blob: 97507e0df769b708c3da8803bc17bf49ef977235 [file] [log] [blame] [edit]
// SPDX-License-Identifier: GPL-2.0
/*
* PCIe Enclosure management driver created for LED interfaces based on
* indications. It says *what indications* blink but does not specify *how*
* they blink - it is hardware defined.
*
* The driver name refers to Native PCIe Enclosure Management. It is
* first indication oriented standard with specification.
*
* Native PCIe Enclosure Management (NPEM)
* PCIe Base Specification r6.1 sec 6.28, 7.9.19
*
* _DSM Definitions for PCIe SSD Status LED
* PCI Firmware Specification, r3.3 sec 4.7
*
* Two backends are supported to manipulate indications: Direct NPEM register
* access (npem_ops) and indirect access through the ACPI _DSM (dsm_ops).
* _DSM is used if supported, else NPEM.
*
* Copyright (c) 2021-2022 Dell Inc.
* Copyright (c) 2023-2024 Intel Corporation
* Mariusz Tkaczyk <mariusz.tkaczyk@linux.intel.com>
*/
#include <linux/acpi.h>
#include <linux/bitops.h>
#include <linux/errno.h>
#include <linux/iopoll.h>
#include <linux/leds.h>
#include <linux/mutex.h>
#include <linux/pci.h>
#include <linux/pci_regs.h>
#include <linux/types.h>
#include <linux/uleds.h>
#include "pci.h"
struct indication {
u32 bit;
const char *name;
};
static const struct indication npem_indications[] = {
{PCI_NPEM_IND_OK, "enclosure:ok"},
{PCI_NPEM_IND_LOCATE, "enclosure:locate"},
{PCI_NPEM_IND_FAIL, "enclosure:fail"},
{PCI_NPEM_IND_REBUILD, "enclosure:rebuild"},
{PCI_NPEM_IND_PFA, "enclosure:pfa"},
{PCI_NPEM_IND_HOTSPARE, "enclosure:hotspare"},
{PCI_NPEM_IND_ICA, "enclosure:ica"},
{PCI_NPEM_IND_IFA, "enclosure:ifa"},
{PCI_NPEM_IND_IDT, "enclosure:idt"},
{PCI_NPEM_IND_DISABLED, "enclosure:disabled"},
{PCI_NPEM_IND_SPEC_0, "enclosure:specific_0"},
{PCI_NPEM_IND_SPEC_1, "enclosure:specific_1"},
{PCI_NPEM_IND_SPEC_2, "enclosure:specific_2"},
{PCI_NPEM_IND_SPEC_3, "enclosure:specific_3"},
{PCI_NPEM_IND_SPEC_4, "enclosure:specific_4"},
{PCI_NPEM_IND_SPEC_5, "enclosure:specific_5"},
{PCI_NPEM_IND_SPEC_6, "enclosure:specific_6"},
{PCI_NPEM_IND_SPEC_7, "enclosure:specific_7"},
{0, NULL}
};
/* _DSM PCIe SSD LED States correspond to NPEM register values */
static const struct indication dsm_indications[] = {
{PCI_NPEM_IND_OK, "enclosure:ok"},
{PCI_NPEM_IND_LOCATE, "enclosure:locate"},
{PCI_NPEM_IND_FAIL, "enclosure:fail"},
{PCI_NPEM_IND_REBUILD, "enclosure:rebuild"},
{PCI_NPEM_IND_PFA, "enclosure:pfa"},
{PCI_NPEM_IND_HOTSPARE, "enclosure:hotspare"},
{PCI_NPEM_IND_ICA, "enclosure:ica"},
{PCI_NPEM_IND_IFA, "enclosure:ifa"},
{PCI_NPEM_IND_IDT, "enclosure:idt"},
{PCI_NPEM_IND_DISABLED, "enclosure:disabled"},
{0, NULL}
};
#define for_each_indication(ind, inds) \
for (ind = inds; ind->bit; ind++)
/*
* The driver has internal list of supported indications. Ideally, the driver
* should not touch bits that are not defined and for which LED devices are
* not exposed but in reality, it needs to turn them off.
*
* Otherwise, there will be no possibility to turn off indications turned on by
* other utilities or turned on by default and it leads to bad user experience.
*
* Additionally, it excludes NPEM commands like RESET or ENABLE.
