|  | /* | 
|  | * zsmalloc memory allocator | 
|  | * | 
|  | * Copyright (C) 2011  Nitin Gupta | 
|  | * Copyright (C) 2012, 2013 Minchan Kim | 
|  | * | 
|  | * This code is released using a dual license strategy: BSD/GPL | 
|  | * You can choose the license that better fits your requirements. | 
|  | * | 
|  | * Released under the terms of 3-clause BSD License | 
|  | * Released under the terms of GNU General Public License Version 2.0 | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Following is how we use various fields and flags of underlying | 
|  | * struct page(s) to form a zspage. | 
|  | * | 
|  | * Usage of struct page fields: | 
|  | *	page->private: points to zspage | 
|  | *	page->index: links together all component pages of a zspage | 
|  | *		For the huge page, this is always 0, so we use this field | 
|  | *		to store handle. | 
|  | *	page->page_type: first object offset in a subpage of zspage | 
|  | * | 
|  | * Usage of struct page flags: | 
|  | *	PG_private: identifies the first component page | 
|  | *	PG_owner_priv_1: identifies the huge component page | 
|  | * | 
|  | */ | 
|  |  | 
|  | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt | 
|  |  | 
|  | /* | 
|  | * lock ordering: | 
|  | *	page_lock | 
|  | *	pool->lock | 
|  | *	zspage->lock | 
|  | */ | 
|  |  | 
|  | #include <linux/module.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/bitops.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/highmem.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/pgtable.h> | 
|  | #include <asm/tlbflush.h> | 
|  | #include <linux/cpumask.h> | 
|  | #include <linux/cpu.h> | 
|  | #include <linux/vmalloc.h> | 
|  | #include <linux/preempt.h> | 
|  | #include <linux/spinlock.h> | 
|  | #include <linux/shrinker.h> | 
|  | #include <linux/types.h> | 
|  | #include <linux/debugfs.h> | 
|  | #include <linux/zsmalloc.h> | 
|  | #include <linux/zpool.h> | 
|  | #include <linux/migrate.h> | 
|  | #include <linux/wait.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/fs.h> | 
|  | #include <linux/local_lock.h> | 
|  |  | 
|  | #define ZSPAGE_MAGIC	0x58 | 
|  |  | 
|  | /* | 
|  | * This must be power of 2 and greater than or equal to sizeof(link_free). | 
|  | * These two conditions ensure that any 'struct link_free' itself doesn't | 
|  | * span more than 1 page which avoids complex case of mapping 2 pages simply | 
|  | * to restore link_free pointer values. | 
|  | */ | 
|  | #define ZS_ALIGN		8 | 
|  |  | 
|  | #define ZS_HANDLE_SIZE (sizeof(unsigned long)) | 
|  |  | 
|  | /* | 
|  | * Object location (<PFN>, <obj_idx>) is encoded as | 
|  | * a single (unsigned long) handle value. | 
|  | * | 
|  | * Note that object index <obj_idx> starts from 0. | 
|  | * | 
|  | * This is made more complicated by various memory models and PAE. | 
|  | */ | 
|  |  | 
|  | #ifndef MAX_POSSIBLE_PHYSMEM_BITS | 
|  | #ifdef MAX_PHYSMEM_BITS | 
|  | #define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS | 
|  | #else | 
|  | /* | 
|  | * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just | 
|  | * be PAGE_SHIFT | 
|  | */ | 
|  | #define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG | 
|  | #endif | 
|  | #endif | 
|  |  | 
|  | #define _PFN_BITS		(MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT) | 
|  |  | 
|  | /* | 
|  | * Head in allocated object should have OBJ_ALLOCATED_TAG | 
|  | * to identify the object was allocated or not. | 
|  | * It's okay to add the status bit in the least bit because | 
|  | * header keeps handle which is 4byte-aligned address so we | 
|  | * have room for two bit at least. | 
|  | */ | 
|  | #define OBJ_ALLOCATED_TAG 1 | 
|  |  | 
|  | #define OBJ_TAG_BITS	1 | 
|  | #define OBJ_TAG_MASK	OBJ_ALLOCATED_TAG | 
|  |  | 
|  | #define OBJ_INDEX_BITS	(BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS) | 
|  | #define OBJ_INDEX_MASK	((_AC(1, UL) << OBJ_INDEX_BITS) - 1) | 
|  |  | 
|  | #define HUGE_BITS	1 | 
|  | #define FULLNESS_BITS	4 | 
|  | #define CLASS_BITS	8 | 
|  | #define ISOLATED_BITS	5 | 
|  | #define MAGIC_VAL_BITS	8 | 
|  |  | 
|  | #define MAX(a, b) ((a) >= (b) ? (a) : (b)) | 
|  |  | 
|  | #define ZS_MAX_PAGES_PER_ZSPAGE	(_AC(CONFIG_ZSMALLOC_CHAIN_SIZE, UL)) | 
|  |  | 
|  | /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */ | 
|  | #define ZS_MIN_ALLOC_SIZE \ | 
|  | MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS)) | 
|  | /* each chunk includes extra space to keep handle */ | 
|  | #define ZS_MAX_ALLOC_SIZE	PAGE_SIZE | 
|  |  | 
|  | /* | 
|  | * On systems with 4K page size, this gives 255 size classes! There is a | 
|  | * trader-off here: | 
|  | *  - Large number of size classes is potentially wasteful as free page are | 
|  | *    spread across these classes | 
|  | *  - Small number of size classes causes large internal fragmentation | 
|  | *  - Probably its better to use specific size classes (empirically | 
|  | *    determined). NOTE: all those class sizes must be set as multiple of | 
|  | *    ZS_ALIGN to make sure link_free itself never has to span 2 pages. | 
|  | * | 
|  | *  ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN | 
|  | *  (reason above) | 
|  | */ | 
|  | #define ZS_SIZE_CLASS_DELTA	(PAGE_SIZE >> CLASS_BITS) | 
|  | #define ZS_SIZE_CLASSES	(DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \ | 
|  | ZS_SIZE_CLASS_DELTA) + 1) | 
|  |  | 
|  | /* | 
|  | * Pages are distinguished by the ratio of used memory (that is the ratio | 
|  | * of ->inuse objects to all objects that page can store). For example, | 
|  | * INUSE_RATIO_10 means that the ratio of used objects is > 0% and <= 10%. | 
|  | * | 
|  | * The number of fullness groups is not random. It allows us to keep | 
|  | * difference between the least busy page in the group (minimum permitted | 
|  | * number of ->inuse objects) and the most busy page (maximum permitted | 
|  | * number of ->inuse objects) at a reasonable value. | 
|  | */ | 
|  | enum fullness_group { | 
|  | ZS_INUSE_RATIO_0, | 
|  | ZS_INUSE_RATIO_10, | 
|  | /* NOTE: 8 more fullness groups here */ | 
|  | ZS_INUSE_RATIO_99       = 10, | 
|  | ZS_INUSE_RATIO_100, | 
|  | NR_FULLNESS_GROUPS, | 
|  | }; | 
|  |  | 
|  | enum class_stat_type { | 
|  | /* NOTE: stats for 12 fullness groups here: from inuse 0 to 100 */ | 
|  | ZS_OBJS_ALLOCATED       = NR_FULLNESS_GROUPS, | 
|  | ZS_OBJS_INUSE, | 
|  | NR_CLASS_STAT_TYPES, | 
|  | }; | 
|  |  | 
|  | struct zs_size_stat { | 
|  | unsigned long objs[NR_CLASS_STAT_TYPES]; | 
|  | }; | 
|  |  | 
|  | #ifdef CONFIG_ZSMALLOC_STAT | 
|  | static struct dentry *zs_stat_root; | 
|  | #endif | 
|  |  | 
|  | static size_t huge_class_size; | 
|  |  | 
|  | struct size_class { | 
|  | struct list_head fullness_list[NR_FULLNESS_GROUPS]; | 
|  | /* | 
|  | * Size of objects stored in this class. Must be multiple | 
|  | * of ZS_ALIGN. | 
|  | */ | 
|  | int size; | 
|  | int objs_per_zspage; | 
|  | /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */ | 
|  | int pages_per_zspage; | 
|  |  | 
|  | unsigned int index; | 
|  | struct zs_size_stat stats; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Placed within free objects to form a singly linked list. | 
|  | * For every zspage, zspage->freeobj gives head of this list. | 
|  | * | 
|  | * This must be power of 2 and less than or equal to ZS_ALIGN | 
|  | */ | 
|  | struct link_free { | 
|  | union { | 
|  | /* | 
|  | * Free object index; | 
|  | * It's valid for non-allocated object | 
|  | */ | 
|  | unsigned long next; | 
|  | /* | 
|  | * Handle of allocated object. | 
|  | */ | 
|  | unsigned long handle; | 
|  | }; | 
|  | }; | 
|  |  | 
|  | struct zs_pool { | 
|  | const char *name; | 
|  |  | 
|  | struct size_class *size_class[ZS_SIZE_CLASSES]; | 
|  | struct kmem_cache *handle_cachep; | 
|  | struct kmem_cache *zspage_cachep; | 
|  |  | 
|  | atomic_long_t pages_allocated; | 
|  |  | 
|  | struct zs_pool_stats stats; | 
|  |  | 
|  | /* Compact classes */ | 
|  | struct shrinker shrinker; | 
|  |  | 
|  | #ifdef CONFIG_ZSMALLOC_STAT | 
|  | struct dentry *stat_dentry; | 
|  | #endif | 
|  | #ifdef CONFIG_COMPACTION | 
|  | struct work_struct free_work; | 
|  | #endif | 
|  | spinlock_t lock; | 
|  | atomic_t compaction_in_progress; | 
|  | }; | 
|  |  | 
|  | struct zspage { | 
|  | struct { | 
|  | unsigned int huge:HUGE_BITS; | 
|  | unsigned int fullness:FULLNESS_BITS; | 
|  | unsigned int class:CLASS_BITS + 1; | 
|  | unsigned int isolated:ISOLATED_BITS; | 
|  | unsigned int magic:MAGIC_VAL_BITS; | 
|  | }; | 
|  | unsigned int inuse; | 
|  | unsigned int freeobj; | 
|  | struct page *first_page; | 
|  | struct list_head list; /* fullness list */ | 
|  | struct zs_pool *pool; | 
|  | rwlock_t lock; | 
|  | }; | 
|  |  | 
|  | struct mapping_area { | 
|  | local_lock_t lock; | 
|  | char *vm_buf; /* copy buffer for objects that span pages */ | 
|  | char *vm_addr; /* address of kmap_atomic()'ed pages */ | 
|  | enum zs_mapmode vm_mm; /* mapping mode */ | 
|  | }; | 
|  |  | 
|  | /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */ | 
|  | static void SetZsHugePage(struct zspage *zspage) | 
|  | { | 
|  | zspage->huge = 1; | 
|  | } | 
|  |  | 
|  | static bool ZsHugePage(struct zspage *zspage) | 
|  | { | 
|  | return zspage->huge; | 
|  | } | 
|  |  | 
|  | static void migrate_lock_init(struct zspage *zspage); | 
