| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * Virtual PTP 1588 clock for use with LM-safe VMclock device. |
| * |
| * Copyright © 2024 Amazon.com, Inc. or its affiliates. |
| */ |
| |
| #include <linux/acpi.h> |
| #include <linux/device.h> |
| #include <linux/err.h> |
| #include <linux/file.h> |
| #include <linux/fs.h> |
| #include <linux/init.h> |
| #include <linux/kernel.h> |
| #include <linux/miscdevice.h> |
| #include <linux/mm.h> |
| #include <linux/module.h> |
| #include <linux/platform_device.h> |
| #include <linux/slab.h> |
| |
| #include <uapi/linux/vmclock-abi.h> |
| |
| #include <linux/ptp_clock_kernel.h> |
| |
| #ifdef CONFIG_X86 |
| #include <asm/pvclock.h> |
| #include <asm/kvmclock.h> |
| #endif |
| |
| #ifdef CONFIG_KVM_GUEST |
| #define SUPPORT_KVMCLOCK |
| #endif |
| |
| static DEFINE_IDA(vmclock_ida); |
| |
| ACPI_MODULE_NAME("vmclock"); |
| |
| struct vmclock_state { |
| struct resource res; |
| struct vmclock_abi *clk; |
| struct miscdevice miscdev; |
| struct ptp_clock_info ptp_clock_info; |
| struct ptp_clock *ptp_clock; |
| enum clocksource_ids cs_id, sys_cs_id; |
| int index; |
| char *name; |
| }; |
| |
| #define VMCLOCK_MAX_WAIT ms_to_ktime(100) |
| |
| /* Require at least the flags field to be present. All else can be optional. */ |
| #define VMCLOCK_MIN_SIZE offsetof(struct vmclock_abi, pad) |
| |
| #define VMCLOCK_FIELD_PRESENT(_c, _f) \ |
| (le32_to_cpu((_c)->size) >= (offsetof(struct vmclock_abi, _f) + \ |
| sizeof((_c)->_f))) |
| |
| /* |
| * Multiply a 64-bit count by a 64-bit tick 'period' in units of seconds >> 64 |
| * and add the fractional second part of the reference time. |
| * |
| * The result is a 128-bit value, the top 64 bits of which are seconds, and |
| * the low 64 bits are (seconds >> 64). |
| */ |
| static uint64_t mul_u64_u64_shr_add_u64(uint64_t *res_hi, uint64_t delta, |
| uint64_t period, uint8_t shift, |
| uint64_t frac_sec) |
| { |
| unsigned __int128 res = (unsigned __int128)delta * period; |
| |
| res >>= shift; |
| res += frac_sec; |
| *res_hi = res >> 64; |
| return (uint64_t)res; |
| } |
| |
| static bool tai_adjust(struct vmclock_abi *clk, uint64_t *sec) |
| { |
| if (likely(clk->time_type == VMCLOCK_TIME_UTC)) |
| return true; |
| |
| if (clk->time_type == VMCLOCK_TIME_TAI && |
| (le64_to_cpu(clk->flags) & VMCLOCK_FLAG_TAI_OFFSET_VALID)) { |
| if (sec) |
| *sec += (int16_t)le16_to_cpu(clk->tai_offset_sec); |
| return true; |
| } |
| return false; |
| } |
| |
| static int vmclock_get_crosststamp(struct vmclock_state *st, |
| struct ptp_system_timestamp *sts, |
| struct system_counterval_t *system_counter, |
| struct timespec64 *tspec) |
| { |
| ktime_t deadline = ktime_add(ktime_get(), VMCLOCK_MAX_WAIT); |
| struct system_time_snapshot systime_snapshot; |
| uint64_t cycle, delta, seq, frac_sec; |
| |
| #ifdef CONFIG_X86 |
| /* |
| * We'd expect the hypervisor to know this and to report the clock |
| * status as VMCLOCK_STATUS_UNRELIABLE. But be paranoid. |
| */ |
| if (check_tsc_unstable()) |
| return -EINVAL; |
| #endif |
| |
| while (1) { |
| seq = le32_to_cpu(st->clk->seq_count) & ~1ULL; |
| |
| /* |
| * This pairs with a write barrier in the hypervisor |
| * which populates this structure. |
| */ |
| virt_rmb(); |
| |
| if (st->clk->clock_status == VMCLOCK_STATUS_UNRELIABLE) |
| return -EINVAL; |
| |
| /* |
| * When invoked for gettimex64(), fill in the pre/post system |
