blob: 2278b4c98a711feba81798eebbd43944a252b89d [file] [log] [blame] [edit]
// SPDX-License-Identifier: (GPL-2.0-only OR MIT)
/*
* Copyright (C) 2024 Amlogic, Inc. All rights reserved
* Author: Yiting Deng <yiting.deng@amlogic.com>
*/
#include <linux/bitfield.h>
#include <linux/clk.h>
#include <linux/clk-provider.h>
#include <linux/delay.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/regmap.h>
#include <linux/rtc.h>
#include <linux/time64.h>
/* rtc oscillator rate */
#define OSC_32K 32768
#define OSC_24M 24000000
#define RTC_CTRL (0x0 << 2) /* Control RTC */
#define RTC_ALRM0_EN BIT(0)
#define RTC_OSC_SEL BIT(8)
#define RTC_ENABLE BIT(12)
#define RTC_COUNTER_REG (0x1 << 2) /* Program RTC counter initial value */
#define RTC_ALARM0_REG (0x2 << 2) /* Program RTC alarm0 value */
#define RTC_SEC_ADJUST_REG (0x6 << 2) /* Control second-based timing adjustment */
#define RTC_MATCH_COUNTER GENMASK(18, 0)
#define RTC_SEC_ADJUST_CTRL GENMASK(20, 19)
#define RTC_ADJ_VALID BIT(23)
#define RTC_INT_MASK (0x8 << 2) /* RTC interrupt mask */
#define RTC_ALRM0_IRQ_MSK BIT(0)
#define RTC_INT_CLR (0x9 << 2) /* Clear RTC interrupt */
#define RTC_ALRM0_IRQ_CLR BIT(0)
#define RTC_OSCIN_CTRL0 (0xa << 2) /* Control RTC clk from 24M */
#define RTC_OSCIN_CTRL1 (0xb << 2) /* Control RTC clk from 24M */
#define RTC_OSCIN_IN_EN BIT(31)
#define RTC_OSCIN_OUT_CFG GENMASK(29, 28)
#define RTC_OSCIN_OUT_N0M0 GENMASK(11, 0)
#define RTC_OSCIN_OUT_N1M1 GENMASK(23, 12)
#define RTC_INT_STATUS (0xc << 2) /* RTC interrupt status */
#define RTC_ALRM0_IRQ_STATUS BIT(0)
#define RTC_REAL_TIME (0xd << 2) /* RTC time value */
#define RTC_OSCIN_OUT_32K_N0 0x2dc
#define RTC_OSCIN_OUT_32K_N1 0x2db
#define RTC_OSCIN_OUT_32K_M0 0x1
#define RTC_OSCIN_OUT_32K_M1 0x2
#define RTC_SWALLOW_SECOND 0x2
#define RTC_INSERT_SECOND 0x3
struct aml_rtc_config {
bool gray_stored;
};
struct aml_rtc_data {
struct regmap *map;
struct rtc_device *rtc_dev;
int irq;
struct clk *rtc_clk;
struct clk *sys_clk;
int rtc_enabled;
const struct aml_rtc_config *config;
};
static const struct regmap_config aml_rtc_regmap_config = {
.reg_bits = 32,
.val_bits = 32,
.reg_stride = 4,
.max_register = RTC_REAL_TIME,
};
static inline u32 gray_to_binary(u32 gray)
{
u32 bcd = gray;
int size = sizeof(bcd) * 8;
int i;
for (i = 0; (1 << i) < size; i++)
bcd ^= bcd >> (1 << i);
return bcd;
}
static inline u32 binary_to_gray(u32 bcd)
{
return bcd ^ (bcd >> 1);
}
static int aml_rtc_read_time(struct device *dev, struct rtc_time *tm)
{
struct aml_rtc_data *rtc = dev_get_drvdata(dev);
u32 time_sec;
/* if RTC disabled, read time failed */
if (!rtc->rtc_enabled)
return -EINVAL;
regmap_read(rtc->map, RTC_REAL_TIME, &time_sec);
if (rtc->config->gray_stored)
time_sec = gray_to_binary(time_sec);
rtc_time64_to_tm(time_sec, tm);
dev_dbg(dev, "%s: read time = %us\n", __func__, time_sec);
return 0;
}
static int aml_rtc_set_time(struct device *dev, struct rtc_time *tm)
