blob: ed163c8c8604e30afed3855c856b461a51c9561a [file] [log] [blame] [edit]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 1991, 1992 Linus Torvalds
* Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
* Copyright (C) 2011 Don Zickus Red Hat, Inc.
*
* Pentium III FXSR, SSE support
* Gareth Hughes <gareth@valinux.com>, May 2000
*/
/*
* Handle hardware traps and faults.
*/
#include <linux/spinlock.h>
#include <linux/kprobes.h>
#include <linux/kdebug.h>
#include <linux/sched/debug.h>
#include <linux/nmi.h>
#include <linux/debugfs.h>
#include <linux/delay.h>
#include <linux/hardirq.h>
#include <linux/ratelimit.h>
#include <linux/slab.h>
#include <linux/export.h>
#include <linux/atomic.h>
#include <linux/sched/clock.h>
#include <asm/cpu_entry_area.h>
#include <asm/traps.h>
#include <asm/mach_traps.h>
#include <asm/nmi.h>
#include <asm/x86_init.h>
#include <asm/reboot.h>
#include <asm/cache.h>
#include <asm/nospec-branch.h>
#include <asm/microcode.h>
#include <asm/sev.h>
#include <asm/fred.h>
#define CREATE_TRACE_POINTS
#include <trace/events/nmi.h>
struct nmi_desc {
raw_spinlock_t lock;
struct list_head head;
};
static struct nmi_desc nmi_desc[NMI_MAX] =
{
{
.lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[0].lock),
.head = LIST_HEAD_INIT(nmi_desc[0].head),
},
{
.lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[1].lock),
.head = LIST_HEAD_INIT(nmi_desc[1].head),
},
{
.lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[2].lock),
.head = LIST_HEAD_INIT(nmi_desc[2].head),
},
{
.lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[3].lock),
.head = LIST_HEAD_INIT(nmi_desc[3].head),
},
};
struct nmi_stats {
unsigned int normal;
unsigned int unknown;
unsigned int external;
unsigned int swallow;
unsigned long recv_jiffies;
unsigned long idt_seq;
unsigned long idt_nmi_seq;
unsigned long idt_ignored;
atomic_long_t idt_calls;
unsigned long idt_seq_snap;
unsigned long idt_nmi_seq_snap;
unsigned long idt_ignored_snap;
long idt_calls_snap;
};
static DEFINE_PER_CPU(struct nmi_stats, nmi_stats);
static int ignore_nmis __read_mostly;
int unknown_nmi_panic;
/*
* Prevent NMI reason port (0x61) being accessed simultaneously, can
* only be used in NMI handler.
*/
static DEFINE_RAW_SPINLOCK(nmi_reason_lock);
static int __init setup_unknown_nmi_panic(char *str)
{
unknown_nmi_panic = 1;
return 1;
}
__setup("unknown_nmi_panic", setup_unknown_nmi_panic);
#define nmi_to_desc(type) (&nmi_desc[type])
static u64 nmi_longest_ns = 1 * NSEC_PER_MSEC;
static int __init nmi_warning_debugfs(void)
{
debugfs_create_u64("nmi_longest_ns", 0644,
arch_debugfs_dir, &nmi_longest_ns);
return 0;
}
fs_initcall(nmi_warning_debugfs);
static void nmi_check_duration(struct nmiaction *action, u64 duration)
{
int remainder_ns, decimal_msecs;
if (duration < nmi_longest_ns || duration < action->max_duration)
return;
action->max_duration = duration;
remainder_ns = do_div(duration, (1000 * 1000));
decimal_msecs = remainder_ns / 1000;
printk_ratelimited(KERN_INFO
"INFO: NMI handler (%ps) took too long to run: %lld.%03d msecs\n",
action->handler, duration, decimal_msecs);
}
static int nmi_handle(unsigned int type, struct pt_regs *regs)
{
struct nmi_desc *desc = nmi_to_desc(type);
struct nmiaction *a;
int handled=0;
rcu_read_lock();
/*
* NMIs are edge-triggered, which means if you have enough
* of them concurrently, you can lose some because only one
* can be latched at any given time. Walk the whole list
* to handle those situations.
