blob: b143f7ed6847277aeb49094627d90e5d95eed71c [file] [log] [blame] [edit]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Analog Devices Generic AXI DAC IP core
* Link: https://wiki.analog.com/resources/fpga/docs/axi_dac_ip
*
* Copyright 2016-2024 Analog Devices Inc.
*/
#include <linux/bitfield.h>
#include <linux/bits.h>
#include <linux/cleanup.h>
#include <linux/clk.h>
#include <linux/device.h>
#include <linux/err.h>
#include <linux/limits.h>
#include <linux/kstrtox.h>
#include <linux/math.h>
#include <linux/math64.h>
#include <linux/module.h>
#include <linux/mod_devicetable.h>
#include <linux/mutex.h>
#include <linux/platform_device.h>
#include <linux/property.h>
#include <linux/regmap.h>
#include <linux/units.h>
#include <linux/fpga/adi-axi-common.h>
#include <linux/iio/backend.h>
#include <linux/iio/buffer-dmaengine.h>
#include <linux/iio/buffer.h>
#include <linux/iio/iio.h>
#include "ad3552r-hs.h"
/*
* Register definitions:
* https://wiki.analog.com/resources/fpga/docs/axi_dac_ip#register_map
*/
/* Base controls */
#define AXI_DAC_CONFIG_REG 0x0c
#define AXI_DAC_CONFIG_DDS_DISABLE BIT(6)
/* DAC controls */
#define AXI_DAC_RSTN_REG 0x0040
#define AXI_DAC_RSTN_CE_N BIT(2)
#define AXI_DAC_RSTN_MMCM_RSTN BIT(1)
#define AXI_DAC_RSTN_RSTN BIT(0)
#define AXI_DAC_CNTRL_1_REG 0x0044
#define AXI_DAC_CNTRL_1_SYNC BIT(0)
#define AXI_DAC_CNTRL_2_REG 0x0048
#define AXI_DAC_CNTRL_2_SDR_DDR_N BIT(16)
#define AXI_DAC_CNTRL_2_SYMB_8B BIT(14)
#define ADI_DAC_CNTRL_2_R1_MODE BIT(5)
#define AXI_DAC_CNTRL_2_UNSIGNED_DATA BIT(4)
#define AXI_DAC_STATUS_1_REG 0x0054
#define AXI_DAC_STATUS_2_REG 0x0058
#define AXI_DAC_DRP_STATUS_REG 0x0074
#define AXI_DAC_DRP_STATUS_DRP_LOCKED BIT(17)
#define AXI_DAC_CUSTOM_RD_REG 0x0080
#define AXI_DAC_CUSTOM_WR_REG 0x0084
#define AXI_DAC_CUSTOM_WR_DATA_8 GENMASK(23, 16)
#define AXI_DAC_CUSTOM_WR_DATA_16 GENMASK(23, 8)
#define AXI_DAC_UI_STATUS_REG 0x0088
#define AXI_DAC_UI_STATUS_IF_BUSY BIT(4)
#define AXI_DAC_CUSTOM_CTRL_REG 0x008C
#define AXI_DAC_CUSTOM_CTRL_ADDRESS GENMASK(31, 24)
#define AXI_DAC_CUSTOM_CTRL_SYNCED_TRANSFER BIT(2)
#define AXI_DAC_CUSTOM_CTRL_STREAM BIT(1)
#define AXI_DAC_CUSTOM_CTRL_TRANSFER_DATA BIT(0)
#define AXI_DAC_CUSTOM_CTRL_STREAM_ENABLE (AXI_DAC_CUSTOM_CTRL_TRANSFER_DATA | \
AXI_DAC_CUSTOM_CTRL_STREAM)
/* DAC Channel controls */
#define AXI_DAC_CHAN_CNTRL_1_REG(c) (0x0400 + (c) * 0x40)
#define AXI_DAC_CHAN_CNTRL_3_REG(c) (0x0408 + (c) * 0x40)
#define AXI_DAC_CHAN_CNTRL_3_SCALE_SIGN BIT(15)
#define AXI_DAC_CHAN_CNTRL_3_SCALE_INT BIT(14)
#define AXI_DAC_CHAN_CNTRL_3_SCALE GENMASK(14, 0)
#define AXI_DAC_CHAN_CNTRL_2_REG(c) (0x0404 + (c) * 0x40)
#define AXI_DAC_CHAN_CNTRL_2_PHASE GENMASK(31, 16)
#define AXI_DAC_CHAN_CNTRL_2_FREQUENCY GENMASK(15, 0)
#define AXI_DAC_CHAN_CNTRL_4_REG(c) (0x040c + (c) * 0x40)
#define AXI_DAC_CHAN_CNTRL_7_REG(c) (0x0418 + (c) * 0x40)
#define AXI_DAC_CHAN_CNTRL_7_DATA_SEL GENMASK(3, 0)
#define AXI_DAC_RD_ADDR(x) (BIT(7) | (x))
/* 360 degrees in rad */
#define AXI_DAC_2_PI_MEGA 6283190
enum {
AXI_DAC_DATA_INTERNAL_TONE,
AXI_DAC_DATA_DMA = 2,
AXI_DAC_DATA_INTERNAL_RAMP_16BIT = 11,
};
struct axi_dac_info {
unsigned int version;
const struct iio_backend_info *backend_info;
bool has_dac_clk;
bool has_child_nodes;
};
struct axi_dac_state {
struct regmap *regmap;
struct device *dev;
/*
* lock to protect multiple accesses to the device registers and global
* data/variables.
