exit_code != SVM_EXIT_CPUID) |
| goto fail; |
| |
| sev_es_wr_ghcb_msr(GHCB_CPUID_REQ(fn, GHCB_CPUID_REQ_EAX)); |
| VMGEXIT(); |
| val = sev_es_rd_ghcb_msr(); |
| if (GHCB_SEV_GHCB_RESP_CODE(val) != GHCB_SEV_CPUID_RESP) |
| goto fail; |
| regs->ax = val >> 32; |
| |
| sev_es_wr_ghcb_msr(GHCB_CPUID_REQ(fn, GHCB_CPUID_REQ_EBX)); |
| VMGEXIT(); |
| val = sev_es_rd_ghcb_msr(); |
| if (GHCB_SEV_GHCB_RESP_CODE(val) != GHCB_SEV_CPUID_RESP) |
| goto fail; |
| regs->bx = val >> 32; |
| |
| sev_es_wr_ghcb_msr(GHCB_CPUID_REQ(fn, GHCB_CPUID_REQ_ECX)); |
| VMGEXIT(); |
| val = sev_es_rd_ghcb_msr(); |
| if (GHCB_SEV_GHCB_RESP_CODE(val) != GHCB_SEV_CPUID_RESP) |
| goto fail; |
| regs->cx = val >> 32; |
| |
| sev_es_wr_ghcb_msr(GHCB_CPUID_REQ(fn, GHCB_CPUID_REQ_EDX)); |
| VMGEXIT(); |
| val = sev_es_rd_ghcb_msr(); |
| if (GHCB_SEV_GHCB_RESP_CODE(val) != GHCB_SEV_CPUID_RESP) |
| goto fail; |
| regs->dx = val >> 32; |
| |
| /* |
| * This is a VC handler and the #VC is only raised when SEV-ES is |
| * active, which means SEV must be active too. Do sanity checks on the |
| * CPUID results to make sure the hypervisor does not trick the kernel |
| * into the no-sev path. This could map sensitive data unencrypted and |
| * make it accessible to the hypervisor. |
| * |
| * In particular, check for: |
| * - Availability of CPUID leaf 0x8000001f |
| * - SEV CPUID bit. |
| * |
| * The hypervisor might still report the wrong C-bit position, but this |
| * can't be checked here. |
| */ |
| |
| if (fn == 0x80000000 && (regs->ax < 0x8000001f)) |
| /* SEV leaf check */ |
| goto fail; |
| else if ((fn == 0x8000001f && !(regs->ax & BIT(1)))) |
| /* SEV bit */ |
| goto fail; |
| |
| /* Skip over the CPUID two-byte opcode */ |
| regs->ip += 2; |
| |
| return; |
| |
| fail: |
| sev_es_wr_ghcb_msr(GHCB_SEV_TERMINATE); |
| VMGEXIT(); |
| |
| /* Shouldn't get here - if we do halt the machine */ |
| while (true) |
| asm volatile("hlt\n"); |
| } |
| |
| static enum es_result vc_insn_string_read(struct es_em_ctxt *ctxt, |
| void *src, char *buf, |
| unsigned int data_size, |
| unsigned int count, |
| bool backwards) |
| { |
| int i, b = backwards ? -1 : 1; |
| enum es_result ret = ES_OK; |
| |
| for (i = 0; i < count; i++) { |
| void *s = src + (i * data_size * b); |
| char *d = buf + (i * data_size); |
| |
| ret = vc_read_mem(ctxt, s, d, data_size); |
| if (ret != ES_OK) |
| break; |
| } |
| |
| return ret; |
| } |
| |
| static enum es_result vc_insn_string_write(struct es_em_ctxt *ctxt, |
| void *dst, char *buf, |
| unsigned int data_size, |
| unsigned int count, |
| bool backwards) |
| { |
| int i, s = backwards ? -1 : 1; |
| enum es_result ret = ES_OK; |
| |
| for (i = 0; i < count; i++) { |
| void *d = dst + (i * data_size * s); |
| char *b = buf + (i * data_size); |
| |
| ret = vc_write_mem(ctxt, d, b, data_size); |
| if (ret != ES_OK) |
| break; |
| } |
| |
| return ret; |
| } |
| |
| #define IOIO_TYPE_STR BIT(2) |
| #define IOIO_TYPE_IN 1 |
| #define IOIO_TYPE_INS (IOIO_TYPE_IN | IOIO_TYPE_STR) |
| #define IOIO_TYPE_OUT 0 |
| #define IOIO_TYPE_OUTS (IOIO_TYPE_OUT | IOIO_TYPE_STR) |
| |
| #define IOIO_REP BIT(3) |
| |
| #define IOIO_ADDR_64 BIT(9) |
| #define IOIO_ADDR_32 BIT(8) |
| #define IOIO_ADDR_16 BIT(7) |