*/
list_for_each_entry_rcu(a, &desc->head, list) {
int thishandled;
u64 delta;
delta = sched_clock();
thishandled = a->handler(type, regs);
handled += thishandled;
delta = sched_clock() - delta;
trace_nmi_handler(a->handler, (int)delta, thishandled);
nmi_check_duration(a, delta);
}
rcu_read_unlock();
/* return total number of NMI events handled */
return handled;
}
NOKPROBE_SYMBOL(nmi_handle);
int __register_nmi_handler(unsigned int type, struct nmiaction *action)
{
struct nmi_desc *desc = nmi_to_desc(type);
unsigned long flags;
if (WARN_ON_ONCE(!action->handler || !list_empty(&action->list)))
return -EINVAL;
raw_spin_lock_irqsave(&desc->lock, flags);
/*
* Indicate if there are multiple registrations on the
* internal NMI handler call chains (SERR and IO_CHECK).
*/
WARN_ON_ONCE(type == NMI_SERR && !list_empty(&desc->head));
WARN_ON_ONCE(type == NMI_IO_CHECK && !list_empty(&desc->head));
/*
* some handlers need to be executed first otherwise a fake
* event confuses some handlers (kdump uses this flag)
*/
if (action->flags & NMI_FLAG_FIRST)
list_add_rcu(&action->list, &desc->head);
else
list_add_tail_rcu(&action->list, &desc->head);
raw_spin_unlock_irqrestore(&desc->lock, flags);
return 0;
}
EXPORT_SYMBOL(__register_nmi_handler);
void unregister_nmi_handler(unsigned int type, const char *name)
{
struct nmi_desc *desc = nmi_to_desc(type);
struct nmiaction *n, *found = NULL;
unsigned long flags;
raw_spin_lock_irqsave(&desc->lock, flags);
list_for_each_entry_rcu(n, &desc->head, list) {
/*
* the name passed in to describe the nmi handler
* is used as the lookup key
*/
if (!strcmp(n->name, name)) {
WARN(in_nmi(),
"Trying to free NMI (%s) from NMI context!\n", n->name);
list_del_rcu(&n->list);
found = n;
break;
}
}
raw_spin_unlock_irqrestore(&desc->lock, flags);
if (found) {
synchronize_rcu();
INIT_LIST_HEAD(&found->list);
}
}
EXPORT_SYMBOL_GPL(unregister_nmi_handler);
static void
pci_serr_error(unsigned char reason, struct pt_regs *regs)
{
/* check to see if anyone registered against these types of errors */
if (nmi_handle(NMI_SERR, regs))
return;
pr_emerg("NMI: PCI system error (SERR) for reason %02x on CPU %d.\n",
reason, smp_processor_id());
if (panic_on_unrecovered_nmi)
nmi_panic(regs, "NMI: Not continuing");
pr_emerg("Dazed and confused, but trying to continue\n");
/* Clear and disable the PCI SERR error line. */
reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_SERR;
outb(reason, NMI_REASON_PORT);
}
NOKPROBE_SYMBOL(pci_serr_error);
static void
io_check_error(unsigned char reason, struct pt_regs *regs)
{
unsigned long i;
/* check to see if anyone registered against these types of errors */
if (nmi_handle(NMI_IO_CHECK, regs))
return;
pr_emerg(
"NMI: IOCK error (debug interrupt?) for reason %02x on CPU %d.\n",
reason, smp_processor_id());
show_regs(regs);
if (panic_on_io_nmi) {
nmi_panic(regs, "NMI IOCK error: Not continuing");
/*
* If we end up here, it means we have received an NMI while
* processing panic(). Simply return without delaying and
* re-enabling NMIs.
*/
return;
}
/* Re-enable the IOCK line, wait for a few seconds */
reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_IOCHK;
outb(reason, NMI_REASON_PORT);
i = 20000;
while (--i) {
touch_nmi_watchdog();
udelay(100);
}
reason &= ~NMI_REASON_CLEAR_IOCHK;
outb(reason, NMI_REASON_PORT);
}
NOKPROBE_SYMBOL(io_check_error);
static void
unknown_nmi_error(unsigned char reason, struct pt_regs *regs)
{
int handled;
/*
* Use 'false' as back-to-back NMIs are dealt with one level up.
