| // SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause) |
| // Copyright(c) 2015-17 Intel Corporation. |
| |
| #include <linux/acpi.h> |
| #include <linux/delay.h> |
| #include <linux/mod_devicetable.h> |
| #include <linux/pm_runtime.h> |
| #include <linux/soundwire/sdw_registers.h> |
| #include <linux/soundwire/sdw.h> |
| #include <linux/soundwire/sdw_type.h> |
| #include "bus.h" |
| #include "irq.h" |
| #include "sysfs_local.h" |
| |
| static DEFINE_IDA(sdw_bus_ida); |
| |
| static int sdw_get_id(struct sdw_bus *bus) |
| { |
| int rc = ida_alloc(&sdw_bus_ida, GFP_KERNEL); |
| |
| if (rc < 0) |
| return rc; |
| |
| bus->id = rc; |
| |
| if (bus->controller_id == -1) |
| bus->controller_id = rc; |
| |
| return 0; |
| } |
| |
| /** |
| * sdw_bus_master_add() - add a bus Master instance |
| * @bus: bus instance |
| * @parent: parent device |
| * @fwnode: firmware node handle |
| * |
| * Initializes the bus instance, read properties and create child |
| * devices. |
| */ |
| int sdw_bus_master_add(struct sdw_bus *bus, struct device *parent, |
| struct fwnode_handle *fwnode) |
| { |
| struct sdw_master_prop *prop = NULL; |
| int ret; |
| |
| if (!parent) { |
| pr_err("SoundWire parent device is not set\n"); |
| return -ENODEV; |
| } |
| |
| ret = sdw_get_id(bus); |
| if (ret < 0) { |
| dev_err(parent, "Failed to get bus id\n"); |
| return ret; |
| } |
| |
| ret = sdw_master_device_add(bus, parent, fwnode); |
| if (ret < 0) { |
| dev_err(parent, "Failed to add master device at link %d\n", |
| bus->link_id); |
| return ret; |
| } |
| |
| if (!bus->ops) { |
| dev_err(bus->dev, "SoundWire Bus ops are not set\n"); |
| return -EINVAL; |
| } |
| |
| if (!bus->compute_params) { |
| dev_err(bus->dev, |
| "Bandwidth allocation not configured, compute_params no set\n"); |
| return -EINVAL; |
| } |
| |
| /* |
| * Give each bus_lock and msg_lock a unique key so that lockdep won't |
| * trigger a deadlock warning when the locks of several buses are |
| * grabbed during configuration of a multi-bus stream. |
| */ |
| lockdep_register_key(&bus->msg_lock_key); |
| __mutex_init(&bus->msg_lock, "msg_lock", &bus->msg_lock_key); |
| |
| lockdep_register_key(&bus->bus_lock_key); |
| __mutex_init(&bus->bus_lock, "bus_lock", &bus->bus_lock_key); |
| |
| INIT_LIST_HEAD(&bus->slaves); |
| INIT_LIST_HEAD(&bus->m_rt_list); |
| |
| /* |
| * Initialize multi_link flag |
| */ |
| bus->multi_link = false; |
| if (bus->ops->read_prop) { |
| ret = bus->ops->read_prop(bus); |
| if (ret < 0) { |
| dev_err(bus->dev, |
| "Bus read properties failed:%d\n", ret); |
| return ret; |
| } |
| } |
| |
| sdw_bus_debugfs_init(bus); |
| |
| /* |
| * Device numbers in SoundWire are 0 through 15. Enumeration device |
| * number (0), Broadcast device number (15), Group numbers (12 and |
| * 13) and Master device number (14) are not used for assignment so |
| * mask these and other higher bits. |
| */ |
| |
| /* Set higher order bits */ |
| *bus->assigned = ~GENMASK(SDW_BROADCAST_DEV_NUM, SDW_ENUM_DEV_NUM); |
| |
| /* Set enumeration device number and broadcast device number */ |
