| // SPDX-License-Identifier: GPL-2.0-or-later | 
 | /* | 
 |  *  Helper library for PATA timings | 
 |  * | 
 |  *  Copyright 2003-2004 Red Hat, Inc.  All rights reserved. | 
 |  *  Copyright 2003-2004 Jeff Garzik | 
 |  */ | 
 |  | 
 | #include <linux/kernel.h> | 
 | #include <linux/module.h> | 
 | #include <linux/libata.h> | 
 |  | 
 | /* | 
 |  * This mode timing computation functionality is ported over from | 
 |  * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik | 
 |  */ | 
 | /* | 
 |  * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds). | 
 |  * These were taken from ATA/ATAPI-6 standard, rev 0a, except | 
 |  * for UDMA6, which is currently supported only by Maxtor drives. | 
 |  * | 
 |  * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0. | 
 |  */ | 
 |  | 
 | static const struct ata_timing ata_timing[] = { | 
 | /*	{ XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0,  960,   0 }, */ | 
 | 	{ XFER_PIO_0,     70, 290, 240, 600, 165, 150, 0,  600,   0 }, | 
 | 	{ XFER_PIO_1,     50, 290,  93, 383, 125, 100, 0,  383,   0 }, | 
 | 	{ XFER_PIO_2,     30, 290,  40, 330, 100,  90, 0,  240,   0 }, | 
 | 	{ XFER_PIO_3,     30,  80,  70, 180,  80,  70, 0,  180,   0 }, | 
 | 	{ XFER_PIO_4,     25,  70,  25, 120,  70,  25, 0,  120,   0 }, | 
 | 	{ XFER_PIO_5,     15,  65,  25, 100,  65,  25, 0,  100,   0 }, | 
 | 	{ XFER_PIO_6,     10,  55,  20,  80,  55,  20, 0,   80,   0 }, | 
 |  | 
 | 	{ XFER_SW_DMA_0, 120,   0,   0,   0, 480, 480, 50, 960,   0 }, | 
 | 	{ XFER_SW_DMA_1,  90,   0,   0,   0, 240, 240, 30, 480,   0 }, | 
 | 	{ XFER_SW_DMA_2,  60,   0,   0,   0, 120, 120, 20, 240,   0 }, | 
 |  | 
 | 	{ XFER_MW_DMA_0,  60,   0,   0,   0, 215, 215, 20, 480,   0 }, | 
 | 	{ XFER_MW_DMA_1,  45,   0,   0,   0,  80,  50, 5,  150,   0 }, | 
 | 	{ XFER_MW_DMA_2,  25,   0,   0,   0,  70,  25, 5,  120,   0 }, | 
 | 	{ XFER_MW_DMA_3,  25,   0,   0,   0,  65,  25, 5,  100,   0 }, | 
 | 	{ XFER_MW_DMA_4,  25,   0,   0,   0,  55,  20, 5,   80,   0 }, | 
 |  | 
 | /*	{ XFER_UDMA_SLOW,  0,   0,   0,   0,   0,   0, 0,    0, 150 }, */ | 
 | 	{ XFER_UDMA_0,     0,   0,   0,   0,   0,   0, 0,    0, 120 }, | 
 | 	{ XFER_UDMA_1,     0,   0,   0,   0,   0,   0, 0,    0,  80 }, | 
 | 	{ XFER_UDMA_2,     0,   0,   0,   0,   0,   0, 0,    0,  60 }, | 
 | 	{ XFER_UDMA_3,     0,   0,   0,   0,   0,   0, 0,    0,  45 }, | 
 | 	{ XFER_UDMA_4,     0,   0,   0,   0,   0,   0, 0,    0,  30 }, | 
 | 	{ XFER_UDMA_5,     0,   0,   0,   0,   0,   0, 0,    0,  20 }, | 
 | 	{ XFER_UDMA_6,     0,   0,   0,   0,   0,   0, 0,    0,  15 }, | 
 |  | 
 | 	{ 0xFF } | 
 | }; | 
 |  | 
 | #define ENOUGH(v, unit)		(((v)-1)/(unit)+1) | 
 | #define EZ(v, unit)		((v)?ENOUGH(((v) * 1000), unit):0) | 
 |  | 
 | static void ata_timing_quantize(const struct ata_timing *t, | 
 | 				struct ata_timing *q, int T, int UT) | 
 | { | 
 | 	q->setup	= EZ(t->setup,       T); | 
 | 	q->act8b	= EZ(t->act8b,       T); | 
 | 	q->rec8b	= EZ(t->rec8b,       T); | 
 | 	q->cyc8b	= EZ(t->cyc8b,       T); | 
 | 	q->active	= EZ(t->active,      T); | 
 | 	q->recover	= EZ(t->recover,     T); | 
 | 	q->dmack_hold	= EZ(t->dmack_hold,  T); | 
 | 	q->cycle	= EZ(t->cycle,       T); | 
 | 	q->udma		= EZ(t->udma,       UT); | 
 | } | 
 |  | 
 | void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b, | 
 | 		      struct ata_timing *m, unsigned int what) | 
 | { | 
 | 	if (what & ATA_TIMING_SETUP) | 
 | 		m->setup = max(a->setup, b->setup); | 
 | 	if (what & ATA_TIMING_ACT8B) | 
 | 		m->act8b = max(a->act8b, b->act8b); | 
 | 	if (what & ATA_TIMING_REC8B) | 
