blob: 398cce3d76fc44dcc1e1f84f9e3c62b3574a8d12 [file] [log] [blame] [edit]
// SPDX-License-Identifier: GPL-2.0-only
#undef DEBUG
/*
* ARM performance counter support.
*
* Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
* Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
*
* This code is based on the sparc64 perf event code, which is in turn based
* on the x86 code.
*/
#define pr_fmt(fmt) "hw perfevents: " fmt
#include <linux/bitmap.h>
#include <linux/cpumask.h>
#include <linux/cpu_pm.h>
#include <linux/export.h>
#include <linux/kernel.h>
#include <linux/perf/arm_pmu.h>
#include <linux/slab.h>
#include <linux/sched/clock.h>
#include <linux/spinlock.h>
#include <linux/irq.h>
#include <linux/irqdesc.h>
#include <asm/irq_regs.h>
static int armpmu_count_irq_users(const int irq);
struct pmu_irq_ops {
void (*enable_pmuirq)(unsigned int irq);
void (*disable_pmuirq)(unsigned int irq);
void (*free_pmuirq)(unsigned int irq, int cpu, void __percpu *devid);
};
static void armpmu_free_pmuirq(unsigned int irq, int cpu, void __percpu *devid)
{
free_irq(irq, per_cpu_ptr(devid, cpu));
}
static const struct pmu_irq_ops pmuirq_ops = {
.enable_pmuirq = enable_irq,
.disable_pmuirq = disable_irq_nosync,
.free_pmuirq = armpmu_free_pmuirq
};
static void armpmu_free_pmunmi(unsigned int irq, int cpu, void __percpu *devid)
{
free_nmi(irq, per_cpu_ptr(devid, cpu));
}
static const struct pmu_irq_ops pmunmi_ops = {
.enable_pmuirq = enable_nmi,
.disable_pmuirq = disable_nmi_nosync,
.free_pmuirq = armpmu_free_pmunmi
};
static void armpmu_enable_percpu_pmuirq(unsigned int irq)
{
enable_percpu_irq(irq, IRQ_TYPE_NONE);
}
static void armpmu_free_percpu_pmuirq(unsigned int irq, int cpu,
void __percpu *devid)
{
if (armpmu_count_irq_users(irq) == 1)
free_percpu_irq(irq, devid);
}
static const struct pmu_irq_ops percpu_pmuirq_ops = {
.enable_pmuirq = armpmu_enable_percpu_pmuirq,
.disable_pmuirq = disable_percpu_irq,
.free_pmuirq = armpmu_free_percpu_pmuirq
};
static void armpmu_enable_percpu_pmunmi(unsigned int irq)
{
if (!prepare_percpu_nmi(irq))
enable_percpu_nmi(irq, IRQ_TYPE_NONE);
}
static void armpmu_disable_percpu_pmunmi(unsigned int irq)
{
disable_percpu_nmi(irq);
teardown_percpu_nmi(irq);
}
static void armpmu_free_percpu_pmunmi(unsigned int irq, int cpu,
void __percpu *devid)
{
if (armpmu_count_irq_users(irq) == 1)
free_percpu_nmi(irq, devid);
}
static const struct pmu_irq_ops percpu_pmunmi_ops = {
.enable_pmuirq = armpmu_enable_percpu_pmunmi,
.disable_pmuirq = armpmu_disable_percpu_pmunmi,
.free_pmuirq = armpmu_free_percpu_pmunmi
};
static DEFINE_PER_CPU(struct arm_pmu *, cpu_armpmu);
static DEFINE_PER_CPU(int, cpu_irq);
static DEFINE_PER_CPU(const struct pmu_irq_ops *, cpu_irq_ops);
static bool has_nmi;
static inline u64 arm_pmu_event_max_period(struct perf_event *event)
{
if (event->hw.flags & ARMPMU_EVT_64BIT)
return GENMASK_ULL(63, 0);
else if (event->hw.flags & ARMPMU_EVT_63BIT)
return GENMASK_ULL(62, 0);
else if (event->hw.flags & ARMPMU_EVT_47BIT)
return GENMASK_ULL(46, 0);
else
return GENMASK_ULL(31, 0);
}
static int
armpmu_map_cache_event(const unsigned (*cache_map)
[PERF_COUNT_HW_CACHE_MAX]
[PERF_COUNT_HW_CACHE_OP_MAX]
[PERF_COUNT_HW_CACHE_RESULT_MAX],
u64 config)
{
unsigned int cache_type, cache_op, cache_result, ret;
cache_type = (config >> 0) & 0xff;
if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
return -EINVAL;
cache_op = (config >> 8) & 0xff;
if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
return -EINVAL;
cache_result = (config >> 16) & 0xff;
if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
return -EINVAL;
if (!cache_map)
return -ENOENT;
ret = (int)(*cache_map)[cache_type][cache_op][cache_result];
if (ret == CACHE_OP_UNSUPPORTED)
return -ENOENT;
return ret;
}
static int