| set_bit(SDW_ENUM_DEV_NUM, bus->assigned); |
| set_bit(SDW_BROADCAST_DEV_NUM, bus->assigned); |
| |
| /* Set group device numbers and master device number */ |
| set_bit(SDW_GROUP12_DEV_NUM, bus->assigned); |
| set_bit(SDW_GROUP13_DEV_NUM, bus->assigned); |
| set_bit(SDW_MASTER_DEV_NUM, bus->assigned); |
| |
| /* |
| * SDW is an enumerable bus, but devices can be powered off. So, |
| * they won't be able to report as present. |
| * |
| * Create Slave devices based on Slaves described in |
| * the respective firmware (ACPI/DT) |
| */ |
| if (IS_ENABLED(CONFIG_ACPI) && ACPI_HANDLE(bus->dev)) |
| ret = sdw_acpi_find_slaves(bus); |
| else if (IS_ENABLED(CONFIG_OF) && bus->dev->of_node) |
| ret = sdw_of_find_slaves(bus); |
| else |
| ret = -ENOTSUPP; /* No ACPI/DT so error out */ |
| |
| if (ret < 0) { |
| dev_err(bus->dev, "Finding slaves failed:%d\n", ret); |
| return ret; |
| } |
| |
| /* |
| * Initialize clock values based on Master properties. The max |
| * frequency is read from max_clk_freq property. Current assumption |
| * is that the bus will start at highest clock frequency when |
| * powered on. |
| * |
| * Default active bank will be 0 as out of reset the Slaves have |
| * to start with bank 0 (Table 40 of Spec) |
| */ |
| prop = &bus->prop; |
| bus->params.max_dr_freq = prop->max_clk_freq * SDW_DOUBLE_RATE_FACTOR; |
| bus->params.curr_dr_freq = bus->params.max_dr_freq; |
| bus->params.curr_bank = SDW_BANK0; |
| bus->params.next_bank = SDW_BANK1; |
| |
| ret = sdw_irq_create(bus, fwnode); |
| if (ret) |
| return ret; |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(sdw_bus_master_add); |
| |
| static int sdw_delete_slave(struct device *dev, void *data) |
| { |
| struct sdw_slave *slave = dev_to_sdw_dev(dev); |
| struct sdw_bus *bus = slave->bus; |
| |
| pm_runtime_disable(dev); |
| |
| sdw_slave_debugfs_exit(slave); |
| |
| mutex_lock(&bus->bus_lock); |
| |
| if (slave->dev_num) { /* clear dev_num if assigned */ |
| clear_bit(slave->dev_num, bus->assigned); |
| if (bus->ops && bus->ops->put_device_num) |
| bus->ops->put_device_num(bus, slave); |
| } |
| list_del_init(&slave->node); |
| mutex_unlock(&bus->bus_lock); |
| |
| device_unregister(dev); |
| return 0; |
| } |
| |
| /** |
| * sdw_bus_master_delete() - delete the bus master instance |
| * @bus: bus to be deleted |
| * |
| * Remove the instance, delete the child devices. |
| */ |
| void sdw_bus_master_delete(struct sdw_bus *bus) |
| { |
| device_for_each_child(bus->dev, NULL, sdw_delete_slave); |
| |
| sdw_irq_delete(bus); |
| |
| sdw_master_device_del(bus); |
| |
| sdw_bus_debugfs_exit(bus); |
| lockdep_unregister_key(&bus->bus_lock_key); |
| lockdep_unregister_key(&bus->msg_lock_key); |
| ida_free(&sdw_bus_ida, bus->id); |
| } |
| EXPORT_SYMBOL(sdw_bus_master_delete); |
| |
| /* |
| * SDW IO Calls |
| */ |
| |
| static inline int find_response_code(enum sdw_command_response resp) |
| { |
| switch (resp) { |
| case SDW_CMD_OK: |
| return 0; |
| |
| case SDW_CMD_IGNORED: |
| return -ENODATA; |
| |
| case SDW_CMD_TIMEOUT: |
| return -ETIMEDOUT; |
| |
| default: |