*/
static u32 reg_to_indications(u32 caps, const struct indication *inds)
{
const struct indication *ind;
u32 supported_indications = 0;
for_each_indication(ind, inds)
supported_indications |= ind->bit;
return caps & supported_indications;
}
/**
* struct npem_led - LED details
* @indication: indication details
* @npem: NPEM device
* @name: LED name
* @led: LED device
*/
struct npem_led {
const struct indication *indication;
struct npem *npem;
char name[LED_MAX_NAME_SIZE];
struct led_classdev led;
};
/**
* struct npem_ops - backend specific callbacks
* @get_active_indications: get active indications
* npem: NPEM device
* inds: response buffer
* @set_active_indications: set new indications
* npem: npem device
* inds: bit mask to set
* @inds: supported indications array, set of indications is backend specific
* @name: backend name
*/
struct npem_ops {
int (*get_active_indications)(struct npem *npem, u32 *inds);
int (*set_active_indications)(struct npem *npem, u32 inds);
const struct indication *inds;
const char *name;
};
/**
* struct npem - NPEM device properties
* @dev: PCI device this driver is attached to
* @ops: backend specific callbacks
* @lock: serializes concurrent access to NPEM device by multiple LED devices
* @pos: cached offset of NPEM Capability Register in Configuration Space;
* only used if NPEM registers are accessed directly and not through _DSM
* @supported_indications: cached bit mask of supported indications;
* non-indication and reserved bits in the NPEM Capability Register are
* cleared in this bit mask
* @active_indications: cached bit mask of active indications;
* non-indication and reserved bits in the NPEM Control Register are
* cleared in this bit mask
* @active_inds_initialized: whether @active_indications has been initialized;
* On Dell platforms, it is required that IPMI drivers are loaded before
* the GET_STATE_DSM method is invoked: They use an IPMI OpRegion to
* get/set the active LEDs. By initializing @active_indications lazily
* (on first access to an LED), IPMI drivers are given a chance to load.
* If they are not loaded in time, users will see various errors on LED
* access in dmesg. Once they are loaded, the errors go away and LED
* access becomes possible.
* @led_cnt: size of @leds array
* @leds: array containing LED class devices of all supported LEDs
*/
struct npem {
struct pci_dev *dev;
const struct npem_ops *ops;
struct mutex lock;
u16 pos;
u32 supported_indications;
u32 active_indications;
unsigned int active_inds_initialized:1;
int led_cnt;
struct npem_led leds[];
};
static int npem_read_reg(struct npem *npem, u16 reg, u32 *val)
{
int ret = pci_read_config_dword(npem->dev, npem->pos + reg, val);
return pcibios_err_to_errno(ret);
}
static int npem_write_ctrl(struct npem *npem, u32 reg)
{
int pos = npem->pos + PCI_NPEM_CTRL;
int ret = pci_write_config_dword(npem->dev, pos, reg);
return pcibios_err_to_errno(ret);
}
static int npem_get_active_indications(struct npem *npem, u32 *inds)
{
u32 ctrl;
int ret;
ret = npem_read_reg(npem, PCI_NPEM_CTRL, &ctrl);
if (ret)
return ret;
/* If PCI_NPEM_CTRL_ENABLE is not set then no indication should blink */
if (!(ctrl & PCI_NPEM_CTRL_ENABLE)) {
*inds = 0;
return 0;
}
*inds = ctrl & npem->supported_indications;
return 0;
}
static int npem_set_active_indications(struct npem *npem, u32 inds)
{
int ctrl, ret, ret_val;
u32 cc_status;
lockdep_assert_held(&npem->lock);
/* This bit is always required */
ctrl = inds | PCI_NPEM_CTRL_ENABLE;
ret = npem_write_ctrl(npem, ctrl);
if (ret)
return ret;
/*
* For the case where a NPEM command has not completed immediately,
* it is recommended that software not continuously "spin" on polling
* the status register, but rather poll under interrupt at a reduced
* rate; for example at 10 ms intervals.
*
* PCIe r6.1 sec 6.28 "Implementation Note: Software Polling of NPEM
* Command Completed"
*/
ret = read_poll_timeout(npem_read_reg, ret_val,
ret_val || (cc_status & PCI_NPEM_STATUS_CC),
10 * USEC_PER_MSEC, USEC_PER_SEC, false, npem,
PCI_NPEM_STATUS, &cc_status);
if (ret)
return ret;
if (ret_val)
return ret_val;
/*
* All writes to control register, including writes that do not change
* the register value, are NPEM commands and should eventually result
* in a command completion indication in the NPEM Status Register.
*
* PCIe Base Specification r6.1 sec 7.9.19.3
*
* Register may not be updated, or other conflicting bits may be
* cleared. Spec is not strict here. Read NPEM Control register after
* write to keep cache in-sync.
