| // SPDX-License-Identifier: (GPL-2.0 OR MIT) |
| /* |
| * SPI core driver for the Ocelot chip family. |
| * |
| * This driver will handle everything necessary to allow for communication over |
| * SPI to the VSC7511, VSC7512, VSC7513 and VSC7514 chips. The main functions |
| * are to prepare the chip's SPI interface for a specific bus speed, and a host |
| * processor's endianness. This will create and distribute regmaps for any |
| * children. |
| * |
| * Copyright 2021-2022 Innovative Advantage Inc. |
| * |
| * Author: Colin Foster <colin.foster@in-advantage.com> |
| */ |
| |
| #include <linux/device.h> |
| #include <linux/err.h> |
| #include <linux/errno.h> |
| #include <linux/export.h> |
| #include <linux/ioport.h> |
| #include <linux/mod_devicetable.h> |
| #include <linux/module.h> |
| #include <linux/regmap.h> |
| #include <linux/spi/spi.h> |
| #include <linux/types.h> |
| #include <linux/units.h> |
| |
| #include "ocelot.h" |
| |
| #define REG_DEV_CPUORG_IF_CTRL 0x0000 |
| #define REG_DEV_CPUORG_IF_CFGSTAT 0x0004 |
| |
| #define CFGSTAT_IF_NUM_VCORE (0 << 24) |
| #define CFGSTAT_IF_NUM_VRAP (1 << 24) |
| #define CFGSTAT_IF_NUM_SI (2 << 24) |
| #define CFGSTAT_IF_NUM_MIIM (3 << 24) |
| |
| #define VSC7512_DEVCPU_ORG_RES_START 0x71000000 |
| #define VSC7512_DEVCPU_ORG_RES_SIZE 0x38 |
| |
| #define VSC7512_CHIP_REGS_RES_START 0x71070000 |
| #define VSC7512_CHIP_REGS_RES_SIZE 0x14 |
| |
| static const struct resource vsc7512_dev_cpuorg_resource = |
| DEFINE_RES_REG_NAMED(VSC7512_DEVCPU_ORG_RES_START, |
| VSC7512_DEVCPU_ORG_RES_SIZE, |
| "devcpu_org"); |
| |
| static const struct resource vsc7512_gcb_resource = |
| DEFINE_RES_REG_NAMED(VSC7512_CHIP_REGS_RES_START, |
| VSC7512_CHIP_REGS_RES_SIZE, |
| "devcpu_gcb_chip_regs"); |
| |
| static int ocelot_spi_initialize(struct device *dev) |
| { |
| struct ocelot_ddata *ddata = dev_get_drvdata(dev); |
| u32 val, check; |
| int err; |
| |
| val = OCELOT_SPI_BYTE_ORDER; |
| |
| /* |
| * The SPI address must be big-endian, but we want the payload to match |
| * our CPU. These are two bits (0 and 1) but they're repeated such that |
| * the write from any configuration will be valid. The four |
| * configurations are: |
| * |
| * 0b00: little-endian, MSB first |
| * | 111111 | 22221111 | 33222222 | |
| * | 76543210 | 54321098 | 32109876 | 10987654 | |
| * |
| * 0b01: big-endian, MSB first |
| * | 33222222 | 22221111 | 111111 | | |
| * | 10987654 | 32109876 | 54321098 | 76543210 | |
| * |
| * 0b10: little-endian, LSB first |
| * | 111111 | 11112222 | 22222233 | |
| * | 01234567 | 89012345 | 67890123 | 45678901 | |
| * |
| * 0b11: big-endian, LSB first |
| * | 22222233 | 11112222 | 111111 | | |
| * | 45678901 | 67890123 | 89012345 | 01234567 | |
| */ |
| err = regmap_write(ddata->cpuorg_regmap, REG_DEV_CPUORG_IF_CTRL, val); |
| if (err) |
| return err; |
| |
| /* |
| * Apply the number of padding bytes between a read request and the data |
| * payload. Some registers have access times of up to 1us, so if the |
| * first payload bit is shifted out too quickly, the read will fail. |
