| /* |
| * hugetlbpage-backed filesystem. Based on ramfs. |
| * |
| * Nadia Yvette Chambers, 2002 |
| * |
| * Copyright (C) 2002 Linus Torvalds. |
| * License: GPL |
| */ |
| |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| |
| #include <linux/thread_info.h> |
| #include <asm/current.h> |
| #include <linux/sched/signal.h> /* remove ASAP */ |
| #include <linux/falloc.h> |
| #include <linux/fs.h> |
| #include <linux/mount.h> |
| #include <linux/file.h> |
| #include <linux/kernel.h> |
| #include <linux/writeback.h> |
| #include <linux/pagemap.h> |
| #include <linux/highmem.h> |
| #include <linux/init.h> |
| #include <linux/string.h> |
| #include <linux/capability.h> |
| #include <linux/ctype.h> |
| #include <linux/backing-dev.h> |
| #include <linux/hugetlb.h> |
| #include <linux/pagevec.h> |
| #include <linux/fs_parser.h> |
| #include <linux/mman.h> |
| #include <linux/slab.h> |
| #include <linux/dnotify.h> |
| #include <linux/statfs.h> |
| #include <linux/security.h> |
| #include <linux/magic.h> |
| #include <linux/migrate.h> |
| #include <linux/uio.h> |
| |
| #include <linux/uaccess.h> |
| #include <linux/sched/mm.h> |
| |
| static const struct super_operations hugetlbfs_ops; |
| static const struct address_space_operations hugetlbfs_aops; |
| const struct file_operations hugetlbfs_file_operations; |
| static const struct inode_operations hugetlbfs_dir_inode_operations; |
| static const struct inode_operations hugetlbfs_inode_operations; |
| |
| enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT }; |
| |
| struct hugetlbfs_fs_context { |
| struct hstate *hstate; |
| unsigned long long max_size_opt; |
| unsigned long long min_size_opt; |
| long max_hpages; |
| long nr_inodes; |
| long min_hpages; |
| enum hugetlbfs_size_type max_val_type; |
| enum hugetlbfs_size_type min_val_type; |
| kuid_t uid; |
| kgid_t gid; |
| umode_t mode; |
| }; |
| |
| int sysctl_hugetlb_shm_group; |
| |
| enum hugetlb_param { |
| Opt_gid, |
| Opt_min_size, |
| Opt_mode, |
| Opt_nr_inodes, |
| Opt_pagesize, |
| Opt_size, |
| Opt_uid, |
| }; |
| |
| static const struct fs_parameter_spec hugetlb_fs_parameters[] = { |
| fsparam_u32 ("gid", Opt_gid), |
| fsparam_string("min_size", Opt_min_size), |
| fsparam_u32oct("mode", Opt_mode), |
| fsparam_string("nr_inodes", Opt_nr_inodes), |
| fsparam_string("pagesize", Opt_pagesize), |
| fsparam_string("size", Opt_size), |
| fsparam_u32 ("uid", Opt_uid), |
| {} |
| }; |
| |
| #ifdef CONFIG_NUMA |
| static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma, |
| struct inode *inode, pgoff_t index) |
| { |
| vma->vm_policy = mpol_shared_policy_lookup(&HUGETLBFS_I(inode)->policy, |
| index); |
| } |
| |
| static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma) |
| { |
| mpol_cond_put(vma->vm_policy); |
| } |
| #else |
| static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma, |
| struct inode *inode, pgoff_t index) |
| { |
| } |
| |
| static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma) |
| { |
| } |
| #endif |
| |
| static void huge_pagevec_release(struct pagevec *pvec) |
| { |
| int i; |
| |
| for (i = 0; i < pagevec_count(pvec); ++i) |
| put_page(pvec->pages[i]); |
| |
| pagevec_reinit(pvec); |
| } |
| |
| /* |
| * Mask used when checking the page offset value passed in via system |
| * calls. This value will be converted to a loff_t which is signed. |
| * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the |
| * value. The extra bit (- 1 in the shift value) is to take the sign |
| * bit into account. |
| */ |
| #define PGOFF_LOFFT_MAX \ |
| (((1UL << (PAGE_SHIFT + 1)) - 1) << (BITS_PER_LONG - (PAGE_SHIFT + 1))) |
| |
| static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma) |
| { |
| struct inode *inode = file_inode(file); |
| struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); |
| loff_t len, vma_len; |
| int ret; |
| struct hstate *h = hstate_file(file); |
| |
| /* |
| * vma address alignment (but not the pgoff alignment) has |
| * already been checked by prepare_hugepage_range. If you add |
| * any error returns here, do so after setting VM_HUGETLB, so |
| * is_vm_hugetlb_page tests below unmap_region go the right |
| * way when do_mmap unwinds (may be important on powerpc |
| * and ia64). |
| */ |
| vma->vm_flags |= VM_HUGETLB | VM_DONTEXPAND; |
| vma->vm_ops = &hugetlb_vm_ops; |
| |
| ret = seal_check_future_write(info->seals, vma); |
| if (ret) |
| return ret; |
| |
| /* |
| * page based offset in vm_pgoff could be sufficiently large to |
| * overflow a loff_t when converted to byte offset. This can |
| * only happen on architectures where sizeof(loff_t) == |
| * sizeof(unsigned long). So, only check in those instances. |
| */ |
| if (sizeof(unsigned long) == sizeof(loff_t)) { |
| if (vma->vm_pgoff & PGOFF_LOFFT_MAX) |
| return -EINVAL; |
| } |
| |
| /* must be huge page aligned */ |
| if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT)) |
| return -EINVAL; |
| |
| vma_len = (loff_t)(vma->vm_end - vma->vm_start); |
| len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT); |
| /* check for overflow */ |
| if (len < vma_len) |
| return -EINVAL; |
| |
| inode_lock(inode); |
| file_accessed(file); |
| |
| ret = -ENOMEM; |
| if (hugetlb_reserve_pages(inode, |
| vma->vm_pgoff >> huge_page_order(h), |
| len >> huge_page_shift(h), vma, |
| vma->vm_flags)) |
| goto out; |
| |
| ret = 0; |
| if (vma->vm_flags & VM_WRITE && inode->i_size < len) |
| i_size_write(inode, len); |
| out: |
| inode_unlock(inode); |
| |
| return ret; |
| } |
| |
| /* |
| * Called under mmap_write_lock(mm). |
| */ |
| |
| #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA |
| static unsigned long |
| hugetlb_get_unmapped_area_bottomup(struct file *file, unsigned long addr, |
