blob: 0a2cfc8ad3c5408a87fd8fedeff274ab895de3dd [file] [log] [blame] [edit]
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Virtual PTP 1588 clock for use with LM-safe VMclock device.
*
* Copyright © 2024 Amazon.com, Inc. or its affiliates.
*/
#include <linux/acpi.h>
#include <linux/device.h>
#include <linux/err.h>
#include <linux/file.h>
#include <linux/fs.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/miscdevice.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <uapi/linux/vmclock-abi.h>
#include <linux/ptp_clock_kernel.h>
#ifdef CONFIG_X86
#include <asm/pvclock.h>
#include <asm/kvmclock.h>
#endif
#ifdef CONFIG_KVM_GUEST
#define SUPPORT_KVMCLOCK
#endif
static DEFINE_IDA(vmclock_ida);
ACPI_MODULE_NAME("vmclock");
struct vmclock_state {
struct resource res;
struct vmclock_abi *clk;
struct miscdevice miscdev;
struct ptp_clock_info ptp_clock_info;
struct ptp_clock *ptp_clock;
enum clocksource_ids cs_id, sys_cs_id;
int index;
char *name;
};
#define VMCLOCK_MAX_WAIT ms_to_ktime(100)
/* Require at least the flags field to be present. All else can be optional. */
#define VMCLOCK_MIN_SIZE offsetof(struct vmclock_abi, pad)
#define VMCLOCK_FIELD_PRESENT(_c, _f) \
(le32_to_cpu((_c)->size) >= (offsetof(struct vmclock_abi, _f) + \
sizeof((_c)->_f)))
/*
* Multiply a 64-bit count by a 64-bit tick 'period' in units of seconds >> 64
* and add the fractional second part of the reference time.
*
* The result is a 128-bit value, the top 64 bits of which are seconds, and
* the low 64 bits are (seconds >> 64).
*/
static uint64_t mul_u64_u64_shr_add_u64(uint64_t *res_hi, uint64_t delta,
uint64_t period, uint8_t shift,
uint64_t frac_sec)
{
unsigned __int128 res = (unsigned __int128)delta * period;
res >>= shift;
res += frac_sec;
*res_hi = res >> 64;
return (uint64_t)res;
}
static bool tai_adjust(struct vmclock_abi *clk, uint64_t *sec)
{
if (likely(clk->time_type == VMCLOCK_TIME_UTC))
return true;
if (clk->time_type == VMCLOCK_TIME_TAI &&
(le64_to_cpu(clk->flags) & VMCLOCK_FLAG_TAI_OFFSET_VALID)) {
if (sec)
*sec += (int16_t)le16_to_cpu(clk->tai_offset_sec);
return true;
}
return false;
}
static int vmclock_get_crosststamp(struct vmclock_state *st,
struct ptp_system_timestamp *sts,
struct system_counterval_t *system_counter,
struct timespec64 *tspec)
{
ktime_t deadline = ktime_add(ktime_get(), VMCLOCK_MAX_WAIT);
struct system_time_snapshot systime_snapshot;
uint64_t cycle, delta, seq, frac_sec;
#ifdef CONFIG_X86
/*
* We'd expect the hypervisor to know this and to report the clock
* status as VMCLOCK_STATUS_UNRELIABLE. But be paranoid.
*/
if (check_tsc_unstable())
return -EINVAL;
#endif
while (1) {
seq = le32_to_cpu(st->clk->seq_count) & ~1ULL;
/*
* This pairs with a write barrier in the hypervisor
* which populates this structure.
*/
virt_rmb();
if (st->clk->clock_status == VMCLOCK_STATUS_UNRELIABLE)
return -EINVAL;
/*
* When invoked for gettimex64(), fill in the pre/post system
* times. The simple case is when system time is based on the
* same counter as st->cs_id, in which case all three times
* will be derived from the *same* counter value.
*
* If the system isn't using the same counter, then the value
* from ktime_get_snapshot() will still be used as pre_ts, and
* ptp_read_system_postts() is called to populate postts after
* calling get_cycles().
*
* The conversion to timespec64 happens further down, outside
* the seq_count loop.
*/
if (sts) {
ktime_get_snapshot(&systime_snapshot);
if (systime_snapshot.cs_id == st->cs_id) {
cycle = systime_snapshot.cycles;
} else {
cycle = get_cycles();
ptp_read_system_postts(sts);
}
} else {
cycle = get_cycles();
}
delta = cycle - le64_to_cpu(st->clk->counter_value);
frac_sec = mul_u64_u64_shr_add_u64(&tspec->tv_sec, delta,
le64_to_cpu(st->clk->counter_period_frac_sec),
st->clk->counter_period_shift,
le64_to_cpu(st->clk->time_frac_sec));
tspec->tv_nsec = mul_u64_u64_shr(frac_sec, NSEC_PER_SEC, 64);
tspec->tv_sec += le64_to_cpu(st->clk->time_sec);
if (!tai_adjust(st->clk, &tspec->tv_sec))
return -EINVAL;
/*
* This pairs with a write barrier in the hypervisor
* which populates this structure.