| |
| #define IOIO_DATA_32 BIT(6) |
| #define IOIO_DATA_16 BIT(5) |
| #define IOIO_DATA_8 BIT(4) |
| |
| #define IOIO_SEG_ES (0 << 10) |
| #define IOIO_SEG_DS (3 << 10) |
| |
| static enum es_result vc_ioio_exitinfo(struct es_em_ctxt *ctxt, u64 *exitinfo) |
| { |
| struct insn *insn = &ctxt->insn; |
| *exitinfo = 0; |
| |
| switch (insn->opcode.bytes[0]) { |
| /* INS opcodes */ |
| case 0x6c: |
| case 0x6d: |
| *exitinfo |= IOIO_TYPE_INS; |
| *exitinfo |= IOIO_SEG_ES; |
| *exitinfo |= (ctxt->regs->dx & 0xffff) << 16; |
| break; |
| |
| /* OUTS opcodes */ |
| case 0x6e: |
| case 0x6f: |
| *exitinfo |= IOIO_TYPE_OUTS; |
| *exitinfo |= IOIO_SEG_DS; |
| *exitinfo |= (ctxt->regs->dx & 0xffff) << 16; |
| break; |
| |
| /* IN immediate opcodes */ |
| case 0xe4: |
| case 0xe5: |
| *exitinfo |= IOIO_TYPE_IN; |
| *exitinfo |= (u8)insn->immediate.value << 16; |
| break; |
| |
| /* OUT immediate opcodes */ |
| case 0xe6: |
| case 0xe7: |
| *exitinfo |= IOIO_TYPE_OUT; |
| *exitinfo |= (u8)insn->immediate.value << 16; |
| break; |
| |
| /* IN register opcodes */ |
| case 0xec: |
| case 0xed: |
| *exitinfo |= IOIO_TYPE_IN; |
| *exitinfo |= (ctxt->regs->dx & 0xffff) << 16; |
| break; |
| |
| /* OUT register opcodes */ |
| case 0xee: |
| case 0xef: |
| *exitinfo |= IOIO_TYPE_OUT; |
| *exitinfo |= (ctxt->regs->dx & 0xffff) << 16; |
| break; |
| |
| default: |
| return ES_DECODE_FAILED; |
| } |
| |
| switch (insn->opcode.bytes[0]) { |
| case 0x6c: |
| case 0x6e: |
| case 0xe4: |
| case 0xe6: |
| case 0xec: |
| case 0xee: |
| /* Single byte opcodes */ |
| *exitinfo |= IOIO_DATA_8; |
| break; |
| default: |
| /* Length determined by instruction parsing */ |
| *exitinfo |= (insn->opnd_bytes == 2) ? IOIO_DATA_16 |
| : IOIO_DATA_32; |
| } |
| switch (insn->addr_bytes) { |
| case 2: |
| *exitinfo |= IOIO_ADDR_16; |
| break; |
| case 4: |
| *exitinfo |= IOIO_ADDR_32; |
| break; |
| case 8: |
| *exitinfo |= IOIO_ADDR_64; |
| break; |
| } |
| |
| if (insn_has_rep_prefix(insn)) |
| *exitinfo |= IOIO_REP; |
| |
| return ES_OK; |
| } |
| |
| static enum es_result vc_handle_ioio(struct ghcb *ghcb, struct es_em_ctxt *ctxt) |
| { |
| struct pt_regs *regs = ctxt->regs; |
| u64 exit_info_1, exit_info_2; |
| enum es_result ret; |
| |
| ret = vc_ioio_exitinfo(ctxt, &exit_info_1); |
| if (ret != ES_OK) |
| return ret; |
| |
| if (exit_info_1 & IOIO_TYPE_STR) { |
| |
| /* (REP) INS/OUTS */ |
| |
| bool df = ((regs->flags & X86_EFLAGS_DF) == X86_EFLAGS_DF); |
| unsigned int io_bytes, exit_bytes; |
| unsigned int ghcb_count, op_count; |
| unsigned long es_base; |
| u64 sw_scratch; |
| |
| /* |
| * For the string variants with rep prefix the amount of in/out |
| * operations per #VC exception is limited so that the kernel |
| * has a chance to take interrupts and re-schedule while the |
| * instruction is emulated. |
| */ |
| io_bytes = (exit_info_1 >> 4) & 0x7; |
| ghcb_count = sizeof(ghcb->shared_buffer) / io_bytes; |
| |
| op_count = (exit_info_1 & IOIO_REP) ? regs->cx : 1; |
| exit_info_2 = min(op_count, ghcb_count); |
| exit_bytes = exit_info_2 * io_bytes; |
| |
| es_base = insn_get_seg_base(ctxt->regs, INAT_SEG_REG_ES); |
| |
| /* Read bytes of OUTS into the shared buffer */ |
| if (!(exit_info_1 & IOIO_TYPE_IN)) { |