| unsigned long len, unsigned long pgoff, unsigned long flags) |
| { |
| struct hstate *h = hstate_file(file); |
| struct vm_unmapped_area_info info; |
| |
| info.flags = 0; |
| info.length = len; |
| info.low_limit = current->mm->mmap_base; |
| info.high_limit = TASK_SIZE; |
| info.align_mask = PAGE_MASK & ~huge_page_mask(h); |
| info.align_offset = 0; |
| return vm_unmapped_area(&info); |
| } |
| |
| static unsigned long |
| hugetlb_get_unmapped_area_topdown(struct file *file, unsigned long addr, |
| unsigned long len, unsigned long pgoff, unsigned long flags) |
| { |
| struct hstate *h = hstate_file(file); |
| struct vm_unmapped_area_info info; |
| |
| info.flags = VM_UNMAPPED_AREA_TOPDOWN; |
| info.length = len; |
| info.low_limit = max(PAGE_SIZE, mmap_min_addr); |
| info.high_limit = current->mm->mmap_base; |
| info.align_mask = PAGE_MASK & ~huge_page_mask(h); |
| info.align_offset = 0; |
| addr = vm_unmapped_area(&info); |
| |
| /* |
| * A failed mmap() very likely causes application failure, |
| * so fall back to the bottom-up function here. This scenario |
| * can happen with large stack limits and large mmap() |
| * allocations. |
| */ |
| if (unlikely(offset_in_page(addr))) { |
| VM_BUG_ON(addr != -ENOMEM); |
| info.flags = 0; |
| info.low_limit = current->mm->mmap_base; |
| info.high_limit = TASK_SIZE; |
| addr = vm_unmapped_area(&info); |
| } |
| |
| return addr; |
| } |
| |
| static unsigned long |
| hugetlb_get_unmapped_area(struct file *file, unsigned long addr, |
| unsigned long len, unsigned long pgoff, unsigned long flags) |
| { |
| struct mm_struct *mm = current->mm; |
| struct vm_area_struct *vma; |
| struct hstate *h = hstate_file(file); |
| |
| if (len & ~huge_page_mask(h)) |
| return -EINVAL; |
| if (len > TASK_SIZE) |
| return -ENOMEM; |
| |
| if (flags & MAP_FIXED) { |
| if (prepare_hugepage_range(file, addr, len)) |
| return -EINVAL; |
| return addr; |
| } |
| |
| if (addr) { |
| addr = ALIGN(addr, huge_page_size(h)); |
| vma = find_vma(mm, addr); |
| if (TASK_SIZE - len >= addr && |
| (!vma || addr + len <= vm_start_gap(vma))) |
| return addr; |
| } |
| |
| /* |
| * Use mm->get_unmapped_area value as a hint to use topdown routine. |
| * If architectures have special needs, they should define their own |
| * version of hugetlb_get_unmapped_area. |
| */ |
| if (mm->get_unmapped_area == arch_get_unmapped_area_topdown) |
| return hugetlb_get_unmapped_area_topdown(file, addr, len, |
| pgoff, flags); |
| return hugetlb_get_unmapped_area_bottomup(file, addr, len, |
| pgoff, flags); |
| } |
| #endif |
| |
| static size_t |
| hugetlbfs_read_actor(struct page *page, unsigned long offset, |
| struct iov_iter *to, unsigned long size) |
| { |
| size_t copied = 0; |
| int i, chunksize; |
| |
| /* Find which 4k chunk and offset with in that chunk */ |
| i = offset >> PAGE_SHIFT; |
| offset = offset & ~PAGE_MASK; |
| |
| while (size) { |
| size_t n; |
| chunksize = PAGE_SIZE; |
| if (offset) |
| chunksize -= offset; |
| if (chunksize > size) |
| chunksize = size; |
| n = copy_page_to_iter(&page[i], offset, chunksize, to); |
| copied += n; |
| if (n != chunksize) |
| return copied; |
| offset = 0; |
| size -= chunksize; |
| i++; |
| } |
| return copied; |
| } |
| |
| /* |
| * Support for read() - Find the page attached to f_mapping and copy out the |
| * data. Its *very* similar to do_generic_mapping_read(), we can't use that |
| * since it has PAGE_SIZE assumptions. |
| */ |
| static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to) |
| { |
| struct file *file = iocb->ki_filp; |
| struct hstate *h = hstate_file(file); |
| struct address_space *mapping = file->f_mapping; |
| struct inode *inode = mapping->host; |
| unsigned long index = iocb->ki_pos >> huge_page_shift(h); |
| unsigned long offset = iocb->ki_pos & ~huge_page_mask(h); |
| unsigned long end_index; |
| loff_t isize; |
| ssize_t retval = 0; |
| |
| while (iov_iter_count(to)) { |
| struct page *page; |
| size_t nr, copied; |
| |
| /* nr is the maximum number of bytes to copy from this page */ |
| nr = huge_page_size(h); |
| isize = i_size_read(inode); |
| if (!isize) |
| break; |
| end_index = (isize - 1) >> huge_page_shift(h); |
| if (index > end_index) |
| break; |
| if (index == end_index) { |
| nr = ((isize - 1) & ~huge_page_mask(h)) + 1; |
| if (nr <= offset) |
| break; |
| } |
| nr = nr - offset; |
| |
| /* Find the page */ |
| page = find_lock_page(mapping, index); |
| if (unlikely(page == NULL)) { |
| /* |
| * We have a HOLE, zero out the user-buffer for the |
| * length of the hole or request. |
| */ |
| copied = iov_iter_zero(nr, to); |
| } else { |
| unlock_page(page); |
| |
| /* |
| * We have the page, copy it to user space buffer. |
| */ |
| copied = hugetlbfs_read_actor(page, offset, to, nr); |
| put_page(page); |
| } |
| offset += copied; |
| retval += copied; |
| if (copied != nr && iov_iter_count(to)) { |
| if (!retval) |
| retval = -EFAULT; |
| break; |
| } |
| index += offset >> huge_page_shift(h); |
| offset &= ~huge_page_mask(h); |
| } |
| iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset; |
| return retval; |
| } |
| |
| static int hugetlbfs_write_begin(struct file *file, |
| struct address_space *mapping, |
| loff_t pos, unsigned len, unsigned flags, |
| struct page **pagep, void **fsdata) |
| { |
| return -EINVAL; |
| } |
| |
| static int hugetlbfs_write_end(struct file *file, struct address_space *mapping, |
| loff_t pos, unsigned len, unsigned copied, |
| struct page *page, void *fsdata) |
| { |
| BUG(); |
| return -EINVAL; |
| } |
| |
| static void remove_huge_page(struct page *page) |
| { |
| ClearPageDirty(page); |
| ClearPageUptodate(page); |