{
struct aml_rtc_data *rtc = dev_get_drvdata(dev);
u32 time_sec;
/* if RTC disabled, first enable it */
if (!rtc->rtc_enabled) {
regmap_write_bits(rtc->map, RTC_CTRL, RTC_ENABLE, RTC_ENABLE);
usleep_range(100, 200);
rtc->rtc_enabled = regmap_test_bits(rtc->map, RTC_CTRL, RTC_ENABLE);
if (!rtc->rtc_enabled)
return -EINVAL;
}
time_sec = rtc_tm_to_time64(tm);
if (rtc->config->gray_stored)
time_sec = binary_to_gray(time_sec);
regmap_write(rtc->map, RTC_COUNTER_REG, time_sec);
dev_dbg(dev, "%s: set time = %us\n", __func__, time_sec);
return 0;
}
static int aml_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alarm)
{
struct aml_rtc_data *rtc = dev_get_drvdata(dev);
time64_t alarm_sec;
/* if RTC disabled, set alarm failed */
if (!rtc->rtc_enabled)
return -EINVAL;
regmap_update_bits(rtc->map, RTC_CTRL,
RTC_ALRM0_EN, RTC_ALRM0_EN);
regmap_update_bits(rtc->map, RTC_INT_MASK,
RTC_ALRM0_IRQ_MSK, 0);
alarm_sec = rtc_tm_to_time64(&alarm->time);
if (rtc->config->gray_stored)
alarm_sec = binary_to_gray(alarm_sec);
regmap_write(rtc->map, RTC_ALARM0_REG, alarm_sec);
dev_dbg(dev, "%s: alarm->enabled=%d alarm_set=%llds\n", __func__,
alarm->enabled, alarm_sec);
return 0;
}
static int aml_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alarm)
{
struct aml_rtc_data *rtc = dev_get_drvdata(dev);
u32 alarm_sec;
int alarm_enable;
int alarm_mask;
/* if RTC disabled, read alarm failed */
if (!rtc->rtc_enabled)
return -EINVAL;
regmap_read(rtc->map, RTC_ALARM0_REG, &alarm_sec);
if (rtc->config->gray_stored)
alarm_sec = gray_to_binary(alarm_sec);
rtc_time64_to_tm(alarm_sec, &alarm->time);
alarm_enable = regmap_test_bits(rtc->map, RTC_CTRL, RTC_ALRM0_EN);
alarm_mask = regmap_test_bits(rtc->map, RTC_INT_MASK, RTC_ALRM0_IRQ_MSK);
alarm->enabled = (alarm_enable && !alarm_mask) ? 1 : 0;
dev_dbg(dev, "%s: alarm->enabled=%d alarm=%us\n", __func__,
alarm->enabled, alarm_sec);
return 0;
}
static int aml_rtc_read_offset(struct device *dev, long *offset)
{
struct aml_rtc_data *rtc = dev_get_drvdata(dev);
u32 reg_val;
long val;
int sign, match_counter, enable;
/* if RTC disabled, read offset failed */
if (!rtc->rtc_enabled)
return -EINVAL;
regmap_read(rtc->map, RTC_SEC_ADJUST_REG, &reg_val);
enable = FIELD_GET(RTC_ADJ_VALID, reg_val);
if (!enable) {
val = 0;
} else {
sign = FIELD_GET(RTC_SEC_ADJUST_CTRL, reg_val);
match_counter = FIELD_GET(RTC_MATCH_COUNTER, reg_val);
val = 1000000000 / (match_counter + 1);
if (sign == RTC_SWALLOW_SECOND)
val = -val;
}
*offset = val;
return 0;
}
static int aml_rtc_set_offset(struct device *dev, long offset)
{
struct aml_rtc_data *rtc = dev_get_drvdata(dev);
int sign = 0;
int match_counter = 0;
int enable = 0;
u32 reg_val;
/* if RTC disabled, set offset failed */
if (!rtc->rtc_enabled)
return -EINVAL;
if (offset) {
enable = 1;
sign = offset < 0 ? RTC_SWALLOW_SECOND : RTC_INSERT_SECOND;
match_counter = 1000000000 / abs(offset) - 1;