|  | static void migrate_read_lock(struct zspage *zspage); | 
|  | static void migrate_read_unlock(struct zspage *zspage); | 
|  |  | 
|  | #ifdef CONFIG_COMPACTION | 
|  | static void migrate_write_lock(struct zspage *zspage); | 
|  | static void migrate_write_lock_nested(struct zspage *zspage); | 
|  | static void migrate_write_unlock(struct zspage *zspage); | 
|  | static void kick_deferred_free(struct zs_pool *pool); | 
|  | static void init_deferred_free(struct zs_pool *pool); | 
|  | static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage); | 
|  | #else | 
|  | static void migrate_write_lock(struct zspage *zspage) {} | 
|  | static void migrate_write_lock_nested(struct zspage *zspage) {} | 
|  | static void migrate_write_unlock(struct zspage *zspage) {} | 
|  | static void kick_deferred_free(struct zs_pool *pool) {} | 
|  | static void init_deferred_free(struct zs_pool *pool) {} | 
|  | static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {} | 
|  | #endif | 
|  |  | 
|  | static int create_cache(struct zs_pool *pool) | 
|  | { | 
|  | pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE, | 
|  | 0, 0, NULL); | 
|  | if (!pool->handle_cachep) | 
|  | return 1; | 
|  |  | 
|  | pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage), | 
|  | 0, 0, NULL); | 
|  | if (!pool->zspage_cachep) { | 
|  | kmem_cache_destroy(pool->handle_cachep); | 
|  | pool->handle_cachep = NULL; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void destroy_cache(struct zs_pool *pool) | 
|  | { | 
|  | kmem_cache_destroy(pool->handle_cachep); | 
|  | kmem_cache_destroy(pool->zspage_cachep); | 
|  | } | 
|  |  | 
|  | static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp) | 
|  | { | 
|  | return (unsigned long)kmem_cache_alloc(pool->handle_cachep, | 
|  | gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE)); | 
|  | } | 
|  |  | 
|  | static void cache_free_handle(struct zs_pool *pool, unsigned long handle) | 
|  | { | 
|  | kmem_cache_free(pool->handle_cachep, (void *)handle); | 
|  | } | 
|  |  | 
|  | static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags) | 
|  | { | 
|  | return kmem_cache_zalloc(pool->zspage_cachep, | 
|  | flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE)); | 
|  | } | 
|  |  | 
|  | static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage) | 
|  | { | 
|  | kmem_cache_free(pool->zspage_cachep, zspage); | 
|  | } | 
|  |  | 
|  | /* pool->lock(which owns the handle) synchronizes races */ | 
|  | static void record_obj(unsigned long handle, unsigned long obj) | 
|  | { | 
|  | *(unsigned long *)handle = obj; | 
|  | } | 
|  |  | 
|  | /* zpool driver */ | 
|  |  | 
|  | #ifdef CONFIG_ZPOOL | 
|  |  | 
|  | static void *zs_zpool_create(const char *name, gfp_t gfp) | 
|  | { | 
|  | /* | 
|  | * Ignore global gfp flags: zs_malloc() may be invoked from | 
|  | * different contexts and its caller must provide a valid | 
|  | * gfp mask. | 
|  | */ | 
|  | return zs_create_pool(name); | 
|  | } | 
|  |  | 
|  | static void zs_zpool_destroy(void *pool) | 
|  | { | 
|  | zs_destroy_pool(pool); | 
|  | } | 
|  |  | 
|  | static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp, | 
|  | unsigned long *handle) | 
|  | { | 
|  | *handle = zs_malloc(pool, size, gfp); | 
|  |  | 
|  | if (IS_ERR_VALUE(*handle)) | 
|  | return PTR_ERR((void *)*handle); | 
|  | return 0; | 
|  | } | 
|  | static void zs_zpool_free(void *pool, unsigned long handle) | 
|  | { | 
|  | zs_free(pool, handle); | 
|  | } | 
|  |  | 
|  | static void *zs_zpool_map(void *pool, unsigned long handle, | 
|  | enum zpool_mapmode mm) | 
|  | { | 
|  | enum zs_mapmode zs_mm; | 
|  |  | 
|  | switch (mm) { | 
|  | case ZPOOL_MM_RO: | 
|  | zs_mm = ZS_MM_RO; | 
|  | break; | 
|  | case ZPOOL_MM_WO: | 
|  | zs_mm = ZS_MM_WO; | 
|  | break; | 
|  | case ZPOOL_MM_RW: | 
|  | default: | 
|  | zs_mm = ZS_MM_RW; | 
|  | break; | 
|  | } | 
|  |  | 
|  | return zs_map_object(pool, handle, zs_mm); | 
|  | } | 
|  | static void zs_zpool_unmap(void *pool, unsigned long handle) | 
|  | { | 
|  | zs_unmap_object(pool, handle); | 
|  | } | 
|  |  | 
|  | static u64 zs_zpool_total_size(void *pool) | 
|  | { | 
|  | return zs_get_total_pages(pool) << PAGE_SHIFT; | 
|  | } | 
|  |  | 
|  | static struct zpool_driver zs_zpool_driver = { | 
|  | .type =			  "zsmalloc", | 
|  | .owner =		  THIS_MODULE, | 
|  | .create =		  zs_zpool_create, | 
|  | .destroy =		  zs_zpool_destroy, | 
|  | .malloc_support_movable = true, | 
|  | .malloc =		  zs_zpool_malloc, | 
|  | .free =			  zs_zpool_free, | 
|  | .map =			  zs_zpool_map, | 
|  | .unmap =		  zs_zpool_unmap, | 
|  | .total_size =		  zs_zpool_total_size, | 
|  | }; | 
|  |  | 
|  | MODULE_ALIAS("zpool-zsmalloc"); | 
|  | #endif /* CONFIG_ZPOOL */ | 
|  |  | 
|  | /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */ | 
|  | static DEFINE_PER_CPU(struct mapping_area, zs_map_area) = { | 
|  | .lock	= INIT_LOCAL_LOCK(lock), | 
|  | }; | 
|  |  | 
|  | static __maybe_unused int is_first_page(struct page *page) | 
|  | { | 
|  | return PagePrivate(page); | 
|  | } | 
|  |  | 
|  | /* Protected by pool->lock */ | 
|  | static inline int get_zspage_inuse(struct zspage *zspage) | 
|  | { | 
|  | return zspage->inuse; | 
|  | } | 
|  |  | 
|  |  | 
|  | static inline void mod_zspage_inuse(struct zspage *zspage, int val) | 
|  | { | 
|  | zspage->inuse += val; | 
|  | } | 
|  |  | 
|  | static inline struct page *get_first_page(struct zspage *zspage) | 
|  | { | 
|  | struct page *first_page = zspage->first_page; | 
|  |  | 
|  | VM_BUG_ON_PAGE(!is_first_page(first_page), first_page); | 
|  | return first_page; | 
|  | } | 
|  |  | 
|  | static inline unsigned int get_first_obj_offset(struct page *page) | 
|  | { | 
|  | return page->page_type; | 
|  | } | 
|  |  | 
|  | static inline void set_first_obj_offset(struct page *page, unsigned int offset) | 
|  | { | 
|  | page->page_type = offset; | 
|  | } | 
|  |  | 
|  | static inline unsigned int get_freeobj(struct zspage *zspage) | 
|  | { | 
|  | return zspage->freeobj; | 
|  | } | 
|  |  | 
|  | static inline void set_freeobj(struct zspage *zspage, unsigned int obj) | 
|  | { | 
|  | zspage->freeobj = obj; | 
|  | } | 
|  |  | 
|  | static void get_zspage_mapping(struct zspage *zspage, | 
|  | unsigned int *class_idx, | 
|  | int *fullness) | 
|  | { | 
|  | BUG_ON(zspage->magic != ZSPAGE_MAGIC); | 
|  |  | 
|  | *fullness = zspage->fullness; | 
|  | *class_idx = zspage->class; | 
|  | } | 
|  |  | 
|  | static struct size_class *zspage_class(struct zs_pool *pool, | 
|  | struct zspage *zspage) | 
|  | { | 
|  | return pool->size_class[zspage->class]; | 
|  | } | 
|  |  | 
|  | static void set_zspage_mapping(struct zspage *zspage, | 
|  | unsigned int class_idx, | 
|  | int fullness) | 
|  | { | 
|  | zspage->class = class_idx; | 
|  | zspage->fullness = fullness; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * zsmalloc divides the pool into various size classes where each | 
|  | * class maintains a list of zspages where each zspage is divided | 
|  | * into equal sized chunks. Each allocation falls into one of these | 
|  | * classes depending on its size. This function returns index of the | 
|  | * size class which has chunk size big enough to hold the given size. | 
|  | */ | 
|  | static int get_size_class_index(int size) | 
|  | { | 
|  | int idx = 0; | 
|  |  | 
|  | if (likely(size > ZS_MIN_ALLOC_SIZE)) | 
|  | idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE, | 
|  | ZS_SIZE_CLASS_DELTA); | 
|  |  | 
|  | return min_t(int, ZS_SIZE_CLASSES - 1, idx); | 
|  | } | 
|  |  | 
|  | static inline void class_stat_inc(struct size_class *class, | 
|  | int type, unsigned long cnt) | 
|  | { | 
|  | class->stats.objs[type] += cnt; | 
|  | } | 
|  |  | 
|  | static inline void class_stat_dec(struct size_class *class, | 
|  | int type, unsigned long cnt) | 
|  | { | 
|  | class->stats.objs[type] -= cnt; | 
|  | } | 
|  |  | 
|  | static inline unsigned long zs_stat_get(struct size_class *class, int type) | 
|  | { | 
|  | return class->stats.objs[type]; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_ZSMALLOC_STAT | 
|  |  | 
|  | static void __init zs_stat_init(void) | 
|  | { | 
|  | if (!debugfs_initialized()) { | 
|  | pr_warn("debugfs not available, stat dir not created\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | zs_stat_root = debugfs_create_dir("zsmalloc", NULL); | 
|  | } | 
|  |  | 
|  | static void __exit zs_stat_exit(void) | 
|  | { | 
|  | debugfs_remove_recursive(zs_stat_root); | 
|  | } | 
|  |  | 
|  | static unsigned long zs_can_compact(struct size_class *class); | 
|  |  | 
|  | static int zs_stats_size_show(struct seq_file *s, void *v) | 
|  | { | 
|  | int i, fg; | 
|  | struct zs_pool *pool = s->private; | 
|  | struct size_class *class; | 
|  | int objs_per_zspage; | 
|  | unsigned long obj_allocated, obj_used, pages_used, freeable; | 
|  | unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0; | 
|  | unsigned long total_freeable = 0; | 
|  | unsigned long inuse_totals[NR_FULLNESS_GROUPS] = {0, }; | 
|  |  | 
|  | seq_printf(s, " %5s %5s %9s %9s %9s %9s %9s %9s %9s %9s %9s %9s %9s %13s %10s %10s %16s %8s\n", | 
|  | "class", "size", "10%", "20%", "30%", "40%", | 
|  | "50%", "60%", "70%", "80%", "90%", "99%", "100%", | 
|  | "obj_allocated", "obj_used", "pages_used", | 