| delete_from_page_cache(page); |
| } |
| |
| static void |
| hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end) |
| { |
| struct vm_area_struct *vma; |
| |
| /* |
| * end == 0 indicates that the entire range after |
| * start should be unmapped. |
| */ |
| vma_interval_tree_foreach(vma, root, start, end ? end : ULONG_MAX) { |
| unsigned long v_offset; |
| unsigned long v_end; |
| |
| /* |
| * Can the expression below overflow on 32-bit arches? |
| * No, because the interval tree returns us only those vmas |
| * which overlap the truncated area starting at pgoff, |
| * and no vma on a 32-bit arch can span beyond the 4GB. |
| */ |
| if (vma->vm_pgoff < start) |
| v_offset = (start - vma->vm_pgoff) << PAGE_SHIFT; |
| else |
| v_offset = 0; |
| |
| if (!end) |
| v_end = vma->vm_end; |
| else { |
| v_end = ((end - vma->vm_pgoff) << PAGE_SHIFT) |
| + vma->vm_start; |
| if (v_end > vma->vm_end) |
| v_end = vma->vm_end; |
| } |
| |
| unmap_hugepage_range(vma, vma->vm_start + v_offset, v_end, |
| NULL); |
| } |
| } |
| |
| /* |
| * remove_inode_hugepages handles two distinct cases: truncation and hole |
| * punch. There are subtle differences in operation for each case. |
| * |
| * truncation is indicated by end of range being LLONG_MAX |
| * In this case, we first scan the range and release found pages. |
| * After releasing pages, hugetlb_unreserve_pages cleans up region/reserv |
| * maps and global counts. Page faults can not race with truncation |
| * in this routine. hugetlb_no_page() holds i_mmap_rwsem and prevents |
| * page faults in the truncated range by checking i_size. i_size is |
| * modified while holding i_mmap_rwsem. |
| * hole punch is indicated if end is not LLONG_MAX |
| * In the hole punch case we scan the range and release found pages. |
| * Only when releasing a page is the associated region/reserv map |
| * deleted. The region/reserv map for ranges without associated |
| * pages are not modified. Page faults can race with hole punch. |
| * This is indicated if we find a mapped page. |
| * Note: If the passed end of range value is beyond the end of file, but |
| * not LLONG_MAX this routine still performs a hole punch operation. |
| */ |
| static void remove_inode_hugepages(struct inode *inode, loff_t lstart, |
| loff_t lend) |
| { |
| struct hstate *h = hstate_inode(inode); |
| struct address_space *mapping = &inode->i_data; |
| const pgoff_t start = lstart >> huge_page_shift(h); |
| const pgoff_t end = lend >> huge_page_shift(h); |
| struct vm_area_struct pseudo_vma; |
| struct pagevec pvec; |
| pgoff_t next, index; |
| int i, freed = 0; |
| bool truncate_op = (lend == LLONG_MAX); |
| |
| vma_init(&pseudo_vma, current->mm); |
| pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED); |
| pagevec_init(&pvec); |
| next = start; |
| while (next < end) { |
| /* |
| * When no more pages are found, we are done. |
| */ |
| if (!pagevec_lookup_range(&pvec, mapping, &next, end - 1)) |
| break; |
| |
| for (i = 0; i < pagevec_count(&pvec); ++i) { |
| struct page *page = pvec.pages[i]; |
| u32 hash; |
| |
| index = page->index; |
| hash = hugetlb_fault_mutex_hash(mapping, index); |
| if (!truncate_op) { |
| /* |
| * Only need to hold the fault mutex in the |
| * hole punch case. This prevents races with |
| * page faults. Races are not possible in the |
| * case of truncation. |
| */ |
| mutex_lock(&hugetlb_fault_mutex_table[hash]); |
| } |
| |
| /* |
| * If page is mapped, it was faulted in after being |
| * unmapped in caller. Unmap (again) now after taking |
| * the fault mutex. The mutex will prevent faults |
| * until we finish removing the page. |
| * |
| * This race can only happen in the hole punch case. |
| * Getting here in a truncate operation is a bug. |
| */ |
| if (unlikely(page_mapped(page))) { |
| BUG_ON(truncate_op); |
| |
| mutex_unlock(&hugetlb_fault_mutex_table[hash]); |
| i_mmap_lock_write(mapping); |
| mutex_lock(&hugetlb_fault_mutex_table[hash]); |
| hugetlb_vmdelete_list(&mapping->i_mmap, |
| index * pages_per_huge_page(h), |
| (index + 1) * pages_per_huge_page(h)); |
| i_mmap_unlock_write(mapping); |
| } |
| |
| lock_page(page); |
| /* |
| * We must free the huge page and remove from page |
| * cache (remove_huge_page) BEFORE removing the |
| * region/reserve map (hugetlb_unreserve_pages). In |
| * rare out of memory conditions, removal of the |
| * region/reserve map could fail. Correspondingly, |
| * the subpool and global reserve usage count can need |
| * to be adjusted. |
| */ |
| VM_BUG_ON(PagePrivate(page)); |
| remove_huge_page(page); |
| freed++; |
| if (!truncate_op) { |
| if (unlikely(hugetlb_unreserve_pages(inode, |
| index, index + 1, 1))) |
| hugetlb_fix_reserve_counts(inode); |
| } |
| |
| unlock_page(page); |
| if (!truncate_op) |
| mutex_unlock(&hugetlb_fault_mutex_table[hash]); |
| } |
| huge_pagevec_release(&pvec); |
| cond_resched(); |
| } |
| |
| if (truncate_op) |
| (void)hugetlb_unreserve_pages(inode, start, LONG_MAX, freed); |
| } |
| |
| static void hugetlbfs_evict_inode(struct inode *inode) |
| { |
| struct resv_map *resv_map; |
| |
| remove_inode_hugepages(inode, 0, LLONG_MAX); |
| |
| /* |
| * Get the resv_map from the address space embedded in the inode. |
| * This is the address space which points to any resv_map allocated |
| * at inode creation time. If this is a device special inode, |
| * i_mapping may not point to the original address space. |
| */ |
| resv_map = (struct resv_map *)(&inode->i_data)->private_data; |
| /* Only regular and link inodes have associated reserve maps */ |
| if (resv_map) |
| resv_map_release(&resv_map->refs); |
| clear_inode(inode); |
| } |
| |
| static int hugetlb_vmtruncate(struct inode *inode, loff_t offset) |