armpmu_map_hw_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config)
{
int mapping;
if (config >= PERF_COUNT_HW_MAX)
return -EINVAL;
if (!event_map)
return -ENOENT;
mapping = (*event_map)[config];
return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping;
}
static int
armpmu_map_raw_event(u32 raw_event_mask, u64 config)
{
return (int)(config & raw_event_mask);
}
int
armpmu_map_event(struct perf_event *event,
const unsigned (*event_map)[PERF_COUNT_HW_MAX],
const unsigned (*cache_map)
[PERF_COUNT_HW_CACHE_MAX]
[PERF_COUNT_HW_CACHE_OP_MAX]
[PERF_COUNT_HW_CACHE_RESULT_MAX],
u32 raw_event_mask)
{
u64 config = event->attr.config;
int type = event->attr.type;
if (type == event->pmu->type)
return armpmu_map_raw_event(raw_event_mask, config);
switch (type) {
case PERF_TYPE_HARDWARE:
return armpmu_map_hw_event(event_map, config);
case PERF_TYPE_HW_CACHE:
return armpmu_map_cache_event(cache_map, config);
case PERF_TYPE_RAW:
return armpmu_map_raw_event(raw_event_mask, config);
}
return -ENOENT;
}
int armpmu_event_set_period(struct perf_event *event)
{
struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
struct hw_perf_event *hwc = &event->hw;
s64 left = local64_read(&hwc->period_left);
s64 period = hwc->sample_period;
u64 max_period;
int ret = 0;
max_period = arm_pmu_event_max_period(event);
if (unlikely(left <= -period)) {
left = period;
local64_set(&hwc->period_left, left);
hwc->last_period = period;
ret = 1;
}
if (unlikely(left <= 0)) {
left += period;
local64_set(&hwc->period_left, left);
hwc->last_period = period;
ret = 1;
}
/*
* Limit the maximum period to prevent the counter value
* from overtaking the one we are about to program. In
* effect we are reducing max_period to account for
* interrupt latency (and we are being very conservative).
*/
if (left > (max_period >> 1))
left = (max_period >> 1);
local64_set(&hwc->prev_count, (u64)-left);
armpmu->write_counter(event, (u64)(-left) & max_period);
perf_event_update_userpage(event);
return ret;
}
u64 armpmu_event_update(struct perf_event *event)
{
struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
struct hw_perf_event *hwc = &event->hw;
u64 delta, prev_raw_count, new_raw_count;
u64 max_period = arm_pmu_event_max_period(event);
again:
prev_raw_count = local64_read(&hwc->prev_count);
new_raw_count = armpmu->read_counter(event);
if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
new_raw_count) != prev_raw_count)
goto again;
delta = (new_raw_count - prev_raw_count) & max_period;
local64_add(delta, &event->count);
local64_sub(delta, &hwc->period_left);
return new_raw_count;
}
static void
armpmu_read(struct perf_event *event)
{
armpmu_event_update(event);
}
static void
armpmu_stop(struct perf_event *event, int flags)
{
struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
struct hw_perf_event *hwc = &event->hw;
/*
* ARM pmu always has to update the counter, so ignore
* PERF_EF_UPDATE, see comments in armpmu_start().
*/
if (!(hwc->state & PERF_HES_STOPPED)) {
armpmu->disable(event);
armpmu_event_update(event);
hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
}
}
static void armpmu_start(struct perf_event *event, int flags)
{
struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
struct hw_perf_event *hwc = &event->hw;
/*
* ARM pmu always has to reprogram the period, so ignore
* PERF_EF_RELOAD, see the comment below.
*/
if (flags & PERF_EF_RELOAD)
WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
hwc->state = 0;
/*
* Set the period again. Some counters can't be stopped, so when we
* were stopped we simply disabled the IRQ source and the counter
* may have been left counting. If we don't do this step then we may
* get an interrupt too soon or *way* too late if the overflow has
* happened since disabling.