| */ |
| val = ddata->spi_padding_bytes; |
| err = regmap_write(ddata->cpuorg_regmap, REG_DEV_CPUORG_IF_CFGSTAT, val); |
| if (err) |
| return err; |
| |
| /* |
| * After we write the interface configuration, read it back here. This |
| * will verify several different things. The first is that the number of |
| * padding bytes actually got written correctly. These are found in bits |
| * 0:3. |
| * |
| * The second is that bit 16 is cleared. Bit 16 is IF_CFGSTAT:IF_STAT, |
| * and will be set if the register access is too fast. This would be in |
| * the condition that the number of padding bytes is insufficient for |
| * the SPI bus frequency. |
| * |
| * The last check is for bits 31:24, which define the interface by which |
| * the registers are being accessed. Since we're accessing them via the |
| * serial interface, it must return IF_NUM_SI. |
| */ |
| check = val | CFGSTAT_IF_NUM_SI; |
| |
| err = regmap_read(ddata->cpuorg_regmap, REG_DEV_CPUORG_IF_CFGSTAT, &val); |
| if (err) |
| return err; |
| |
| if (check != val) |
| return -ENODEV; |
| |
| return 0; |
| } |
| |
| static const struct regmap_config ocelot_spi_regmap_config = { |
| .reg_bits = 24, |
| .reg_stride = 4, |
| .reg_shift = REGMAP_DOWNSHIFT(2), |
| .val_bits = 32, |
| |
| .write_flag_mask = 0x80, |
| |
| .use_single_read = true, |
| .use_single_write = true, |
| .can_multi_write = false, |
| |
| .reg_format_endian = REGMAP_ENDIAN_BIG, |
| .val_format_endian = REGMAP_ENDIAN_NATIVE, |
| }; |
| |
| static int ocelot_spi_regmap_bus_read(void *context, const void *reg, size_t reg_size, |
| void *val, size_t val_size) |
| { |
| struct spi_transfer xfers[3] = {0}; |
| struct device *dev = context; |
| struct ocelot_ddata *ddata; |
| struct spi_device *spi; |
| unsigned int index = 0; |
| |
| ddata = dev_get_drvdata(dev); |
| spi = to_spi_device(dev); |
| |
| xfers[index].tx_buf = reg; |
| xfers[index].len = reg_size; |
| index++; |
| |
| if (ddata->spi_padding_bytes) { |
| xfers[index].len = ddata->spi_padding_bytes; |
| xfers[index].tx_buf = ddata->dummy_buf; |
| xfers[index].dummy_data = 1; |
| index++; |
| } |
| |
| xfers[index].rx_buf = val; |
| xfers[index].len = val_size; |
| index++; |
| |
| return spi_sync_transfer(spi, xfers, index); |
| } |
| |
| static int ocelot_spi_regmap_bus_write(void *context, const void *data, size_t count) |
| { |
| struct device *dev = context; |
| struct spi_device *spi = to_spi_device(dev); |
| |
| return spi_write(spi, data, count); |
| } |
| |
| static const struct regmap_bus ocelot_spi_regmap_bus = { |
| .write = ocelot_spi_regmap_bus_write, |
| .read = ocelot_spi_regmap_bus_read, |
| }; |
| |
| struct regmap *ocelot_spi_init_regmap(struct device *dev, const struct resource *res) |
| { |
| struct regmap_config regmap_config; |
| |
| memcpy(®map_config, &ocelot_spi_regmap_config, sizeof(regmap_config)); |
| |
| regmap_config.name = res->name; |
| regmap_config.max_register = resource_size(res) - 1; |
| regmap_config.reg_base = res->start; |
| |