*/
struct mutex lock;
const struct axi_dac_info *info;
u64 dac_clk;
u32 reg_config;
bool int_tone;
int dac_clk_rate;
};
static int axi_dac_enable(struct iio_backend *back)
{
struct axi_dac_state *st = iio_backend_get_priv(back);
unsigned int __val;
int ret;
guard(mutex)(&st->lock);
ret = regmap_set_bits(st->regmap, AXI_DAC_RSTN_REG,
AXI_DAC_RSTN_MMCM_RSTN);
if (ret)
return ret;
/*
* Make sure the DRP (Dynamic Reconfiguration Port) is locked. Not all
* designs really use it but if they don't we still get the lock bit
* set. So let's do it all the time so the code is generic.
*/
ret = regmap_read_poll_timeout(st->regmap, AXI_DAC_DRP_STATUS_REG,
__val,
__val & AXI_DAC_DRP_STATUS_DRP_LOCKED,
100, 1000);
if (ret)
return ret;
return regmap_set_bits(st->regmap, AXI_DAC_RSTN_REG,
AXI_DAC_RSTN_RSTN | AXI_DAC_RSTN_MMCM_RSTN);
}
static void axi_dac_disable(struct iio_backend *back)
{
struct axi_dac_state *st = iio_backend_get_priv(back);
guard(mutex)(&st->lock);
regmap_write(st->regmap, AXI_DAC_RSTN_REG, 0);
}
static struct iio_buffer *axi_dac_request_buffer(struct iio_backend *back,
struct iio_dev *indio_dev)
{
struct axi_dac_state *st = iio_backend_get_priv(back);
const char *dma_name;
if (device_property_read_string(st->dev, "dma-names", &dma_name))
dma_name = "tx";
return iio_dmaengine_buffer_setup_ext(st->dev, indio_dev, dma_name,
IIO_BUFFER_DIRECTION_OUT);
}
static void axi_dac_free_buffer(struct iio_backend *back,
struct iio_buffer *buffer)
{
iio_dmaengine_buffer_free(buffer);
}
enum {
AXI_DAC_FREQ_TONE_1,
AXI_DAC_FREQ_TONE_2,
AXI_DAC_SCALE_TONE_1,
AXI_DAC_SCALE_TONE_2,
AXI_DAC_PHASE_TONE_1,
AXI_DAC_PHASE_TONE_2,
};
static int __axi_dac_frequency_get(struct axi_dac_state *st, unsigned int chan,
unsigned int tone_2, unsigned int *freq)
{
u32 reg, raw;
int ret;
if (!st->dac_clk) {
dev_err(st->dev, "Sampling rate is 0...\n");
return -EINVAL;
}
if (tone_2)
reg = AXI_DAC_CHAN_CNTRL_4_REG(chan);
else
reg = AXI_DAC_CHAN_CNTRL_2_REG(chan);
ret = regmap_read(st->regmap, reg, &raw);
if (ret)
return ret;
raw = FIELD_GET(AXI_DAC_CHAN_CNTRL_2_FREQUENCY, raw);
*freq = DIV_ROUND_CLOSEST_ULL(raw * st->dac_clk, BIT(16));
return 0;
}
static int axi_dac_frequency_get(struct axi_dac_state *st,
const struct iio_chan_spec *chan, char *buf,
unsigned int tone_2)
{
unsigned int freq;
int ret;
scoped_guard(mutex, &st->lock) {
ret = __axi_dac_frequency_get(st, chan->channel, tone_2, &freq);
if (ret)
return ret;
}
return sysfs_emit(buf, "%u\n", freq);
}
static int axi_dac_scale_get(struct axi_dac_state *st,
const struct iio_chan_spec *chan, char *buf,
unsigned int tone_2)
{
unsigned int scale, sign;
int ret, vals[2];
u32 reg, raw;
if (tone_2)
reg = AXI_DAC_CHAN_CNTRL_3_REG(chan->channel);
else
reg = AXI_DAC_CHAN_CNTRL_1_REG(chan->channel);
ret = regmap_read(st->regmap, reg, &raw);
if (ret)
return ret;
sign = FIELD_GET(AXI_DAC_CHAN_CNTRL_3_SCALE_SIGN, raw);
raw = FIELD_GET(AXI_DAC_CHAN_CNTRL_3_SCALE, raw);