| { |
| pgoff_t pgoff; |
| struct address_space *mapping = inode->i_mapping; |
| struct hstate *h = hstate_inode(inode); |
| |
| BUG_ON(offset & ~huge_page_mask(h)); |
| pgoff = offset >> PAGE_SHIFT; |
| |
| i_mmap_lock_write(mapping); |
| i_size_write(inode, offset); |
| if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)) |
| hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0); |
| i_mmap_unlock_write(mapping); |
| remove_inode_hugepages(inode, offset, LLONG_MAX); |
| return 0; |
| } |
| |
| static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len) |
| { |
| struct hstate *h = hstate_inode(inode); |
| loff_t hpage_size = huge_page_size(h); |
| loff_t hole_start, hole_end; |
| |
| /* |
| * For hole punch round up the beginning offset of the hole and |
| * round down the end. |
| */ |
| hole_start = round_up(offset, hpage_size); |
| hole_end = round_down(offset + len, hpage_size); |
| |
| if (hole_end > hole_start) { |
| struct address_space *mapping = inode->i_mapping; |
| struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); |
| |
| inode_lock(inode); |
| |
| /* protected by i_mutex */ |
| if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { |
| inode_unlock(inode); |
| return -EPERM; |
| } |
| |
| i_mmap_lock_write(mapping); |
| if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)) |
| hugetlb_vmdelete_list(&mapping->i_mmap, |
| hole_start >> PAGE_SHIFT, |
| hole_end >> PAGE_SHIFT); |
| i_mmap_unlock_write(mapping); |
| remove_inode_hugepages(inode, hole_start, hole_end); |
| inode_unlock(inode); |
| } |
| |
| return 0; |
| } |
| |
| static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset, |
| loff_t len) |
| { |
| struct inode *inode = file_inode(file); |
| struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); |
| struct address_space *mapping = inode->i_mapping; |
| struct hstate *h = hstate_inode(inode); |
| struct vm_area_struct pseudo_vma; |
| struct mm_struct *mm = current->mm; |
| loff_t hpage_size = huge_page_size(h); |
| unsigned long hpage_shift = huge_page_shift(h); |
| pgoff_t start, index, end; |
| int error; |
| u32 hash; |
| |
| if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) |
| return -EOPNOTSUPP; |
| |
| if (mode & FALLOC_FL_PUNCH_HOLE) |
| return hugetlbfs_punch_hole(inode, offset, len); |
| |
| /* |
| * Default preallocate case. |
| * For this range, start is rounded down and end is rounded up |
| * as well as being converted to page offsets. |
| */ |
| start = offset >> hpage_shift; |
| end = (offset + len + hpage_size - 1) >> hpage_shift; |
| |
| inode_lock(inode); |
| |
| /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ |
| error = inode_newsize_ok(inode, offset + len); |
| if (error) |
| goto out; |
| |
| if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { |
| error = -EPERM; |
| goto out; |
| } |
| |
| /* |
| * Initialize a pseudo vma as this is required by the huge page |
| * allocation routines. If NUMA is configured, use page index |
| * as input to create an allocation policy. |
| */ |
| vma_init(&pseudo_vma, mm); |
| pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED); |
| pseudo_vma.vm_file = file; |
| |
| for (index = start; index < end; index++) { |
| /* |
| * This is supposed to be the vaddr where the page is being |
| * faulted in, but we have no vaddr here. |
| */ |
| struct page *page; |
| unsigned long addr; |
| int avoid_reserve = 0; |
| |
| cond_resched(); |
| |
| /* |
| * fallocate(2) manpage permits EINTR; we may have been |
| * interrupted because we are using up too much memory. |
| */ |
| if (signal_pending(current)) { |
| error = -EINTR; |
| break; |
| } |
| |
| /* Set numa allocation policy based on index */ |
| hugetlb_set_vma_policy(&pseudo_vma, inode, index); |
| |
| /* addr is the offset within the file (zero based) */ |
| addr = index * hpage_size; |
| |
| /* |
| * fault mutex taken here, protects against fault path |
| * and hole punch. inode_lock previously taken protects |
| * against truncation. |
| */ |
| hash = hugetlb_fault_mutex_hash(mapping, index); |
| mutex_lock(&hugetlb_fault_mutex_table[hash]); |
| |
| /* See if already present in mapping to avoid alloc/free */ |
| page = find_get_page(mapping, index); |
| if (page) { |
| put_page(page); |
| mutex_unlock(&hugetlb_fault_mutex_table[hash]); |
| hugetlb_drop_vma_policy(&pseudo_vma); |
| continue; |
| } |
| |
| /* Allocate page and add to page cache */ |
| page = alloc_huge_page(&pseudo_vma, addr, avoid_reserve); |
| hugetlb_drop_vma_policy(&pseudo_vma); |
| if (IS_ERR(page)) { |
| mutex_unlock(&hugetlb_fault_mutex_table[hash]); |
| error = PTR_ERR(page); |
| goto out; |
| } |
| clear_huge_page(page, addr, pages_per_huge_page(h)); |
| __SetPageUptodate(page); |
| error = huge_add_to_page_cache(page, mapping, index); |
| if (unlikely(error)) { |
| put_page(page); |
| mutex_unlock(&hugetlb_fault_mutex_table[hash]); |
| goto out; |
| } |
| |
| mutex_unlock(&hugetlb_fault_mutex_table[hash]); |
| |
| set_page_huge_active(page); |
| /* |
| * unlock_page because locked by add_to_page_cache() |
| * put_page() due to reference from alloc_huge_page() |
| */ |
| unlock_page(page); |
| put_page(page); |
| } |
| |
| if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) |
| i_size_write(inode, offset + len); |
| inode->i_ctime = current_time(inode); |
| out: |
| inode_unlock(inode); |
| return error; |
| } |
| |
| static int hugetlbfs_setattr(struct dentry *dentry, struct iattr *attr) |
| { |
| struct inode *inode = d_inode(dentry); |
| struct hstate *h = hstate_inode(inode); |
| int error; |
| unsigned int ia_valid = attr->ia_valid; |
| struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); |
| |
| BUG_ON(!inode); |
| |