*/
armpmu_event_set_period(event);
armpmu->enable(event);
}
static void
armpmu_del(struct perf_event *event, int flags)
{
struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
struct hw_perf_event *hwc = &event->hw;
int idx = hwc->idx;
armpmu_stop(event, PERF_EF_UPDATE);
hw_events->events[idx] = NULL;
armpmu->clear_event_idx(hw_events, event);
perf_event_update_userpage(event);
/* Clear the allocated counter */
hwc->idx = -1;
}
static int
armpmu_add(struct perf_event *event, int flags)
{
struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
struct hw_perf_event *hwc = &event->hw;
int idx;
/* An event following a process won't be stopped earlier */
if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
return -ENOENT;
/* If we don't have a space for the counter then finish early. */
idx = armpmu->get_event_idx(hw_events, event);
if (idx < 0)
return idx;
/*
* If there is an event in the counter we are going to use then make
* sure it is disabled.
*/
event->hw.idx = idx;
armpmu->disable(event);
hw_events->events[idx] = event;
hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
if (flags & PERF_EF_START)
armpmu_start(event, PERF_EF_RELOAD);
/* Propagate our changes to the userspace mapping. */
perf_event_update_userpage(event);
return 0;
}
static int
validate_event(struct pmu *pmu, struct pmu_hw_events *hw_events,
struct perf_event *event)
{
struct arm_pmu *armpmu;
if (is_software_event(event))
return 1;
/*
* Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The
* core perf code won't check that the pmu->ctx == leader->ctx
* until after pmu->event_init(event).
*/
if (event->pmu != pmu)
return 0;
if (event->state < PERF_EVENT_STATE_OFF)
return 1;
if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec)
return 1;
armpmu = to_arm_pmu(event->pmu);
return armpmu->get_event_idx(hw_events, event) >= 0;
}
static int
validate_group(struct perf_event *event)
{
struct perf_event *sibling, *leader = event->group_leader;
struct pmu_hw_events fake_pmu;
/*
* Initialise the fake PMU. We only need to populate the
* used_mask for the purposes of validation.
*/
memset(&fake_pmu.used_mask, 0, sizeof(fake_pmu.used_mask));
if (!validate_event(event->pmu, &fake_pmu, leader))
return -EINVAL;
if (event == leader)
return 0;
for_each_sibling_event(sibling, leader) {
if (!validate_event(event->pmu, &fake_pmu, sibling))
return -EINVAL;
}
if (!validate_event(event->pmu, &fake_pmu, event))
return -EINVAL;
return 0;
}
static irqreturn_t armpmu_dispatch_irq(int irq, void *dev)
{
struct arm_pmu *armpmu;
int ret;
u64 start_clock, finish_clock;
/*
* we request the IRQ with a (possibly percpu) struct arm_pmu**, but
* the handlers expect a struct arm_pmu*. The percpu_irq framework will
* do any necessary shifting, we just need to perform the first
* dereference.
*/
armpmu = *(void **)dev;
if (WARN_ON_ONCE(!armpmu))
return IRQ_NONE;
start_clock = sched_clock();
ret = armpmu->handle_irq(armpmu);
finish_clock = sched_clock();
perf_sample_event_took(finish_clock - start_clock);
return ret;
}
static int
__hw_perf_event_init(struct perf_event *event)
{
struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
struct hw_perf_event *hwc = &event->hw;
int mapping, ret;
hwc->flags = 0;
mapping = armpmu->map_event(event);
if (mapping < 0) {
pr_debug("event %x:%llx not supported\n", event->attr.type,
event->attr.config);
return mapping;
}
/*
* We don't assign an index until we actually place the event onto
* hardware. Use -1 to signify that we haven't decided where to put it
* yet. For SMP systems, each core has it's own PMU so we can't do any
* clever allocation or constraints checking at this point.
*/
hwc->idx = -1;
hwc->config_base = 0;
hwc->config = 0;
hwc->event_base = 0;
/*
* Check whether we need to exclude the counter from certain modes.
*/
if (armpmu->set_event_filter) {
ret = armpmu->set_event_filter(hwc, &event->attr);
if (ret)
return ret;
}
/*
* Store the event encoding into the config_base field.