scale = DIV_ROUND_CLOSEST_ULL((u64)raw * MEGA,
AXI_DAC_CHAN_CNTRL_3_SCALE_INT);
vals[0] = scale / MEGA;
vals[1] = scale % MEGA;
if (sign) {
vals[0] *= -1;
if (!vals[0])
vals[1] *= -1;
}
return iio_format_value(buf, IIO_VAL_INT_PLUS_MICRO, ARRAY_SIZE(vals),
vals);
}
static int axi_dac_phase_get(struct axi_dac_state *st,
const struct iio_chan_spec *chan, char *buf,
unsigned int tone_2)
{
u32 reg, raw, phase;
int ret, vals[2];
if (tone_2)
reg = AXI_DAC_CHAN_CNTRL_4_REG(chan->channel);
else
reg = AXI_DAC_CHAN_CNTRL_2_REG(chan->channel);
ret = regmap_read(st->regmap, reg, &raw);
if (ret)
return ret;
raw = FIELD_GET(AXI_DAC_CHAN_CNTRL_2_PHASE, raw);
phase = DIV_ROUND_CLOSEST_ULL((u64)raw * AXI_DAC_2_PI_MEGA, U16_MAX);
vals[0] = phase / MEGA;
vals[1] = phase % MEGA;
return iio_format_value(buf, IIO_VAL_INT_PLUS_MICRO, ARRAY_SIZE(vals),
vals);
}
static int __axi_dac_frequency_set(struct axi_dac_state *st, unsigned int chan,
u64 sample_rate, unsigned int freq,
unsigned int tone_2)
{
u32 reg;
u16 raw;
int ret;
if (!sample_rate || freq > sample_rate / 2) {
dev_err(st->dev, "Invalid frequency(%u) dac_clk(%llu)\n",
freq, sample_rate);
return -EINVAL;
}
if (tone_2)
reg = AXI_DAC_CHAN_CNTRL_4_REG(chan);
else
reg = AXI_DAC_CHAN_CNTRL_2_REG(chan);
raw = DIV64_U64_ROUND_CLOSEST((u64)freq * BIT(16), sample_rate);
ret = regmap_update_bits(st->regmap, reg,
AXI_DAC_CHAN_CNTRL_2_FREQUENCY, raw);
if (ret)
return ret;
/* synchronize channels */
return regmap_set_bits(st->regmap, AXI_DAC_CNTRL_1_REG,
AXI_DAC_CNTRL_1_SYNC);
}
static int axi_dac_frequency_set(struct axi_dac_state *st,
const struct iio_chan_spec *chan,
const char *buf, size_t len, unsigned int tone_2)
{
unsigned int freq;
int ret;
ret = kstrtou32(buf, 10, &freq);
if (ret)
return ret;
guard(mutex)(&st->lock);
ret = __axi_dac_frequency_set(st, chan->channel, st->dac_clk, freq,
tone_2);
if (ret)
return ret;
return len;
}
static int axi_dac_scale_set(struct axi_dac_state *st,
const struct iio_chan_spec *chan,
const char *buf, size_t len, unsigned int tone_2)
{
int integer, frac, scale;
u32 raw = 0, reg;
int ret;
ret = iio_str_to_fixpoint(buf, 100000, &integer, &frac);
if (ret)
return ret;
scale = integer * MEGA + frac;
if (scale <= -2 * (int)MEGA || scale >= 2 * (int)MEGA)
return -EINVAL;
/* format is 1.1.14 (sign, integer and fractional bits) */
if (scale < 0) {
raw = FIELD_PREP(AXI_DAC_CHAN_CNTRL_3_SCALE_SIGN, 1);
scale *= -1;
}
raw |= div_u64((u64)scale * AXI_DAC_CHAN_CNTRL_3_SCALE_INT, MEGA);
if (tone_2)
reg = AXI_DAC_CHAN_CNTRL_3_REG(chan->channel);
else
reg = AXI_DAC_CHAN_CNTRL_1_REG(chan->channel);
guard(mutex)(&st->lock);
ret = regmap_write(st->regmap, reg, raw);
if (ret)
return ret;
/* synchronize channels */
ret = regmap_set_bits(st->regmap, AXI_DAC_CNTRL_1_REG,
AXI_DAC_CNTRL_1_SYNC);
if (ret)
return ret;
return len;
}
static int axi_dac_phase_set(struct axi_dac_state *st,
const struct iio_chan_spec *chan,
const char *buf, size_t len, unsigned int tone_2)
{