| error = setattr_prepare(dentry, attr); |
| if (error) |
| return error; |
| |
| if (ia_valid & ATTR_SIZE) { |
| loff_t oldsize = inode->i_size; |
| loff_t newsize = attr->ia_size; |
| |
| if (newsize & ~huge_page_mask(h)) |
| return -EINVAL; |
| /* protected by i_mutex */ |
| if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || |
| (newsize > oldsize && (info->seals & F_SEAL_GROW))) |
| return -EPERM; |
| error = hugetlb_vmtruncate(inode, newsize); |
| if (error) |
| return error; |
| } |
| |
| setattr_copy(inode, attr); |
| mark_inode_dirty(inode); |
| return 0; |
| } |
| |
| static struct inode *hugetlbfs_get_root(struct super_block *sb, |
| struct hugetlbfs_fs_context *ctx) |
| { |
| struct inode *inode; |
| |
| inode = new_inode(sb); |
| if (inode) { |
| inode->i_ino = get_next_ino(); |
| inode->i_mode = S_IFDIR | ctx->mode; |
| inode->i_uid = ctx->uid; |
| inode->i_gid = ctx->gid; |
| inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); |
| inode->i_op = &hugetlbfs_dir_inode_operations; |
| inode->i_fop = &simple_dir_operations; |
| /* directory inodes start off with i_nlink == 2 (for "." entry) */ |
| inc_nlink(inode); |
| lockdep_annotate_inode_mutex_key(inode); |
| } |
| return inode; |
| } |
| |
| /* |
| * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never |
| * be taken from reclaim -- unlike regular filesystems. This needs an |
| * annotation because huge_pmd_share() does an allocation under hugetlb's |
| * i_mmap_rwsem. |
| */ |
| static struct lock_class_key hugetlbfs_i_mmap_rwsem_key; |
| |
| static struct inode *hugetlbfs_get_inode(struct super_block *sb, |
| struct inode *dir, |
| umode_t mode, dev_t dev) |
| { |
| struct inode *inode; |
| struct resv_map *resv_map = NULL; |
| |
| /* |
| * Reserve maps are only needed for inodes that can have associated |
| * page allocations. |
| */ |
| if (S_ISREG(mode) || S_ISLNK(mode)) { |
| resv_map = resv_map_alloc(); |
| if (!resv_map) |
| return NULL; |
| } |
| |
| inode = new_inode(sb); |
| if (inode) { |
| struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); |
| |
| inode->i_ino = get_next_ino(); |
| inode_init_owner(inode, dir, mode); |
| lockdep_set_class(&inode->i_mapping->i_mmap_rwsem, |
| &hugetlbfs_i_mmap_rwsem_key); |
| inode->i_mapping->a_ops = &hugetlbfs_aops; |
| inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); |
| inode->i_mapping->private_data = resv_map; |
| info->seals = F_SEAL_SEAL; |
| switch (mode & S_IFMT) { |
| default: |
| init_special_inode(inode, mode, dev); |
| break; |
| case S_IFREG: |
| inode->i_op = &hugetlbfs_inode_operations; |
| inode->i_fop = &hugetlbfs_file_operations; |
| break; |
| case S_IFDIR: |
| inode->i_op = &hugetlbfs_dir_inode_operations; |
| inode->i_fop = &simple_dir_operations; |
| |
| /* directory inodes start off with i_nlink == 2 (for "." entry) */ |
| inc_nlink(inode); |
| break; |
| case S_IFLNK: |
| inode->i_op = &page_symlink_inode_operations; |
| inode_nohighmem(inode); |
| break; |
| } |
| lockdep_annotate_inode_mutex_key(inode); |
| } else { |
| if (resv_map) |
| kref_put(&resv_map->refs, resv_map_release); |
| } |
| |
| return inode; |
| } |
| |
| /* |
| * File creation. Allocate an inode, and we're done.. |
| */ |
| static int do_hugetlbfs_mknod(struct inode *dir, |
| struct dentry *dentry, |
| umode_t mode, |
| dev_t dev, |
| bool tmpfile) |
| { |
| struct inode *inode; |
| int error = -ENOSPC; |
| |
| inode = hugetlbfs_get_inode(dir->i_sb, dir, mode, dev); |
| if (inode) { |
| dir->i_ctime = dir->i_mtime = current_time(dir); |
| if (tmpfile) { |
| d_tmpfile(dentry, inode); |
| } else { |
| d_instantiate(dentry, inode); |
| dget(dentry);/* Extra count - pin the dentry in core */ |
| } |
| error = 0; |
| } |
| return error; |
| } |
| |
| static int hugetlbfs_mknod(struct inode *dir, |
| struct dentry *dentry, umode_t mode, dev_t dev) |
| { |
| return do_hugetlbfs_mknod(dir, dentry, mode, dev, false); |
| } |
| |
| static int hugetlbfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) |
| { |
| int retval = hugetlbfs_mknod(dir, dentry, mode | S_IFDIR, 0); |
| if (!retval) |
| inc_nlink(dir); |
| return retval; |
| } |
| |
| static int hugetlbfs_create(struct inode *dir, struct dentry *dentry, umode_t mode, bool excl) |
| { |
| return hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0); |
| } |
| |
| static int hugetlbfs_tmpfile(struct inode *dir, |
| struct dentry *dentry, umode_t mode) |
| { |
| return do_hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0, true); |
| } |
| |
| static int hugetlbfs_symlink(struct inode *dir, |
| struct dentry *dentry, const char *symname) |
| { |
| struct inode *inode; |
| int error = -ENOSPC; |
| |
| inode = hugetlbfs_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0); |
| if (inode) { |
| int l = strlen(symname)+1; |
| error = page_symlink(inode, symname, l); |
| if (!error) { |
| d_instantiate(dentry, inode); |
| dget(dentry); |
| } else |
| iput(inode); |
| } |
| dir->i_ctime = dir->i_mtime = current_time(dir); |
| |
| return error; |
| } |
| |
| /* |
| * mark the head page dirty |
| */ |
| static int hugetlbfs_set_page_dirty(struct page *page) |
| { |
| struct page *head = compound_head(page); |
| |
| SetPageDirty(head); |
| return 0; |
| } |
| |
| static int hugetlbfs_migrate_page(struct address_space *mapping, |
| struct page *newpage, struct page *page, |
| enum migrate_mode mode) |
| { |
| int rc; |
| |
| rc = migrate_huge_page_move_mapping(mapping, newpage, page); |
| if (rc != MIGRATEPAGE_SUCCESS) |
| return rc; |
| |
| /* |
| * page_private is subpool pointer in hugetlb pages. Transfer to |
| * new page. PagePrivate is not associated with page_private for |
| * hugetlb pages and can not be set here as only page_huge_active |