|  | "pages_per_zspage", "freeable"); | 
|  |  | 
|  | for (i = 0; i < ZS_SIZE_CLASSES; i++) { | 
|  |  | 
|  | class = pool->size_class[i]; | 
|  |  | 
|  | if (class->index != i) | 
|  | continue; | 
|  |  | 
|  | spin_lock(&pool->lock); | 
|  |  | 
|  | seq_printf(s, " %5u %5u ", i, class->size); | 
|  | for (fg = ZS_INUSE_RATIO_10; fg < NR_FULLNESS_GROUPS; fg++) { | 
|  | inuse_totals[fg] += zs_stat_get(class, fg); | 
|  | seq_printf(s, "%9lu ", zs_stat_get(class, fg)); | 
|  | } | 
|  |  | 
|  | obj_allocated = zs_stat_get(class, ZS_OBJS_ALLOCATED); | 
|  | obj_used = zs_stat_get(class, ZS_OBJS_INUSE); | 
|  | freeable = zs_can_compact(class); | 
|  | spin_unlock(&pool->lock); | 
|  |  | 
|  | objs_per_zspage = class->objs_per_zspage; | 
|  | pages_used = obj_allocated / objs_per_zspage * | 
|  | class->pages_per_zspage; | 
|  |  | 
|  | seq_printf(s, "%13lu %10lu %10lu %16d %8lu\n", | 
|  | obj_allocated, obj_used, pages_used, | 
|  | class->pages_per_zspage, freeable); | 
|  |  | 
|  | total_objs += obj_allocated; | 
|  | total_used_objs += obj_used; | 
|  | total_pages += pages_used; | 
|  | total_freeable += freeable; | 
|  | } | 
|  |  | 
|  | seq_puts(s, "\n"); | 
|  | seq_printf(s, " %5s %5s ", "Total", ""); | 
|  |  | 
|  | for (fg = ZS_INUSE_RATIO_10; fg < NR_FULLNESS_GROUPS; fg++) | 
|  | seq_printf(s, "%9lu ", inuse_totals[fg]); | 
|  |  | 
|  | seq_printf(s, "%13lu %10lu %10lu %16s %8lu\n", | 
|  | total_objs, total_used_objs, total_pages, "", | 
|  | total_freeable); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | DEFINE_SHOW_ATTRIBUTE(zs_stats_size); | 
|  |  | 
|  | static void zs_pool_stat_create(struct zs_pool *pool, const char *name) | 
|  | { | 
|  | if (!zs_stat_root) { | 
|  | pr_warn("no root stat dir, not creating <%s> stat dir\n", name); | 
|  | return; | 
|  | } | 
|  |  | 
|  | pool->stat_dentry = debugfs_create_dir(name, zs_stat_root); | 
|  |  | 
|  | debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool, | 
|  | &zs_stats_size_fops); | 
|  | } | 
|  |  | 
|  | static void zs_pool_stat_destroy(struct zs_pool *pool) | 
|  | { | 
|  | debugfs_remove_recursive(pool->stat_dentry); | 
|  | } | 
|  |  | 
|  | #else /* CONFIG_ZSMALLOC_STAT */ | 
|  | static void __init zs_stat_init(void) | 
|  | { | 
|  | } | 
|  |  | 
|  | static void __exit zs_stat_exit(void) | 
|  | { | 
|  | } | 
|  |  | 
|  | static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name) | 
|  | { | 
|  | } | 
|  |  | 
|  | static inline void zs_pool_stat_destroy(struct zs_pool *pool) | 
|  | { | 
|  | } | 
|  | #endif | 
|  |  | 
|  |  | 
|  | /* | 
|  | * For each size class, zspages are divided into different groups | 
|  | * depending on their usage ratio. This function returns fullness | 
|  | * status of the given page. | 
|  | */ | 
|  | static int get_fullness_group(struct size_class *class, struct zspage *zspage) | 
|  | { | 
|  | int inuse, objs_per_zspage, ratio; | 
|  |  | 
|  | inuse = get_zspage_inuse(zspage); | 
|  | objs_per_zspage = class->objs_per_zspage; | 
|  |  | 
|  | if (inuse == 0) | 
|  | return ZS_INUSE_RATIO_0; | 
|  | if (inuse == objs_per_zspage) | 
|  | return ZS_INUSE_RATIO_100; | 
|  |  | 
|  | ratio = 100 * inuse / objs_per_zspage; | 
|  | /* | 
|  | * Take integer division into consideration: a page with one inuse | 
|  | * object out of 127 possible, will end up having 0 usage ratio, | 
|  | * which is wrong as it belongs in ZS_INUSE_RATIO_10 fullness group. | 
|  | */ | 
|  | return ratio / 10 + 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Each size class maintains various freelists and zspages are assigned | 
|  | * to one of these freelists based on the number of live objects they | 
|  | * have. This functions inserts the given zspage into the freelist | 
|  | * identified by <class, fullness_group>. | 
|  | */ | 
|  | static void insert_zspage(struct size_class *class, | 
|  | struct zspage *zspage, | 
|  | int fullness) | 
|  | { | 
|  | class_stat_inc(class, fullness, 1); | 
|  | list_add(&zspage->list, &class->fullness_list[fullness]); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function removes the given zspage from the freelist identified | 
|  | * by <class, fullness_group>. | 
|  | */ | 
|  | static void remove_zspage(struct size_class *class, | 
|  | struct zspage *zspage, | 
|  | int fullness) | 
|  | { | 
|  | VM_BUG_ON(list_empty(&class->fullness_list[fullness])); | 
|  |  | 
|  | list_del_init(&zspage->list); | 
|  | class_stat_dec(class, fullness, 1); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Each size class maintains zspages in different fullness groups depending | 
|  | * on the number of live objects they contain. When allocating or freeing | 
|  | * objects, the fullness status of the page can change, for instance, from | 
|  | * INUSE_RATIO_80 to INUSE_RATIO_70 when freeing an object. This function | 
|  | * checks if such a status change has occurred for the given page and | 
|  | * accordingly moves the page from the list of the old fullness group to that | 
|  | * of the new fullness group. | 
|  | */ | 
|  | static int fix_fullness_group(struct size_class *class, struct zspage *zspage) | 
|  | { | 
|  | int class_idx; | 
|  | int currfg, newfg; | 
|  |  | 
|  | get_zspage_mapping(zspage, &class_idx, &currfg); | 
|  | newfg = get_fullness_group(class, zspage); | 
|  | if (newfg == currfg) | 
|  | goto out; | 
|  |  | 
|  | remove_zspage(class, zspage, currfg); | 
|  | insert_zspage(class, zspage, newfg); | 
|  | set_zspage_mapping(zspage, class_idx, newfg); | 
|  | out: | 
|  | return newfg; | 
|  | } | 
|  |  | 
|  | static struct zspage *get_zspage(struct page *page) | 
|  | { | 
|  | struct zspage *zspage = (struct zspage *)page_private(page); | 
|  |  | 
|  | BUG_ON(zspage->magic != ZSPAGE_MAGIC); | 
|  | return zspage; | 
|  | } | 
|  |  | 
|  | static struct page *get_next_page(struct page *page) | 
|  | { | 
|  | struct zspage *zspage = get_zspage(page); | 
|  |  | 
|  | if (unlikely(ZsHugePage(zspage))) | 
|  | return NULL; | 
|  |  | 
|  | return (struct page *)page->index; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * obj_to_location - get (<page>, <obj_idx>) from encoded object value | 
|  | * @obj: the encoded object value | 
|  | * @page: page object resides in zspage | 
|  | * @obj_idx: object index | 
|  | */ | 
|  | static void obj_to_location(unsigned long obj, struct page **page, | 
|  | unsigned int *obj_idx) | 
|  | { | 
|  | obj >>= OBJ_TAG_BITS; | 
|  | *page = pfn_to_page(obj >> OBJ_INDEX_BITS); | 
|  | *obj_idx = (obj & OBJ_INDEX_MASK); | 
|  | } | 
|  |  | 
|  | static void obj_to_page(unsigned long obj, struct page **page) | 
|  | { | 
|  | obj >>= OBJ_TAG_BITS; | 
|  | *page = pfn_to_page(obj >> OBJ_INDEX_BITS); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * location_to_obj - get obj value encoded from (<page>, <obj_idx>) | 
|  | * @page: page object resides in zspage | 
|  | * @obj_idx: object index | 
|  | */ | 
|  | static unsigned long location_to_obj(struct page *page, unsigned int obj_idx) | 
|  | { | 
|  | unsigned long obj; | 
|  |  | 
|  | obj = page_to_pfn(page) << OBJ_INDEX_BITS; | 
|  | obj |= obj_idx & OBJ_INDEX_MASK; | 
|  | obj <<= OBJ_TAG_BITS; | 
|  |  | 
|  | return obj; | 
|  | } | 
|  |  | 
|  | static unsigned long handle_to_obj(unsigned long handle) | 
|  | { | 
|  | return *(unsigned long *)handle; | 
|  | } | 
|  |  | 
|  | static bool obj_tagged(struct page *page, void *obj, unsigned long *phandle, | 
|  | int tag) | 
|  | { | 
|  | unsigned long handle; | 
|  | struct zspage *zspage = get_zspage(page); | 
|  |  | 
|  | if (unlikely(ZsHugePage(zspage))) { | 
|  | VM_BUG_ON_PAGE(!is_first_page(page), page); | 
|  | handle = page->index; | 
|  | } else | 
|  | handle = *(unsigned long *)obj; | 
|  |  | 
|  | if (!(handle & tag)) | 
|  | return false; | 
|  |  | 
|  | /* Clear all tags before returning the handle */ | 
|  | *phandle = handle & ~OBJ_TAG_MASK; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static inline bool obj_allocated(struct page *page, void *obj, unsigned long *phandle) | 
|  | { | 
|  | return obj_tagged(page, obj, phandle, OBJ_ALLOCATED_TAG); | 
|  | } | 
|  |  | 
|  | static void reset_page(struct page *page) | 
|  | { | 
|  | __ClearPageMovable(page); | 
|  | ClearPagePrivate(page); | 
|  | set_page_private(page, 0); | 
|  | page_mapcount_reset(page); | 
|  | page->index = 0; | 
|  | } | 
|  |  | 
|  | static int trylock_zspage(struct zspage *zspage) | 
|  | { | 
|  | struct page *cursor, *fail; | 
|  |  | 
|  | for (cursor = get_first_page(zspage); cursor != NULL; cursor = | 
|  | get_next_page(cursor)) { | 
|  | if (!trylock_page(cursor)) { | 
|  | fail = cursor; | 
|  | goto unlock; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | unlock: | 
|  | for (cursor = get_first_page(zspage); cursor != fail; cursor = | 
|  | get_next_page(cursor)) | 
|  | unlock_page(cursor); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void __free_zspage(struct zs_pool *pool, struct size_class *class, | 
|  | struct zspage *zspage) | 
|  | { | 
|  | struct page *page, *next; | 
|  | int fg; | 
|  | unsigned int class_idx; | 
|  |  | 
|  | get_zspage_mapping(zspage, &class_idx, &fg); | 
|  |  | 
|  | assert_spin_locked(&pool->lock); | 
|  |  | 
|  | VM_BUG_ON(get_zspage_inuse(zspage)); | 
|  | VM_BUG_ON(fg != ZS_INUSE_RATIO_0); | 