| return -EIO; |
| } |
| } |
| |
| static inline int do_transfer(struct sdw_bus *bus, struct sdw_msg *msg) |
| { |
| int retry = bus->prop.err_threshold; |
| enum sdw_command_response resp; |
| int ret = 0, i; |
| |
| for (i = 0; i <= retry; i++) { |
| resp = bus->ops->xfer_msg(bus, msg); |
| ret = find_response_code(resp); |
| |
| /* if cmd is ok or ignored return */ |
| if (ret == 0 || ret == -ENODATA) |
| return ret; |
| } |
| |
| return ret; |
| } |
| |
| static inline int do_transfer_defer(struct sdw_bus *bus, |
| struct sdw_msg *msg) |
| { |
| struct sdw_defer *defer = &bus->defer_msg; |
| int retry = bus->prop.err_threshold; |
| enum sdw_command_response resp; |
| int ret = 0, i; |
| |
| defer->msg = msg; |
| defer->length = msg->len; |
| init_completion(&defer->complete); |
| |
| for (i = 0; i <= retry; i++) { |
| resp = bus->ops->xfer_msg_defer(bus); |
| ret = find_response_code(resp); |
| /* if cmd is ok or ignored return */ |
| if (ret == 0 || ret == -ENODATA) |
| return ret; |
| } |
| |
| return ret; |
| } |
| |
| static int sdw_transfer_unlocked(struct sdw_bus *bus, struct sdw_msg *msg) |
| { |
| int ret; |
| |
| ret = do_transfer(bus, msg); |
| if (ret != 0 && ret != -ENODATA) |
| dev_err(bus->dev, "trf on Slave %d failed:%d %s addr %x count %d\n", |
| msg->dev_num, ret, |
| (msg->flags & SDW_MSG_FLAG_WRITE) ? "write" : "read", |
| msg->addr, msg->len); |
| |
| return ret; |
| } |
| |
| /** |
| * sdw_transfer() - Synchronous transfer message to a SDW Slave device |
| * @bus: SDW bus |
| * @msg: SDW message to be xfered |
| */ |
| int sdw_transfer(struct sdw_bus *bus, struct sdw_msg *msg) |
| { |
| int ret; |
| |
| mutex_lock(&bus->msg_lock); |
| |
| ret = sdw_transfer_unlocked(bus, msg); |
| |
| mutex_unlock(&bus->msg_lock); |
| |
| return ret; |
| } |
| |
| /** |
| * sdw_show_ping_status() - Direct report of PING status, to be used by Peripheral drivers |
| * @bus: SDW bus |
| * @sync_delay: Delay before reading status |
| */ |
| void sdw_show_ping_status(struct sdw_bus *bus, bool sync_delay) |
| { |
| u32 status; |
| |
| if (!bus->ops->read_ping_status) |
| return; |
| |
| /* |
| * wait for peripheral to sync if desired. 10-15ms should be more than |
| * enough in most cases. |
| */ |
| if (sync_delay) |
| usleep_range(10000, 15000); |
| |
| mutex_lock(&bus->msg_lock); |
| |
| status = bus->ops->read_ping_status(bus); |
| |
| mutex_unlock(&bus->msg_lock); |
| |
| if (!status) |
| dev_warn(bus->dev, "%s: no peripherals attached\n", __func__); |
| else |
| dev_dbg(bus->dev, "PING status: %#x\n", status); |
| } |
| EXPORT_SYMBOL(sdw_show_ping_status); |
| |
| /** |
| * sdw_transfer_defer() - Asynchronously transfer message to a SDW Slave device |
| * @bus: SDW bus |
| * @msg: SDW message to be xfered |
| * |
| * Caller needs to hold the msg_lock lock while calling this |
| */ |
| int sdw_transfer_defer(struct sdw_bus *bus, struct sdw_msg *msg) |
| { |
| int ret; |
| |
| if (!bus->ops->xfer_msg_defer) |
| return -ENOTSUPP; |
| |
| ret = do_transfer_defer(bus, msg); |
| if (ret != 0 && ret != -ENODATA) |