| * pages can be migrated. |
| */ |
| if (page_private(page)) { |
| set_page_private(newpage, page_private(page)); |
| set_page_private(page, 0); |
| } |
| |
| if (mode != MIGRATE_SYNC_NO_COPY) |
| migrate_page_copy(newpage, page); |
| else |
| migrate_page_states(newpage, page); |
| |
| return MIGRATEPAGE_SUCCESS; |
| } |
| |
| static int hugetlbfs_error_remove_page(struct address_space *mapping, |
| struct page *page) |
| { |
| struct inode *inode = mapping->host; |
| pgoff_t index = page->index; |
| |
| remove_huge_page(page); |
| if (unlikely(hugetlb_unreserve_pages(inode, index, index + 1, 1))) |
| hugetlb_fix_reserve_counts(inode); |
| |
| return 0; |
| } |
| |
| /* |
| * Display the mount options in /proc/mounts. |
| */ |
| static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root) |
| { |
| struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb); |
| struct hugepage_subpool *spool = sbinfo->spool; |
| unsigned long hpage_size = huge_page_size(sbinfo->hstate); |
| unsigned hpage_shift = huge_page_shift(sbinfo->hstate); |
| char mod; |
| |
| if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) |
| seq_printf(m, ",uid=%u", |
| from_kuid_munged(&init_user_ns, sbinfo->uid)); |
| if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) |
| seq_printf(m, ",gid=%u", |
| from_kgid_munged(&init_user_ns, sbinfo->gid)); |
| if (sbinfo->mode != 0755) |
| seq_printf(m, ",mode=%o", sbinfo->mode); |
| if (sbinfo->max_inodes != -1) |
| seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes); |
| |
| hpage_size /= 1024; |
| mod = 'K'; |
| if (hpage_size >= 1024) { |
| hpage_size /= 1024; |
| mod = 'M'; |
| } |
| seq_printf(m, ",pagesize=%lu%c", hpage_size, mod); |
| if (spool) { |
| if (spool->max_hpages != -1) |
| seq_printf(m, ",size=%llu", |
| (unsigned long long)spool->max_hpages << hpage_shift); |
| if (spool->min_hpages != -1) |
| seq_printf(m, ",min_size=%llu", |
| (unsigned long long)spool->min_hpages << hpage_shift); |
| } |
| return 0; |
| } |
| |
| static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf) |
| { |
| struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb); |
| struct hstate *h = hstate_inode(d_inode(dentry)); |
| |
| buf->f_type = HUGETLBFS_MAGIC; |
| buf->f_bsize = huge_page_size(h); |
| if (sbinfo) { |
| spin_lock(&sbinfo->stat_lock); |
| /* If no limits set, just report 0 for max/free/used |
| * blocks, like simple_statfs() */ |
| if (sbinfo->spool) { |
| long free_pages; |
| |
| spin_lock(&sbinfo->spool->lock); |
| buf->f_blocks = sbinfo->spool->max_hpages; |
| free_pages = sbinfo->spool->max_hpages |
| - sbinfo->spool->used_hpages; |
| buf->f_bavail = buf->f_bfree = free_pages; |
| spin_unlock(&sbinfo->spool->lock); |
| buf->f_files = sbinfo->max_inodes; |
| buf->f_ffree = sbinfo->free_inodes; |
| } |
| spin_unlock(&sbinfo->stat_lock); |
| } |
| buf->f_namelen = NAME_MAX; |
| return 0; |
| } |
| |
| static void hugetlbfs_put_super(struct super_block *sb) |
| { |
| struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb); |
| |
| if (sbi) { |
| sb->s_fs_info = NULL; |
| |
| if (sbi->spool) |
| hugepage_put_subpool(sbi->spool); |
| |
| kfree(sbi); |
| } |
| } |
| |
| static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo) |
| { |
| if (sbinfo->free_inodes >= 0) { |
| spin_lock(&sbinfo->stat_lock); |
| if (unlikely(!sbinfo->free_inodes)) { |
| spin_unlock(&sbinfo->stat_lock); |
| return 0; |
| } |
| sbinfo->free_inodes--; |
| spin_unlock(&sbinfo->stat_lock); |
| } |
| |
| return 1; |
| } |
| |
| static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo) |
| { |
| if (sbinfo->free_inodes >= 0) { |
| spin_lock(&sbinfo->stat_lock); |
| sbinfo->free_inodes++; |
| spin_unlock(&sbinfo->stat_lock); |
| } |
| } |
| |
| |
| static struct kmem_cache *hugetlbfs_inode_cachep; |
| |
| static struct inode *hugetlbfs_alloc_inode(struct super_block *sb) |
| { |
| struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb); |
| struct hugetlbfs_inode_info *p; |
| |
| if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo))) |
| return NULL; |
| p = kmem_cache_alloc(hugetlbfs_inode_cachep, GFP_KERNEL); |
| if (unlikely(!p)) { |
| hugetlbfs_inc_free_inodes(sbinfo); |
| return NULL; |
| } |
| |
| /* |
| * Any time after allocation, hugetlbfs_destroy_inode can be called |
| * for the inode. mpol_free_shared_policy is unconditionally called |
| * as part of hugetlbfs_destroy_inode. So, initialize policy here |
| * in case of a quick call to destroy. |
| * |
| * Note that the policy is initialized even if we are creating a |
| * private inode. This simplifies hugetlbfs_destroy_inode. |
| */ |
| mpol_shared_policy_init(&p->policy, NULL); |
| |
| return &p->vfs_inode; |
| } |
| |
| static void hugetlbfs_free_inode(struct inode *inode) |
| { |
| kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode)); |
| } |
| |
| static void hugetlbfs_destroy_inode(struct inode *inode) |
| { |
| hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb)); |
| mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy); |
| } |
| |
| static const struct address_space_operations hugetlbfs_aops = { |
| .write_begin = hugetlbfs_write_begin, |
| .write_end = hugetlbfs_write_end, |
| .set_page_dirty = hugetlbfs_set_page_dirty, |
| .migratepage = hugetlbfs_migrate_page, |
| .error_remove_page = hugetlbfs_error_remove_page, |
| }; |
| |
| |
| static void init_once(void *foo) |
| { |
| struct hugetlbfs_inode_info *ei = (struct hugetlbfs_inode_info *)foo; |
| |
| inode_init_once(&ei->vfs_inode); |
| } |
| |
| const struct file_operations hugetlbfs_file_operations = { |
| .read_iter = hugetlbfs_read_iter, |
| .mmap = hugetlbfs_file_mmap, |
| .fsync = noop_fsync, |