| ret = vc_insn_string_read(ctxt, |
| (void *)(es_base + regs->si), |
| ghcb->shared_buffer, io_bytes, |
| exit_info_2, df); |
| if (ret) |
| return ret; |
| } |
| |
| /* |
| * Issue an VMGEXIT to the HV to consume the bytes from the |
| * shared buffer or to have it write them into the shared buffer |
| * depending on the instruction: OUTS or INS. |
| */ |
| sw_scratch = __pa(ghcb) + offsetof(struct ghcb, shared_buffer); |
| ghcb_set_sw_scratch(ghcb, sw_scratch); |
| ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_IOIO, |
| exit_info_1, exit_info_2); |
| if (ret != ES_OK) |
| return ret; |
| |
| /* Read bytes from shared buffer into the guest's destination. */ |
| if (exit_info_1 & IOIO_TYPE_IN) { |
| ret = vc_insn_string_write(ctxt, |
| (void *)(es_base + regs->di), |
| ghcb->shared_buffer, io_bytes, |
| exit_info_2, df); |
| if (ret) |
| return ret; |
| |
| if (df) |
| regs->di -= exit_bytes; |
| else |
| regs->di += exit_bytes; |
| } else { |
| if (df) |
| regs->si -= exit_bytes; |
| else |
| regs->si += exit_bytes; |
| } |
| |
| if (exit_info_1 & IOIO_REP) |
| regs->cx -= exit_info_2; |
| |
| ret = regs->cx ? ES_RETRY : ES_OK; |
| |
| } else { |
| |
| /* IN/OUT into/from rAX */ |
| |
| int bits = (exit_info_1 & 0x70) >> 1; |
| u64 rax = 0; |
| |
| if (!(exit_info_1 & IOIO_TYPE_IN)) |
| rax = lower_bits(regs->ax, bits); |
| |
| ghcb_set_rax(ghcb, rax); |
| |
| ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_IOIO, exit_info_1, 0); |
| if (ret != ES_OK) |
| return ret; |
| |
| if (exit_info_1 & IOIO_TYPE_IN) { |
| if (!ghcb_rax_is_valid(ghcb)) |
| return ES_VMM_ERROR; |
| regs->ax = lower_bits(ghcb->save.rax, bits); |
| } |
| } |
| |
| return ret; |
| } |
| |
| static enum es_result vc_handle_cpuid(struct ghcb *ghcb, |
| struct es_em_ctxt *ctxt) |
| { |
| struct pt_regs *regs = ctxt->regs; |
| u32 cr4 = native_read_cr4(); |
| enum es_result ret; |
| |
| ghcb_set_rax(ghcb, regs->ax); |
| ghcb_set_rcx(ghcb, regs->cx); |
| |
| if (cr4 & X86_CR4_OSXSAVE) |
| /* Safe to read xcr0 */ |
| ghcb_set_xcr0(ghcb, xgetbv(XCR_XFEATURE_ENABLED_MASK)); |
| else |
| /* xgetbv will cause #GP - use reset value for xcr0 */ |
| ghcb_set_xcr0(ghcb, 1); |
| |
| ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_CPUID, 0, 0); |
| if (ret != ES_OK) |
| return ret; |
| |
| if (!(ghcb_rax_is_valid(ghcb) && |
| ghcb_rbx_is_valid(ghcb) && |
| ghcb_rcx_is_valid(ghcb) && |
| ghcb_rdx_is_valid(ghcb))) |
| return ES_VMM_ERROR; |
| |
| regs->ax = ghcb->save.rax; |
| regs->bx = ghcb->save.rbx; |
| regs->cx = ghcb->save.rcx; |
| regs->dx = ghcb->save.rdx; |
| |
| return ES_OK; |
| } |
| |
| static enum es_result vc_handle_rdtsc(struct ghcb *ghcb, |
| struct es_em_ctxt *ctxt, |
| unsigned long exit_code) |
| { |
| bool rdtscp = (exit_code == SVM_EXIT_RDTSCP); |
| enum es_result ret; |
| |
| ret = sev_es_ghcb_hv_call(ghcb, ctxt, exit_code, 0, 0); |
| if (ret != ES_OK) |
| return ret; |
| |
| if (!(ghcb_rax_is_valid(ghcb) && ghcb_rdx_is_valid(ghcb) && |
| (!rdtscp || ghcb_rcx_is_valid(ghcb)))) |
| return ES_VMM_ERROR; |
| |
| ctxt->regs->ax = ghcb->save.rax; |
| ctxt->regs->dx = ghcb->save.rdx; |
| if (rdtscp) |
| ctxt->regs->cx = ghcb->save.rcx; |
| |
| return ES_OK; |
| } |