| dev_err(bus->dev, "Defer trf on Slave %d failed:%d\n", |
| msg->dev_num, ret); |
| |
| return ret; |
| } |
| |
| int sdw_fill_msg(struct sdw_msg *msg, struct sdw_slave *slave, |
| u32 addr, size_t count, u16 dev_num, u8 flags, u8 *buf) |
| { |
| memset(msg, 0, sizeof(*msg)); |
| msg->addr = addr; /* addr is 16 bit and truncated here */ |
| msg->len = count; |
| msg->dev_num = dev_num; |
| msg->flags = flags; |
| msg->buf = buf; |
| |
| if (addr < SDW_REG_NO_PAGE) /* no paging area */ |
| return 0; |
| |
| if (addr >= SDW_REG_MAX) { /* illegal addr */ |
| pr_err("SDW: Invalid address %x passed\n", addr); |
| return -EINVAL; |
| } |
| |
| if (addr < SDW_REG_OPTIONAL_PAGE) { /* 32k but no page */ |
| if (slave && !slave->prop.paging_support) |
| return 0; |
| /* no need for else as that will fall-through to paging */ |
| } |
| |
| /* paging mandatory */ |
| if (dev_num == SDW_ENUM_DEV_NUM || dev_num == SDW_BROADCAST_DEV_NUM) { |
| pr_err("SDW: Invalid device for paging :%d\n", dev_num); |
| return -EINVAL; |
| } |
| |
| if (!slave) { |
| pr_err("SDW: No slave for paging addr\n"); |
| return -EINVAL; |
| } |
| |
| if (!slave->prop.paging_support) { |
| dev_err(&slave->dev, |
| "address %x needs paging but no support\n", addr); |
| return -EINVAL; |
| } |
| |
| msg->addr_page1 = FIELD_GET(SDW_SCP_ADDRPAGE1_MASK, addr); |
| msg->addr_page2 = FIELD_GET(SDW_SCP_ADDRPAGE2_MASK, addr); |
| msg->addr |= BIT(15); |
| msg->page = true; |
| |
| return 0; |
| } |
| |
| /* |
| * Read/Write IO functions. |
| */ |
| |
| static int sdw_ntransfer_no_pm(struct sdw_slave *slave, u32 addr, u8 flags, |
| size_t count, u8 *val) |
| { |
| struct sdw_msg msg; |
| size_t size; |
| int ret; |
| |
| while (count) { |
| // Only handle bytes up to next page boundary |
| size = min_t(size_t, count, (SDW_REGADDR + 1) - (addr & SDW_REGADDR)); |
| |
| ret = sdw_fill_msg(&msg, slave, addr, size, slave->dev_num, flags, val); |
| if (ret < 0) |
| return ret; |
| |
| ret = sdw_transfer(slave->bus, &msg); |
| if (ret < 0 && !slave->is_mockup_device) |
| return ret; |
| |
| addr += size; |
| val += size; |
| count -= size; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * sdw_nread_no_pm() - Read "n" contiguous SDW Slave registers with no PM |
| * @slave: SDW Slave |
| * @addr: Register address |
| * @count: length |
| * @val: Buffer for values to be read |
| * |
| * Note that if the message crosses a page boundary each page will be |
| * transferred under a separate invocation of the msg_lock. |
| */ |
| int sdw_nread_no_pm(struct sdw_slave *slave, u32 addr, size_t count, u8 *val) |
| { |
| return sdw_ntransfer_no_pm(slave, addr, SDW_MSG_FLAG_READ, count, val); |
| } |
| EXPORT_SYMBOL(sdw_nread_no_pm); |
| |
| /** |
| * sdw_nwrite_no_pm() - Write "n" contiguous SDW Slave registers with no PM |
| * @slave: SDW Slave |
| * @addr: Register address |
| * @count: length |
| * @val: Buffer for values to be written |
| * |
| * Note that if the message crosses a page boundary each page will be |
| * transferred under a separate invocation of the msg_lock. |
| */ |