*/
virt_rmb();
if (seq == le32_to_cpu(st->clk->seq_count))
break;
if (ktime_after(ktime_get(), deadline))
return -ETIMEDOUT;
}
if (system_counter) {
system_counter->cycles = cycle;
system_counter->cs_id = st->cs_id;
}
if (sts) {
sts->pre_ts = ktime_to_timespec64(systime_snapshot.real);
if (systime_snapshot.cs_id == st->cs_id)
sts->post_ts = sts->pre_ts;
}
return 0;
}
#ifdef SUPPORT_KVMCLOCK
/*
* In the case where the system is using the KVM clock for timekeeping, convert
* the TSC value into a KVM clock time in order to return a paired reading that
* get_device_system_crosststamp() can cope with.
*/
static int vmclock_get_crosststamp_kvmclock(struct vmclock_state *st,
struct ptp_system_timestamp *sts,
struct system_counterval_t *system_counter,
struct timespec64 *tspec)
{
struct pvclock_vcpu_time_info *pvti = this_cpu_pvti();
unsigned int pvti_ver;
int ret;
preempt_disable_notrace();
do {
pvti_ver = pvclock_read_begin(pvti);
ret = vmclock_get_crosststamp(st, sts, system_counter, tspec);
if (ret)
break;
system_counter->cycles = __pvclock_read_cycles(pvti,
system_counter->cycles);
system_counter->cs_id = CSID_X86_KVM_CLK;
/*
* This retry should never really happen; if the TSC is
* stable and reliable enough across vCPUS that it is sane
* for the hypervisor to expose a VMCLOCK device which uses
* it as the reference counter, then the KVM clock sohuld be
* in 'master clock mode' and basically never changed. But
* the KVM clock is a fickle and often broken thing, so do
* it "properly" just in case.
*/
} while (pvclock_read_retry(pvti, pvti_ver));
preempt_enable_notrace();
return ret;
}
#endif
static int ptp_vmclock_get_time_fn(ktime_t *device_time,
struct system_counterval_t *system_counter,
void *ctx)
{
struct vmclock_state *st = ctx;
struct timespec64 tspec;
int ret;
#ifdef SUPPORT_KVMCLOCK
if (READ_ONCE(st->sys_cs_id) == CSID_X86_KVM_CLK)
ret = vmclock_get_crosststamp_kvmclock(st, NULL, system_counter,
&tspec);
else
#endif
ret = vmclock_get_crosststamp(st, NULL, system_counter, &tspec);
if (!ret)
*device_time = timespec64_to_ktime(tspec);
return ret;
}
static int ptp_vmclock_getcrosststamp(struct ptp_clock_info *ptp,
struct system_device_crosststamp *xtstamp)
{
struct vmclock_state *st = container_of(ptp, struct vmclock_state,
ptp_clock_info);
int ret = get_device_system_crosststamp(ptp_vmclock_get_time_fn, st,
NULL, xtstamp);
#ifdef SUPPORT_KVMCLOCK
/*
* On x86, the KVM clock may be used for the system time. We can
* actually convert a TSC reading to that, and return a paired
* timestamp that get_device_system_crosststamp() *can* handle.