if (match_counter < 0 || match_counter > RTC_MATCH_COUNTER)
return -EINVAL;
}
reg_val = FIELD_PREP(RTC_ADJ_VALID, enable) |
FIELD_PREP(RTC_SEC_ADJUST_CTRL, sign) |
FIELD_PREP(RTC_MATCH_COUNTER, match_counter);
regmap_write(rtc->map, RTC_SEC_ADJUST_REG, reg_val);
return 0;
}
static int aml_rtc_alarm_enable(struct device *dev, unsigned int enabled)
{
struct aml_rtc_data *rtc = dev_get_drvdata(dev);
if (enabled) {
regmap_update_bits(rtc->map, RTC_CTRL,
RTC_ALRM0_EN, RTC_ALRM0_EN);
regmap_update_bits(rtc->map, RTC_INT_MASK,
RTC_ALRM0_IRQ_MSK, 0);
} else {
regmap_update_bits(rtc->map, RTC_INT_MASK,
RTC_ALRM0_IRQ_MSK, RTC_ALRM0_IRQ_MSK);
regmap_update_bits(rtc->map, RTC_CTRL,
RTC_ALRM0_EN, 0);
}
return 0;
}
static const struct rtc_class_ops aml_rtc_ops = {
.read_time = aml_rtc_read_time,
.set_time = aml_rtc_set_time,
.read_alarm = aml_rtc_read_alarm,
.set_alarm = aml_rtc_set_alarm,
.alarm_irq_enable = aml_rtc_alarm_enable,
.read_offset = aml_rtc_read_offset,
.set_offset = aml_rtc_set_offset,
};
static irqreturn_t aml_rtc_handler(int irq, void *data)
{
struct aml_rtc_data *rtc = (struct aml_rtc_data *)data;
regmap_write(rtc->map, RTC_ALARM0_REG, 0);
regmap_write(rtc->map, RTC_INT_CLR, RTC_ALRM0_IRQ_STATUS);
rtc_update_irq(rtc->rtc_dev, 1, RTC_AF | RTC_IRQF);
return IRQ_HANDLED;
}
static void aml_rtc_init(struct aml_rtc_data *rtc)
{
u32 reg_val = 0;
rtc->rtc_enabled = regmap_test_bits(rtc->map, RTC_CTRL, RTC_ENABLE);
if (!rtc->rtc_enabled) {
if (clk_get_rate(rtc->rtc_clk) == OSC_24M) {
/* select 24M oscillator */
regmap_write_bits(rtc->map, RTC_CTRL, RTC_OSC_SEL, RTC_OSC_SEL);
/*
* Set RTC oscillator to freq_out to freq_in/((N0*M0+N1*M1)/(M0+M1))
* Enable clock_in gate of oscillator 24MHz
* Set N0 to 733, N1 to 732
*/
reg_val = FIELD_PREP(RTC_OSCIN_IN_EN, 1)
| FIELD_PREP(RTC_OSCIN_OUT_CFG, 1)
| FIELD_PREP(RTC_OSCIN_OUT_N0M0, RTC_OSCIN_OUT_32K_N0)
| FIELD_PREP(RTC_OSCIN_OUT_N1M1, RTC_OSCIN_OUT_32K_N1);
regmap_write_bits(rtc->map, RTC_OSCIN_CTRL0, RTC_OSCIN_IN_EN
| RTC_OSCIN_OUT_CFG | RTC_OSCIN_OUT_N0M0
| RTC_OSCIN_OUT_N1M1, reg_val);
/* Set M0 to 2, M1 to 3, so freq_out = 32768 Hz*/
reg_val = FIELD_PREP(RTC_OSCIN_OUT_N0M0, RTC_OSCIN_OUT_32K_M0)
| FIELD_PREP(RTC_OSCIN_OUT_N1M1, RTC_OSCIN_OUT_32K_M1);
regmap_write_bits(rtc->map, RTC_OSCIN_CTRL1, RTC_OSCIN_OUT_N0M0
| RTC_OSCIN_OUT_N1M1, reg_val);
} else {
/* select 32K oscillator */
regmap_write_bits(rtc->map, RTC_CTRL, RTC_OSC_SEL, 0);
}
}
regmap_write_bits(rtc->map, RTC_INT_MASK,
RTC_ALRM0_IRQ_MSK, RTC_ALRM0_IRQ_MSK);
regmap_write_bits(rtc->map, RTC_CTRL, RTC_ALRM0_EN, 0);
}
static int aml_rtc_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct aml_rtc_data *rtc;
void __iomem *base;
int ret = 0;
rtc = devm_kzalloc(dev, sizeof(*rtc), GFP_KERNEL);
if (!rtc)
return -ENOMEM;
rtc->config = of_device_get_match_data(dev);
if (!rtc->config)
return -ENODEV;