 | 		m->rec8b = max(a->rec8b, b->rec8b); | 
 | 	if (what & ATA_TIMING_CYC8B) | 
 | 		m->cyc8b = max(a->cyc8b, b->cyc8b); | 
 | 	if (what & ATA_TIMING_ACTIVE) | 
 | 		m->active = max(a->active, b->active); | 
 | 	if (what & ATA_TIMING_RECOVER) | 
 | 		m->recover = max(a->recover, b->recover); | 
 | 	if (what & ATA_TIMING_DMACK_HOLD) | 
 | 		m->dmack_hold = max(a->dmack_hold, b->dmack_hold); | 
 | 	if (what & ATA_TIMING_CYCLE) | 
 | 		m->cycle = max(a->cycle, b->cycle); | 
 | 	if (what & ATA_TIMING_UDMA) | 
 | 		m->udma = max(a->udma, b->udma); | 
 | } | 
 | EXPORT_SYMBOL_GPL(ata_timing_merge); | 
 |  | 
 | const struct ata_timing *ata_timing_find_mode(u8 xfer_mode) | 
 | { | 
 | 	const struct ata_timing *t = ata_timing; | 
 |  | 
 | 	while (xfer_mode > t->mode) | 
 | 		t++; | 
 |  | 
 | 	if (xfer_mode == t->mode) | 
 | 		return t; | 
 |  | 
 | 	WARN_ONCE(true, "%s: unable to find timing for xfer_mode 0x%x\n", | 
 | 			__func__, xfer_mode); | 
 |  | 
 | 	return NULL; | 
 | } | 
 | EXPORT_SYMBOL_GPL(ata_timing_find_mode); | 
 |  | 
 | int ata_timing_compute(struct ata_device *adev, unsigned short speed, | 
 | 		       struct ata_timing *t, int T, int UT) | 
 | { | 
 | 	const u16 *id = adev->id; | 
 | 	const struct ata_timing *s; | 
 | 	struct ata_timing p; | 
 |  | 
 | 	/* | 
 | 	 * Find the mode. | 
 | 	 */ | 
 | 	s = ata_timing_find_mode(speed); | 
 | 	if (!s) | 
 | 		return -EINVAL; | 
 |  | 
 | 	memcpy(t, s, sizeof(*s)); | 
 |  | 
 | 	/* | 
 | 	 * If the drive is an EIDE drive, it can tell us it needs extended | 
 | 	 * PIO/MW_DMA cycle timing. | 
 | 	 */ | 
 |  | 
 | 	if (id[ATA_ID_FIELD_VALID] & 2) {	/* EIDE drive */ | 
 | 		memset(&p, 0, sizeof(p)); | 
 |  | 
 | 		if (speed >= XFER_PIO_0 && speed < XFER_SW_DMA_0) { | 
 | 			if (speed <= XFER_PIO_2) | 
 | 				p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO]; | 
 | 			else if ((speed <= XFER_PIO_4) || | 
 | 				 (speed == XFER_PIO_5 && !ata_id_is_cfa(id))) | 
 | 				p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY]; | 
 | 		} else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) | 
 | 			p.cycle = id[ATA_ID_EIDE_DMA_MIN]; | 
 |  | 
 | 		ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Convert the timing to bus clock counts. | 
 | 	 */ | 
 |  | 
 | 	ata_timing_quantize(t, t, T, UT); | 
 |  | 
 | 	/* | 
 | 	 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY, | 
 | 	 * S.M.A.R.T * and some other commands. We have to ensure that the | 
 | 	 * DMA cycle timing is slower/equal than the fastest PIO timing. | 
 | 	 */ | 
 |  | 
 | 	if (speed > XFER_PIO_6) { | 
 | 		ata_timing_compute(adev, adev->pio_mode, &p, T, UT); | 
 | 		ata_timing_merge(&p, t, t, ATA_TIMING_ALL); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Lengthen active & recovery time so that cycle time is correct. | 
 | 	 */ | 
 |  | 
 | 	if (t->act8b + t->rec8b < t->cyc8b) { | 
 | 		t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2; | 
 | 		t->rec8b = t->cyc8b - t->act8b; | 
 | 	} | 
 |  | 
 | 	if (t->active + t->recover < t->cycle) { | 
 | 		t->active += (t->cycle - (t->active + t->recover)) / 2; | 
 | 		t->recover = t->cycle - t->active; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * In a few cases quantisation may produce enough errors to | 
 | 	 * leave t->cycle too low for the sum of active and recovery | 
 | 	 * if so we must correct this. | 
 | 	 */ | 
 | 	if (t->active + t->recover > t->cycle) | 
 | 		t->cycle = t->active + t->recover; | 
 |  | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL_GPL(ata_timing_compute); |