blob: d127933bfc8adc4f98ed96f35da8482c8fa2ac75 [file] [log] [blame] [edit]
// SPDX-License-Identifier: GPL-2.0
/*
* On-Chip RTC Support available on RZ/G3S SoC
*
* Copyright (C) 2024 Renesas Electronics Corp.
*/
#include <linux/bcd.h>
#include <linux/bitfield.h>
#include <linux/cleanup.h>
#include <linux/clk.h>
#include <linux/completion.h>
#include <linux/delay.h>
#include <linux/iopoll.h>
#include <linux/interrupt.h>
#include <linux/jiffies.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/reset.h>
#include <linux/rtc.h>
/* Counter registers. */
#define RTCA3_RSECCNT 0x2
#define RTCA3_RSECCNT_SEC GENMASK(6, 0)
#define RTCA3_RMINCNT 0x4
#define RTCA3_RMINCNT_MIN GENMASK(6, 0)
#define RTCA3_RHRCNT 0x6
#define RTCA3_RHRCNT_HR GENMASK(5, 0)
#define RTCA3_RHRCNT_PM BIT(6)
#define RTCA3_RWKCNT 0x8
#define RTCA3_RWKCNT_WK GENMASK(2, 0)
#define RTCA3_RDAYCNT 0xa
#define RTCA3_RDAYCNT_DAY GENMASK(5, 0)
#define RTCA3_RMONCNT 0xc
#define RTCA3_RMONCNT_MONTH GENMASK(4, 0)
#define RTCA3_RYRCNT 0xe
#define RTCA3_RYRCNT_YEAR GENMASK(7, 0)
/* Alarm registers. */
#define RTCA3_RSECAR 0x10
#define RTCA3_RSECAR_SEC GENMASK(6, 0)
#define RTCA3_RMINAR 0x12
#define RTCA3_RMINAR_MIN GENMASK(6, 0)
#define RTCA3_RHRAR 0x14
#define RTCA3_RHRAR_HR GENMASK(5, 0)
#define RTCA3_RHRAR_PM BIT(6)
#define RTCA3_RWKAR 0x16
#define RTCA3_RWKAR_DAYW GENMASK(2, 0)
#define RTCA3_RDAYAR 0x18
#define RTCA3_RDAYAR_DATE GENMASK(5, 0)
#define RTCA3_RMONAR 0x1a
#define RTCA3_RMONAR_MON GENMASK(4, 0)
#define RTCA3_RYRAR 0x1c
#define RTCA3_RYRAR_YR GENMASK(7, 0)
#define RTCA3_RYRAREN 0x1e
/* Alarm enable bit (for all alarm registers). */
#define RTCA3_AR_ENB BIT(7)
/* Control registers. */
#define RTCA3_RCR1 0x22
#define RTCA3_RCR1_AIE BIT(0)
#define RTCA3_RCR1_CIE BIT(1)
#define RTCA3_RCR1_PIE BIT(2)
#define RTCA3_RCR1_PES GENMASK(7, 4)
#define RTCA3_RCR1_PES_1_64_SEC 0x8
#define RTCA3_RCR2 0x24
#define RTCA3_RCR2_START BIT(0)
#define RTCA3_RCR2_RESET BIT(1)
#define RTCA3_RCR2_AADJE BIT(4)
#define RTCA3_RCR2_ADJP BIT(5)
#define RTCA3_RCR2_HR24 BIT(6)
#define RTCA3_RCR2_CNTMD BIT(7)
#define RTCA3_RSR 0x20
#define RTCA3_RSR_AF BIT(0)
#define RTCA3_RSR_CF BIT(1)
#define RTCA3_RSR_PF BIT(2)
#define RTCA3_RADJ 0x2e
#define RTCA3_RADJ_ADJ GENMASK(5, 0)
#define RTCA3_RADJ_ADJ_MAX 0x3f
#define RTCA3_RADJ_PMADJ GENMASK(7, 6)
#define RTCA3_RADJ_PMADJ_NONE 0
#define RTCA3_RADJ_PMADJ_ADD 1
#define RTCA3_RADJ_PMADJ_SUB 2
/* Polling operation timeouts. */
#define RTCA3_DEFAULT_TIMEOUT_US 150
#define RTCA3_IRQSET_TIMEOUT_US 5000
#define RTCA3_START_TIMEOUT_US 150000
#define RTCA3_RESET_TIMEOUT_US 200000
/**
* enum rtca3_alrm_set_step - RTCA3 alarm set steps
* @RTCA3_ALRM_SSTEP_DONE: alarm setup done step
* @RTCA3_ALRM_SSTEP_IRQ: two 1/64 periodic IRQs were generated step
* @RTCA3_ALRM_SSTEP_INIT: alarm setup initialization step
*/
enum rtca3_alrm_set_step {