| .get_unmapped_area = hugetlb_get_unmapped_area, |
| .llseek = default_llseek, |
| .fallocate = hugetlbfs_fallocate, |
| }; |
| |
| static const struct inode_operations hugetlbfs_dir_inode_operations = { |
| .create = hugetlbfs_create, |
| .lookup = simple_lookup, |
| .link = simple_link, |
| .unlink = simple_unlink, |
| .symlink = hugetlbfs_symlink, |
| .mkdir = hugetlbfs_mkdir, |
| .rmdir = simple_rmdir, |
| .mknod = hugetlbfs_mknod, |
| .rename = simple_rename, |
| .setattr = hugetlbfs_setattr, |
| .tmpfile = hugetlbfs_tmpfile, |
| }; |
| |
| static const struct inode_operations hugetlbfs_inode_operations = { |
| .setattr = hugetlbfs_setattr, |
| }; |
| |
| static const struct super_operations hugetlbfs_ops = { |
| .alloc_inode = hugetlbfs_alloc_inode, |
| .free_inode = hugetlbfs_free_inode, |
| .destroy_inode = hugetlbfs_destroy_inode, |
| .evict_inode = hugetlbfs_evict_inode, |
| .statfs = hugetlbfs_statfs, |
| .put_super = hugetlbfs_put_super, |
| .show_options = hugetlbfs_show_options, |
| }; |
| |
| /* |
| * Convert size option passed from command line to number of huge pages |
| * in the pool specified by hstate. Size option could be in bytes |
| * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT). |
| */ |
| static long |
| hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt, |
| enum hugetlbfs_size_type val_type) |
| { |
| if (val_type == NO_SIZE) |
| return -1; |
| |
| if (val_type == SIZE_PERCENT) { |
| size_opt <<= huge_page_shift(h); |
| size_opt *= h->max_huge_pages; |
| do_div(size_opt, 100); |
| } |
| |
| size_opt >>= huge_page_shift(h); |
| return size_opt; |
| } |
| |
| /* |
| * Parse one mount parameter. |
| */ |
| static int hugetlbfs_parse_param(struct fs_context *fc, struct fs_parameter *param) |
| { |
| struct hugetlbfs_fs_context *ctx = fc->fs_private; |
| struct fs_parse_result result; |
| char *rest; |
| unsigned long ps; |
| int opt; |
| |
| opt = fs_parse(fc, hugetlb_fs_parameters, param, &result); |
| if (opt < 0) |
| return opt; |
| |
| switch (opt) { |
| case Opt_uid: |
| ctx->uid = make_kuid(current_user_ns(), result.uint_32); |
| if (!uid_valid(ctx->uid)) |
| goto bad_val; |
| return 0; |
| |
| case Opt_gid: |
| ctx->gid = make_kgid(current_user_ns(), result.uint_32); |
| if (!gid_valid(ctx->gid)) |
| goto bad_val; |
| return 0; |
| |
| case Opt_mode: |
| ctx->mode = result.uint_32 & 01777U; |
| return 0; |
| |
| case Opt_size: |
| /* memparse() will accept a K/M/G without a digit */ |
| if (!isdigit(param->string[0])) |
| goto bad_val; |
| ctx->max_size_opt = memparse(param->string, &rest); |
| ctx->max_val_type = SIZE_STD; |
| if (*rest == '%') |
| ctx->max_val_type = SIZE_PERCENT; |
| return 0; |
| |
| case Opt_nr_inodes: |
| /* memparse() will accept a K/M/G without a digit */ |
| if (!isdigit(param->string[0])) |
| goto bad_val; |
| ctx->nr_inodes = memparse(param->string, &rest); |
| return 0; |
| |
| case Opt_pagesize: |
| ps = memparse(param->string, &rest); |
| ctx->hstate = size_to_hstate(ps); |
| if (!ctx->hstate) { |
| pr_err("Unsupported page size %lu MB\n", ps >> 20); |
| return -EINVAL; |
| } |
| return 0; |
| |
| case Opt_min_size: |
| /* memparse() will accept a K/M/G without a digit */ |
| if (!isdigit(param->string[0])) |
| goto bad_val; |
| ctx->min_size_opt = memparse(param->string, &rest); |
| ctx->min_val_type = SIZE_STD; |
| if (*rest == '%') |
| ctx->min_val_type = SIZE_PERCENT; |
| return 0; |
| |
| default: |
| return -EINVAL; |
| } |
| |
| bad_val: |
| return invalfc(fc, "Bad value '%s' for mount option '%s'\n", |
| param->string, param->key); |
| } |
| |
| /* |
| * Validate the parsed options. |
| */ |
| static int hugetlbfs_validate(struct fs_context *fc) |
| { |
| struct hugetlbfs_fs_context *ctx = fc->fs_private; |
| |
| /* |
| * Use huge page pool size (in hstate) to convert the size |
| * options to number of huge pages. If NO_SIZE, -1 is returned. |
| */ |
| ctx->max_hpages = hugetlbfs_size_to_hpages(ctx->hstate, |
| ctx->max_size_opt, |
| ctx->max_val_type); |
| ctx->min_hpages = hugetlbfs_size_to_hpages(ctx->hstate, |
| ctx->min_size_opt, |
| ctx->min_val_type); |
| |
| /* |
| * If max_size was specified, then min_size must be smaller |
| */ |
| if (ctx->max_val_type > NO_SIZE && |
| ctx->min_hpages > ctx->max_hpages) { |
| pr_err("Minimum size can not be greater than maximum size\n"); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static int |
| hugetlbfs_fill_super(struct super_block *sb, struct fs_context *fc) |
| { |
| struct hugetlbfs_fs_context *ctx = fc->fs_private; |
| struct hugetlbfs_sb_info *sbinfo; |
| |
| sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL); |
| if (!sbinfo) |
| return -ENOMEM; |
| sb->s_fs_info = sbinfo; |
| spin_lock_init(&sbinfo->stat_lock); |
| sbinfo->hstate = ctx->hstate; |
| sbinfo->max_inodes = ctx->nr_inodes; |
| sbinfo->free_inodes = ctx->nr_inodes; |
| sbinfo->spool = NULL; |
| sbinfo->uid = ctx->uid; |
| sbinfo->gid = ctx->gid; |
| sbinfo->mode = ctx->mode; |
| |
| /* |
| * Allocate and initialize subpool if maximum or minimum size is |
| * specified. Any needed reservations (for minimim size) are taken |
| * taken when the subpool is created. |
| */ |
| if (ctx->max_hpages != -1 || ctx->min_hpages != -1) { |
| sbinfo->spool = hugepage_new_subpool(ctx->hstate, |
| ctx->max_hpages, |
| ctx->min_hpages); |
| if (!sbinfo->spool) |
| goto out_free; |
| } |
| sb->s_maxbytes = MAX_LFS_FILESIZE; |
| sb->s_blocksize = huge_page_size(ctx->hstate); |
| sb->s_blocksize_bits = huge_page_shift(ctx->hstate); |
| sb->s_magic = HUGETLBFS_MAGIC; |
| sb->s_op = &hugetlbfs_ops; |
| sb->s_time_gran = 1; |
| |
| /* |
| * Due to the special and limited functionality of hugetlbfs, it does |