*/
hwc->config_base |= (unsigned long)mapping;
if (!is_sampling_event(event)) {
/*
* For non-sampling runs, limit the sample_period to half
* of the counter width. That way, the new counter value
* is far less likely to overtake the previous one unless
* you have some serious IRQ latency issues.
*/
hwc->sample_period = arm_pmu_event_max_period(event) >> 1;
hwc->last_period = hwc->sample_period;
local64_set(&hwc->period_left, hwc->sample_period);
}
return validate_group(event);
}
static int armpmu_event_init(struct perf_event *event)
{
struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
/*
* Reject CPU-affine events for CPUs that are of a different class to
* that which this PMU handles. Process-following events (where
* event->cpu == -1) can be migrated between CPUs, and thus we have to
* reject them later (in armpmu_add) if they're scheduled on a
* different class of CPU.
*/
if (event->cpu != -1 &&
!cpumask_test_cpu(event->cpu, &armpmu->supported_cpus))
return -ENOENT;
/* does not support taken branch sampling */
if (has_branch_stack(event))
return -EOPNOTSUPP;
return __hw_perf_event_init(event);
}
static void armpmu_enable(struct pmu *pmu)
{
struct arm_pmu *armpmu = to_arm_pmu(pmu);
struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
bool enabled = !bitmap_empty(hw_events->used_mask, ARMPMU_MAX_HWEVENTS);
/* For task-bound events we may be called on other CPUs */
if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
return;
if (enabled)
armpmu->start(armpmu);
}
static void armpmu_disable(struct pmu *pmu)
{
struct arm_pmu *armpmu = to_arm_pmu(pmu);
/* For task-bound events we may be called on other CPUs */
if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
return;
armpmu->stop(armpmu);
}
/*
* In heterogeneous systems, events are specific to a particular
* microarchitecture, and aren't suitable for another. Thus, only match CPUs of
* the same microarchitecture.
*/
static bool armpmu_filter(struct pmu *pmu, int cpu)
{
struct arm_pmu *armpmu = to_arm_pmu(pmu);
return !cpumask_test_cpu(cpu, &armpmu->supported_cpus);
}
static ssize_t cpus_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct arm_pmu *armpmu = to_arm_pmu(dev_get_drvdata(dev));
return cpumap_print_to_pagebuf(true, buf, &armpmu->supported_cpus);
}
static DEVICE_ATTR_RO(cpus);
static struct attribute *armpmu_common_attrs[] = {
&dev_attr_cpus.attr,
NULL,
};
static const struct attribute_group armpmu_common_attr_group = {
.attrs = armpmu_common_attrs,
};
static int armpmu_count_irq_users(const int irq)
{
int cpu, count = 0;
for_each_possible_cpu(cpu) {
if (per_cpu(cpu_irq, cpu) == irq)
count++;
}
return count;
}
static const struct pmu_irq_ops *armpmu_find_irq_ops(int irq)
{
const struct pmu_irq_ops *ops = NULL;
int cpu;
for_each_possible_cpu(cpu) {
if (per_cpu(cpu_irq, cpu) != irq)
continue;
ops = per_cpu(cpu_irq_ops, cpu);
if (ops)
break;
}
return ops;
}
void armpmu_free_irq(int irq, int cpu)
{
if (per_cpu(cpu_irq, cpu) == 0)
return;
if (WARN_ON(irq != per_cpu(cpu_irq, cpu)))
return;
per_cpu(cpu_irq_ops, cpu)->free_pmuirq(irq, cpu, &cpu_armpmu);
per_cpu(cpu_irq, cpu) = 0;
per_cpu(cpu_irq_ops, cpu) = NULL;
}
int armpmu_request_irq(int irq, int cpu)
{
int err = 0;
const irq_handler_t handler = armpmu_dispatch_irq;
const struct pmu_irq_ops *irq_ops;
if (!irq)
return 0;
if (!irq_is_percpu_devid(irq)) {
unsigned long irq_flags;