RTCA3_ALRM_SSTEP_DONE = 0,
RTCA3_ALRM_SSTEP_IRQ = 1,
RTCA3_ALRM_SSTEP_INIT = 3,
};
/**
* struct rtca3_ppb_per_cycle - PPB per cycle
* @ten_sec: PPB per cycle in 10 seconds adjutment mode
* @sixty_sec: PPB per cycle in 60 seconds adjustment mode
*/
struct rtca3_ppb_per_cycle {
int ten_sec;
int sixty_sec;
};
/**
* struct rtca3_priv - RTCA3 private data structure
* @base: base address
* @rtc_dev: RTC device
* @rstc: reset control
* @set_alarm_completion: alarm setup completion
* @alrm_sstep: alarm setup step (see enum rtca3_alrm_set_step)
* @lock: device lock
* @ppb: ppb per cycle for each the available adjustment modes
* @wakeup_irq: wakeup IRQ
*/
struct rtca3_priv {
void __iomem *base;
struct rtc_device *rtc_dev;
struct reset_control *rstc;
struct completion set_alarm_completion;
atomic_t alrm_sstep;
spinlock_t lock;
struct rtca3_ppb_per_cycle ppb;
int wakeup_irq;
};
static void rtca3_byte_update_bits(struct rtca3_priv *priv, u8 off, u8 mask, u8 val)
{
u8 tmp;
tmp = readb(priv->base + off);
tmp &= ~mask;
tmp |= (val & mask);
writeb(tmp, priv->base + off);
}
static u8 rtca3_alarm_handler_helper(struct rtca3_priv *priv)
{
u8 val, pending;
val = readb(priv->base + RTCA3_RSR);
pending = val & RTCA3_RSR_AF;
writeb(val & ~pending, priv->base + RTCA3_RSR);
if (pending)
rtc_update_irq(priv->rtc_dev, 1, RTC_AF | RTC_IRQF);
return pending;
}
static irqreturn_t rtca3_alarm_handler(int irq, void *dev_id)
{
struct rtca3_priv *priv = dev_id;
u8 pending;
guard(spinlock)(&priv->lock);
pending = rtca3_alarm_handler_helper(priv);
return IRQ_RETVAL(pending);
}
static irqreturn_t rtca3_periodic_handler(int irq, void *dev_id)
{
struct rtca3_priv *priv = dev_id;
u8 val, pending;
guard(spinlock)(&priv->lock);
val = readb(priv->base + RTCA3_RSR);
pending = val & RTCA3_RSR_PF;
if (pending) {
writeb(val & ~pending, priv->base + RTCA3_RSR);
if (atomic_read(&priv->alrm_sstep) > RTCA3_ALRM_SSTEP_IRQ) {
/* Alarm setup in progress. */
atomic_dec(&priv->alrm_sstep);
if (atomic_read(&priv->alrm_sstep) == RTCA3_ALRM_SSTEP_IRQ) {
/*
* We got 2 * 1/64 periodic interrupts. Disable
* interrupt and let alarm setup continue.
*/
rtca3_byte_update_bits(priv, RTCA3_RCR1,
RTCA3_RCR1_PIE, 0);
readb_poll_timeout_atomic(priv->base + RTCA3_RCR1, val,
!(val & RTCA3_RCR1_PIE),
10, RTCA3_DEFAULT_TIMEOUT_US);
complete(&priv->set_alarm_completion);
}
}
}
return IRQ_RETVAL(pending);
}
static void rtca3_prepare_cntalrm_regs_for_read(struct rtca3_priv *priv, bool cnt)
{
/* Offset b/w time and alarm registers. */
u8 offset = cnt ? 0 : 0xe;
/*
* According to HW manual (section 22.6.4. Notes on writing to and
* reading from registers) after writing to count registers, alarm
* registers, year alarm enable register, bits RCR2.AADJE, AADJP,
* and HR24 register, we need to do 3 empty reads before being
* able to fetch the registers content.