| * times. The simple case is when system time is based on the |
| * same counter as st->cs_id, in which case all three times |
| * will be derived from the *same* counter value. |
| * |
| * If the system isn't using the same counter, then the value |
| * from ktime_get_snapshot() will still be used as pre_ts, and |
| * ptp_read_system_postts() is called to populate postts after |
| * calling get_cycles(). |
| * |
| * The conversion to timespec64 happens further down, outside |
| * the seq_count loop. |
| */ |
| if (sts) { |
| ktime_get_snapshot(&systime_snapshot); |
| if (systime_snapshot.cs_id == st->cs_id) { |
| cycle = systime_snapshot.cycles; |
| } else { |
| cycle = get_cycles(); |
| ptp_read_system_postts(sts); |
| } |
| } else { |
| cycle = get_cycles(); |
| } |
| |
| delta = cycle - le64_to_cpu(st->clk->counter_value); |
| |
| frac_sec = mul_u64_u64_shr_add_u64(&tspec->tv_sec, delta, |
| le64_to_cpu(st->clk->counter_period_frac_sec), |
| st->clk->counter_period_shift, |
| le64_to_cpu(st->clk->time_frac_sec)); |
| tspec->tv_nsec = mul_u64_u64_shr(frac_sec, NSEC_PER_SEC, 64); |
| tspec->tv_sec += le64_to_cpu(st->clk->time_sec); |
| |
| if (!tai_adjust(st->clk, &tspec->tv_sec)) |
| return -EINVAL; |
| |
| /* |
| * This pairs with a write barrier in the hypervisor |
| * which populates this structure. |
| */ |
| virt_rmb(); |
| if (seq == le32_to_cpu(st->clk->seq_count)) |
| break; |
| |
| if (ktime_after(ktime_get(), deadline)) |
| return -ETIMEDOUT; |
| } |
| |
| if (system_counter) { |
| system_counter->cycles = cycle; |
| system_counter->cs_id = st->cs_id; |
| } |
| |
| if (sts) { |
| sts->pre_ts = ktime_to_timespec64(systime_snapshot.real); |
| if (systime_snapshot.cs_id == st->cs_id) |
| sts->post_ts = sts->pre_ts; |
| } |
| |
| return 0; |
| } |
| |
| #ifdef SUPPORT_KVMCLOCK |
| /* |
| * In the case where the system is using the KVM clock for timekeeping, convert |
| * the TSC value into a KVM clock time in order to return a paired reading that |
| * get_device_system_crosststamp() can cope with. |
| */ |
| static int vmclock_get_crosststamp_kvmclock(struct vmclock_state *st, |
| struct ptp_system_timestamp *sts, |
| struct system_counterval_t *system_counter, |
| struct timespec64 *tspec) |
| { |
| struct pvclock_vcpu_time_info *pvti = this_cpu_pvti(); |
| unsigned int pvti_ver; |
| int ret; |
| |
| preempt_disable_notrace(); |
| |
| do { |
| pvti_ver = pvclock_read_begin(pvti); |
| |
| ret = vmclock_get_crosststamp(st, sts, system_counter, tspec); |
| if (ret) |
| break; |
| |
| system_counter->cycles = __pvclock_read_cycles(pvti, |
| system_counter->cycles); |
| system_counter->cs_id = CSID_X86_KVM_CLK; |
| |
| /* |
| * This retry should never really happen; if the TSC is |
| * stable and reliable enough across vCPUS that it is sane |
| * for the hypervisor to expose a VMCLOCK device which uses |
| * it as the reference counter, then the KVM clock sohuld be |
| * in 'master clock mode' and basically never changed. But |
| * the KVM clock is a fickle and often broken thing, so do |
| * it "properly" just in case. |
| */ |
| } while (pvclock_read_retry(pvti, pvti_ver)); |
| |
| preempt_enable_notrace(); |
| |
| return ret; |
| } |
| #endif |
| |
| static int ptp_vmclock_get_time_fn(ktime_t *device_time, |
| struct system_counterval_t *system_counter, |
| void *ctx) |
| { |
| struct vmclock_state *st = ctx; |
| struct timespec64 tspec; |
| int ret; |
| |
| #ifdef SUPPORT_KVMCLOCK |