* Of course this makes having multiple 'unknown' handlers useless
* as only the first one is ever run (unless it can actually determine
* if it caused the NMI)
*/
handled = nmi_handle(NMI_UNKNOWN, regs);
if (handled) {
__this_cpu_add(nmi_stats.unknown, handled);
return;
}
__this_cpu_add(nmi_stats.unknown, 1);
pr_emerg_ratelimited("Uhhuh. NMI received for unknown reason %02x on CPU %d.\n",
reason, smp_processor_id());
if (unknown_nmi_panic || panic_on_unrecovered_nmi)
nmi_panic(regs, "NMI: Not continuing");
pr_emerg_ratelimited("Dazed and confused, but trying to continue\n");
}
NOKPROBE_SYMBOL(unknown_nmi_error);
static DEFINE_PER_CPU(bool, swallow_nmi);
static DEFINE_PER_CPU(unsigned long, last_nmi_rip);
static noinstr void default_do_nmi(struct pt_regs *regs)
{
unsigned char reason = 0;
int handled;
bool b2b = false;
/*
* CPU-specific NMI must be processed before non-CPU-specific
* NMI, otherwise we may lose it, because the CPU-specific
* NMI can not be detected/processed on other CPUs.
*/
/*
* Back-to-back NMIs are interesting because they can either
* be two NMI or more than two NMIs (any thing over two is dropped
* due to NMI being edge-triggered). If this is the second half
* of the back-to-back NMI, assume we dropped things and process
* more handlers. Otherwise reset the 'swallow' NMI behaviour
*/
if (regs->ip == __this_cpu_read(last_nmi_rip))
b2b = true;
else
__this_cpu_write(swallow_nmi, false);
__this_cpu_write(last_nmi_rip, regs->ip);
instrumentation_begin();
if (microcode_nmi_handler_enabled() && microcode_nmi_handler())
goto out;
handled = nmi_handle(NMI_LOCAL, regs);
__this_cpu_add(nmi_stats.normal, handled);
if (handled) {
/*
* There are cases when a NMI handler handles multiple
* events in the current NMI. One of these events may
* be queued for in the next NMI. Because the event is
* already handled, the next NMI will result in an unknown
* NMI. Instead lets flag this for a potential NMI to
* swallow.
*/
if (handled > 1)
__this_cpu_write(swallow_nmi, true);
goto out;
}
/*
* Non-CPU-specific NMI: NMI sources can be processed on any CPU.
*
* Another CPU may be processing panic routines while holding
* nmi_reason_lock. Check if the CPU issued the IPI for crash dumping,
* and if so, call its callback directly. If there is no CPU preparing
* crash dump, we simply loop here.
*/
while (!raw_spin_trylock(&nmi_reason_lock)) {
run_crash_ipi_callback(regs);
cpu_relax();
}
reason = x86_platform.get_nmi_reason();
if (reason & NMI_REASON_MASK) {
if (reason & NMI_REASON_SERR)
pci_serr_error(reason, regs);
else if (reason & NMI_REASON_IOCHK)
io_check_error(reason, regs);
#ifdef CONFIG_X86_32
/*
* Reassert NMI in case it became active
* meanwhile as it's edge-triggered:
*/
reassert_nmi();
#endif
__this_cpu_add(nmi_stats.external, 1);
raw_spin_unlock(&nmi_reason_lock);
goto out;
}
raw_spin_unlock(&nmi_reason_lock);
/*
* Only one NMI can be latched at a time. To handle
* this we may process multiple nmi handlers at once to
* cover the case where an NMI is dropped. The downside
* to this approach is we may process an NMI prematurely,
* while its real NMI is sitting latched. This will cause
* an unknown NMI on the next run of the NMI processing.
*
* We tried to flag that condition above, by setting the
* swallow_nmi flag when we process more than one event.