*/
for (u8 i = 0; i < 3; i++) {
readb(priv->base + RTCA3_RSECCNT + offset);
readb(priv->base + RTCA3_RMINCNT + offset);
readb(priv->base + RTCA3_RHRCNT + offset);
readb(priv->base + RTCA3_RWKCNT + offset);
readb(priv->base + RTCA3_RDAYCNT + offset);
readw(priv->base + RTCA3_RYRCNT + offset);
if (!cnt)
readb(priv->base + RTCA3_RYRAREN);
}
}
static int rtca3_read_time(struct device *dev, struct rtc_time *tm)
{
struct rtca3_priv *priv = dev_get_drvdata(dev);
u8 sec, min, hour, wday, mday, month, tmp;
u8 trials = 0;
u32 year100;
u16 year;
guard(spinlock_irqsave)(&priv->lock);
tmp = readb(priv->base + RTCA3_RCR2);
if (!(tmp & RTCA3_RCR2_START))
return -EINVAL;
do {
/* Clear carry interrupt. */
rtca3_byte_update_bits(priv, RTCA3_RSR, RTCA3_RSR_CF, 0);
/* Read counters. */
sec = readb(priv->base + RTCA3_RSECCNT);
min = readb(priv->base + RTCA3_RMINCNT);
hour = readb(priv->base + RTCA3_RHRCNT);
wday = readb(priv->base + RTCA3_RWKCNT);
mday = readb(priv->base + RTCA3_RDAYCNT);
month = readb(priv->base + RTCA3_RMONCNT);
year = readw(priv->base + RTCA3_RYRCNT);
tmp = readb(priv->base + RTCA3_RSR);
/*
* We cannot generate carries due to reading 64Hz counter as
* the driver doesn't implement carry, thus, carries will be
* generated once per seconds. Add a timeout of 5 trials here
* to avoid infinite loop, if any.
*/
} while ((tmp & RTCA3_RSR_CF) && ++trials < 5);
if (trials >= 5)
return -ETIMEDOUT;
tm->tm_sec = bcd2bin(FIELD_GET(RTCA3_RSECCNT_SEC, sec));
tm->tm_min = bcd2bin(FIELD_GET(RTCA3_RMINCNT_MIN, min));
tm->tm_hour = bcd2bin(FIELD_GET(RTCA3_RHRCNT_HR, hour));
tm->tm_wday = bcd2bin(FIELD_GET(RTCA3_RWKCNT_WK, wday));
tm->tm_mday = bcd2bin(FIELD_GET(RTCA3_RDAYCNT_DAY, mday));
tm->tm_mon = bcd2bin(FIELD_GET(RTCA3_RMONCNT_MONTH, month)) - 1;
year = FIELD_GET(RTCA3_RYRCNT_YEAR, year);
year100 = bcd2bin((year == 0x99) ? 0x19 : 0x20);
tm->tm_year = (year100 * 100 + bcd2bin(year)) - 1900;
return 0;
}
static int rtca3_set_time(struct device *dev, struct rtc_time *tm)
{
struct rtca3_priv *priv = dev_get_drvdata(dev);
u8 rcr2, tmp;
int ret;
guard(spinlock_irqsave)(&priv->lock);
/* Stop the RTC. */
rcr2 = readb(priv->base + RTCA3_RCR2);
writeb(rcr2 & ~RTCA3_RCR2_START, priv->base + RTCA3_RCR2);
ret = readb_poll_timeout_atomic(priv->base + RTCA3_RCR2, tmp,
!(tmp & RTCA3_RCR2_START),
10, RTCA3_DEFAULT_TIMEOUT_US);
if (ret)
return ret;
/* Update time. */
writeb(bin2bcd(tm->tm_sec), priv->base + RTCA3_RSECCNT);
writeb(bin2bcd(tm->tm_min), priv->base + RTCA3_RMINCNT);
writeb(bin2bcd(tm->tm_hour), priv->base + RTCA3_RHRCNT);
writeb(bin2bcd(tm->tm_wday), priv->base + RTCA3_RWKCNT);
writeb(bin2bcd(tm->tm_mday), priv->base + RTCA3_RDAYCNT);
writeb(bin2bcd(tm->tm_mon + 1), priv->base + RTCA3_RMONCNT);
writew(bin2bcd(tm->tm_year % 100), priv->base + RTCA3_RYRCNT);
/* Make sure we can read back the counters. */
rtca3_prepare_cntalrm_regs_for_read(priv, true);
/* Start RTC. */
writeb(rcr2 | RTCA3_RCR2_START, priv->base + RTCA3_RCR2);
return readb_poll_timeout_atomic(priv->base + RTCA3_RCR2, tmp,
(tmp & RTCA3_RCR2_START),
10, RTCA3_DEFAULT_TIMEOUT_US);
}
static int rtca3_alarm_irq_set_helper(struct rtca3_priv *priv,
u8 interrupts,
unsigned int enabled)
{
u8 tmp, val;
if (enabled) {
/*
* AIE, CIE, PIE bit indexes in RSR corresponds with
* those on RCR1. Same interrupts mask can be used.