err = irq_force_affinity(irq, cpumask_of(cpu));
if (err && num_possible_cpus() > 1) {
pr_warn("unable to set irq affinity (irq=%d, cpu=%u)\n",
irq, cpu);
goto err_out;
}
irq_flags = IRQF_PERCPU |
IRQF_NOBALANCING | IRQF_NO_AUTOEN |
IRQF_NO_THREAD;
err = request_nmi(irq, handler, irq_flags, "arm-pmu",
per_cpu_ptr(&cpu_armpmu, cpu));
/* If cannot get an NMI, get a normal interrupt */
if (err) {
err = request_irq(irq, handler, irq_flags, "arm-pmu",
per_cpu_ptr(&cpu_armpmu, cpu));
irq_ops = &pmuirq_ops;
} else {
has_nmi = true;
irq_ops = &pmunmi_ops;
}
} else if (armpmu_count_irq_users(irq) == 0) {
err = request_percpu_nmi(irq, handler, "arm-pmu", &cpu_armpmu);
/* If cannot get an NMI, get a normal interrupt */
if (err) {
err = request_percpu_irq(irq, handler, "arm-pmu",
&cpu_armpmu);
irq_ops = &percpu_pmuirq_ops;
} else {
has_nmi = true;
irq_ops = &percpu_pmunmi_ops;
}
} else {
/* Per cpudevid irq was already requested by another CPU */
irq_ops = armpmu_find_irq_ops(irq);
if (WARN_ON(!irq_ops))
err = -EINVAL;
}
if (err)
goto err_out;
per_cpu(cpu_irq, cpu) = irq;
per_cpu(cpu_irq_ops, cpu) = irq_ops;
return 0;
err_out:
pr_err("unable to request IRQ%d for ARM PMU counters\n", irq);
return err;
}
static int armpmu_get_cpu_irq(struct arm_pmu *pmu, int cpu)
{
struct pmu_hw_events __percpu *hw_events = pmu->hw_events;
return per_cpu(hw_events->irq, cpu);
}
bool arm_pmu_irq_is_nmi(void)
{
return has_nmi;
}
/*
* PMU hardware loses all context when a CPU goes offline.
* When a CPU is hotplugged back in, since some hardware registers are
* UNKNOWN at reset, the PMU must be explicitly reset to avoid reading
* junk values out of them.
*/
static int arm_perf_starting_cpu(unsigned int cpu, struct hlist_node *node)
{
struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node);
int irq;
if (!cpumask_test_cpu(cpu, &pmu->supported_cpus))
return 0;
if (pmu->reset)
pmu->reset(pmu);
per_cpu(cpu_armpmu, cpu) = pmu;
irq = armpmu_get_cpu_irq(pmu, cpu);
if (irq)
per_cpu(cpu_irq_ops, cpu)->enable_pmuirq(irq);
return 0;
}
static int arm_perf_teardown_cpu(unsigned int cpu, struct hlist_node *node)
{
struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node);
int irq;
if (!cpumask_test_cpu(cpu, &pmu->supported_cpus))
return 0;
irq = armpmu_get_cpu_irq(pmu, cpu);
if (irq)
per_cpu(cpu_irq_ops, cpu)->disable_pmuirq(irq);
per_cpu(cpu_armpmu, cpu) = NULL;
return 0;
}
#ifdef CONFIG_CPU_PM
static void cpu_pm_pmu_setup(struct arm_pmu *armpmu, unsigned long cmd)
{
struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
struct perf_event *event;
int idx;
for_each_set_bit(idx, armpmu->cntr_mask, ARMPMU_MAX_HWEVENTS) {
event = hw_events->events[idx];
if (!event)
continue;
switch (cmd) {
case CPU_PM_ENTER:
/*
* Stop and update the counter
*/
armpmu_stop(event, PERF_EF_UPDATE);
break;
case CPU_PM_EXIT:
case CPU_PM_ENTER_FAILED:
/*
* Restore and enable the counter.
*/
armpmu_start(event, PERF_EF_RELOAD);
break;
default:
break;
}
}
}
static int cpu_pm_pmu_notify(struct notifier_block *b, unsigned long cmd,
void *v)
{
struct arm_pmu *armpmu = container_of(b, struct arm_pmu, cpu_pm_nb);
struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
bool enabled = !bitmap_empty(hw_events->used_mask, ARMPMU_MAX_HWEVENTS);
if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
return NOTIFY_DONE;
/*
* Always reset the PMU registers on power-up even if
* there are no events running.