* This condition is also only present on the second half
* of a back-to-back NMI, so we flag that condition too.
*
* If both are true, we assume we already processed this
* NMI previously and we swallow it. Otherwise we reset
* the logic.
*
* There are scenarios where we may accidentally swallow
* a 'real' unknown NMI. For example, while processing
* a perf NMI another perf NMI comes in along with a
* 'real' unknown NMI. These two NMIs get combined into
* one (as described above). When the next NMI gets
* processed, it will be flagged by perf as handled, but
* no one will know that there was a 'real' unknown NMI sent
* also. As a result it gets swallowed. Or if the first
* perf NMI returns two events handled then the second
* NMI will get eaten by the logic below, again losing a
* 'real' unknown NMI. But this is the best we can do
* for now.
*/
if (b2b && __this_cpu_read(swallow_nmi))
__this_cpu_add(nmi_stats.swallow, 1);
else
unknown_nmi_error(reason, regs);
out:
instrumentation_end();
}
/*
* NMIs can page fault or hit breakpoints which will cause it to lose
* its NMI context with the CPU when the breakpoint or page fault does an IRET.
*
* As a result, NMIs can nest if NMIs get unmasked due an IRET during
* NMI processing. On x86_64, the asm glue protects us from nested NMIs
* if the outer NMI came from kernel mode, but we can still nest if the
* outer NMI came from user mode.
*
* To handle these nested NMIs, we have three states:
*
* 1) not running
* 2) executing
* 3) latched
*
* When no NMI is in progress, it is in the "not running" state.
* When an NMI comes in, it goes into the "executing" state.
* Normally, if another NMI is triggered, it does not interrupt
* the running NMI and the HW will simply latch it so that when
* the first NMI finishes, it will restart the second NMI.
* (Note, the latch is binary, thus multiple NMIs triggering,
* when one is running, are ignored. Only one NMI is restarted.)
*
* If an NMI executes an iret, another NMI can preempt it. We do not
* want to allow this new NMI to run, but we want to execute it when the
* first one finishes. We set the state to "latched", and the exit of
* the first NMI will perform a dec_return, if the result is zero
* (NOT_RUNNING), then it will simply exit the NMI handler. If not, the
* dec_return would have set the state to NMI_EXECUTING (what we want it
* to be when we are running). In this case, we simply jump back to
* rerun the NMI handler again, and restart the 'latched' NMI.
*
* No trap (breakpoint or page fault) should be hit before nmi_restart,
* thus there is no race between the first check of state for NOT_RUNNING
* and setting it to NMI_EXECUTING. The HW will prevent nested NMIs
* at this point.
*
* In case the NMI takes a page fault, we need to save off the CR2
* because the NMI could have preempted another page fault and corrupt
* the CR2 that is about to be read. As nested NMIs must be restarted
* and they can not take breakpoints or page faults, the update of the
* CR2 must be done before converting the nmi state back to NOT_RUNNING.
* Otherwise, there would be a race of another nested NMI coming in
* after setting state to NOT_RUNNING but before updating the nmi_cr2.
*/
enum nmi_states {
NMI_NOT_RUNNING = 0,
NMI_EXECUTING,
NMI_LATCHED,
};
static DEFINE_PER_CPU(enum nmi_states, nmi_state);
static DEFINE_PER_CPU(unsigned long, nmi_cr2);
static DEFINE_PER_CPU(unsigned long, nmi_dr7);
DEFINE_IDTENTRY_RAW(exc_nmi)
{
irqentry_state_t irq_state;
struct nmi_stats *nsp = this_cpu_ptr(&nmi_stats);
/*
* Re-enable NMIs right here when running as an SEV-ES guest. This might
* cause nested NMIs, but those can be handled safely.