*/
rtca3_byte_update_bits(priv, RTCA3_RSR, interrupts, 0);
val = interrupts;
} else {
val = 0;
}
rtca3_byte_update_bits(priv, RTCA3_RCR1, interrupts, val);
return readb_poll_timeout_atomic(priv->base + RTCA3_RCR1, tmp,
((tmp & interrupts) == val),
10, RTCA3_IRQSET_TIMEOUT_US);
}
static int rtca3_alarm_irq_enable(struct device *dev, unsigned int enabled)
{
struct rtca3_priv *priv = dev_get_drvdata(dev);
guard(spinlock_irqsave)(&priv->lock);
return rtca3_alarm_irq_set_helper(priv, RTCA3_RCR1_AIE, enabled);
}
static int rtca3_read_alarm(struct device *dev, struct rtc_wkalrm *wkalrm)
{
struct rtca3_priv *priv = dev_get_drvdata(dev);
u8 sec, min, hour, wday, mday, month;
struct rtc_time *tm = &wkalrm->time;
u32 year100;
u16 year;
guard(spinlock_irqsave)(&priv->lock);
sec = readb(priv->base + RTCA3_RSECAR);
min = readb(priv->base + RTCA3_RMINAR);
hour = readb(priv->base + RTCA3_RHRAR);
wday = readb(priv->base + RTCA3_RWKAR);
mday = readb(priv->base + RTCA3_RDAYAR);
month = readb(priv->base + RTCA3_RMONAR);
year = readw(priv->base + RTCA3_RYRAR);
tm->tm_sec = bcd2bin(FIELD_GET(RTCA3_RSECAR_SEC, sec));
tm->tm_min = bcd2bin(FIELD_GET(RTCA3_RMINAR_MIN, min));
tm->tm_hour = bcd2bin(FIELD_GET(RTCA3_RHRAR_HR, hour));
tm->tm_wday = bcd2bin(FIELD_GET(RTCA3_RWKAR_DAYW, wday));
tm->tm_mday = bcd2bin(FIELD_GET(RTCA3_RDAYAR_DATE, mday));
tm->tm_mon = bcd2bin(FIELD_GET(RTCA3_RMONAR_MON, month)) - 1;
year = FIELD_GET(RTCA3_RYRAR_YR, year);
year100 = bcd2bin((year == 0x99) ? 0x19 : 0x20);
tm->tm_year = (year100 * 100 + bcd2bin(year)) - 1900;
wkalrm->enabled = !!(readb(priv->base + RTCA3_RCR1) & RTCA3_RCR1_AIE);
return 0;
}
static int rtca3_set_alarm(struct device *dev, struct rtc_wkalrm *wkalrm)
{
struct rtca3_priv *priv = dev_get_drvdata(dev);
struct rtc_time *tm = &wkalrm->time;
u8 rcr1, tmp;
int ret;
scoped_guard(spinlock_irqsave, &priv->lock) {
tmp = readb(priv->base + RTCA3_RCR2);
if (!(tmp & RTCA3_RCR2_START))
return -EPERM;
/* Disable AIE to prevent false interrupts. */
rcr1 = readb(priv->base + RTCA3_RCR1);
rcr1 &= ~RTCA3_RCR1_AIE;
writeb(rcr1, priv->base + RTCA3_RCR1);
ret = readb_poll_timeout_atomic(priv->base + RTCA3_RCR1, tmp,
!(tmp & RTCA3_RCR1_AIE),
10, RTCA3_DEFAULT_TIMEOUT_US);
if (ret)
return ret;
/* Set the time and enable the alarm. */
writeb(RTCA3_AR_ENB | bin2bcd(tm->tm_sec), priv->base + RTCA3_RSECAR);
writeb(RTCA3_AR_ENB | bin2bcd(tm->tm_min), priv->base + RTCA3_RMINAR);
writeb(RTCA3_AR_ENB | bin2bcd(tm->tm_hour), priv->base + RTCA3_RHRAR);