| return devm_regmap_init(dev, &ocelot_spi_regmap_bus, dev, ®map_config); |
| } |
| EXPORT_SYMBOL_NS(ocelot_spi_init_regmap, "MFD_OCELOT_SPI"); |
| |
| static int ocelot_spi_probe(struct spi_device *spi) |
| { |
| struct device *dev = &spi->dev; |
| struct ocelot_ddata *ddata; |
| struct regmap *r; |
| int err; |
| |
| ddata = devm_kzalloc(dev, sizeof(*ddata), GFP_KERNEL); |
| if (!ddata) |
| return -ENOMEM; |
| |
| spi_set_drvdata(spi, ddata); |
| |
| if (spi->max_speed_hz <= 500000) { |
| ddata->spi_padding_bytes = 0; |
| } else { |
| /* |
| * Calculation taken from the manual for IF_CFGSTAT:IF_CFG. |
| * Register access time is 1us, so we need to configure and send |
| * out enough padding bytes between the read request and data |
| * transmission that lasts at least 1 microsecond. |
| */ |
| ddata->spi_padding_bytes = 1 + (spi->max_speed_hz / HZ_PER_MHZ + 2) / 8; |
| |
| ddata->dummy_buf = devm_kzalloc(dev, ddata->spi_padding_bytes, GFP_KERNEL); |
| if (!ddata->dummy_buf) |
| return -ENOMEM; |
| } |
| |
| spi->bits_per_word = 8; |
| |
| err = spi_setup(spi); |
| if (err) |
| return dev_err_probe(&spi->dev, err, "Error performing SPI setup\n"); |
| |
| r = ocelot_spi_init_regmap(dev, &vsc7512_dev_cpuorg_resource); |
| if (IS_ERR(r)) |
| return PTR_ERR(r); |
| |
| ddata->cpuorg_regmap = r; |
| |
| r = ocelot_spi_init_regmap(dev, &vsc7512_gcb_resource); |
| if (IS_ERR(r)) |
| return PTR_ERR(r); |
| |
| ddata->gcb_regmap = r; |
| |
| /* |
| * The chip must be set up for SPI before it gets initialized and reset. |
| * This must be done before calling init, and after a chip reset is |
| * performed. |
| */ |
| err = ocelot_spi_initialize(dev); |
| if (err) |
| return dev_err_probe(dev, err, "Error initializing SPI bus\n"); |
| |
| err = ocelot_chip_reset(dev); |
| if (err) |
| return dev_err_probe(dev, err, "Error resetting device\n"); |
| |
| /* |
| * A chip reset will clear the SPI configuration, so it needs to be done |
| * again before we can access any registers. |
| */ |
| err = ocelot_spi_initialize(dev); |
| if (err) |
| return dev_err_probe(dev, err, "Error initializing SPI bus after reset\n"); |
| |
| err = ocelot_core_init(dev); |
| if (err) |
| return dev_err_probe(dev, err, "Error initializing Ocelot core\n"); |
| |
| return 0; |
| } |
| |
| static const struct spi_device_id ocelot_spi_ids[] = { |
| { "vsc7512", 0 }, |
| { } |
| }; |
| MODULE_DEVICE_TABLE(spi, ocelot_spi_ids); |
| |
| static const struct of_device_id ocelot_spi_of_match[] = { |
| { .compatible = "mscc,vsc7512" }, |
| { } |
| }; |
| MODULE_DEVICE_TABLE(of, ocelot_spi_of_match); |
| |
| static struct spi_driver ocelot_spi_driver = { |
| .driver = { |
| .name = "ocelot-soc", |
| .of_match_table = ocelot_spi_of_match, |
| }, |
| .id_table = ocelot_spi_ids, |
| .probe = ocelot_spi_probe, |
| }; |
| module_spi_driver(ocelot_spi_driver); |
| |
| MODULE_DESCRIPTION("SPI Controlled Ocelot Chip Driver"); |
| MODULE_AUTHOR("Colin Foster <colin.foster@in-advantage.com>"); |
| MODULE_LICENSE("Dual MIT/GPL"); |
| MODULE_IMPORT_NS("MFD_OCELOT"); |