| if (READ_ONCE(st->sys_cs_id) == CSID_X86_KVM_CLK) |
| ret = vmclock_get_crosststamp_kvmclock(st, NULL, system_counter, |
| &tspec); |
| else |
| #endif |
| ret = vmclock_get_crosststamp(st, NULL, system_counter, &tspec); |
| |
| if (!ret) |
| *device_time = timespec64_to_ktime(tspec); |
| |
| return ret; |
| } |
| |
| static int ptp_vmclock_getcrosststamp(struct ptp_clock_info *ptp, |
| struct system_device_crosststamp *xtstamp) |
| { |
| struct vmclock_state *st = container_of(ptp, struct vmclock_state, |
| ptp_clock_info); |
| int ret = get_device_system_crosststamp(ptp_vmclock_get_time_fn, st, |
| NULL, xtstamp); |
| #ifdef SUPPORT_KVMCLOCK |
| /* |
| * On x86, the KVM clock may be used for the system time. We can |
| * actually convert a TSC reading to that, and return a paired |
| * timestamp that get_device_system_crosststamp() *can* handle. |
| */ |
| if (ret == -ENODEV) { |
| struct system_time_snapshot systime_snapshot; |
| |
| ktime_get_snapshot(&systime_snapshot); |
| |
| if (systime_snapshot.cs_id == CSID_X86_TSC || |
| systime_snapshot.cs_id == CSID_X86_KVM_CLK) { |
| WRITE_ONCE(st->sys_cs_id, systime_snapshot.cs_id); |
| ret = get_device_system_crosststamp(ptp_vmclock_get_time_fn, |
| st, NULL, xtstamp); |
| } |
| } |
| #endif |
| return ret; |
| } |
| |
| /* |
| * PTP clock operations |
| */ |
| |
| static int ptp_vmclock_adjfine(struct ptp_clock_info *ptp, long delta) |
| { |
| return -EOPNOTSUPP; |
| } |
| |
| static int ptp_vmclock_adjtime(struct ptp_clock_info *ptp, s64 delta) |
| { |
| return -EOPNOTSUPP; |
| } |
| |
| static int ptp_vmclock_settime(struct ptp_clock_info *ptp, |
| const struct timespec64 *ts) |
| { |
| return -EOPNOTSUPP; |
| } |
| |
| static int ptp_vmclock_gettimex(struct ptp_clock_info *ptp, struct timespec64 *ts, |
| struct ptp_system_timestamp *sts) |
| { |
| struct vmclock_state *st = container_of(ptp, struct vmclock_state, |
| ptp_clock_info); |
| |
| return vmclock_get_crosststamp(st, sts, NULL, ts); |
| } |
| |
| static int ptp_vmclock_enable(struct ptp_clock_info *ptp, |
| struct ptp_clock_request *rq, int on) |
| { |
| return -EOPNOTSUPP; |
| } |
| |
| static const struct ptp_clock_info ptp_vmclock_info = { |
| .owner = THIS_MODULE, |
| .max_adj = 0, |
| .n_ext_ts = 0, |
| .n_pins = 0, |
| .pps = 0, |
| .adjfine = ptp_vmclock_adjfine, |
| .adjtime = ptp_vmclock_adjtime, |
| .gettimex64 = ptp_vmclock_gettimex, |
| .settime64 = ptp_vmclock_settime, |
| .enable = ptp_vmclock_enable, |
| .getcrosststamp = ptp_vmclock_getcrosststamp, |
| }; |
| |
| static struct ptp_clock *vmclock_ptp_register(struct device *dev, |
| struct vmclock_state *st) |
| { |
| enum clocksource_ids cs_id; |
| |
| if (IS_ENABLED(CONFIG_ARM64) && |
| st->clk->counter_id == VMCLOCK_COUNTER_ARM_VCNT) { |
| /* Can we check it's the virtual counter? */ |
| cs_id = CSID_ARM_ARCH_COUNTER; |
| } else if (IS_ENABLED(CONFIG_X86) && |
| st->clk->counter_id == VMCLOCK_COUNTER_X86_TSC) { |
| cs_id = CSID_X86_TSC; |
| } else { |
| return NULL; |
| } |
| |
| /* Only UTC, or TAI with offset */ |
| if (!tai_adjust(st->clk, NULL)) { |
| dev_info(dev, "vmclock does not provide unambiguous UTC\n"); |
| return NULL; |
| } |
| |
| st->sys_cs_id = cs_id; |
| st->cs_id = cs_id; |
| st->ptp_clock_info = ptp_vmclock_info; |
| strscpy(st->ptp_clock_info.name, st->name); |
| |
| return ptp_clock_register(&st->ptp_clock_info, dev); |
| } |
| |