writeb(RTCA3_AR_ENB | bin2bcd(tm->tm_wday), priv->base + RTCA3_RWKAR);
writeb(RTCA3_AR_ENB | bin2bcd(tm->tm_mday), priv->base + RTCA3_RDAYAR);
writeb(RTCA3_AR_ENB | bin2bcd(tm->tm_mon + 1), priv->base + RTCA3_RMONAR);
writew(bin2bcd(tm->tm_year % 100), priv->base + RTCA3_RYRAR);
writeb(RTCA3_AR_ENB, priv->base + RTCA3_RYRAREN);
/* Make sure we can read back the counters. */
rtca3_prepare_cntalrm_regs_for_read(priv, false);
/* Need to wait for 2 * 1/64 periodic interrupts to be generated. */
atomic_set(&priv->alrm_sstep, RTCA3_ALRM_SSTEP_INIT);
reinit_completion(&priv->set_alarm_completion);
/* Enable periodic interrupt. */
rcr1 |= RTCA3_RCR1_PIE;
writeb(rcr1, priv->base + RTCA3_RCR1);
ret = readb_poll_timeout_atomic(priv->base + RTCA3_RCR1, tmp,
(tmp & RTCA3_RCR1_PIE),
10, RTCA3_IRQSET_TIMEOUT_US);
}
if (ret)
goto setup_failed;
/* Wait for the 2 * 1/64 periodic interrupts. */
ret = wait_for_completion_interruptible_timeout(&priv->set_alarm_completion,
msecs_to_jiffies(500));
if (ret <= 0) {
ret = -ETIMEDOUT;
goto setup_failed;
}
scoped_guard(spinlock_irqsave, &priv->lock) {
ret = rtca3_alarm_irq_set_helper(priv, RTCA3_RCR1_AIE, wkalrm->enabled);
atomic_set(&priv->alrm_sstep, RTCA3_ALRM_SSTEP_DONE);
}
return ret;
setup_failed:
scoped_guard(spinlock_irqsave, &priv->lock) {
/*
* Disable PIE to avoid interrupt storm in case HW needed more than
* specified timeout for setup.
*/
writeb(rcr1 & ~RTCA3_RCR1_PIE, priv->base + RTCA3_RCR1);
readb_poll_timeout_atomic(priv->base + RTCA3_RCR1, tmp, !(tmp & ~RTCA3_RCR1_PIE),
10, RTCA3_DEFAULT_TIMEOUT_US);
atomic_set(&priv->alrm_sstep, RTCA3_ALRM_SSTEP_DONE);
}
return ret;
}
static int rtca3_read_offset(struct device *dev, long *offset)
{
struct rtca3_priv *priv = dev_get_drvdata(dev);
u8 val, radj, cycles;
u32 ppb_per_cycle;
scoped_guard(spinlock_irqsave, &priv->lock) {
radj = readb(priv->base + RTCA3_RADJ);
val = readb(priv->base + RTCA3_RCR2);
}
cycles = FIELD_GET(RTCA3_RADJ_ADJ, radj);
if (!cycles) {
*offset = 0;
return 0;
}
if (val & RTCA3_RCR2_ADJP)
ppb_per_cycle = priv->ppb.ten_sec;
else
ppb_per_cycle = priv->ppb.sixty_sec;
*offset = cycles * ppb_per_cycle;
val = FIELD_GET(RTCA3_RADJ_PMADJ, radj);
if (val == RTCA3_RADJ_PMADJ_SUB)
*offset = -(*offset);
return 0;
}
static int rtca3_set_offset(struct device *dev, long offset)
{
struct rtca3_priv *priv = dev_get_drvdata(dev);
int cycles, cycles10, cycles60;
u8 radj, adjp, tmp;
int ret;
/*
* Automatic time error adjustment could be set at intervals of 10
* or 60 seconds.