int integer, frac, phase;
u32 raw, reg;
int ret;
ret = iio_str_to_fixpoint(buf, 100000, &integer, &frac);
if (ret)
return ret;
phase = integer * MEGA + frac;
if (phase < 0 || phase > AXI_DAC_2_PI_MEGA)
return -EINVAL;
raw = DIV_ROUND_CLOSEST_ULL((u64)phase * U16_MAX, AXI_DAC_2_PI_MEGA);
if (tone_2)
reg = AXI_DAC_CHAN_CNTRL_4_REG(chan->channel);
else
reg = AXI_DAC_CHAN_CNTRL_2_REG(chan->channel);
guard(mutex)(&st->lock);
ret = regmap_update_bits(st->regmap, reg, AXI_DAC_CHAN_CNTRL_2_PHASE,
FIELD_PREP(AXI_DAC_CHAN_CNTRL_2_PHASE, raw));
if (ret)
return ret;
/* synchronize channels */
ret = regmap_set_bits(st->regmap, AXI_DAC_CNTRL_1_REG,
AXI_DAC_CNTRL_1_SYNC);
if (ret)
return ret;
return len;
}
static int axi_dac_ext_info_set(struct iio_backend *back, uintptr_t private,
const struct iio_chan_spec *chan,
const char *buf, size_t len)
{
struct axi_dac_state *st = iio_backend_get_priv(back);
switch (private) {
case AXI_DAC_FREQ_TONE_1:
case AXI_DAC_FREQ_TONE_2:
return axi_dac_frequency_set(st, chan, buf, len,
private == AXI_DAC_FREQ_TONE_2);
case AXI_DAC_SCALE_TONE_1:
case AXI_DAC_SCALE_TONE_2:
return axi_dac_scale_set(st, chan, buf, len,
private == AXI_DAC_SCALE_TONE_2);
case AXI_DAC_PHASE_TONE_1:
case AXI_DAC_PHASE_TONE_2:
return axi_dac_phase_set(st, chan, buf, len,
private == AXI_DAC_PHASE_TONE_2);
default:
return -EOPNOTSUPP;
}
}
static int axi_dac_ext_info_get(struct iio_backend *back, uintptr_t private,
const struct iio_chan_spec *chan, char *buf)
{
struct axi_dac_state *st = iio_backend_get_priv(back);
switch (private) {
case AXI_DAC_FREQ_TONE_1:
case AXI_DAC_FREQ_TONE_2:
return axi_dac_frequency_get(st, chan, buf,
private - AXI_DAC_FREQ_TONE_1);
case AXI_DAC_SCALE_TONE_1:
case AXI_DAC_SCALE_TONE_2:
return axi_dac_scale_get(st, chan, buf,
private - AXI_DAC_SCALE_TONE_1);
case AXI_DAC_PHASE_TONE_1:
case AXI_DAC_PHASE_TONE_2:
return axi_dac_phase_get(st, chan, buf,
private - AXI_DAC_PHASE_TONE_1);
default:
return -EOPNOTSUPP;
}
}
static const struct iio_chan_spec_ext_info axi_dac_ext_info[] = {
IIO_BACKEND_EX_INFO("frequency0", IIO_SEPARATE, AXI_DAC_FREQ_TONE_1),
IIO_BACKEND_EX_INFO("frequency1", IIO_SEPARATE, AXI_DAC_FREQ_TONE_2),
IIO_BACKEND_EX_INFO("scale0", IIO_SEPARATE, AXI_DAC_SCALE_TONE_1),
IIO_BACKEND_EX_INFO("scale1", IIO_SEPARATE, AXI_DAC_SCALE_TONE_2),
IIO_BACKEND_EX_INFO("phase0", IIO_SEPARATE, AXI_DAC_PHASE_TONE_1),
IIO_BACKEND_EX_INFO("phase1", IIO_SEPARATE, AXI_DAC_PHASE_TONE_2),
{}
};
static int axi_dac_extend_chan(struct iio_backend *back,
struct iio_chan_spec *chan)
{
struct axi_dac_state *st = iio_backend_get_priv(back);
if (chan->type != IIO_ALTVOLTAGE)
return -EINVAL;
if (st->reg_config & AXI_DAC_CONFIG_DDS_DISABLE)
/* nothing to extend */
return 0;
chan->ext_info = axi_dac_ext_info;
return 0;
}
static int axi_dac_data_source_set(struct iio_backend *back, unsigned int chan,
enum iio_backend_data_source data)
{
struct axi_dac_state *st = iio_backend_get_priv(back);
switch (data) {