*/
return npem_get_active_indications(npem, &npem->active_indications);
}
static const struct npem_ops npem_ops = {
.get_active_indications = npem_get_active_indications,
.set_active_indications = npem_set_active_indications,
.name = "Native PCIe Enclosure Management",
.inds = npem_indications,
};
#define DSM_GUID GUID_INIT(0x5d524d9d, 0xfff9, 0x4d4b, 0x8c, 0xb7, 0x74, 0x7e,\
0xd5, 0x1e, 0x19, 0x4d)
#define GET_SUPPORTED_STATES_DSM 1
#define GET_STATE_DSM 2
#define SET_STATE_DSM 3
static const guid_t dsm_guid = DSM_GUID;
static bool npem_has_dsm(struct pci_dev *pdev)
{
acpi_handle handle;
handle = ACPI_HANDLE(&pdev->dev);
if (!handle)
return false;
return acpi_check_dsm(handle, &dsm_guid, 0x1,
BIT(GET_SUPPORTED_STATES_DSM) |
BIT(GET_STATE_DSM) | BIT(SET_STATE_DSM));
}
struct dsm_output {
u16 status;
u8 function_specific_err;
u8 vendor_specific_err;
u32 state;
};
/**
* dsm_evaluate() - send DSM PCIe SSD Status LED command
* @pdev: PCI device
* @dsm_func: DSM LED Function
* @output: buffer to copy DSM Response
* @value_to_set: value for SET_STATE_DSM function
*
* To not bother caller with ACPI context, the returned _DSM Output Buffer is
* copied.
*/
static int dsm_evaluate(struct pci_dev *pdev, u64 dsm_func,
struct dsm_output *output, u32 value_to_set)
{
acpi_handle handle = ACPI_HANDLE(&pdev->dev);
union acpi_object *out_obj, arg3[2];
union acpi_object *arg3_p = NULL;
if (dsm_func == SET_STATE_DSM) {
arg3[0].type = ACPI_TYPE_PACKAGE;
arg3[0].package.count = 1;
arg3[0].package.elements = &arg3[1];
arg3[1].type = ACPI_TYPE_BUFFER;
arg3[1].buffer.length = 4;
arg3[1].buffer.pointer = (u8 *)&value_to_set;
arg3_p = arg3;
}
out_obj = acpi_evaluate_dsm_typed(handle, &dsm_guid, 0x1, dsm_func,
arg3_p, ACPI_TYPE_BUFFER);
if (!out_obj)
return -EIO;
if (out_obj->buffer.length < sizeof(struct dsm_output)) {
ACPI_FREE(out_obj);
return -EIO;
}
memcpy(output, out_obj->buffer.pointer, sizeof(struct dsm_output));
ACPI_FREE(out_obj);
return 0;
}
static int dsm_get(struct pci_dev *pdev, u64 dsm_func, u32 *buf)
{
struct dsm_output output;
int ret = dsm_evaluate(pdev, dsm_func, &output, 0);
if (ret)
return ret;
if (output.status != 0)
return -EIO;
*buf = output.state;
return 0;
}
static int dsm_get_active_indications(struct npem *npem, u32 *buf)
{
int ret = dsm_get(npem->dev, GET_STATE_DSM, buf);
/* Filter out not supported indications in response */
*buf &= npem->supported_indications;
return ret;
}
static int dsm_set_active_indications(struct npem *npem, u32 value)
{
struct dsm_output output;
int ret = dsm_evaluate(npem->dev, SET_STATE_DSM, &output, value);
if (ret)
return ret;
switch (output.status) {
case 4:
/*
* Not all bits are set. If this bit is set, the platform
* disregarded some or all of the request state changes. OSPM
* should check the resulting PCIe SSD Status LED States to see
* what, if anything, has changed.
*
* PCI Firmware Specification, r3.3 Table 4-19.
*/
if (output.function_specific_err != 1)
return -EIO;
fallthrough;
case 0:
break;
default:
return -EIO;
}
npem->active_indications = output.state;
return 0;
}
static const struct npem_ops dsm_ops = {
.get_active_indications = dsm_get_active_indications,
.set_active_indications = dsm_set_active_indications,
.name = "_DSM PCIe SSD Status LED Management",
.inds = dsm_indications,
};
static int npem_initialize_active_indications(struct npem *npem)
{
int ret;
lockdep_assert_held(&npem->lock);
if (npem->active_inds_initialized)
return 0;
ret = npem->ops->get_active_indications(npem,
&npem->active_indications);
if (ret)
return ret;
npem->active_inds_initialized = true;
return 0;
}
/*
* The status of each indicator is cached on first brightness_ get/set time
* and updated at write time. brightness_get() is only responsible for
* reflecting the last written/cached value.