*/
cycles10 = DIV_ROUND_CLOSEST(offset, priv->ppb.ten_sec);
cycles60 = DIV_ROUND_CLOSEST(offset, priv->ppb.sixty_sec);
/* We can set b/w 1 and 63 clock cycles. */
if (cycles60 >= -RTCA3_RADJ_ADJ_MAX &&
cycles60 <= RTCA3_RADJ_ADJ_MAX) {
cycles = cycles60;
adjp = 0;
} else if (cycles10 >= -RTCA3_RADJ_ADJ_MAX &&
cycles10 <= RTCA3_RADJ_ADJ_MAX) {
cycles = cycles10;
adjp = RTCA3_RCR2_ADJP;
} else {
return -ERANGE;
}
radj = FIELD_PREP(RTCA3_RADJ_ADJ, abs(cycles));
if (!cycles)
radj |= FIELD_PREP(RTCA3_RADJ_PMADJ, RTCA3_RADJ_PMADJ_NONE);
else if (cycles > 0)
radj |= FIELD_PREP(RTCA3_RADJ_PMADJ, RTCA3_RADJ_PMADJ_ADD);
else
radj |= FIELD_PREP(RTCA3_RADJ_PMADJ, RTCA3_RADJ_PMADJ_SUB);
guard(spinlock_irqsave)(&priv->lock);
tmp = readb(priv->base + RTCA3_RCR2);
if ((tmp & RTCA3_RCR2_ADJP) != adjp) {
/* RADJ.PMADJ need to be set to zero before setting RCR2.ADJP. */
writeb(0, priv->base + RTCA3_RADJ);
ret = readb_poll_timeout_atomic(priv->base + RTCA3_RADJ, tmp, !tmp,
10, RTCA3_DEFAULT_TIMEOUT_US);
if (ret)
return ret;
rtca3_byte_update_bits(priv, RTCA3_RCR2, RTCA3_RCR2_ADJP, adjp);
ret = readb_poll_timeout_atomic(priv->base + RTCA3_RCR2, tmp,
((tmp & RTCA3_RCR2_ADJP) == adjp),
10, RTCA3_DEFAULT_TIMEOUT_US);
if (ret)
return ret;
}
writeb(radj, priv->base + RTCA3_RADJ);
return readb_poll_timeout_atomic(priv->base + RTCA3_RADJ, tmp, (tmp == radj),
10, RTCA3_DEFAULT_TIMEOUT_US);
}
static const struct rtc_class_ops rtca3_ops = {
.read_time = rtca3_read_time,
.set_time = rtca3_set_time,
.read_alarm = rtca3_read_alarm,
.set_alarm = rtca3_set_alarm,
.alarm_irq_enable = rtca3_alarm_irq_enable,
.set_offset = rtca3_set_offset,
.read_offset = rtca3_read_offset,
};
static int rtca3_initial_setup(struct clk *clk, struct rtca3_priv *priv)
{
unsigned long osc32k_rate;
u8 val, tmp, mask;
u32 sleep_us;
int ret;
osc32k_rate = clk_get_rate(clk);
if (!osc32k_rate)
return -EINVAL;
sleep_us = DIV_ROUND_UP_ULL(1000000ULL, osc32k_rate) * 6;
priv->ppb.ten_sec = DIV_ROUND_CLOSEST_ULL(1000000000ULL, (osc32k_rate * 10));
priv->ppb.sixty_sec = DIV_ROUND_CLOSEST_ULL(1000000000ULL, (osc32k_rate * 60));
/*
* According to HW manual (section 22.4.2. Clock and count mode setting procedure)
* we need to wait at least 6 cycles of the 32KHz clock after clock was enabled.
*/
usleep_range(sleep_us, sleep_us + 10);
/* Disable all interrupts. */
mask = RTCA3_RCR1_AIE | RTCA3_RCR1_CIE | RTCA3_RCR1_PIE;
ret = rtca3_alarm_irq_set_helper(priv, mask, 0);
if (ret)
return ret;
mask = RTCA3_RCR2_START | RTCA3_RCR2_HR24;
val = readb(priv->base + RTCA3_RCR2);
/* Nothing to do if already started in 24 hours and calendar count mode. */
if ((val & mask) == mask)
return 0;
/* Reconfigure the RTC in 24 hours and calendar count mode. */
mask = RTCA3_RCR2_START | RTCA3_RCR2_CNTMD;
writeb(0, priv->base + RTCA3_RCR2);
ret = readb_poll_timeout(priv->base + RTCA3_RCR2, tmp, !(tmp & mask),
10, RTCA3_DEFAULT_TIMEOUT_US);
if (ret)
return ret;
/*
* Set 24 hours mode. According to HW manual (section 22.3.19. RTC Control
* Register 2) this needs to be done separate from stop operation.
*/
mask = RTCA3_RCR2_HR24;
val = RTCA3_RCR2_HR24;
writeb(val, priv->base + RTCA3_RCR2);
ret = readb_poll_timeout(priv->base + RTCA3_RCR2, tmp, (tmp & mask),
10, RTCA3_DEFAULT_TIMEOUT_US);
if (ret)
return ret;
/* Execute reset. */
mask = RTCA3_RCR2_RESET;
writeb(val | RTCA3_RCR2_RESET, priv->base + RTCA3_RCR2);
ret = readb_poll_timeout(priv->base + RTCA3_RCR2, tmp, !(tmp & mask),
10, RTCA3_RESET_TIMEOUT_US);
if (ret)
return ret;
/*
* According to HW manual (section 22.6.3. Notes on writing to and reading
* from registers) after reset we need to wait 6 clock cycles before
* writing to RTC registers.