case IIO_BACKEND_INTERNAL_CONTINUOUS_WAVE:
return regmap_update_bits(st->regmap,
AXI_DAC_CHAN_CNTRL_7_REG(chan),
AXI_DAC_CHAN_CNTRL_7_DATA_SEL,
AXI_DAC_DATA_INTERNAL_TONE);
case IIO_BACKEND_EXTERNAL:
return regmap_update_bits(st->regmap,
AXI_DAC_CHAN_CNTRL_7_REG(chan),
AXI_DAC_CHAN_CNTRL_7_DATA_SEL,
AXI_DAC_DATA_DMA);
case IIO_BACKEND_INTERNAL_RAMP_16BIT:
return regmap_update_bits(st->regmap,
AXI_DAC_CHAN_CNTRL_7_REG(chan),
AXI_DAC_CHAN_CNTRL_7_DATA_SEL,
AXI_DAC_DATA_INTERNAL_RAMP_16BIT);
default:
return -EINVAL;
}
}
static int axi_dac_set_sample_rate(struct iio_backend *back, unsigned int chan,
u64 sample_rate)
{
struct axi_dac_state *st = iio_backend_get_priv(back);
unsigned int freq;
int ret, tone;
if (!sample_rate)
return -EINVAL;
if (st->reg_config & AXI_DAC_CONFIG_DDS_DISABLE)
/* sample_rate has no meaning if DDS is disabled */
return 0;
guard(mutex)(&st->lock);
/*
* If dac_clk is 0 then this must be the first time we're being notified
* about the interface sample rate. Hence, just update our internal
* variable and bail... If it's not 0, then we get the current DDS
* frequency (for the old rate) and update the registers for the new
* sample rate.
*/
if (!st->dac_clk) {
st->dac_clk = sample_rate;
return 0;
}
for (tone = 0; tone <= AXI_DAC_FREQ_TONE_2; tone++) {
ret = __axi_dac_frequency_get(st, chan, tone, &freq);
if (ret)
return ret;
ret = __axi_dac_frequency_set(st, chan, sample_rate, tone, freq);
if (ret)
return ret;
}
st->dac_clk = sample_rate;
return 0;
}
static int axi_dac_reg_access(struct iio_backend *back, unsigned int reg,
unsigned int writeval, unsigned int *readval)
{
struct axi_dac_state *st = iio_backend_get_priv(back);
if (readval)
return regmap_read(st->regmap, reg, readval);
return regmap_write(st->regmap, reg, writeval);
}
static int axi_dac_ddr_enable(struct iio_backend *back)
{
struct axi_dac_state *st = iio_backend_get_priv(back);
return regmap_clear_bits(st->regmap, AXI_DAC_CNTRL_2_REG,
AXI_DAC_CNTRL_2_SDR_DDR_N);
}
static int axi_dac_ddr_disable(struct iio_backend *back)
{
struct axi_dac_state *st = iio_backend_get_priv(back);
return regmap_set_bits(st->regmap, AXI_DAC_CNTRL_2_REG,
AXI_DAC_CNTRL_2_SDR_DDR_N);
}
static int axi_dac_data_stream_enable(struct iio_backend *back)
{
struct axi_dac_state *st = iio_backend_get_priv(back);
return regmap_set_bits(st->regmap, AXI_DAC_CUSTOM_CTRL_REG,
AXI_DAC_CUSTOM_CTRL_STREAM_ENABLE);
}
static int axi_dac_data_stream_disable(struct iio_backend *back)
{
struct axi_dac_state *st = iio_backend_get_priv(back);
return regmap_clear_bits(st->regmap, AXI_DAC_CUSTOM_CTRL_REG,
AXI_DAC_CUSTOM_CTRL_STREAM_ENABLE);
}
static int axi_dac_data_transfer_addr(struct iio_backend *back, u32 address)
{
struct axi_dac_state *st = iio_backend_get_priv(back);
if (address > FIELD_MAX(AXI_DAC_CUSTOM_CTRL_ADDRESS))
return -EINVAL;
/*
* Sample register address, when the DAC is configured, or stream
* start address when the FSM is in stream state.