*/
if (ret == -ENODEV) {
struct system_time_snapshot systime_snapshot;
ktime_get_snapshot(&systime_snapshot);
if (systime_snapshot.cs_id == CSID_X86_TSC ||
systime_snapshot.cs_id == CSID_X86_KVM_CLK) {
WRITE_ONCE(st->sys_cs_id, systime_snapshot.cs_id);
ret = get_device_system_crosststamp(ptp_vmclock_get_time_fn,
st, NULL, xtstamp);
}
}
#endif
return ret;
}
/*
* PTP clock operations
*/
static int ptp_vmclock_adjfine(struct ptp_clock_info *ptp, long delta)
{
return -EOPNOTSUPP;
}
static int ptp_vmclock_adjtime(struct ptp_clock_info *ptp, s64 delta)
{
return -EOPNOTSUPP;
}
static int ptp_vmclock_settime(struct ptp_clock_info *ptp,
const struct timespec64 *ts)
{
return -EOPNOTSUPP;
}
static int ptp_vmclock_gettimex(struct ptp_clock_info *ptp, struct timespec64 *ts,
struct ptp_system_timestamp *sts)
{
struct vmclock_state *st = container_of(ptp, struct vmclock_state,
ptp_clock_info);
return vmclock_get_crosststamp(st, sts, NULL, ts);
}
static int ptp_vmclock_enable(struct ptp_clock_info *ptp,
struct ptp_clock_request *rq, int on)
{
return -EOPNOTSUPP;
}
static const struct ptp_clock_info ptp_vmclock_info = {
.owner = THIS_MODULE,
.max_adj = 0,
.n_ext_ts = 0,
.n_pins = 0,
.pps = 0,
.adjfine = ptp_vmclock_adjfine,
.adjtime = ptp_vmclock_adjtime,
.gettimex64 = ptp_vmclock_gettimex,
.settime64 = ptp_vmclock_settime,
.enable = ptp_vmclock_enable,
.getcrosststamp = ptp_vmclock_getcrosststamp,
};
static struct ptp_clock *vmclock_ptp_register(struct device *dev,
struct vmclock_state *st)
{
enum clocksource_ids cs_id;
if (IS_ENABLED(CONFIG_ARM64) &&
st->clk->counter_id == VMCLOCK_COUNTER_ARM_VCNT) {
/* Can we check it's the virtual counter? */
cs_id = CSID_ARM_ARCH_COUNTER;
} else if (IS_ENABLED(CONFIG_X86) &&
st->clk->counter_id == VMCLOCK_COUNTER_X86_TSC) {
cs_id = CSID_X86_TSC;
} else {
return NULL;
}
/* Only UTC, or TAI with offset */
if (!tai_adjust(st->clk, NULL)) {
dev_info(dev, "vmclock does not provide unambiguous UTC\n");
return NULL;
}
st->sys_cs_id = cs_id;
st->cs_id = cs_id;
st->ptp_clock_info = ptp_vmclock_info;
strscpy(st->ptp_clock_info.name, st->name);
return ptp_clock_register(&st->ptp_clock_info, dev);
}
static int vmclock_miscdev_mmap(struct file *fp, struct vm_area_struct *vma)
{
struct vmclock_state *st = container_of(fp->private_data,
struct vmclock_state, miscdev);
if ((vma->vm_flags & (VM_READ|VM_WRITE)) != VM_READ)
return -EROFS;
if (vma->vm_end - vma->vm_start != PAGE_SIZE || vma->vm_pgoff)
return -EINVAL;
if (io_remap_pfn_range(vma, vma->vm_start,
st->res.start >> PAGE_SHIFT, PAGE_SIZE,
vma->vm_page_prot))
return -EAGAIN;
return 0;
}
static ssize_t vmclock_miscdev_read(struct file *fp, char __user *buf,
size_t count, loff_t *ppos)
{
struct vmclock_state *st = container_of(fp->private_data,
struct vmclock_state, miscdev);
ktime_t deadline = ktime_add(ktime_get(), VMCLOCK_MAX_WAIT);
size_t max_count;
uint32_t seq;
if (*ppos >= PAGE_SIZE)
return 0;
max_count = PAGE_SIZE - *ppos;
if (count > max_count)
count = max_count;
while (1) {
seq = le32_to_cpu(st->clk->seq_count) & ~1U;
/* Pairs with hypervisor wmb */
virt_rmb();
if (copy_to_user(buf, ((char *)st->clk) + *ppos, count))
return -EFAULT;
/* Pairs with hypervisor wmb */
virt_rmb();
if (seq == le32_to_cpu(st->clk->seq_count))
break;
if (ktime_after(ktime_get(), deadline))
return -ETIMEDOUT;
}
*ppos += count;
return count;
}
static const struct file_operations vmclock_miscdev_fops = {
.mmap = vmclock_miscdev_mmap,
.read = vmclock_miscdev_read,
};
/* module operations */
static void vmclock_remove(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct vmclock_state *st = dev_get_drvdata(dev);
if (st->ptp_clock)
ptp_clock_unregister(st->ptp_clock);
if (st->miscdev.minor != MISC_DYNAMIC_MINOR)
misc_deregister(&st->miscdev);
}
static acpi_status vmclock_acpi_resources(struct acpi_resource *ares, void *data)
{
struct vmclock_state *st = data;
struct resource_win win;
struct resource *res = &win.res;
if (ares->type == ACPI_RESOURCE_TYPE_END_TAG)
return AE_OK;
/* There can be only one */
if (resource_type(&st->res) == IORESOURCE_MEM)
return AE_ERROR;
if (acpi_dev_resource_memory(ares, res) ||
acpi_dev_resource_address_space(ares, &win)) {
if (resource_type(res) != IORESOURCE_MEM ||
resource_size(res) < sizeof(st->clk))
return AE_ERROR;
st->res = *res;
return AE_OK;
}
return AE_ERROR;
}
static int vmclock_probe_acpi(struct device *dev, struct vmclock_state *st)
{
struct acpi_device *adev = ACPI_COMPANION(dev);
acpi_status status;
/*
* This should never happen as this function is only called when
* has_acpi_companion(dev) is true, but the logic is sufficiently
* complex that Coverity can't see the tautology.