*/
usleep_range(sleep_us, sleep_us + 10);
/* Set no adjustment. */
writeb(0, priv->base + RTCA3_RADJ);
ret = readb_poll_timeout(priv->base + RTCA3_RADJ, tmp, !tmp, 10,
RTCA3_DEFAULT_TIMEOUT_US);
/* Start the RTC and enable automatic time error adjustment. */
mask = RTCA3_RCR2_START | RTCA3_RCR2_AADJE;
val |= RTCA3_RCR2_START | RTCA3_RCR2_AADJE;
writeb(val, priv->base + RTCA3_RCR2);
ret = readb_poll_timeout(priv->base + RTCA3_RCR2, tmp, ((tmp & mask) == mask),
10, RTCA3_START_TIMEOUT_US);
if (ret)
return ret;
/*
* According to HW manual (section 22.6.4. Notes on writing to and reading
* from registers) we need to wait 1/128 seconds while the clock is operating
* (RCR2.START bit = 1) to be able to read the counters after a return from
* reset.
*/
usleep_range(8000, 9000);
/* Set period interrupt to 1/64 seconds. It is necessary for alarm setup. */
val = FIELD_PREP(RTCA3_RCR1_PES, RTCA3_RCR1_PES_1_64_SEC);
rtca3_byte_update_bits(priv, RTCA3_RCR1, RTCA3_RCR1_PES, val);
return readb_poll_timeout(priv->base + RTCA3_RCR1, tmp, ((tmp & RTCA3_RCR1_PES) == val),
10, RTCA3_DEFAULT_TIMEOUT_US);
}
static int rtca3_request_irqs(struct platform_device *pdev, struct rtca3_priv *priv)
{
struct device *dev = &pdev->dev;
int ret, irq;
irq = platform_get_irq_byname(pdev, "alarm");
if (irq < 0)
return dev_err_probe(dev, irq, "Failed to get alarm IRQ!\n");
ret = devm_request_irq(dev, irq, rtca3_alarm_handler, 0, "rtca3-alarm", priv);
if (ret)
return dev_err_probe(dev, ret, "Failed to request alarm IRQ!\n");
priv->wakeup_irq = irq;
irq = platform_get_irq_byname(pdev, "period");
if (irq < 0)
return dev_err_probe(dev, irq, "Failed to get period IRQ!\n");
ret = devm_request_irq(dev, irq, rtca3_periodic_handler, 0, "rtca3-period", priv);
if (ret)
return dev_err_probe(dev, ret, "Failed to request period IRQ!\n");
/*
* Driver doesn't implement carry handler. Just get the IRQ here
* for backward compatibility, in case carry support will be added later.
*/
irq = platform_get_irq_byname(pdev, "carry");
if (irq < 0)
return dev_err_probe(dev, irq, "Failed to get carry IRQ!\n");
return 0;
}
static void rtca3_action(void *data)
{
struct device *dev = data;
struct rtca3_priv *priv = dev_get_drvdata(dev);
int ret;
ret = reset_control_assert(priv->rstc);
if (ret)
dev_err(dev, "Failed to de-assert reset!");
ret = pm_runtime_put_sync(dev);
if (ret < 0)
dev_err(dev, "Failed to runtime suspend!");
}
static int rtca3_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct rtca3_priv *priv;
struct clk *clk;
int ret;
priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
priv->base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(priv->base))
return PTR_ERR(priv->base);
ret = devm_pm_runtime_enable(dev);
if (ret)
return ret;
priv->rstc = devm_reset_control_get_shared(dev, NULL);
if (IS_ERR(priv->rstc))
return PTR_ERR(priv->rstc);
ret = pm_runtime_resume_and_get(dev);
if (ret)
return ret;
ret = reset_control_deassert(priv->rstc);
if (ret) {
pm_runtime_put_sync(dev);
return ret;
}
dev_set_drvdata(dev, priv);
ret = devm_add_action_or_reset(dev, rtca3_action, dev);
if (ret)
return ret;
/*
* This must be an always-on clock to keep the RTC running even after
* driver is unbinded.