*/
return regmap_update_bits(st->regmap, AXI_DAC_CUSTOM_CTRL_REG,
AXI_DAC_CUSTOM_CTRL_ADDRESS,
FIELD_PREP(AXI_DAC_CUSTOM_CTRL_ADDRESS,
address));
}
static int axi_dac_data_format_set(struct iio_backend *back, unsigned int ch,
const struct iio_backend_data_fmt *data)
{
struct axi_dac_state *st = iio_backend_get_priv(back);
switch (data->type) {
case IIO_BACKEND_DATA_UNSIGNED:
return regmap_clear_bits(st->regmap, AXI_DAC_CNTRL_2_REG,
AXI_DAC_CNTRL_2_UNSIGNED_DATA);
default:
return -EINVAL;
}
}
static int __axi_dac_bus_reg_write(struct iio_backend *back, u32 reg,
u32 val, size_t data_size)
{
struct axi_dac_state *st = iio_backend_get_priv(back);
int ret;
u32 ival;
/*
* Both AXI_DAC_CNTRL_2_REG and AXI_DAC_CUSTOM_WR_REG need to know
* the data size. So keeping data size control here only,
* since data size is mandatory for the current transfer.
* DDR state handled separately by specific backend calls,
* generally all raw register writes are SDR.
*/
if (data_size == sizeof(u16))
ival = FIELD_PREP(AXI_DAC_CUSTOM_WR_DATA_16, val);
else
ival = FIELD_PREP(AXI_DAC_CUSTOM_WR_DATA_8, val);
ret = regmap_write(st->regmap, AXI_DAC_CUSTOM_WR_REG, ival);
if (ret)
return ret;
if (data_size == sizeof(u8))
ret = regmap_set_bits(st->regmap, AXI_DAC_CNTRL_2_REG,
AXI_DAC_CNTRL_2_SYMB_8B);
else
ret = regmap_clear_bits(st->regmap, AXI_DAC_CNTRL_2_REG,
AXI_DAC_CNTRL_2_SYMB_8B);
if (ret)
return ret;
ret = regmap_update_bits(st->regmap, AXI_DAC_CUSTOM_CTRL_REG,
AXI_DAC_CUSTOM_CTRL_ADDRESS,
FIELD_PREP(AXI_DAC_CUSTOM_CTRL_ADDRESS, reg));
if (ret)
return ret;
ret = regmap_update_bits(st->regmap, AXI_DAC_CUSTOM_CTRL_REG,
AXI_DAC_CUSTOM_CTRL_TRANSFER_DATA,
AXI_DAC_CUSTOM_CTRL_TRANSFER_DATA);
if (ret)
return ret;
ret = regmap_read_poll_timeout(st->regmap,
AXI_DAC_UI_STATUS_REG, ival,
FIELD_GET(AXI_DAC_UI_STATUS_IF_BUSY, ival) == 0,
10, 100 * KILO);
if (ret == -ETIMEDOUT)
dev_err(st->dev, "AXI read timeout\n");
/* Cleaning always AXI_DAC_CUSTOM_CTRL_TRANSFER_DATA */
return regmap_clear_bits(st->regmap, AXI_DAC_CUSTOM_CTRL_REG,
AXI_DAC_CUSTOM_CTRL_TRANSFER_DATA);
}
static int axi_dac_bus_reg_write(struct iio_backend *back, u32 reg,
u32 val, size_t data_size)
{
struct axi_dac_state *st = iio_backend_get_priv(back);
guard(mutex)(&st->lock);
return __axi_dac_bus_reg_write(back, reg, val, data_size);
}
static int axi_dac_bus_reg_read(struct iio_backend *back, u32 reg, u32 *val,
size_t data_size)
{
struct axi_dac_state *st = iio_backend_get_priv(back);
int ret;
guard(mutex)(&st->lock);
/*
* SPI, we write with read flag, then we read just at the AXI
* io address space to get data read.