| int sdw_nwrite_no_pm(struct sdw_slave *slave, u32 addr, size_t count, const u8 *val) |
| { |
| return sdw_ntransfer_no_pm(slave, addr, SDW_MSG_FLAG_WRITE, count, (u8 *)val); |
| } |
| EXPORT_SYMBOL(sdw_nwrite_no_pm); |
| |
| /** |
| * sdw_write_no_pm() - Write a SDW Slave register with no PM |
| * @slave: SDW Slave |
| * @addr: Register address |
| * @value: Register value |
| */ |
| int sdw_write_no_pm(struct sdw_slave *slave, u32 addr, u8 value) |
| { |
| return sdw_nwrite_no_pm(slave, addr, 1, &value); |
| } |
| EXPORT_SYMBOL(sdw_write_no_pm); |
| |
| static int |
| sdw_bread_no_pm(struct sdw_bus *bus, u16 dev_num, u32 addr) |
| { |
| struct sdw_msg msg; |
| u8 buf; |
| int ret; |
| |
| ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num, |
| SDW_MSG_FLAG_READ, &buf); |
| if (ret < 0) |
| return ret; |
| |
| ret = sdw_transfer(bus, &msg); |
| if (ret < 0) |
| return ret; |
| |
| return buf; |
| } |
| |
| static int |
| sdw_bwrite_no_pm(struct sdw_bus *bus, u16 dev_num, u32 addr, u8 value) |
| { |
| struct sdw_msg msg; |
| int ret; |
| |
| ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num, |
| SDW_MSG_FLAG_WRITE, &value); |
| if (ret < 0) |
| return ret; |
| |
| return sdw_transfer(bus, &msg); |
| } |
| |
| int sdw_bread_no_pm_unlocked(struct sdw_bus *bus, u16 dev_num, u32 addr) |
| { |
| struct sdw_msg msg; |
| u8 buf; |
| int ret; |
| |
| ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num, |
| SDW_MSG_FLAG_READ, &buf); |
| if (ret < 0) |
| return ret; |
| |
| ret = sdw_transfer_unlocked(bus, &msg); |
| if (ret < 0) |
| return ret; |
| |
| return buf; |
| } |
| EXPORT_SYMBOL(sdw_bread_no_pm_unlocked); |
| |
| int sdw_bwrite_no_pm_unlocked(struct sdw_bus *bus, u16 dev_num, u32 addr, u8 value) |
| { |
| struct sdw_msg msg; |
| int ret; |
| |
| ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num, |
| SDW_MSG_FLAG_WRITE, &value); |
| if (ret < 0) |
| return ret; |
| |
| return sdw_transfer_unlocked(bus, &msg); |
| } |
| EXPORT_SYMBOL(sdw_bwrite_no_pm_unlocked); |
| |
| /** |
| * sdw_read_no_pm() - Read a SDW Slave register with no PM |
| * @slave: SDW Slave |
| * @addr: Register address |
| */ |
| int sdw_read_no_pm(struct sdw_slave *slave, u32 addr) |
| { |
| u8 buf; |
| int ret; |
| |
| ret = sdw_nread_no_pm(slave, addr, 1, &buf); |
| if (ret < 0) |
| return ret; |
| else |
| return buf; |
| } |
| EXPORT_SYMBOL(sdw_read_no_pm); |
| |
| int sdw_update_no_pm(struct sdw_slave *slave, u32 addr, u8 mask, u8 val) |
| { |
| int tmp; |
| |
| tmp = sdw_read_no_pm(slave, addr); |
| if (tmp < 0) |
| return tmp; |
| |
| tmp = (tmp & ~mask) | val; |
| return sdw_write_no_pm(slave, addr, tmp); |
| } |
| EXPORT_SYMBOL(sdw_update_no_pm); |
| |
| /* Read-Modify-Write Slave register */ |
| int sdw_update(struct sdw_slave *slave, u32 addr, u8 mask, u8 val) |
| { |
| int tmp; |
| |
| tmp = sdw_read(slave, addr); |
| if (tmp < 0) |
| return tmp; |
| |
| tmp = (tmp & ~mask) | val; |
| return sdw_write(slave, addr, tmp); |
| } |
| EXPORT_SYMBOL(sdw_update); |
| |
| /** |
| * sdw_nread() - Read "n" contiguous SDW Slave registers |
| * @slave: SDW Slave |