|  |  | 
|  | next = page = get_first_page(zspage); | 
|  | do { | 
|  | VM_BUG_ON_PAGE(!PageLocked(page), page); | 
|  | next = get_next_page(page); | 
|  | reset_page(page); | 
|  | unlock_page(page); | 
|  | dec_zone_page_state(page, NR_ZSPAGES); | 
|  | put_page(page); | 
|  | page = next; | 
|  | } while (page != NULL); | 
|  |  | 
|  | cache_free_zspage(pool, zspage); | 
|  |  | 
|  | class_stat_dec(class, ZS_OBJS_ALLOCATED, class->objs_per_zspage); | 
|  | atomic_long_sub(class->pages_per_zspage, &pool->pages_allocated); | 
|  | } | 
|  |  | 
|  | static void free_zspage(struct zs_pool *pool, struct size_class *class, | 
|  | struct zspage *zspage) | 
|  | { | 
|  | VM_BUG_ON(get_zspage_inuse(zspage)); | 
|  | VM_BUG_ON(list_empty(&zspage->list)); | 
|  |  | 
|  | /* | 
|  | * Since zs_free couldn't be sleepable, this function cannot call | 
|  | * lock_page. The page locks trylock_zspage got will be released | 
|  | * by __free_zspage. | 
|  | */ | 
|  | if (!trylock_zspage(zspage)) { | 
|  | kick_deferred_free(pool); | 
|  | return; | 
|  | } | 
|  |  | 
|  | remove_zspage(class, zspage, ZS_INUSE_RATIO_0); | 
|  | __free_zspage(pool, class, zspage); | 
|  | } | 
|  |  | 
|  | /* Initialize a newly allocated zspage */ | 
|  | static void init_zspage(struct size_class *class, struct zspage *zspage) | 
|  | { | 
|  | unsigned int freeobj = 1; | 
|  | unsigned long off = 0; | 
|  | struct page *page = get_first_page(zspage); | 
|  |  | 
|  | while (page) { | 
|  | struct page *next_page; | 
|  | struct link_free *link; | 
|  | void *vaddr; | 
|  |  | 
|  | set_first_obj_offset(page, off); | 
|  |  | 
|  | vaddr = kmap_atomic(page); | 
|  | link = (struct link_free *)vaddr + off / sizeof(*link); | 
|  |  | 
|  | while ((off += class->size) < PAGE_SIZE) { | 
|  | link->next = freeobj++ << OBJ_TAG_BITS; | 
|  | link += class->size / sizeof(*link); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We now come to the last (full or partial) object on this | 
|  | * page, which must point to the first object on the next | 
|  | * page (if present) | 
|  | */ | 
|  | next_page = get_next_page(page); | 
|  | if (next_page) { | 
|  | link->next = freeobj++ << OBJ_TAG_BITS; | 
|  | } else { | 
|  | /* | 
|  | * Reset OBJ_TAG_BITS bit to last link to tell | 
|  | * whether it's allocated object or not. | 
|  | */ | 
|  | link->next = -1UL << OBJ_TAG_BITS; | 
|  | } | 
|  | kunmap_atomic(vaddr); | 
|  | page = next_page; | 
|  | off %= PAGE_SIZE; | 
|  | } | 
|  |  | 
|  | set_freeobj(zspage, 0); | 
|  | } | 
|  |  | 
|  | static void create_page_chain(struct size_class *class, struct zspage *zspage, | 
|  | struct page *pages[]) | 
|  | { | 
|  | int i; | 
|  | struct page *page; | 
|  | struct page *prev_page = NULL; | 
|  | int nr_pages = class->pages_per_zspage; | 
|  |  | 
|  | /* | 
|  | * Allocate individual pages and link them together as: | 
|  | * 1. all pages are linked together using page->index | 
|  | * 2. each sub-page point to zspage using page->private | 
|  | * | 
|  | * we set PG_private to identify the first page (i.e. no other sub-page | 
|  | * has this flag set). | 
|  | */ | 
|  | for (i = 0; i < nr_pages; i++) { | 
|  | page = pages[i]; | 
|  | set_page_private(page, (unsigned long)zspage); | 
|  | page->index = 0; | 
|  | if (i == 0) { | 
|  | zspage->first_page = page; | 
|  | SetPagePrivate(page); | 
|  | if (unlikely(class->objs_per_zspage == 1 && | 
|  | class->pages_per_zspage == 1)) | 
|  | SetZsHugePage(zspage); | 
|  | } else { | 
|  | prev_page->index = (unsigned long)page; | 
|  | } | 
|  | prev_page = page; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allocate a zspage for the given size class | 
|  | */ | 
|  | static struct zspage *alloc_zspage(struct zs_pool *pool, | 
|  | struct size_class *class, | 
|  | gfp_t gfp) | 
|  | { | 
|  | int i; | 
|  | struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE]; | 
|  | struct zspage *zspage = cache_alloc_zspage(pool, gfp); | 
|  |  | 
|  | if (!zspage) | 
|  | return NULL; | 
|  |  | 
|  | zspage->magic = ZSPAGE_MAGIC; | 
|  | migrate_lock_init(zspage); | 
|  |  | 
|  | for (i = 0; i < class->pages_per_zspage; i++) { | 
|  | struct page *page; | 
|  |  | 
|  | page = alloc_page(gfp); | 
|  | if (!page) { | 
|  | while (--i >= 0) { | 
|  | dec_zone_page_state(pages[i], NR_ZSPAGES); | 
|  | __free_page(pages[i]); | 
|  | } | 
|  | cache_free_zspage(pool, zspage); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | inc_zone_page_state(page, NR_ZSPAGES); | 
|  | pages[i] = page; | 
|  | } | 
|  |  | 
|  | create_page_chain(class, zspage, pages); | 
|  | init_zspage(class, zspage); | 
|  | zspage->pool = pool; | 
|  |  | 
|  | return zspage; | 
|  | } | 
|  |  | 
|  | static struct zspage *find_get_zspage(struct size_class *class) | 
|  | { | 
|  | int i; | 
|  | struct zspage *zspage; | 
|  |  | 
|  | for (i = ZS_INUSE_RATIO_99; i >= ZS_INUSE_RATIO_0; i--) { | 
|  | zspage = list_first_entry_or_null(&class->fullness_list[i], | 
|  | struct zspage, list); | 
|  | if (zspage) | 
|  | break; | 
|  | } | 
|  |  | 
|  | return zspage; | 
|  | } | 
|  |  | 
|  | static inline int __zs_cpu_up(struct mapping_area *area) | 
|  | { | 
|  | /* | 
|  | * Make sure we don't leak memory if a cpu UP notification | 
|  | * and zs_init() race and both call zs_cpu_up() on the same cpu | 
|  | */ | 
|  | if (area->vm_buf) | 
|  | return 0; | 
|  | area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL); | 
|  | if (!area->vm_buf) | 
|  | return -ENOMEM; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline void __zs_cpu_down(struct mapping_area *area) | 
|  | { | 
|  | kfree(area->vm_buf); | 
|  | area->vm_buf = NULL; | 
|  | } | 
|  |  | 
|  | static void *__zs_map_object(struct mapping_area *area, | 
|  | struct page *pages[2], int off, int size) | 
|  | { | 
|  | int sizes[2]; | 
|  | void *addr; | 
|  | char *buf = area->vm_buf; | 
|  |  | 
|  | /* disable page faults to match kmap_atomic() return conditions */ | 
|  | pagefault_disable(); | 
|  |  | 
|  | /* no read fastpath */ | 
|  | if (area->vm_mm == ZS_MM_WO) | 
|  | goto out; | 
|  |  | 
|  | sizes[0] = PAGE_SIZE - off; | 
|  | sizes[1] = size - sizes[0]; | 
|  |  | 
|  | /* copy object to per-cpu buffer */ | 
|  | addr = kmap_atomic(pages[0]); | 
|  | memcpy(buf, addr + off, sizes[0]); | 
|  | kunmap_atomic(addr); | 
|  | addr = kmap_atomic(pages[1]); | 
|  | memcpy(buf + sizes[0], addr, sizes[1]); | 
|  | kunmap_atomic(addr); | 
|  | out: | 
|  | return area->vm_buf; | 
|  | } | 
|  |  | 
|  | static void __zs_unmap_object(struct mapping_area *area, | 
|  | struct page *pages[2], int off, int size) | 
|  | { | 
|  | int sizes[2]; | 
|  | void *addr; | 
|  | char *buf; | 
|  |  | 
|  | /* no write fastpath */ | 
|  | if (area->vm_mm == ZS_MM_RO) | 
|  | goto out; | 
|  |  | 
|  | buf = area->vm_buf; | 
|  | buf = buf + ZS_HANDLE_SIZE; | 
|  | size -= ZS_HANDLE_SIZE; | 
|  | off += ZS_HANDLE_SIZE; | 
|  |  | 
|  | sizes[0] = PAGE_SIZE - off; | 
|  | sizes[1] = size - sizes[0]; | 
|  |  | 
|  | /* copy per-cpu buffer to object */ | 
|  | addr = kmap_atomic(pages[0]); | 
|  | memcpy(addr + off, buf, sizes[0]); | 
|  | kunmap_atomic(addr); | 
|  | addr = kmap_atomic(pages[1]); | 
|  | memcpy(addr, buf + sizes[0], sizes[1]); | 
|  | kunmap_atomic(addr); | 
|  |  | 
|  | out: | 
|  | /* enable page faults to match kunmap_atomic() return conditions */ | 
|  | pagefault_enable(); | 
|  | } | 
|  |  | 
|  | static int zs_cpu_prepare(unsigned int cpu) | 
|  | { | 
|  | struct mapping_area *area; | 
|  |  | 
|  | area = &per_cpu(zs_map_area, cpu); | 
|  | return __zs_cpu_up(area); | 
|  | } | 
|  |  | 
|  | static int zs_cpu_dead(unsigned int cpu) | 
|  | { | 
|  | struct mapping_area *area; | 
|  |  | 
|  | area = &per_cpu(zs_map_area, cpu); | 
|  | __zs_cpu_down(area); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static bool can_merge(struct size_class *prev, int pages_per_zspage, | 
|  | int objs_per_zspage) | 
|  | { | 
|  | if (prev->pages_per_zspage == pages_per_zspage && | 
|  | prev->objs_per_zspage == objs_per_zspage) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool zspage_full(struct size_class *class, struct zspage *zspage) | 
|  | { | 
|  | return get_zspage_inuse(zspage) == class->objs_per_zspage; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * zs_lookup_class_index() - Returns index of the zsmalloc &size_class | 
|  | * that hold objects of the provided size. | 
|  | * @pool: zsmalloc pool to use | 
|  | * @size: object size | 
|  | * | 
|  | * Context: Any context. | 
|  | * | 
|  | * Return: the index of the zsmalloc &size_class that hold objects of the | 
|  | * provided size. | 
|  | */ | 
|  | unsigned int zs_lookup_class_index(struct zs_pool *pool, unsigned int size) | 
|  | { | 
|  | struct size_class *class; | 
|  |  | 
|  | class = pool->size_class[get_size_class_index(size)]; | 
|  |  | 
|  | return class->index; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(zs_lookup_class_index); | 
|  |  | 
|  | unsigned long zs_get_total_pages(struct zs_pool *pool) | 
|  | { | 
|  | return atomic_long_read(&pool->pages_allocated); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(zs_get_total_pages); | 
|  |  | 
|  | /** | 
|  | * zs_map_object - get address of allocated object from handle. | 
|  | * @pool: pool from which the object was allocated | 