*/
clk = devm_clk_get_enabled(dev, "counter");
if (IS_ERR(clk))
return PTR_ERR(clk);
spin_lock_init(&priv->lock);
atomic_set(&priv->alrm_sstep, RTCA3_ALRM_SSTEP_DONE);
init_completion(&priv->set_alarm_completion);
ret = rtca3_initial_setup(clk, priv);
if (ret)
return dev_err_probe(dev, ret, "Failed to setup the RTC!\n");
ret = rtca3_request_irqs(pdev, priv);
if (ret)
return ret;
device_init_wakeup(&pdev->dev, 1);
priv->rtc_dev = devm_rtc_allocate_device(&pdev->dev);
if (IS_ERR(priv->rtc_dev))
return PTR_ERR(priv->rtc_dev);
priv->rtc_dev->ops = &rtca3_ops;
priv->rtc_dev->max_user_freq = 256;
priv->rtc_dev->range_min = RTC_TIMESTAMP_BEGIN_2000;
priv->rtc_dev->range_max = RTC_TIMESTAMP_END_2099;
return devm_rtc_register_device(priv->rtc_dev);
}
static void rtca3_remove(struct platform_device *pdev)
{
struct rtca3_priv *priv = platform_get_drvdata(pdev);
guard(spinlock_irqsave)(&priv->lock);
/*
* Disable alarm, periodic interrupts. The RTC device cannot
* power up the system.
*/
rtca3_alarm_irq_set_helper(priv, RTCA3_RCR1_AIE | RTCA3_RCR1_PIE, 0);
}
static int rtca3_suspend(struct device *dev)
{
struct rtca3_priv *priv = dev_get_drvdata(dev);
if (!device_may_wakeup(dev))
return 0;
/* Alarm setup in progress. */
if (atomic_read(&priv->alrm_sstep) != RTCA3_ALRM_SSTEP_DONE)
return -EBUSY;
enable_irq_wake(priv->wakeup_irq);
return 0;
}
static int rtca3_clean_alarm(struct rtca3_priv *priv)
{
struct rtc_device *rtc_dev = priv->rtc_dev;
time64_t alarm_time, now;
struct rtc_wkalrm alarm;
struct rtc_time tm;
u8 pending;
int ret;
ret = rtc_read_alarm(rtc_dev, &alarm);
if (ret)
return ret;
if (!alarm.enabled)
return 0;
ret = rtc_read_time(rtc_dev, &tm);
if (ret)
return ret;
alarm_time = rtc_tm_to_time64(&alarm.time);
now = rtc_tm_to_time64(&tm);
if (alarm_time >= now)
return 0;
/*
* Heuristically, it has been determined that when returning from deep
* sleep state the RTCA3_RSR.AF is zero even though the alarm expired.
* Call again the rtc_update_irq() if alarm helper detects this.
*/
guard(spinlock_irqsave)(&priv->lock);
pending = rtca3_alarm_handler_helper(priv);
if (!pending)
rtc_update_irq(priv->rtc_dev, 1, RTC_AF | RTC_IRQF);
return 0;
}
static int rtca3_resume(struct device *dev)
{
struct rtca3_priv *priv = dev_get_drvdata(dev);
if (!device_may_wakeup(dev))
return 0;
disable_irq_wake(priv->wakeup_irq);
/*
* According to the HW manual (section 22.6.4 Notes on writing to
* and reading from registers) we need to wait 1/128 seconds while
* RCR2.START = 1 to be able to read the counters after a return from low
* power consumption state.
*/
mdelay(8);
/*
* The alarm cannot wake the system from deep sleep states. In case
* we return from deep sleep states and the alarm expired we need
* to disable it to avoid failures when setting another alarm.
*/
return rtca3_clean_alarm(priv);
}
static DEFINE_SIMPLE_DEV_PM_OPS(rtca3_pm_ops, rtca3_suspend, rtca3_resume);
static const struct of_device_id rtca3_of_match[] = {
{ .compatible = "renesas,rz-rtca3", },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, rtca3_of_match);
static struct platform_driver rtca3_platform_driver = {
.driver = {
.name = "rtc-rtca3",
.pm = pm_ptr(&rtca3_pm_ops),
.of_match_table = rtca3_of_match,
},
.probe = rtca3_probe,
.remove = rtca3_remove,
};
module_platform_driver(rtca3_platform_driver);
MODULE_DESCRIPTION("Renesas RTCA-3 RTC driver");
MODULE_AUTHOR("Claudiu Beznea <claudiu.beznea.uj@bp.renesas.com>");
MODULE_LICENSE("GPL");