base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(base))
return dev_err_probe(dev, PTR_ERR(base), "resource ioremap failed\n");
rtc->map = devm_regmap_init_mmio(dev, base, &aml_rtc_regmap_config);
if (IS_ERR(rtc->map))
return dev_err_probe(dev, PTR_ERR(rtc->map), "regmap init failed\n");
rtc->irq = platform_get_irq(pdev, 0);
if (rtc->irq < 0)
return rtc->irq;
rtc->rtc_clk = devm_clk_get(dev, "osc");
if (IS_ERR(rtc->rtc_clk))
return dev_err_probe(dev, PTR_ERR(rtc->rtc_clk),
"failed to find rtc clock\n");
if (clk_get_rate(rtc->rtc_clk) != OSC_32K && clk_get_rate(rtc->rtc_clk) != OSC_24M)
return dev_err_probe(dev, -EINVAL, "Invalid clock configuration\n");
rtc->sys_clk = devm_clk_get_enabled(dev, "sys");
if (IS_ERR(rtc->sys_clk))
return dev_err_probe(dev, PTR_ERR(rtc->sys_clk),
"failed to get_enable rtc sys clk\n");
aml_rtc_init(rtc);
device_init_wakeup(dev, 1);
platform_set_drvdata(pdev, rtc);
rtc->rtc_dev = devm_rtc_allocate_device(dev);
if (IS_ERR(rtc->rtc_dev)) {
ret = PTR_ERR(rtc->rtc_dev);
goto err_clk;
}
ret = devm_request_irq(dev, rtc->irq, aml_rtc_handler,
IRQF_ONESHOT, "aml-rtc alarm", rtc);
if (ret) {
dev_err_probe(dev, ret, "IRQ%d request failed, ret = %d\n",
rtc->irq, ret);
goto err_clk;
}
rtc->rtc_dev->ops = &aml_rtc_ops;
rtc->rtc_dev->range_min = 0;
rtc->rtc_dev->range_max = U32_MAX;
ret = devm_rtc_register_device(rtc->rtc_dev);
if (ret) {
dev_err_probe(&pdev->dev, ret, "Failed to register RTC device: %d\n", ret);
goto err_clk;
}
return 0;
err_clk:
clk_disable_unprepare(rtc->sys_clk);
device_init_wakeup(dev, 0);
return ret;
}
#ifdef CONFIG_PM_SLEEP
static int aml_rtc_suspend(struct device *dev)
{
struct aml_rtc_data *rtc = dev_get_drvdata(dev);
if (device_may_wakeup(dev))
enable_irq_wake(rtc->irq);
return 0;
}
static int aml_rtc_resume(struct device *dev)
{
struct aml_rtc_data *rtc = dev_get_drvdata(dev);
if (device_may_wakeup(dev))
disable_irq_wake(rtc->irq);
return 0;
}
#endif
static SIMPLE_DEV_PM_OPS(aml_rtc_pm_ops,
aml_rtc_suspend, aml_rtc_resume);
static void aml_rtc_remove(struct platform_device *pdev)
{
struct aml_rtc_data *rtc = dev_get_drvdata(&pdev->dev);
clk_disable_unprepare(rtc->sys_clk);
device_init_wakeup(&pdev->dev, 0);
}
static const struct aml_rtc_config a5_rtc_config = {
};
static const struct aml_rtc_config a4_rtc_config = {
.gray_stored = true,
};
static const struct of_device_id aml_rtc_device_id[] = {
{
.compatible = "amlogic,a4-rtc",
.data = &a4_rtc_config,
},
{
.compatible = "amlogic,a5-rtc",
.data = &a5_rtc_config,
},
{ }
};
MODULE_DEVICE_TABLE(of, aml_rtc_device_id);
static struct platform_driver aml_rtc_driver = {
.probe = aml_rtc_probe,
.remove = aml_rtc_remove,
.driver = {
.name = "aml-rtc",
.pm = &aml_rtc_pm_ops,
.of_match_table = aml_rtc_device_id,
},
};
module_platform_driver(aml_rtc_driver);
MODULE_DESCRIPTION("Amlogic RTC driver");
MODULE_AUTHOR("Yiting Deng <yiting.deng@amlogic.com>");
MODULE_LICENSE("GPL");