|  | * @handle: handle returned from zs_malloc | 
|  | * @mm: mapping mode to use | 
|  | * | 
|  | * Before using an object allocated from zs_malloc, it must be mapped using | 
|  | * this function. When done with the object, it must be unmapped using | 
|  | * zs_unmap_object. | 
|  | * | 
|  | * Only one object can be mapped per cpu at a time. There is no protection | 
|  | * against nested mappings. | 
|  | * | 
|  | * This function returns with preemption and page faults disabled. | 
|  | */ | 
|  | void *zs_map_object(struct zs_pool *pool, unsigned long handle, | 
|  | enum zs_mapmode mm) | 
|  | { | 
|  | struct zspage *zspage; | 
|  | struct page *page; | 
|  | unsigned long obj, off; | 
|  | unsigned int obj_idx; | 
|  |  | 
|  | struct size_class *class; | 
|  | struct mapping_area *area; | 
|  | struct page *pages[2]; | 
|  | void *ret; | 
|  |  | 
|  | /* | 
|  | * Because we use per-cpu mapping areas shared among the | 
|  | * pools/users, we can't allow mapping in interrupt context | 
|  | * because it can corrupt another users mappings. | 
|  | */ | 
|  | BUG_ON(in_interrupt()); | 
|  |  | 
|  | /* It guarantees it can get zspage from handle safely */ | 
|  | spin_lock(&pool->lock); | 
|  | obj = handle_to_obj(handle); | 
|  | obj_to_location(obj, &page, &obj_idx); | 
|  | zspage = get_zspage(page); | 
|  |  | 
|  | /* | 
|  | * migration cannot move any zpages in this zspage. Here, pool->lock | 
|  | * is too heavy since callers would take some time until they calls | 
|  | * zs_unmap_object API so delegate the locking from class to zspage | 
|  | * which is smaller granularity. | 
|  | */ | 
|  | migrate_read_lock(zspage); | 
|  | spin_unlock(&pool->lock); | 
|  |  | 
|  | class = zspage_class(pool, zspage); | 
|  | off = offset_in_page(class->size * obj_idx); | 
|  |  | 
|  | local_lock(&zs_map_area.lock); | 
|  | area = this_cpu_ptr(&zs_map_area); | 
|  | area->vm_mm = mm; | 
|  | if (off + class->size <= PAGE_SIZE) { | 
|  | /* this object is contained entirely within a page */ | 
|  | area->vm_addr = kmap_atomic(page); | 
|  | ret = area->vm_addr + off; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* this object spans two pages */ | 
|  | pages[0] = page; | 
|  | pages[1] = get_next_page(page); | 
|  | BUG_ON(!pages[1]); | 
|  |  | 
|  | ret = __zs_map_object(area, pages, off, class->size); | 
|  | out: | 
|  | if (likely(!ZsHugePage(zspage))) | 
|  | ret += ZS_HANDLE_SIZE; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(zs_map_object); | 
|  |  | 
|  | void zs_unmap_object(struct zs_pool *pool, unsigned long handle) | 
|  | { | 
|  | struct zspage *zspage; | 
|  | struct page *page; | 
|  | unsigned long obj, off; | 
|  | unsigned int obj_idx; | 
|  |  | 
|  | struct size_class *class; | 
|  | struct mapping_area *area; | 
|  |  | 
|  | obj = handle_to_obj(handle); | 
|  | obj_to_location(obj, &page, &obj_idx); | 
|  | zspage = get_zspage(page); | 
|  | class = zspage_class(pool, zspage); | 
|  | off = offset_in_page(class->size * obj_idx); | 
|  |  | 
|  | area = this_cpu_ptr(&zs_map_area); | 
|  | if (off + class->size <= PAGE_SIZE) | 
|  | kunmap_atomic(area->vm_addr); | 
|  | else { | 
|  | struct page *pages[2]; | 
|  |  | 
|  | pages[0] = page; | 
|  | pages[1] = get_next_page(page); | 
|  | BUG_ON(!pages[1]); | 
|  |  | 
|  | __zs_unmap_object(area, pages, off, class->size); | 
|  | } | 
|  | local_unlock(&zs_map_area.lock); | 
|  |  | 
|  | migrate_read_unlock(zspage); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(zs_unmap_object); | 
|  |  | 
|  | /** | 
|  | * zs_huge_class_size() - Returns the size (in bytes) of the first huge | 
|  | *                        zsmalloc &size_class. | 
|  | * @pool: zsmalloc pool to use | 
|  | * | 
|  | * The function returns the size of the first huge class - any object of equal | 
|  | * or bigger size will be stored in zspage consisting of a single physical | 
|  | * page. | 
|  | * | 
|  | * Context: Any context. | 
|  | * | 
|  | * Return: the size (in bytes) of the first huge zsmalloc &size_class. | 
|  | */ | 
|  | size_t zs_huge_class_size(struct zs_pool *pool) | 
|  | { | 
|  | return huge_class_size; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(zs_huge_class_size); | 
|  |  | 
|  | static unsigned long obj_malloc(struct zs_pool *pool, | 
|  | struct zspage *zspage, unsigned long handle) | 
|  | { | 
|  | int i, nr_page, offset; | 
|  | unsigned long obj; | 
|  | struct link_free *link; | 
|  | struct size_class *class; | 
|  |  | 
|  | struct page *m_page; | 
|  | unsigned long m_offset; | 
|  | void *vaddr; | 
|  |  | 
|  | class = pool->size_class[zspage->class]; | 
|  | handle |= OBJ_ALLOCATED_TAG; | 
|  | obj = get_freeobj(zspage); | 
|  |  | 
|  | offset = obj * class->size; | 
|  | nr_page = offset >> PAGE_SHIFT; | 
|  | m_offset = offset_in_page(offset); | 
|  | m_page = get_first_page(zspage); | 
|  |  | 
|  | for (i = 0; i < nr_page; i++) | 
|  | m_page = get_next_page(m_page); | 
|  |  | 
|  | vaddr = kmap_atomic(m_page); | 
|  | link = (struct link_free *)vaddr + m_offset / sizeof(*link); | 
|  | set_freeobj(zspage, link->next >> OBJ_TAG_BITS); | 
|  | if (likely(!ZsHugePage(zspage))) | 
|  | /* record handle in the header of allocated chunk */ | 
|  | link->handle = handle; | 
|  | else | 
|  | /* record handle to page->index */ | 
|  | zspage->first_page->index = handle; | 
|  |  | 
|  | kunmap_atomic(vaddr); | 
|  | mod_zspage_inuse(zspage, 1); | 
|  |  | 
|  | obj = location_to_obj(m_page, obj); | 
|  |  | 
|  | return obj; | 
|  | } | 
|  |  | 
|  |  | 
|  | /** | 
|  | * zs_malloc - Allocate block of given size from pool. | 
|  | * @pool: pool to allocate from | 
|  | * @size: size of block to allocate | 
|  | * @gfp: gfp flags when allocating object | 
|  | * | 
|  | * On success, handle to the allocated object is returned, | 
|  | * otherwise an ERR_PTR(). | 
|  | * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail. | 
|  | */ | 
|  | unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp) | 
|  | { | 
|  | unsigned long handle, obj; | 
|  | struct size_class *class; | 
|  | int newfg; | 
|  | struct zspage *zspage; | 
|  |  | 
|  | if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE)) | 
|  | return (unsigned long)ERR_PTR(-EINVAL); | 
|  |  | 
|  | handle = cache_alloc_handle(pool, gfp); | 
|  | if (!handle) | 
|  | return (unsigned long)ERR_PTR(-ENOMEM); | 
|  |  | 
|  | /* extra space in chunk to keep the handle */ | 
|  | size += ZS_HANDLE_SIZE; | 
|  | class = pool->size_class[get_size_class_index(size)]; | 
|  |  | 
|  | /* pool->lock effectively protects the zpage migration */ | 
|  | spin_lock(&pool->lock); | 
|  | zspage = find_get_zspage(class); | 
|  | if (likely(zspage)) { | 
|  | obj = obj_malloc(pool, zspage, handle); | 
|  | /* Now move the zspage to another fullness group, if required */ | 
|  | fix_fullness_group(class, zspage); | 
|  | record_obj(handle, obj); | 
|  | class_stat_inc(class, ZS_OBJS_INUSE, 1); | 
|  |  | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | spin_unlock(&pool->lock); | 
|  |  | 
|  | zspage = alloc_zspage(pool, class, gfp); | 
|  | if (!zspage) { | 
|  | cache_free_handle(pool, handle); | 
|  | return (unsigned long)ERR_PTR(-ENOMEM); | 
|  | } | 
|  |  | 
|  | spin_lock(&pool->lock); | 
|  | obj = obj_malloc(pool, zspage, handle); | 
|  | newfg = get_fullness_group(class, zspage); | 
|  | insert_zspage(class, zspage, newfg); | 
|  | set_zspage_mapping(zspage, class->index, newfg); | 
|  | record_obj(handle, obj); | 
|  | atomic_long_add(class->pages_per_zspage, &pool->pages_allocated); | 
|  | class_stat_inc(class, ZS_OBJS_ALLOCATED, class->objs_per_zspage); | 
|  | class_stat_inc(class, ZS_OBJS_INUSE, 1); | 
|  |  | 
|  | /* We completely set up zspage so mark them as movable */ | 
|  | SetZsPageMovable(pool, zspage); | 
|  | out: | 
|  | spin_unlock(&pool->lock); | 
|  |  | 
|  | return handle; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(zs_malloc); | 
|  |  | 
|  | static void obj_free(int class_size, unsigned long obj) | 
|  | { | 
|  | struct link_free *link; | 
|  | struct zspage *zspage; | 
|  | struct page *f_page; | 
|  | unsigned long f_offset; | 
|  | unsigned int f_objidx; | 
|  | void *vaddr; | 
|  |  | 
|  | obj_to_location(obj, &f_page, &f_objidx); | 
|  | f_offset = offset_in_page(class_size * f_objidx); | 
|  | zspage = get_zspage(f_page); | 
|  |  | 
|  | vaddr = kmap_atomic(f_page); | 
|  | link = (struct link_free *)(vaddr + f_offset); | 
|  |  | 
|  | /* Insert this object in containing zspage's freelist */ | 
|  | if (likely(!ZsHugePage(zspage))) | 
|  | link->next = get_freeobj(zspage) << OBJ_TAG_BITS; | 
|  | else | 
|  | f_page->index = 0; | 
|  | set_freeobj(zspage, f_objidx); | 
|  |  | 
|  | kunmap_atomic(vaddr); | 
|  | mod_zspage_inuse(zspage, -1); | 
|  | } | 
|  |  | 
|  | void zs_free(struct zs_pool *pool, unsigned long handle) | 
|  | { | 
|  | struct zspage *zspage; | 
|  | struct page *f_page; | 
|  | unsigned long obj; | 
|  | struct size_class *class; | 
|  | int fullness; | 
|  |  | 
|  | if (IS_ERR_OR_NULL((void *)handle)) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * The pool->lock protects the race with zpage's migration | 
|  | * so it's safe to get the page from handle. | 
|  | */ | 
|  | spin_lock(&pool->lock); | 
|  | obj = handle_to_obj(handle); | 