*/
if (cmd == CPU_PM_EXIT && armpmu->reset)
armpmu->reset(armpmu);
if (!enabled)
return NOTIFY_OK;
switch (cmd) {
case CPU_PM_ENTER:
armpmu->stop(armpmu);
cpu_pm_pmu_setup(armpmu, cmd);
break;
case CPU_PM_EXIT:
case CPU_PM_ENTER_FAILED:
cpu_pm_pmu_setup(armpmu, cmd);
armpmu->start(armpmu);
break;
default:
return NOTIFY_DONE;
}
return NOTIFY_OK;
}
static int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu)
{
cpu_pmu->cpu_pm_nb.notifier_call = cpu_pm_pmu_notify;
return cpu_pm_register_notifier(&cpu_pmu->cpu_pm_nb);
}
static void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu)
{
cpu_pm_unregister_notifier(&cpu_pmu->cpu_pm_nb);
}
#else
static inline int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu) { return 0; }
static inline void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu) { }
#endif
static int cpu_pmu_init(struct arm_pmu *cpu_pmu)
{
int err;
err = cpuhp_state_add_instance(CPUHP_AP_PERF_ARM_STARTING,
&cpu_pmu->node);
if (err)
goto out;
err = cpu_pm_pmu_register(cpu_pmu);
if (err)
goto out_unregister;
return 0;
out_unregister:
cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
&cpu_pmu->node);
out:
return err;
}
static void cpu_pmu_destroy(struct arm_pmu *cpu_pmu)
{
cpu_pm_pmu_unregister(cpu_pmu);
cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
&cpu_pmu->node);
}
struct arm_pmu *armpmu_alloc(void)
{
struct arm_pmu *pmu;
int cpu;
pmu = kzalloc(sizeof(*pmu), GFP_KERNEL);
if (!pmu)
goto out;
pmu->hw_events = alloc_percpu_gfp(struct pmu_hw_events, GFP_KERNEL);
if (!pmu->hw_events) {
pr_info("failed to allocate per-cpu PMU data.\n");
goto out_free_pmu;
}
pmu->pmu = (struct pmu) {
.pmu_enable = armpmu_enable,
.pmu_disable = armpmu_disable,
.event_init = armpmu_event_init,
.add = armpmu_add,
.del = armpmu_del,
.start = armpmu_start,
.stop = armpmu_stop,
.read = armpmu_read,
.filter = armpmu_filter,
.attr_groups = pmu->attr_groups,
/*
* This is a CPU PMU potentially in a heterogeneous
* configuration (e.g. big.LITTLE) so
* PERF_PMU_CAP_EXTENDED_HW_TYPE is required to open
* PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE events on a
* specific PMU.
*/
.capabilities = PERF_PMU_CAP_EXTENDED_REGS |
PERF_PMU_CAP_EXTENDED_HW_TYPE,
};
pmu->attr_groups[ARMPMU_ATTR_GROUP_COMMON] =
&armpmu_common_attr_group;
for_each_possible_cpu(cpu) {
struct pmu_hw_events *events;
events = per_cpu_ptr(pmu->hw_events, cpu);
events->percpu_pmu = pmu;
}
return pmu;
out_free_pmu:
kfree(pmu);
out:
return NULL;
}
void armpmu_free(struct arm_pmu *pmu)
{
free_percpu(pmu->hw_events);
kfree(pmu);
}
int armpmu_register(struct arm_pmu *pmu)
{
int ret;
ret = cpu_pmu_init(pmu);
if (ret)
return ret;
if (!pmu->set_event_filter)
pmu->pmu.capabilities |= PERF_PMU_CAP_NO_EXCLUDE;
ret = perf_pmu_register(&pmu->pmu, pmu->name, -1);
if (ret)
goto out_destroy;
pr_info("enabled with %s PMU driver, %d (%*pb) counters available%s\n",
pmu->name, bitmap_weight(pmu->cntr_mask, ARMPMU_MAX_HWEVENTS),
ARMPMU_MAX_HWEVENTS, &pmu->cntr_mask,
has_nmi ? ", using NMIs" : "");
kvm_host_pmu_init(pmu);
return 0;
out_destroy:
cpu_pmu_destroy(pmu);
return ret;
}
static int arm_pmu_hp_init(void)
{
int ret;
ret = cpuhp_setup_state_multi(CPUHP_AP_PERF_ARM_STARTING,
"perf/arm/pmu:starting",
arm_perf_starting_cpu,
arm_perf_teardown_cpu);
if (ret)
pr_err("CPU hotplug notifier for ARM PMU could not be registered: %d\n",
ret);
return ret;
}
subsys_initcall(arm_pmu_hp_init);