*/
static enum led_brightness brightness_get(struct led_classdev *led)
{
struct npem_led *nled = container_of(led, struct npem_led, led);
struct npem *npem = nled->npem;
int ret, val = 0;
ret = mutex_lock_interruptible(&npem->lock);
if (ret)
return ret;
ret = npem_initialize_active_indications(npem);
if (ret)
goto out;
if (npem->active_indications & nled->indication->bit)
val = 1;
out:
mutex_unlock(&npem->lock);
return val;
}
static int brightness_set(struct led_classdev *led,
enum led_brightness brightness)
{
struct npem_led *nled = container_of(led, struct npem_led, led);
struct npem *npem = nled->npem;
u32 indications;
int ret;
ret = mutex_lock_interruptible(&npem->lock);
if (ret)
return ret;
ret = npem_initialize_active_indications(npem);
if (ret)
goto out;
if (brightness == 0)
indications = npem->active_indications & ~(nled->indication->bit);
else
indications = npem->active_indications | nled->indication->bit;
ret = npem->ops->set_active_indications(npem, indications);
out:
mutex_unlock(&npem->lock);
return ret;
}
static void npem_free(struct npem *npem)
{
struct npem_led *nled;
int cnt;
if (!npem)
return;
for (cnt = 0; cnt < npem->led_cnt; cnt++) {
nled = &npem->leds[cnt];
if (nled->name[0])
led_classdev_unregister(&nled->led);
}
mutex_destroy(&npem->lock);
kfree(npem);
}
static int pci_npem_set_led_classdev(struct npem *npem, struct npem_led *nled)
{
struct led_classdev *led = &nled->led;
struct led_init_data init_data = {};
char *name = nled->name;
int ret;
init_data.devicename = pci_name(npem->dev);
init_data.default_label = nled->indication->name;
ret = led_compose_name(&npem->dev->dev, &init_data, name);
if (ret)
return ret;
led->name = name;
led->brightness_set_blocking = brightness_set;
led->brightness_get = brightness_get;
led->max_brightness = 1;
led->default_trigger = "none";
led->flags = 0;
ret = led_classdev_register(&npem->dev->dev, led);
if (ret)
/* Clear the name to indicate that it is not registered. */
name[0] = 0;
return ret;
}
static int pci_npem_init(struct pci_dev *dev, const struct npem_ops *ops,
int pos, u32 caps)
{
u32 supported = reg_to_indications(caps, ops->inds);
int supported_cnt = hweight32(supported);
const struct indication *indication;
struct npem_led *nled;
struct npem *npem;
int led_idx = 0;
int ret;
npem = kzalloc(struct_size(npem, leds, supported_cnt), GFP_KERNEL);
if (!npem)
return -ENOMEM;
npem->supported_indications = supported;
npem->led_cnt = supported_cnt;
npem->pos = pos;
npem->dev = dev;
npem->ops = ops;
mutex_init(&npem->lock);
for_each_indication(indication, npem_indications) {
if (!(npem->supported_indications & indication->bit))
continue;
nled = &npem->leds[led_idx++];
nled->indication = indication;
nled->npem = npem;
ret = pci_npem_set_led_classdev(npem, nled);
if (ret) {
npem_free(npem);
return ret;
}
}
dev->npem = npem;
return 0;
}
void pci_npem_remove(struct pci_dev *dev)
{
npem_free(dev->npem);
}
void pci_npem_create(struct pci_dev *dev)
{
const struct npem_ops *ops = &npem_ops;
int pos = 0, ret;
u32 cap;
if (npem_has_dsm(dev)) {
/*
* OS should use the DSM for LED control if it is available
* PCI Firmware Spec r3.3 sec 4.7.
*/
ret = dsm_get(dev, GET_SUPPORTED_STATES_DSM, &cap);
if (ret)
return;
ops = &dsm_ops;
} else {
pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_NPEM);
if (pos == 0)
return;
if (pci_read_config_dword(dev, pos + PCI_NPEM_CAP, &cap) != 0 ||
(cap & PCI_NPEM_CAP_CAPABLE) == 0)
return;
}
pci_info(dev, "Configuring %s\n", ops->name);
ret = pci_npem_init(dev, ops, pos, cap);
if (ret)
pci_err(dev, "Failed to register %s, err: %d\n", ops->name,
ret);
}