|  | obj_to_page(obj, &f_page); | 
|  | zspage = get_zspage(f_page); | 
|  | class = zspage_class(pool, zspage); | 
|  |  | 
|  | class_stat_dec(class, ZS_OBJS_INUSE, 1); | 
|  | obj_free(class->size, obj); | 
|  |  | 
|  | fullness = fix_fullness_group(class, zspage); | 
|  | if (fullness == ZS_INUSE_RATIO_0) | 
|  | free_zspage(pool, class, zspage); | 
|  |  | 
|  | spin_unlock(&pool->lock); | 
|  | cache_free_handle(pool, handle); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(zs_free); | 
|  |  | 
|  | static void zs_object_copy(struct size_class *class, unsigned long dst, | 
|  | unsigned long src) | 
|  | { | 
|  | struct page *s_page, *d_page; | 
|  | unsigned int s_objidx, d_objidx; | 
|  | unsigned long s_off, d_off; | 
|  | void *s_addr, *d_addr; | 
|  | int s_size, d_size, size; | 
|  | int written = 0; | 
|  |  | 
|  | s_size = d_size = class->size; | 
|  |  | 
|  | obj_to_location(src, &s_page, &s_objidx); | 
|  | obj_to_location(dst, &d_page, &d_objidx); | 
|  |  | 
|  | s_off = offset_in_page(class->size * s_objidx); | 
|  | d_off = offset_in_page(class->size * d_objidx); | 
|  |  | 
|  | if (s_off + class->size > PAGE_SIZE) | 
|  | s_size = PAGE_SIZE - s_off; | 
|  |  | 
|  | if (d_off + class->size > PAGE_SIZE) | 
|  | d_size = PAGE_SIZE - d_off; | 
|  |  | 
|  | s_addr = kmap_atomic(s_page); | 
|  | d_addr = kmap_atomic(d_page); | 
|  |  | 
|  | while (1) { | 
|  | size = min(s_size, d_size); | 
|  | memcpy(d_addr + d_off, s_addr + s_off, size); | 
|  | written += size; | 
|  |  | 
|  | if (written == class->size) | 
|  | break; | 
|  |  | 
|  | s_off += size; | 
|  | s_size -= size; | 
|  | d_off += size; | 
|  | d_size -= size; | 
|  |  | 
|  | /* | 
|  | * Calling kunmap_atomic(d_addr) is necessary. kunmap_atomic() | 
|  | * calls must occurs in reverse order of calls to kmap_atomic(). | 
|  | * So, to call kunmap_atomic(s_addr) we should first call | 
|  | * kunmap_atomic(d_addr). For more details see | 
|  | * Documentation/mm/highmem.rst. | 
|  | */ | 
|  | if (s_off >= PAGE_SIZE) { | 
|  | kunmap_atomic(d_addr); | 
|  | kunmap_atomic(s_addr); | 
|  | s_page = get_next_page(s_page); | 
|  | s_addr = kmap_atomic(s_page); | 
|  | d_addr = kmap_atomic(d_page); | 
|  | s_size = class->size - written; | 
|  | s_off = 0; | 
|  | } | 
|  |  | 
|  | if (d_off >= PAGE_SIZE) { | 
|  | kunmap_atomic(d_addr); | 
|  | d_page = get_next_page(d_page); | 
|  | d_addr = kmap_atomic(d_page); | 
|  | d_size = class->size - written; | 
|  | d_off = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | kunmap_atomic(d_addr); | 
|  | kunmap_atomic(s_addr); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Find object with a certain tag in zspage from index object and | 
|  | * return handle. | 
|  | */ | 
|  | static unsigned long find_tagged_obj(struct size_class *class, | 
|  | struct page *page, int *obj_idx, int tag) | 
|  | { | 
|  | unsigned int offset; | 
|  | int index = *obj_idx; | 
|  | unsigned long handle = 0; | 
|  | void *addr = kmap_atomic(page); | 
|  |  | 
|  | offset = get_first_obj_offset(page); | 
|  | offset += class->size * index; | 
|  |  | 
|  | while (offset < PAGE_SIZE) { | 
|  | if (obj_tagged(page, addr + offset, &handle, tag)) | 
|  | break; | 
|  |  | 
|  | offset += class->size; | 
|  | index++; | 
|  | } | 
|  |  | 
|  | kunmap_atomic(addr); | 
|  |  | 
|  | *obj_idx = index; | 
|  |  | 
|  | return handle; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Find alloced object in zspage from index object and | 
|  | * return handle. | 
|  | */ | 
|  | static unsigned long find_alloced_obj(struct size_class *class, | 
|  | struct page *page, int *obj_idx) | 
|  | { | 
|  | return find_tagged_obj(class, page, obj_idx, OBJ_ALLOCATED_TAG); | 
|  | } | 
|  |  | 
|  | struct zs_compact_control { | 
|  | /* Source spage for migration which could be a subpage of zspage */ | 
|  | struct page *s_page; | 
|  | /* Destination page for migration which should be a first page | 
|  | * of zspage. */ | 
|  | struct page *d_page; | 
|  | /* Starting object index within @s_page which used for live object | 
|  | * in the subpage. */ | 
|  | int obj_idx; | 
|  | }; | 
|  |  | 
|  | static void migrate_zspage(struct zs_pool *pool, struct size_class *class, | 
|  | struct zs_compact_control *cc) | 
|  | { | 
|  | unsigned long used_obj, free_obj; | 
|  | unsigned long handle; | 
|  | struct page *s_page = cc->s_page; | 
|  | struct page *d_page = cc->d_page; | 
|  | int obj_idx = cc->obj_idx; | 
|  |  | 
|  | while (1) { | 
|  | handle = find_alloced_obj(class, s_page, &obj_idx); | 
|  | if (!handle) { | 
|  | s_page = get_next_page(s_page); | 
|  | if (!s_page) | 
|  | break; | 
|  | obj_idx = 0; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* Stop if there is no more space */ | 
|  | if (zspage_full(class, get_zspage(d_page))) | 
|  | break; | 
|  |  | 
|  | used_obj = handle_to_obj(handle); | 
|  | free_obj = obj_malloc(pool, get_zspage(d_page), handle); | 
|  | zs_object_copy(class, free_obj, used_obj); | 
|  | obj_idx++; | 
|  | record_obj(handle, free_obj); | 
|  | obj_free(class->size, used_obj); | 
|  | } | 
|  |  | 
|  | /* Remember last position in this iteration */ | 
|  | cc->s_page = s_page; | 
|  | cc->obj_idx = obj_idx; | 
|  | } | 
|  |  | 
|  | static struct zspage *isolate_src_zspage(struct size_class *class) | 
|  | { | 
|  | struct zspage *zspage; | 
|  | int fg; | 
|  |  | 
|  | for (fg = ZS_INUSE_RATIO_10; fg <= ZS_INUSE_RATIO_99; fg++) { | 
|  | zspage = list_first_entry_or_null(&class->fullness_list[fg], | 
|  | struct zspage, list); | 
|  | if (zspage) { | 
|  | remove_zspage(class, zspage, fg); | 
|  | return zspage; | 
|  | } | 
|  | } | 
|  |  | 
|  | return zspage; | 
|  | } | 
|  |  | 
|  | static struct zspage *isolate_dst_zspage(struct size_class *class) | 
|  | { | 
|  | struct zspage *zspage; | 
|  | int fg; | 
|  |  | 
|  | for (fg = ZS_INUSE_RATIO_99; fg >= ZS_INUSE_RATIO_10; fg--) { | 
|  | zspage = list_first_entry_or_null(&class->fullness_list[fg], | 
|  | struct zspage, list); | 
|  | if (zspage) { | 
|  | remove_zspage(class, zspage, fg); | 
|  | return zspage; | 
|  | } | 
|  | } | 
|  |  | 
|  | return zspage; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * putback_zspage - add @zspage into right class's fullness list | 
|  | * @class: destination class | 
|  | * @zspage: target page | 
|  | * | 
|  | * Return @zspage's fullness status | 
|  | */ | 
|  | static int putback_zspage(struct size_class *class, struct zspage *zspage) | 
|  | { | 
|  | int fullness; | 
|  |  | 
|  | fullness = get_fullness_group(class, zspage); | 
|  | insert_zspage(class, zspage, fullness); | 
|  | set_zspage_mapping(zspage, class->index, fullness); | 
|  |  | 
|  | return fullness; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_COMPACTION | 
|  | /* | 
|  | * To prevent zspage destroy during migration, zspage freeing should | 
|  | * hold locks of all pages in the zspage. | 
|  | */ | 
|  | static void lock_zspage(struct zspage *zspage) | 
|  | { | 
|  | struct page *curr_page, *page; | 
|  |  | 
|  | /* | 
|  | * Pages we haven't locked yet can be migrated off the list while we're | 
|  | * trying to lock them, so we need to be careful and only attempt to | 
|  | * lock each page under migrate_read_lock(). Otherwise, the page we lock | 
|  | * may no longer belong to the zspage. This means that we may wait for | 
|  | * the wrong page to unlock, so we must take a reference to the page | 
|  | * prior to waiting for it to unlock outside migrate_read_lock(). | 
|  | */ | 
|  | while (1) { | 
|  | migrate_read_lock(zspage); | 
|  | page = get_first_page(zspage); | 
|  | if (trylock_page(page)) | 
|  | break; | 
|  | get_page(page); | 
|  | migrate_read_unlock(zspage); | 
|  | wait_on_page_locked(page); | 
|  | put_page(page); | 
|  | } | 
|  |  | 
|  | curr_page = page; | 
|  | while ((page = get_next_page(curr_page))) { | 
|  | if (trylock_page(page)) { | 
|  | curr_page = page; | 
|  | } else { | 
|  | get_page(page); | 
|  | migrate_read_unlock(zspage); | 
|  | wait_on_page_locked(page); | 
|  | put_page(page); | 
|  | migrate_read_lock(zspage); | 
|  | } | 
|  | } | 
|  | migrate_read_unlock(zspage); | 
|  | } | 
|  | #endif /* CONFIG_COMPACTION */ | 
|  |  | 
|  | static void migrate_lock_init(struct zspage *zspage) | 
|  | { | 
|  | rwlock_init(&zspage->lock); | 
|  | } | 
|  |  | 
|  | static void migrate_read_lock(struct zspage *zspage) __acquires(&zspage->lock) | 
|  | { | 
|  | read_lock(&zspage->lock); | 
|  | } | 
|  |  | 
|  | static void migrate_read_unlock(struct zspage *zspage) __releases(&zspage->lock) | 
|  | { | 
|  | read_unlock(&zspage->lock); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_COMPACTION | 
|  | static void migrate_write_lock(struct zspage *zspage) | 
|  | { | 
|  | write_lock(&zspage->lock); | 
|  | } | 
|  |  | 
|  | static void migrate_write_lock_nested(struct zspage *zspage) | 
|  | { | 
|  | write_lock_nested(&zspage->lock, SINGLE_DEPTH_NESTING); | 
|  | } | 
|  |  | 
|  | static void migrate_write_unlock(struct zspage *zspage) | 
|  | { | 
|  | write_unlock(&zspage->lock); | 
|  | } | 
|  |  | 
|  | /* Number of isolated subpage for *page migration* in this zspage */ | 
|  | static void inc_zspage_isolation(struct zspage *zspage) | 
|  | { | 
|  | zspage->isolated++; | 
|  | } | 
|  |  | 