| static int vmclock_miscdev_mmap(struct file *fp, struct vm_area_struct *vma) |
| { |
| struct vmclock_state *st = container_of(fp->private_data, |
| struct vmclock_state, miscdev); |
| |
| if ((vma->vm_flags & (VM_READ|VM_WRITE)) != VM_READ) |
| return -EROFS; |
| |
| if (vma->vm_end - vma->vm_start != PAGE_SIZE || vma->vm_pgoff) |
| return -EINVAL; |
| |
| if (io_remap_pfn_range(vma, vma->vm_start, |
| st->res.start >> PAGE_SHIFT, PAGE_SIZE, |
| vma->vm_page_prot)) |
| return -EAGAIN; |
| |
| return 0; |
| } |
| |
| static ssize_t vmclock_miscdev_read(struct file *fp, char __user *buf, |
| size_t count, loff_t *ppos) |
| { |
| struct vmclock_state *st = container_of(fp->private_data, |
| struct vmclock_state, miscdev); |
| ktime_t deadline = ktime_add(ktime_get(), VMCLOCK_MAX_WAIT); |
| size_t max_count; |
| uint32_t seq; |
| |
| if (*ppos >= PAGE_SIZE) |
| return 0; |
| |
| max_count = PAGE_SIZE - *ppos; |
| if (count > max_count) |
| count = max_count; |
| |
| while (1) { |
| seq = le32_to_cpu(st->clk->seq_count) & ~1U; |
| /* Pairs with hypervisor wmb */ |
| virt_rmb(); |
| |
| if (copy_to_user(buf, ((char *)st->clk) + *ppos, count)) |
| return -EFAULT; |
| |
| /* Pairs with hypervisor wmb */ |
| virt_rmb(); |
| if (seq == le32_to_cpu(st->clk->seq_count)) |
| break; |
| |
| if (ktime_after(ktime_get(), deadline)) |
| return -ETIMEDOUT; |
| } |
| |
| *ppos += count; |
| return count; |
| } |
| |
| static const struct file_operations vmclock_miscdev_fops = { |
| .mmap = vmclock_miscdev_mmap, |
| .read = vmclock_miscdev_read, |
| }; |
| |
| /* module operations */ |
| |
| static void vmclock_remove(struct platform_device *pdev) |
| { |
| struct device *dev = &pdev->dev; |
| struct vmclock_state *st = dev_get_drvdata(dev); |
| |
| if (st->ptp_clock) |
| ptp_clock_unregister(st->ptp_clock); |
| |
| if (st->miscdev.minor != MISC_DYNAMIC_MINOR) |
| misc_deregister(&st->miscdev); |
| } |
| |
| static acpi_status vmclock_acpi_resources(struct acpi_resource *ares, void *data) |
| { |
| struct vmclock_state *st = data; |
| struct resource_win win; |
| struct resource *res = &win.res; |
| |
| if (ares->type == ACPI_RESOURCE_TYPE_END_TAG) |
| return AE_OK; |
| |
| /* There can be only one */ |
| if (resource_type(&st->res) == IORESOURCE_MEM) |
| return AE_ERROR; |
| |
| if (acpi_dev_resource_memory(ares, res) || |
| acpi_dev_resource_address_space(ares, &win)) { |
| |
| if (resource_type(res) != IORESOURCE_MEM || |
| resource_size(res) < sizeof(st->clk)) |
| return AE_ERROR; |
| |
| st->res = *res; |
| return AE_OK; |
| } |
| |
| return AE_ERROR; |
| } |
| |
| static int vmclock_probe_acpi(struct device *dev, struct vmclock_state *st) |
| { |
| struct acpi_device *adev = ACPI_COMPANION(dev); |
| acpi_status status; |
| |
| /* |
| * This should never happen as this function is only called when |
| * has_acpi_companion(dev) is true, but the logic is sufficiently |
| * complex that Coverity can't see the tautology. |
| */ |
| if (!adev) |
| return -ENODEV; |
| |
| status = acpi_walk_resources(adev->handle, METHOD_NAME__CRS, |
| vmclock_acpi_resources, st); |
| if (ACPI_FAILURE(status) || resource_type(&st->res) != IORESOURCE_MEM) { |
| dev_err(dev, "failed to get resources\n"); |
| return -ENODEV; |
| } |
| |
| return 0; |
| } |
| |
| static void vmclock_put_idx(void *data) |
| { |
| struct vmclock_state *st = data; |
| |
| ida_free(&vmclock_ida, st->index); |
| } |
| |