| * @addr: Register address |
| * @count: length |
| * @val: Buffer for values to be read |
| * |
| * This version of the function will take a PM reference to the slave |
| * device. |
| * Note that if the message crosses a page boundary each page will be |
| * transferred under a separate invocation of the msg_lock. |
| */ |
| int sdw_nread(struct sdw_slave *slave, u32 addr, size_t count, u8 *val) |
| { |
| int ret; |
| |
| ret = pm_runtime_get_sync(&slave->dev); |
| if (ret < 0 && ret != -EACCES) { |
| pm_runtime_put_noidle(&slave->dev); |
| return ret; |
| } |
| |
| ret = sdw_nread_no_pm(slave, addr, count, val); |
| |
| pm_runtime_mark_last_busy(&slave->dev); |
| pm_runtime_put(&slave->dev); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL(sdw_nread); |
| |
| /** |
| * sdw_nwrite() - Write "n" contiguous SDW Slave registers |
| * @slave: SDW Slave |
| * @addr: Register address |
| * @count: length |
| * @val: Buffer for values to be written |
| * |
| * This version of the function will take a PM reference to the slave |
| * device. |
| * Note that if the message crosses a page boundary each page will be |
| * transferred under a separate invocation of the msg_lock. |
| */ |
| int sdw_nwrite(struct sdw_slave *slave, u32 addr, size_t count, const u8 *val) |
| { |
| int ret; |
| |
| ret = pm_runtime_get_sync(&slave->dev); |
| if (ret < 0 && ret != -EACCES) { |
| pm_runtime_put_noidle(&slave->dev); |
| return ret; |
| } |
| |
| ret = sdw_nwrite_no_pm(slave, addr, count, val); |
| |
| pm_runtime_mark_last_busy(&slave->dev); |
| pm_runtime_put(&slave->dev); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL(sdw_nwrite); |
| |
| /** |
| * sdw_read() - Read a SDW Slave register |
| * @slave: SDW Slave |
| * @addr: Register address |
| * |
| * This version of the function will take a PM reference to the slave |
| * device. |
| */ |
| int sdw_read(struct sdw_slave *slave, u32 addr) |
| { |
| u8 buf; |
| int ret; |
| |
| ret = sdw_nread(slave, addr, 1, &buf); |
| if (ret < 0) |
| return ret; |
| |
| return buf; |
| } |
| EXPORT_SYMBOL(sdw_read); |
| |
| /** |
| * sdw_write() - Write a SDW Slave register |
| * @slave: SDW Slave |
| * @addr: Register address |
| * @value: Register value |
| * |
| * This version of the function will take a PM reference to the slave |
| * device. |
| */ |
| int sdw_write(struct sdw_slave *slave, u32 addr, u8 value) |
| { |
| return sdw_nwrite(slave, addr, 1, &value); |
| } |
| EXPORT_SYMBOL(sdw_write); |
| |
| /* |
| * SDW alert handling |
| */ |
| |
| /* called with bus_lock held */ |
| static struct sdw_slave *sdw_get_slave(struct sdw_bus *bus, int i) |
| { |
| struct sdw_slave *slave; |
| |
| list_for_each_entry(slave, &bus->slaves, node) { |
| if (slave->dev_num == i) |
| return slave; |
| } |
| |
| return NULL; |
| } |
| |
| int sdw_compare_devid(struct sdw_slave *slave, struct sdw_slave_id id) |
| { |
| if (slave->id.mfg_id != id.mfg_id || |
| slave->id.part_id != id.part_id || |
| slave->id.class_id != id.class_id || |
| (slave->id.unique_id != SDW_IGNORED_UNIQUE_ID && |
| slave->id.unique_id != id.unique_id)) |