|  | static void dec_zspage_isolation(struct zspage *zspage) | 
|  | { | 
|  | VM_BUG_ON(zspage->isolated == 0); | 
|  | zspage->isolated--; | 
|  | } | 
|  |  | 
|  | static const struct movable_operations zsmalloc_mops; | 
|  |  | 
|  | static void replace_sub_page(struct size_class *class, struct zspage *zspage, | 
|  | struct page *newpage, struct page *oldpage) | 
|  | { | 
|  | struct page *page; | 
|  | struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, }; | 
|  | int idx = 0; | 
|  |  | 
|  | page = get_first_page(zspage); | 
|  | do { | 
|  | if (page == oldpage) | 
|  | pages[idx] = newpage; | 
|  | else | 
|  | pages[idx] = page; | 
|  | idx++; | 
|  | } while ((page = get_next_page(page)) != NULL); | 
|  |  | 
|  | create_page_chain(class, zspage, pages); | 
|  | set_first_obj_offset(newpage, get_first_obj_offset(oldpage)); | 
|  | if (unlikely(ZsHugePage(zspage))) | 
|  | newpage->index = oldpage->index; | 
|  | __SetPageMovable(newpage, &zsmalloc_mops); | 
|  | } | 
|  |  | 
|  | static bool zs_page_isolate(struct page *page, isolate_mode_t mode) | 
|  | { | 
|  | struct zs_pool *pool; | 
|  | struct zspage *zspage; | 
|  |  | 
|  | /* | 
|  | * Page is locked so zspage couldn't be destroyed. For detail, look at | 
|  | * lock_zspage in free_zspage. | 
|  | */ | 
|  | VM_BUG_ON_PAGE(PageIsolated(page), page); | 
|  |  | 
|  | zspage = get_zspage(page); | 
|  | pool = zspage->pool; | 
|  | spin_lock(&pool->lock); | 
|  | inc_zspage_isolation(zspage); | 
|  | spin_unlock(&pool->lock); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static int zs_page_migrate(struct page *newpage, struct page *page, | 
|  | enum migrate_mode mode) | 
|  | { | 
|  | struct zs_pool *pool; | 
|  | struct size_class *class; | 
|  | struct zspage *zspage; | 
|  | struct page *dummy; | 
|  | void *s_addr, *d_addr, *addr; | 
|  | unsigned int offset; | 
|  | unsigned long handle; | 
|  | unsigned long old_obj, new_obj; | 
|  | unsigned int obj_idx; | 
|  |  | 
|  | /* | 
|  | * We cannot support the _NO_COPY case here, because copy needs to | 
|  | * happen under the zs lock, which does not work with | 
|  | * MIGRATE_SYNC_NO_COPY workflow. | 
|  | */ | 
|  | if (mode == MIGRATE_SYNC_NO_COPY) | 
|  | return -EINVAL; | 
|  |  | 
|  | VM_BUG_ON_PAGE(!PageIsolated(page), page); | 
|  |  | 
|  | /* The page is locked, so this pointer must remain valid */ | 
|  | zspage = get_zspage(page); | 
|  | pool = zspage->pool; | 
|  |  | 
|  | /* | 
|  | * The pool's lock protects the race between zpage migration | 
|  | * and zs_free. | 
|  | */ | 
|  | spin_lock(&pool->lock); | 
|  | class = zspage_class(pool, zspage); | 
|  |  | 
|  | /* the migrate_write_lock protects zpage access via zs_map_object */ | 
|  | migrate_write_lock(zspage); | 
|  |  | 
|  | offset = get_first_obj_offset(page); | 
|  | s_addr = kmap_atomic(page); | 
|  |  | 
|  | /* | 
|  | * Here, any user cannot access all objects in the zspage so let's move. | 
|  | */ | 
|  | d_addr = kmap_atomic(newpage); | 
|  | memcpy(d_addr, s_addr, PAGE_SIZE); | 
|  | kunmap_atomic(d_addr); | 
|  |  | 
|  | for (addr = s_addr + offset; addr < s_addr + PAGE_SIZE; | 
|  | addr += class->size) { | 
|  | if (obj_allocated(page, addr, &handle)) { | 
|  |  | 
|  | old_obj = handle_to_obj(handle); | 
|  | obj_to_location(old_obj, &dummy, &obj_idx); | 
|  | new_obj = (unsigned long)location_to_obj(newpage, | 
|  | obj_idx); | 
|  | record_obj(handle, new_obj); | 
|  | } | 
|  | } | 
|  | kunmap_atomic(s_addr); | 
|  |  | 
|  | replace_sub_page(class, zspage, newpage, page); | 
|  | dec_zspage_isolation(zspage); | 
|  | /* | 
|  | * Since we complete the data copy and set up new zspage structure, | 
|  | * it's okay to release the pool's lock. | 
|  | */ | 
|  | spin_unlock(&pool->lock); | 
|  | migrate_write_unlock(zspage); | 
|  |  | 
|  | get_page(newpage); | 
|  | if (page_zone(newpage) != page_zone(page)) { | 
|  | dec_zone_page_state(page, NR_ZSPAGES); | 
|  | inc_zone_page_state(newpage, NR_ZSPAGES); | 
|  | } | 
|  |  | 
|  | reset_page(page); | 
|  | put_page(page); | 
|  |  | 
|  | return MIGRATEPAGE_SUCCESS; | 
|  | } | 
|  |  | 
|  | static void zs_page_putback(struct page *page) | 
|  | { | 
|  | struct zs_pool *pool; | 
|  | struct zspage *zspage; | 
|  |  | 
|  | VM_BUG_ON_PAGE(!PageIsolated(page), page); | 
|  |  | 
|  | zspage = get_zspage(page); | 
|  | pool = zspage->pool; | 
|  | spin_lock(&pool->lock); | 
|  | dec_zspage_isolation(zspage); | 
|  | spin_unlock(&pool->lock); | 
|  | } | 
|  |  | 
|  | static const struct movable_operations zsmalloc_mops = { | 
|  | .isolate_page = zs_page_isolate, | 
|  | .migrate_page = zs_page_migrate, | 
|  | .putback_page = zs_page_putback, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Caller should hold page_lock of all pages in the zspage | 
|  | * In here, we cannot use zspage meta data. | 
|  | */ | 
|  | static void async_free_zspage(struct work_struct *work) | 
|  | { | 
|  | int i; | 
|  | struct size_class *class; | 
|  | unsigned int class_idx; | 
|  | int fullness; | 
|  | struct zspage *zspage, *tmp; | 
|  | LIST_HEAD(free_pages); | 
|  | struct zs_pool *pool = container_of(work, struct zs_pool, | 
|  | free_work); | 
|  |  | 
|  | for (i = 0; i < ZS_SIZE_CLASSES; i++) { | 
|  | class = pool->size_class[i]; | 
|  | if (class->index != i) | 
|  | continue; | 
|  |  | 
|  | spin_lock(&pool->lock); | 
|  | list_splice_init(&class->fullness_list[ZS_INUSE_RATIO_0], | 
|  | &free_pages); | 
|  | spin_unlock(&pool->lock); | 
|  | } | 
|  |  | 
|  | list_for_each_entry_safe(zspage, tmp, &free_pages, list) { | 
|  | list_del(&zspage->list); | 
|  | lock_zspage(zspage); | 
|  |  | 
|  | get_zspage_mapping(zspage, &class_idx, &fullness); | 
|  | VM_BUG_ON(fullness != ZS_INUSE_RATIO_0); | 
|  | class = pool->size_class[class_idx]; | 
|  | spin_lock(&pool->lock); | 
|  | __free_zspage(pool, class, zspage); | 
|  | spin_unlock(&pool->lock); | 
|  | } | 
|  | }; | 
|  |  | 
|  | static void kick_deferred_free(struct zs_pool *pool) | 
|  | { | 
|  | schedule_work(&pool->free_work); | 
|  | } | 
|  |  | 
|  | static void zs_flush_migration(struct zs_pool *pool) | 
|  | { | 
|  | flush_work(&pool->free_work); | 
|  | } | 
|  |  | 
|  | static void init_deferred_free(struct zs_pool *pool) | 
|  | { | 
|  | INIT_WORK(&pool->free_work, async_free_zspage); | 
|  | } | 
|  |  | 
|  | static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) | 
|  | { | 
|  | struct page *page = get_first_page(zspage); | 
|  |  | 
|  | do { | 
|  | WARN_ON(!trylock_page(page)); | 
|  | __SetPageMovable(page, &zsmalloc_mops); | 
|  | unlock_page(page); | 
|  | } while ((page = get_next_page(page)) != NULL); | 
|  | } | 
|  | #else | 
|  | static inline void zs_flush_migration(struct zs_pool *pool) { } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * | 
|  | * Based on the number of unused allocated objects calculate | 
|  | * and return the number of pages that we can free. | 
|  | */ | 
|  | static unsigned long zs_can_compact(struct size_class *class) | 
|  | { | 
|  | unsigned long obj_wasted; | 
|  | unsigned long obj_allocated = zs_stat_get(class, ZS_OBJS_ALLOCATED); | 
|  | unsigned long obj_used = zs_stat_get(class, ZS_OBJS_INUSE); | 
|  |  | 
|  | if (obj_allocated <= obj_used) | 
|  | return 0; | 
|  |  | 
|  | obj_wasted = obj_allocated - obj_used; | 
|  | obj_wasted /= class->objs_per_zspage; | 
|  |  | 
|  | return obj_wasted * class->pages_per_zspage; | 
|  | } | 
|  |  | 
|  | static unsigned long __zs_compact(struct zs_pool *pool, | 
|  | struct size_class *class) | 
|  | { | 
|  | struct zs_compact_control cc; | 
|  | struct zspage *src_zspage = NULL; | 
|  | struct zspage *dst_zspage = NULL; | 
|  | unsigned long pages_freed = 0; | 
|  |  | 
|  | /* | 
|  | * protect the race between zpage migration and zs_free | 
|  | * as well as zpage allocation/free | 
|  | */ | 
|  | spin_lock(&pool->lock); | 
|  | while (zs_can_compact(class)) { | 
|  | int fg; | 
|  |  | 
|  | if (!dst_zspage) { | 
|  | dst_zspage = isolate_dst_zspage(class); | 
|  | if (!dst_zspage) | 
|  | break; | 
|  | migrate_write_lock(dst_zspage); | 
|  | cc.d_page = get_first_page(dst_zspage); | 
|  | } | 
|  |  | 
|  | src_zspage = isolate_src_zspage(class); | 
|  | if (!src_zspage) | 
|  | break; | 
|  |  | 
|  | migrate_write_lock_nested(src_zspage); | 
|  |  | 
|  | cc.obj_idx = 0; | 
|  | cc.s_page = get_first_page(src_zspage); | 
|  | migrate_zspage(pool, class, &cc); | 
|  | fg = putback_zspage(class, src_zspage); | 
|  | migrate_write_unlock(src_zspage); | 
|  |  | 
|  | if (fg == ZS_INUSE_RATIO_0) { | 
|  | free_zspage(pool, class, src_zspage); | 
|  | pages_freed += class->pages_per_zspage; | 
|  | } | 
|  | src_zspage = NULL; | 
|  |  | 
|  | if (get_fullness_group(class, dst_zspage) == ZS_INUSE_RATIO_100 | 
|  | || spin_is_contended(&pool->lock)) { | 
|  | putback_zspage(class, dst_zspage); | 
|  | migrate_write_unlock(dst_zspage); | 
|  | dst_zspage = NULL; | 
|  |  | 
|  | spin_unlock(&pool->lock); | 
|  | cond_resched(); | 
|  | spin_lock(&pool->lock); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (src_zspage) { | 
|  | putback_zspage(class, src_zspage); | 
|  | migrate_write_unlock(src_zspage); | 
|  | } | 
|  |  | 
|  | if (dst_zspage) { | 
|  | putback_zspage(class, dst_zspage); | 
|  | migrate_write_unlock(dst_zspage); | 
|  | } | 