*/
ret = __axi_dac_bus_reg_write(back, AXI_DAC_RD_ADDR(reg), 0,
data_size);
if (ret)
return ret;
return regmap_read(st->regmap, AXI_DAC_CUSTOM_RD_REG, val);
}
static void axi_dac_child_remove(void *data)
{
platform_device_unregister(data);
}
static int axi_dac_create_platform_device(struct axi_dac_state *st,
struct fwnode_handle *child)
{
struct ad3552r_hs_platform_data pdata = {
.bus_reg_read = axi_dac_bus_reg_read,
.bus_reg_write = axi_dac_bus_reg_write,
.bus_sample_data_clock_hz = st->dac_clk_rate,
};
struct platform_device_info pi = {
.parent = st->dev,
.name = fwnode_get_name(child),
.id = PLATFORM_DEVID_AUTO,
.fwnode = child,
.data = &pdata,
.size_data = sizeof(pdata),
};
struct platform_device *pdev;
pdev = platform_device_register_full(&pi);
if (IS_ERR(pdev))
return PTR_ERR(pdev);
return devm_add_action_or_reset(st->dev, axi_dac_child_remove, pdev);
}
static const struct iio_backend_ops axi_dac_generic_ops = {
.enable = axi_dac_enable,
.disable = axi_dac_disable,
.request_buffer = axi_dac_request_buffer,
.free_buffer = axi_dac_free_buffer,
.extend_chan_spec = axi_dac_extend_chan,
.ext_info_set = axi_dac_ext_info_set,
.ext_info_get = axi_dac_ext_info_get,
.data_source_set = axi_dac_data_source_set,
.set_sample_rate = axi_dac_set_sample_rate,
.debugfs_reg_access = iio_backend_debugfs_ptr(axi_dac_reg_access),
};
static const struct iio_backend_ops axi_ad3552r_ops = {
.enable = axi_dac_enable,
.disable = axi_dac_disable,
.request_buffer = axi_dac_request_buffer,
.free_buffer = axi_dac_free_buffer,
.data_source_set = axi_dac_data_source_set,
.ddr_enable = axi_dac_ddr_enable,
.ddr_disable = axi_dac_ddr_disable,
.data_stream_enable = axi_dac_data_stream_enable,
.data_stream_disable = axi_dac_data_stream_disable,
.data_format_set = axi_dac_data_format_set,
.data_transfer_addr = axi_dac_data_transfer_addr,
};
static const struct iio_backend_info axi_dac_generic = {
.name = "axi-dac",
.ops = &axi_dac_generic_ops,
};
static const struct iio_backend_info axi_ad3552r = {
.name = "axi-ad3552r",
.ops = &axi_ad3552r_ops,
};
static const struct regmap_config axi_dac_regmap_config = {
.val_bits = 32,
.reg_bits = 32,
.reg_stride = 4,
.max_register = 0x0800,
};
static int axi_dac_probe(struct platform_device *pdev)
{
struct axi_dac_state *st;
void __iomem *base;
unsigned int ver;
struct clk *clk;
int ret;
st = devm_kzalloc(&pdev->dev, sizeof(*st), GFP_KERNEL);
if (!st)
return -ENOMEM;
st->info = device_get_match_data(&pdev->dev);
if (!st->info)
return -ENODEV;
clk = devm_clk_get_enabled(&pdev->dev, "s_axi_aclk");
if (IS_ERR(clk)) {
/* Backward compat., old fdt versions without clock-names. */
clk = devm_clk_get_enabled(&pdev->dev, NULL);
if (IS_ERR(clk))
return dev_err_probe(&pdev->dev, PTR_ERR(clk),
"failed to get clock\n");
}
if (st->info->has_dac_clk) {
struct clk *dac_clk;
dac_clk = devm_clk_get_enabled(&pdev->dev, "dac_clk");
if (IS_ERR(dac_clk))
return dev_err_probe(&pdev->dev, PTR_ERR(dac_clk),
"failed to get dac_clk clock\n");
/* We only care about the streaming mode rate */
st->dac_clk_rate = clk_get_rate(dac_clk) / 2;
}
base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(base))
return PTR_ERR(base);
st->dev = &pdev->dev;
st->regmap = devm_regmap_init_mmio(&pdev->dev, base,
&axi_dac_regmap_config);
if (IS_ERR(st->regmap))
return dev_err_probe(&pdev->dev, PTR_ERR(st->regmap),
"failed to init register map\n");
/*
* Force disable the core. Up to the frontend to enable us. And we can
* still read/write registers...