| static int vmclock_probe(struct platform_device *pdev) |
| { |
| struct device *dev = &pdev->dev; |
| struct vmclock_state *st; |
| int ret; |
| |
| st = devm_kzalloc(dev, sizeof(*st), GFP_KERNEL); |
| if (!st) |
| return -ENOMEM; |
| |
| if (has_acpi_companion(dev)) |
| ret = vmclock_probe_acpi(dev, st); |
| else |
| ret = -EINVAL; /* Only ACPI for now */ |
| |
| if (ret) { |
| dev_info(dev, "Failed to obtain physical address: %d\n", ret); |
| goto out; |
| } |
| |
| if (resource_size(&st->res) < VMCLOCK_MIN_SIZE) { |
| dev_info(dev, "Region too small (0x%llx)\n", |
| resource_size(&st->res)); |
| ret = -EINVAL; |
| goto out; |
| } |
| st->clk = devm_memremap(dev, st->res.start, resource_size(&st->res), |
| MEMREMAP_WB | MEMREMAP_DEC); |
| if (IS_ERR(st->clk)) { |
| ret = PTR_ERR(st->clk); |
| dev_info(dev, "failed to map shared memory\n"); |
| st->clk = NULL; |
| goto out; |
| } |
| |
| if (le32_to_cpu(st->clk->magic) != VMCLOCK_MAGIC || |
| le32_to_cpu(st->clk->size) > resource_size(&st->res) || |
| le16_to_cpu(st->clk->version) != 1) { |
| dev_info(dev, "vmclock magic fields invalid\n"); |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| ret = ida_alloc(&vmclock_ida, GFP_KERNEL); |
| if (ret < 0) |
| goto out; |
| |
| st->index = ret; |
| ret = devm_add_action_or_reset(&pdev->dev, vmclock_put_idx, st); |
| if (ret) |
| goto out; |
| |
| st->name = devm_kasprintf(&pdev->dev, GFP_KERNEL, "vmclock%d", st->index); |
| if (!st->name) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| |
| /* |
| * If the structure is big enough, it can be mapped to userspace. |
| * Theoretically a guest OS even using larger pages could still |
| * use 4KiB PTEs to map smaller MMIO regions like this, but let's |
| * cross that bridge if/when we come to it. |
| */ |
| if (le32_to_cpu(st->clk->size) >= PAGE_SIZE) { |
| st->miscdev.minor = MISC_DYNAMIC_MINOR; |
| st->miscdev.fops = &vmclock_miscdev_fops; |
| st->miscdev.name = st->name; |
| |
| ret = misc_register(&st->miscdev); |
| if (ret) |
| goto out; |
| } |
| |
| /* If there is valid clock information, register a PTP clock */ |
| if (VMCLOCK_FIELD_PRESENT(st->clk, time_frac_sec)) { |
| /* Can return a silent NULL, or an error. */ |
| st->ptp_clock = vmclock_ptp_register(dev, st); |
| if (IS_ERR(st->ptp_clock)) { |
| ret = PTR_ERR(st->ptp_clock); |
| st->ptp_clock = NULL; |
| vmclock_remove(pdev); |
| goto out; |
| } |
| } |
| |
| if (!st->miscdev.minor && !st->ptp_clock) { |
| /* Neither miscdev nor PTP registered */ |
| dev_info(dev, "vmclock: Neither miscdev nor PTP available; not registering\n"); |
| ret = -ENODEV; |
| goto out; |
| } |
| |
| dev_info(dev, "%s: registered %s%s%s\n", st->name, |
| st->miscdev.minor ? "miscdev" : "", |
| (st->miscdev.minor && st->ptp_clock) ? ", " : "", |
| st->ptp_clock ? "PTP" : ""); |
| |
| dev_set_drvdata(dev, st); |
| |
| out: |
| return ret; |
| } |
| |
| static const struct acpi_device_id vmclock_acpi_ids[] = { |
| { "AMZNC10C", 0 }, |
| {} |
| }; |
| MODULE_DEVICE_TABLE(acpi, vmclock_acpi_ids); |
| |
| static struct platform_driver vmclock_platform_driver = { |
| .probe = vmclock_probe, |
| .remove = vmclock_remove, |
| .driver = { |
| .name = "vmclock", |
| .acpi_match_table = vmclock_acpi_ids, |
| }, |
| }; |
| |
| module_platform_driver(vmclock_platform_driver) |
| |
| MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>"); |
| MODULE_DESCRIPTION("PTP clock using VMCLOCK"); |
| MODULE_LICENSE("GPL"); |