|  | spin_unlock(&pool->lock); | 
|  |  | 
|  | return pages_freed; | 
|  | } | 
|  |  | 
|  | unsigned long zs_compact(struct zs_pool *pool) | 
|  | { | 
|  | int i; | 
|  | struct size_class *class; | 
|  | unsigned long pages_freed = 0; | 
|  |  | 
|  | /* | 
|  | * Pool compaction is performed under pool->lock so it is basically | 
|  | * single-threaded. Having more than one thread in __zs_compact() | 
|  | * will increase pool->lock contention, which will impact other | 
|  | * zsmalloc operations that need pool->lock. | 
|  | */ | 
|  | if (atomic_xchg(&pool->compaction_in_progress, 1)) | 
|  | return 0; | 
|  |  | 
|  | for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) { | 
|  | class = pool->size_class[i]; | 
|  | if (class->index != i) | 
|  | continue; | 
|  | pages_freed += __zs_compact(pool, class); | 
|  | } | 
|  | atomic_long_add(pages_freed, &pool->stats.pages_compacted); | 
|  | atomic_set(&pool->compaction_in_progress, 0); | 
|  |  | 
|  | return pages_freed; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(zs_compact); | 
|  |  | 
|  | void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats) | 
|  | { | 
|  | memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats)); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(zs_pool_stats); | 
|  |  | 
|  | static unsigned long zs_shrinker_scan(struct shrinker *shrinker, | 
|  | struct shrink_control *sc) | 
|  | { | 
|  | unsigned long pages_freed; | 
|  | struct zs_pool *pool = container_of(shrinker, struct zs_pool, | 
|  | shrinker); | 
|  |  | 
|  | /* | 
|  | * Compact classes and calculate compaction delta. | 
|  | * Can run concurrently with a manually triggered | 
|  | * (by user) compaction. | 
|  | */ | 
|  | pages_freed = zs_compact(pool); | 
|  |  | 
|  | return pages_freed ? pages_freed : SHRINK_STOP; | 
|  | } | 
|  |  | 
|  | static unsigned long zs_shrinker_count(struct shrinker *shrinker, | 
|  | struct shrink_control *sc) | 
|  | { | 
|  | int i; | 
|  | struct size_class *class; | 
|  | unsigned long pages_to_free = 0; | 
|  | struct zs_pool *pool = container_of(shrinker, struct zs_pool, | 
|  | shrinker); | 
|  |  | 
|  | for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) { | 
|  | class = pool->size_class[i]; | 
|  | if (class->index != i) | 
|  | continue; | 
|  |  | 
|  | pages_to_free += zs_can_compact(class); | 
|  | } | 
|  |  | 
|  | return pages_to_free; | 
|  | } | 
|  |  | 
|  | static void zs_unregister_shrinker(struct zs_pool *pool) | 
|  | { | 
|  | unregister_shrinker(&pool->shrinker); | 
|  | } | 
|  |  | 
|  | static int zs_register_shrinker(struct zs_pool *pool) | 
|  | { | 
|  | pool->shrinker.scan_objects = zs_shrinker_scan; | 
|  | pool->shrinker.count_objects = zs_shrinker_count; | 
|  | pool->shrinker.batch = 0; | 
|  | pool->shrinker.seeks = DEFAULT_SEEKS; | 
|  |  | 
|  | return register_shrinker(&pool->shrinker, "mm-zspool:%s", | 
|  | pool->name); | 
|  | } | 
|  |  | 
|  | static int calculate_zspage_chain_size(int class_size) | 
|  | { | 
|  | int i, min_waste = INT_MAX; | 
|  | int chain_size = 1; | 
|  |  | 
|  | if (is_power_of_2(class_size)) | 
|  | return chain_size; | 
|  |  | 
|  | for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) { | 
|  | int waste; | 
|  |  | 
|  | waste = (i * PAGE_SIZE) % class_size; | 
|  | if (waste < min_waste) { | 
|  | min_waste = waste; | 
|  | chain_size = i; | 
|  | } | 
|  | } | 
|  |  | 
|  | return chain_size; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * zs_create_pool - Creates an allocation pool to work from. | 
|  | * @name: pool name to be created | 
|  | * | 
|  | * This function must be called before anything when using | 
|  | * the zsmalloc allocator. | 
|  | * | 
|  | * On success, a pointer to the newly created pool is returned, | 
|  | * otherwise NULL. | 
|  | */ | 
|  | struct zs_pool *zs_create_pool(const char *name) | 
|  | { | 
|  | int i; | 
|  | struct zs_pool *pool; | 
|  | struct size_class *prev_class = NULL; | 
|  |  | 
|  | pool = kzalloc(sizeof(*pool), GFP_KERNEL); | 
|  | if (!pool) | 
|  | return NULL; | 
|  |  | 
|  | init_deferred_free(pool); | 
|  | spin_lock_init(&pool->lock); | 
|  | atomic_set(&pool->compaction_in_progress, 0); | 
|  |  | 
|  | pool->name = kstrdup(name, GFP_KERNEL); | 
|  | if (!pool->name) | 
|  | goto err; | 
|  |  | 
|  | if (create_cache(pool)) | 
|  | goto err; | 
|  |  | 
|  | /* | 
|  | * Iterate reversely, because, size of size_class that we want to use | 
|  | * for merging should be larger or equal to current size. | 
|  | */ | 
|  | for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) { | 
|  | int size; | 
|  | int pages_per_zspage; | 
|  | int objs_per_zspage; | 
|  | struct size_class *class; | 
|  | int fullness; | 
|  |  | 
|  | size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA; | 
|  | if (size > ZS_MAX_ALLOC_SIZE) | 
|  | size = ZS_MAX_ALLOC_SIZE; | 
|  | pages_per_zspage = calculate_zspage_chain_size(size); | 
|  | objs_per_zspage = pages_per_zspage * PAGE_SIZE / size; | 
|  |  | 
|  | /* | 
|  | * We iterate from biggest down to smallest classes, | 
|  | * so huge_class_size holds the size of the first huge | 
|  | * class. Any object bigger than or equal to that will | 
|  | * endup in the huge class. | 
|  | */ | 
|  | if (pages_per_zspage != 1 && objs_per_zspage != 1 && | 
|  | !huge_class_size) { | 
|  | huge_class_size = size; | 
|  | /* | 
|  | * The object uses ZS_HANDLE_SIZE bytes to store the | 
|  | * handle. We need to subtract it, because zs_malloc() | 
|  | * unconditionally adds handle size before it performs | 
|  | * size class search - so object may be smaller than | 
|  | * huge class size, yet it still can end up in the huge | 
|  | * class because it grows by ZS_HANDLE_SIZE extra bytes | 
|  | * right before class lookup. | 
|  | */ | 
|  | huge_class_size -= (ZS_HANDLE_SIZE - 1); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * size_class is used for normal zsmalloc operation such | 
|  | * as alloc/free for that size. Although it is natural that we | 
|  | * have one size_class for each size, there is a chance that we | 
|  | * can get more memory utilization if we use one size_class for | 
|  | * many different sizes whose size_class have same | 
|  | * characteristics. So, we makes size_class point to | 
|  | * previous size_class if possible. | 
|  | */ | 
|  | if (prev_class) { | 
|  | if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) { | 
|  | pool->size_class[i] = prev_class; | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | class = kzalloc(sizeof(struct size_class), GFP_KERNEL); | 
|  | if (!class) | 
|  | goto err; | 
|  |  | 
|  | class->size = size; | 
|  | class->index = i; | 
|  | class->pages_per_zspage = pages_per_zspage; | 
|  | class->objs_per_zspage = objs_per_zspage; | 
|  | pool->size_class[i] = class; | 
|  |  | 
|  | fullness = ZS_INUSE_RATIO_0; | 
|  | while (fullness < NR_FULLNESS_GROUPS) { | 
|  | INIT_LIST_HEAD(&class->fullness_list[fullness]); | 
|  | fullness++; | 
|  | } | 
|  |  | 
|  | prev_class = class; | 
|  | } | 
|  |  | 
|  | /* debug only, don't abort if it fails */ | 
|  | zs_pool_stat_create(pool, name); | 
|  |  | 
|  | /* | 
|  | * Not critical since shrinker is only used to trigger internal | 
|  | * defragmentation of the pool which is pretty optional thing.  If | 
|  | * registration fails we still can use the pool normally and user can | 
|  | * trigger compaction manually. Thus, ignore return code. | 
|  | */ | 
|  | zs_register_shrinker(pool); | 
|  |  | 
|  | return pool; | 
|  |  | 
|  | err: | 
|  | zs_destroy_pool(pool); | 
|  | return NULL; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(zs_create_pool); | 
|  |  | 
|  | void zs_destroy_pool(struct zs_pool *pool) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | zs_unregister_shrinker(pool); | 
|  | zs_flush_migration(pool); | 
|  | zs_pool_stat_destroy(pool); | 
|  |  | 
|  | for (i = 0; i < ZS_SIZE_CLASSES; i++) { | 
|  | int fg; | 
|  | struct size_class *class = pool->size_class[i]; | 
|  |  | 
|  | if (!class) | 
|  | continue; | 
|  |  | 
|  | if (class->index != i) | 
|  | continue; | 
|  |  | 
|  | for (fg = ZS_INUSE_RATIO_0; fg < NR_FULLNESS_GROUPS; fg++) { | 
|  | if (list_empty(&class->fullness_list[fg])) | 
|  | continue; | 
|  |  | 
|  | pr_err("Class-%d fullness group %d is not empty\n", | 
|  | class->size, fg); | 
|  | } | 
|  | kfree(class); | 
|  | } | 
|  |  | 
|  | destroy_cache(pool); | 
|  | kfree(pool->name); | 
|  | kfree(pool); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(zs_destroy_pool); | 
|  |  | 
|  | static int __init zs_init(void) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare", | 
|  | zs_cpu_prepare, zs_cpu_dead); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | #ifdef CONFIG_ZPOOL | 
|  | zpool_register_driver(&zs_zpool_driver); | 
|  | #endif | 
|  |  | 
|  | zs_stat_init(); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void __exit zs_exit(void) | 
|  | { | 
|  | #ifdef CONFIG_ZPOOL | 
|  | zpool_unregister_driver(&zs_zpool_driver); | 
|  | #endif | 
|  | cpuhp_remove_state(CPUHP_MM_ZS_PREPARE); | 
|  |  | 
|  | zs_stat_exit(); | 
|  | } | 
|  |  | 
|  | module_init(zs_init); | 
|  | module_exit(zs_exit); | 
|  |  | 
|  | MODULE_LICENSE("Dual BSD/GPL"); | 
|  | MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>"); |