*/
ret = regmap_write(st->regmap, AXI_DAC_RSTN_REG, 0);
if (ret)
return ret;
ret = regmap_read(st->regmap, ADI_AXI_REG_VERSION, &ver);
if (ret)
return ret;
if (ADI_AXI_PCORE_VER_MAJOR(ver) !=
ADI_AXI_PCORE_VER_MAJOR(st->info->version)) {
dev_err(&pdev->dev,
"Major version mismatch. Expected %d.%.2d.%c, Reported %d.%.2d.%c\n",
ADI_AXI_PCORE_VER_MAJOR(st->info->version),
ADI_AXI_PCORE_VER_MINOR(st->info->version),
ADI_AXI_PCORE_VER_PATCH(st->info->version),
ADI_AXI_PCORE_VER_MAJOR(ver),
ADI_AXI_PCORE_VER_MINOR(ver),
ADI_AXI_PCORE_VER_PATCH(ver));
return -ENODEV;
}
/* Let's get the core read only configuration */
ret = regmap_read(st->regmap, AXI_DAC_CONFIG_REG, &st->reg_config);
if (ret)
return ret;
/*
* In some designs, setting the R1_MODE bit to 0 (which is the default
* value) causes all channels of the frontend to be routed to the same
* DMA (so they are sampled together). This is for things like
* Multiple-Input and Multiple-Output (MIMO). As most of the times we
* want independent channels let's override the core's default value and
* set the R1_MODE bit.
*/
ret = regmap_set_bits(st->regmap, AXI_DAC_CNTRL_2_REG,
ADI_DAC_CNTRL_2_R1_MODE);
if (ret)
return ret;
mutex_init(&st->lock);
ret = devm_iio_backend_register(&pdev->dev, st->info->backend_info, st);
if (ret)
return dev_err_probe(&pdev->dev, ret,
"failed to register iio backend\n");
device_for_each_child_node_scoped(&pdev->dev, child) {
int val;
if (!st->info->has_child_nodes)
return dev_err_probe(&pdev->dev, -EINVAL,
"invalid fdt axi-dac compatible.");
/* Processing only reg 0 node */
ret = fwnode_property_read_u32(child, "reg", &val);
if (ret)
return dev_err_probe(&pdev->dev, ret,
"invalid reg property.");
if (val != 0)
return dev_err_probe(&pdev->dev, -EINVAL,
"invalid node address.");
ret = axi_dac_create_platform_device(st, child);
if (ret)
return dev_err_probe(&pdev->dev, -EINVAL,
"cannot create device.");
}
dev_info(&pdev->dev, "AXI DAC IP core (%d.%.2d.%c) probed\n",
ADI_AXI_PCORE_VER_MAJOR(ver),
ADI_AXI_PCORE_VER_MINOR(ver),
ADI_AXI_PCORE_VER_PATCH(ver));
return 0;
}
static const struct axi_dac_info dac_generic = {
.version = ADI_AXI_PCORE_VER(9, 1, 'b'),
.backend_info = &axi_dac_generic,
};
static const struct axi_dac_info dac_ad3552r = {
.version = ADI_AXI_PCORE_VER(9, 1, 'b'),
.backend_info = &axi_ad3552r,
.has_dac_clk = true,
.has_child_nodes = true,
};
static const struct of_device_id axi_dac_of_match[] = {
{ .compatible = "adi,axi-dac-9.1.b", .data = &dac_generic },
{ .compatible = "adi,axi-ad3552r", .data = &dac_ad3552r },
{}
};
MODULE_DEVICE_TABLE(of, axi_dac_of_match);
static struct platform_driver axi_dac_driver = {
.driver = {
.name = "adi-axi-dac",
.of_match_table = axi_dac_of_match,
},
.probe = axi_dac_probe,
};
module_platform_driver(axi_dac_driver);
MODULE_AUTHOR("Nuno Sa <nuno.sa@analog.com>");
MODULE_DESCRIPTION("Analog Devices Generic AXI DAC IP core driver");
MODULE_LICENSE("GPL");
MODULE_IMPORT_NS("IIO_DMAENGINE_BUFFER");
MODULE_IMPORT_NS("IIO_BACKEND");