*/
sev_es_nmi_complete();
if (IS_ENABLED(CONFIG_NMI_CHECK_CPU))
raw_atomic_long_inc(&nsp->idt_calls);
if (arch_cpu_is_offline(smp_processor_id())) {
if (microcode_nmi_handler_enabled())
microcode_offline_nmi_handler();
return;
}
if (this_cpu_read(nmi_state) != NMI_NOT_RUNNING) {
this_cpu_write(nmi_state, NMI_LATCHED);
return;
}
this_cpu_write(nmi_state, NMI_EXECUTING);
this_cpu_write(nmi_cr2, read_cr2());
nmi_restart:
if (IS_ENABLED(CONFIG_NMI_CHECK_CPU)) {
WRITE_ONCE(nsp->idt_seq, nsp->idt_seq + 1);
WARN_ON_ONCE(!(nsp->idt_seq & 0x1));
WRITE_ONCE(nsp->recv_jiffies, jiffies);
}
/*
* Needs to happen before DR7 is accessed, because the hypervisor can
* intercept DR7 reads/writes, turning those into #VC exceptions.
*/
sev_es_ist_enter(regs);
this_cpu_write(nmi_dr7, local_db_save());
irq_state = irqentry_nmi_enter(regs);
inc_irq_stat(__nmi_count);
if (IS_ENABLED(CONFIG_NMI_CHECK_CPU) && ignore_nmis) {
WRITE_ONCE(nsp->idt_ignored, nsp->idt_ignored + 1);
} else if (!ignore_nmis) {
if (IS_ENABLED(CONFIG_NMI_CHECK_CPU)) {
WRITE_ONCE(nsp->idt_nmi_seq, nsp->idt_nmi_seq + 1);
WARN_ON_ONCE(!(nsp->idt_nmi_seq & 0x1));
}
default_do_nmi(regs);
if (IS_ENABLED(CONFIG_NMI_CHECK_CPU)) {
WRITE_ONCE(nsp->idt_nmi_seq, nsp->idt_nmi_seq + 1);
WARN_ON_ONCE(nsp->idt_nmi_seq & 0x1);
}
}
irqentry_nmi_exit(regs, irq_state);
local_db_restore(this_cpu_read(nmi_dr7));
sev_es_ist_exit();
if (unlikely(this_cpu_read(nmi_cr2) != read_cr2()))
write_cr2(this_cpu_read(nmi_cr2));
if (IS_ENABLED(CONFIG_NMI_CHECK_CPU)) {
WRITE_ONCE(nsp->idt_seq, nsp->idt_seq + 1);
WARN_ON_ONCE(nsp->idt_seq & 0x1);
WRITE_ONCE(nsp->recv_jiffies, jiffies);
}
if (this_cpu_dec_return(nmi_state))
goto nmi_restart;
}
#if IS_ENABLED(CONFIG_KVM_INTEL)
DEFINE_IDTENTRY_RAW(exc_nmi_kvm_vmx)
{
exc_nmi(regs);
}
#if IS_MODULE(CONFIG_KVM_INTEL)
EXPORT_SYMBOL_GPL(asm_exc_nmi_kvm_vmx);
#endif
#endif
#ifdef CONFIG_NMI_CHECK_CPU
static char *nmi_check_stall_msg[] = {
/* */
/* +--------- nmi_seq & 0x1: CPU is currently in NMI handler. */
/* | +------ cpu_is_offline(cpu) */
/* | | +--- nsp->idt_calls_snap != atomic_long_read(&nsp->idt_calls): */
/* | | | NMI handler has been invoked. */
/* | | | */
/* V V V */
/* 0 0 0 */ "NMIs are not reaching exc_nmi() handler",
/* 0 0 1 */ "exc_nmi() handler is ignoring NMIs",
/* 0 1 0 */ "CPU is offline and NMIs are not reaching exc_nmi() handler",
/* 0 1 1 */ "CPU is offline and exc_nmi() handler is legitimately ignoring NMIs",
/* 1 0 0 */ "CPU is in exc_nmi() handler and no further NMIs are reaching handler",
/* 1 0 1 */ "CPU is in exc_nmi() handler which is legitimately ignoring NMIs",
/* 1 1 0 */ "CPU is offline in exc_nmi() handler and no more NMIs are reaching exc_nmi() handler",
/* 1 1 1 */ "CPU is offline in exc_nmi() handler which is legitimately ignoring NMIs",
};
void nmi_backtrace_stall_snap(const struct cpumask *btp)