| * not work well as a stacking filesystem. |
| */ |
| sb->s_stack_depth = FILESYSTEM_MAX_STACK_DEPTH; |
| sb->s_root = d_make_root(hugetlbfs_get_root(sb, ctx)); |
| if (!sb->s_root) |
| goto out_free; |
| return 0; |
| out_free: |
| kfree(sbinfo->spool); |
| kfree(sbinfo); |
| return -ENOMEM; |
| } |
| |
| static int hugetlbfs_get_tree(struct fs_context *fc) |
| { |
| int err = hugetlbfs_validate(fc); |
| if (err) |
| return err; |
| return get_tree_nodev(fc, hugetlbfs_fill_super); |
| } |
| |
| static void hugetlbfs_fs_context_free(struct fs_context *fc) |
| { |
| kfree(fc->fs_private); |
| } |
| |
| static const struct fs_context_operations hugetlbfs_fs_context_ops = { |
| .free = hugetlbfs_fs_context_free, |
| .parse_param = hugetlbfs_parse_param, |
| .get_tree = hugetlbfs_get_tree, |
| }; |
| |
| static int hugetlbfs_init_fs_context(struct fs_context *fc) |
| { |
| struct hugetlbfs_fs_context *ctx; |
| |
| ctx = kzalloc(sizeof(struct hugetlbfs_fs_context), GFP_KERNEL); |
| if (!ctx) |
| return -ENOMEM; |
| |
| ctx->max_hpages = -1; /* No limit on size by default */ |
| ctx->nr_inodes = -1; /* No limit on number of inodes by default */ |
| ctx->uid = current_fsuid(); |
| ctx->gid = current_fsgid(); |
| ctx->mode = 0755; |
| ctx->hstate = &default_hstate; |
| ctx->min_hpages = -1; /* No default minimum size */ |
| ctx->max_val_type = NO_SIZE; |
| ctx->min_val_type = NO_SIZE; |
| fc->fs_private = ctx; |
| fc->ops = &hugetlbfs_fs_context_ops; |
| return 0; |
| } |
| |
| static struct file_system_type hugetlbfs_fs_type = { |
| .name = "hugetlbfs", |
| .init_fs_context = hugetlbfs_init_fs_context, |
| .parameters = hugetlb_fs_parameters, |
| .kill_sb = kill_litter_super, |
| }; |
| |
| static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE]; |
| |
| static int can_do_hugetlb_shm(void) |
| { |
| kgid_t shm_group; |
| shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group); |
| return capable(CAP_IPC_LOCK) || in_group_p(shm_group); |
| } |
| |
| static int get_hstate_idx(int page_size_log) |
| { |
| struct hstate *h = hstate_sizelog(page_size_log); |
| |
| if (!h) |
| return -1; |
| return h - hstates; |
| } |
| |
| /* |
| * Note that size should be aligned to proper hugepage size in caller side, |
| * otherwise hugetlb_reserve_pages reserves one less hugepages than intended. |
| */ |
| struct file *hugetlb_file_setup(const char *name, size_t size, |
| vm_flags_t acctflag, struct user_struct **user, |
| int creat_flags, int page_size_log) |
| { |
| struct inode *inode; |
| struct vfsmount *mnt; |
| int hstate_idx; |
| struct file *file; |
| |
| hstate_idx = get_hstate_idx(page_size_log); |
| if (hstate_idx < 0) |
| return ERR_PTR(-ENODEV); |
| |
| *user = NULL; |
| mnt = hugetlbfs_vfsmount[hstate_idx]; |
| if (!mnt) |
| return ERR_PTR(-ENOENT); |
| |
| if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) { |
| *user = current_user(); |
| if (user_shm_lock(size, *user)) { |
| task_lock(current); |
| pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is deprecated\n", |
| current->comm, current->pid); |
| task_unlock(current); |
| } else { |
| *user = NULL; |
| return ERR_PTR(-EPERM); |
| } |
| } |
| |
| file = ERR_PTR(-ENOSPC); |
| inode = hugetlbfs_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0); |
| if (!inode) |
| goto out; |
| if (creat_flags == HUGETLB_SHMFS_INODE) |
| inode->i_flags |= S_PRIVATE; |
| |
| inode->i_size = size; |
| clear_nlink(inode); |
| |
| if (hugetlb_reserve_pages(inode, 0, |
| size >> huge_page_shift(hstate_inode(inode)), NULL, |
| acctflag)) |
| file = ERR_PTR(-ENOMEM); |
| else |
| file = alloc_file_pseudo(inode, mnt, name, O_RDWR, |
| &hugetlbfs_file_operations); |
| if (!IS_ERR(file)) |
| return file; |
| |
| iput(inode); |
| out: |
| if (*user) { |
| user_shm_unlock(size, *user); |
| *user = NULL; |
| } |
| return file; |
| } |
| |
| static struct vfsmount *__init mount_one_hugetlbfs(struct hstate *h) |
| { |
| struct fs_context *fc; |
| struct vfsmount *mnt; |
| |
| fc = fs_context_for_mount(&hugetlbfs_fs_type, SB_KERNMOUNT); |
| if (IS_ERR(fc)) { |
| mnt = ERR_CAST(fc); |
| } else { |
| struct hugetlbfs_fs_context *ctx = fc->fs_private; |
| ctx->hstate = h; |
| mnt = fc_mount(fc); |
| put_fs_context(fc); |
| } |
| if (IS_ERR(mnt)) |
| pr_err("Cannot mount internal hugetlbfs for page size %uK", |
| 1U << (h->order + PAGE_SHIFT - 10)); |
| return mnt; |
| } |
| |
| static int __init init_hugetlbfs_fs(void) |
| { |
| struct vfsmount *mnt; |
| struct hstate *h; |
| int error; |
| int i; |
| |
| if (!hugepages_supported()) { |
| pr_info("disabling because there are no supported hugepage sizes\n"); |
| return -ENOTSUPP; |
| } |
| |
| error = -ENOMEM; |
| hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache", |
| sizeof(struct hugetlbfs_inode_info), |
| 0, SLAB_ACCOUNT, init_once); |
| if (hugetlbfs_inode_cachep == NULL) |
| goto out; |
| |
| error = register_filesystem(&hugetlbfs_fs_type); |
| if (error) |
| goto out_free; |
| |
| /* default hstate mount is required */ |
| mnt = mount_one_hugetlbfs(&hstates[default_hstate_idx]); |
| if (IS_ERR(mnt)) { |
| error = PTR_ERR(mnt); |
| goto out_unreg; |
| } |
| hugetlbfs_vfsmount[default_hstate_idx] = mnt; |
| |
| /* other hstates are optional */ |
| i = 0; |
| for_each_hstate(h) { |
| if (i == default_hstate_idx) { |
| i++; |
| continue; |
| } |
| |
| mnt = mount_one_hugetlbfs(h); |
| if (IS_ERR(mnt)) |
| hugetlbfs_vfsmount[i] = NULL; |
| else |
| hugetlbfs_vfsmount[i] = mnt; |
| i++; |
| } |
| |
| return 0; |
| |
| out_unreg: |
| (void)unregister_filesystem(&hugetlbfs_fs_type); |
| out_free: |
| kmem_cache_destroy(hugetlbfs_inode_cachep); |
| out: |
| return error; |
| } |
| fs_initcall(init_hugetlbfs_fs) |