*/
if (!adev)
return -ENODEV;
status = acpi_walk_resources(adev->handle, METHOD_NAME__CRS,
vmclock_acpi_resources, st);
if (ACPI_FAILURE(status) || resource_type(&st->res) != IORESOURCE_MEM) {
dev_err(dev, "failed to get resources\n");
return -ENODEV;
}
return 0;
}
static void vmclock_put_idx(void *data)
{
struct vmclock_state *st = data;
ida_free(&vmclock_ida, st->index);
}
static int vmclock_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct vmclock_state *st;
int ret;
st = devm_kzalloc(dev, sizeof(*st), GFP_KERNEL);
if (!st)
return -ENOMEM;
if (has_acpi_companion(dev))
ret = vmclock_probe_acpi(dev, st);
else
ret = -EINVAL; /* Only ACPI for now */
if (ret) {
dev_info(dev, "Failed to obtain physical address: %d\n", ret);
goto out;
}
if (resource_size(&st->res) < VMCLOCK_MIN_SIZE) {
dev_info(dev, "Region too small (0x%llx)\n",
resource_size(&st->res));
ret = -EINVAL;
goto out;
}
st->clk = devm_memremap(dev, st->res.start, resource_size(&st->res),
MEMREMAP_WB | MEMREMAP_DEC);
if (IS_ERR(st->clk)) {
ret = PTR_ERR(st->clk);
dev_info(dev, "failed to map shared memory\n");
st->clk = NULL;
goto out;
}
if (le32_to_cpu(st->clk->magic) != VMCLOCK_MAGIC ||
le32_to_cpu(st->clk->size) > resource_size(&st->res) ||
le16_to_cpu(st->clk->version) != 1) {
dev_info(dev, "vmclock magic fields invalid\n");
ret = -EINVAL;
goto out;
}
ret = ida_alloc(&vmclock_ida, GFP_KERNEL);
if (ret < 0)
goto out;
st->index = ret;
ret = devm_add_action_or_reset(&pdev->dev, vmclock_put_idx, st);
if (ret)
goto out;
st->name = devm_kasprintf(&pdev->dev, GFP_KERNEL, "vmclock%d", st->index);
if (!st->name) {
ret = -ENOMEM;
goto out;
}
/*
* If the structure is big enough, it can be mapped to userspace.
* Theoretically a guest OS even using larger pages could still
* use 4KiB PTEs to map smaller MMIO regions like this, but let's
* cross that bridge if/when we come to it.
*/
if (le32_to_cpu(st->clk->size) >= PAGE_SIZE) {
st->miscdev.minor = MISC_DYNAMIC_MINOR;
st->miscdev.fops = &vmclock_miscdev_fops;
st->miscdev.name = st->name;
ret = misc_register(&st->miscdev);
if (ret)
goto out;
}
/* If there is valid clock information, register a PTP clock */
if (VMCLOCK_FIELD_PRESENT(st->clk, time_frac_sec)) {
/* Can return a silent NULL, or an error. */
st->ptp_clock = vmclock_ptp_register(dev, st);
if (IS_ERR(st->ptp_clock)) {
ret = PTR_ERR(st->ptp_clock);
st->ptp_clock = NULL;
vmclock_remove(pdev);
goto out;
}
}
if (!st->miscdev.minor && !st->ptp_clock) {
/* Neither miscdev nor PTP registered */
dev_info(dev, "vmclock: Neither miscdev nor PTP available; not registering\n");
ret = -ENODEV;
goto out;
}
dev_info(dev, "%s: registered %s%s%s\n", st->name,
st->miscdev.minor ? "miscdev" : "",
(st->miscdev.minor && st->ptp_clock) ? ", " : "",
st->ptp_clock ? "PTP" : "");
dev_set_drvdata(dev, st);
out:
return ret;
}
static const struct acpi_device_id vmclock_acpi_ids[] = {
{ "AMZNC10C", 0 },
{}
};
MODULE_DEVICE_TABLE(acpi, vmclock_acpi_ids);
static struct platform_driver vmclock_platform_driver = {
.probe = vmclock_probe,
.remove = vmclock_remove,
.driver = {
.name = "vmclock",
.acpi_match_table = vmclock_acpi_ids,
},
};
module_platform_driver(vmclock_platform_driver)
MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
MODULE_DESCRIPTION("PTP clock using VMCLOCK");
MODULE_LICENSE("GPL");