{
int cpu;
struct nmi_stats *nsp;
for_each_cpu(cpu, btp) {
nsp = per_cpu_ptr(&nmi_stats, cpu);
nsp->idt_seq_snap = READ_ONCE(nsp->idt_seq);
nsp->idt_nmi_seq_snap = READ_ONCE(nsp->idt_nmi_seq);
nsp->idt_ignored_snap = READ_ONCE(nsp->idt_ignored);
nsp->idt_calls_snap = atomic_long_read(&nsp->idt_calls);
}
}
void nmi_backtrace_stall_check(const struct cpumask *btp)
{
int cpu;
int idx;
unsigned long nmi_seq;
unsigned long j = jiffies;
char *modp;
char *msgp;
char *msghp;
struct nmi_stats *nsp;
for_each_cpu(cpu, btp) {
nsp = per_cpu_ptr(&nmi_stats, cpu);
modp = "";
msghp = "";
nmi_seq = READ_ONCE(nsp->idt_nmi_seq);
if (nsp->idt_nmi_seq_snap + 1 == nmi_seq && (nmi_seq & 0x1)) {
msgp = "CPU entered NMI handler function, but has not exited";
} else if (nsp->idt_nmi_seq_snap == nmi_seq ||
nsp->idt_nmi_seq_snap + 1 == nmi_seq) {
idx = ((nmi_seq & 0x1) << 2) |
(cpu_is_offline(cpu) << 1) |
(nsp->idt_calls_snap != atomic_long_read(&nsp->idt_calls));
msgp = nmi_check_stall_msg[idx];
if (nsp->idt_ignored_snap != READ_ONCE(nsp->idt_ignored) && (idx & 0x1))
modp = ", but OK because ignore_nmis was set";
if (nsp->idt_nmi_seq_snap + 1 == nmi_seq)
msghp = " (CPU exited one NMI handler function)";
else if (nmi_seq & 0x1)
msghp = " (CPU currently in NMI handler function)";
else
msghp = " (CPU was never in an NMI handler function)";
} else {
msgp = "CPU is handling NMIs";
}
pr_alert("%s: CPU %d: %s%s%s\n", __func__, cpu, msgp, modp, msghp);
pr_alert("%s: last activity: %lu jiffies ago.\n",
__func__, j - READ_ONCE(nsp->recv_jiffies));
}
}
#endif
#ifdef CONFIG_X86_FRED
/*
* With FRED, CR2/DR6 is pushed to #PF/#DB stack frame during FRED
* event delivery, i.e., there is no problem of transient states.
* And NMI unblocking only happens when the stack frame indicates
* that so should happen.
*
* Thus, the NMI entry stub for FRED is really straightforward and
* as simple as most exception handlers. As such, #DB is allowed
* during NMI handling.
*/
DEFINE_FREDENTRY_NMI(exc_nmi)
{
irqentry_state_t irq_state;
if (arch_cpu_is_offline(smp_processor_id())) {
if (microcode_nmi_handler_enabled())
microcode_offline_nmi_handler();
return;
}
/*
* Save CR2 for eventual restore to cover the case where the NMI
* hits the VMENTER/VMEXIT region where guest CR2 is life. This
* prevents guest state corruption in case that the NMI handler
* takes a page fault.
*/
this_cpu_write(nmi_cr2, read_cr2());
irq_state = irqentry_nmi_enter(regs);
inc_irq_stat(__nmi_count);
default_do_nmi(regs);
irqentry_nmi_exit(regs, irq_state);
if (unlikely(this_cpu_read(nmi_cr2) != read_cr2()))
write_cr2(this_cpu_read(nmi_cr2));
}
#endif
void stop_nmi(void)
{
ignore_nmis++;
}
void restart_nmi(void)
{
ignore_nmis--;
}
/* reset the back-to-back NMI logic */
void local_touch_nmi(void)
{
__this_cpu_write(last_nmi_rip, 0);
}
EXPORT_SYMBOL_GPL(local_touch_nmi);