| return -ENODEV; |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(sdw_compare_devid); |
| |
| /* called with bus_lock held */ |
| static int sdw_get_device_num(struct sdw_slave *slave) |
| { |
| struct sdw_bus *bus = slave->bus; |
| int bit; |
| |
| if (bus->ops && bus->ops->get_device_num) { |
| bit = bus->ops->get_device_num(bus, slave); |
| if (bit < 0) |
| goto err; |
| } else { |
| bit = find_first_zero_bit(bus->assigned, SDW_MAX_DEVICES); |
| if (bit == SDW_MAX_DEVICES) { |
| bit = -ENODEV; |
| goto err; |
| } |
| } |
| |
| /* |
| * Do not update dev_num in Slave data structure here, |
| * Update once program dev_num is successful |
| */ |
| set_bit(bit, bus->assigned); |
| |
| err: |
| return bit; |
| } |
| |
| static int sdw_assign_device_num(struct sdw_slave *slave) |
| { |
| struct sdw_bus *bus = slave->bus; |
| int ret, dev_num; |
| bool new_device = false; |
| |
| /* check first if device number is assigned, if so reuse that */ |
| if (!slave->dev_num) { |
| if (!slave->dev_num_sticky) { |
| mutex_lock(&slave->bus->bus_lock); |
| dev_num = sdw_get_device_num(slave); |
| mutex_unlock(&slave->bus->bus_lock); |
| if (dev_num < 0) { |
| dev_err(bus->dev, "Get dev_num failed: %d\n", |
| dev_num); |
| return dev_num; |
| } |
| slave->dev_num = dev_num; |
| slave->dev_num_sticky = dev_num; |
| new_device = true; |
| } else { |
| slave->dev_num = slave->dev_num_sticky; |
| } |
| } |
| |
| if (!new_device) |
| dev_dbg(bus->dev, |
| "Slave already registered, reusing dev_num:%d\n", |
| slave->dev_num); |
| |
| /* Clear the slave->dev_num to transfer message on device 0 */ |
| dev_num = slave->dev_num; |
| slave->dev_num = 0; |
| |
| ret = sdw_write_no_pm(slave, SDW_SCP_DEVNUMBER, dev_num); |
| if (ret < 0) { |
| dev_err(bus->dev, "Program device_num %d failed: %d\n", |
| dev_num, ret); |
| return ret; |
| } |
| |
| /* After xfer of msg, restore dev_num */ |
| slave->dev_num = slave->dev_num_sticky; |
| |
| if (bus->ops && bus->ops->new_peripheral_assigned) |
| bus->ops->new_peripheral_assigned(bus, slave, dev_num); |
| |
| return 0; |
| } |
| |
| void sdw_extract_slave_id(struct sdw_bus *bus, |
| u64 addr, struct sdw_slave_id *id) |
| { |
| dev_dbg(bus->dev, "SDW Slave Addr: %llx\n", addr); |
| |
| id->sdw_version = SDW_VERSION(addr); |
| id->unique_id = SDW_UNIQUE_ID(addr); |
| id->mfg_id = SDW_MFG_ID(addr); |
| id->part_id = SDW_PART_ID(addr); |
| id->class_id = SDW_CLASS_ID(addr); |
| |
| dev_dbg(bus->dev, |
| "SDW Slave class_id 0x%02x, mfg_id 0x%04x, part_id 0x%04x, unique_id 0x%x, version 0x%x\n", |
| id->class_id, id->mfg_id, id->part_id, id->unique_id, id->sdw_version); |
| } |
| EXPORT_SYMBOL(sdw_extract_slave_id); |
| |
| static int sdw_program_device_num(struct sdw_bus *bus, bool *programmed) |
| { |
| u8 buf[SDW_NUM_DEV_ID_REGISTERS] = {0}; |
| struct sdw_slave *slave, *_s; |
| struct sdw_slave_id id; |
| struct sdw_msg msg; |
| bool found; |
| int count = 0, ret; |
| u64 addr; |
| |
| *programmed = false; |
| |
| /* No Slave, so use raw xfer api */ |
| ret = sdw_fill_msg(&msg, NULL, SDW_SCP_DEVID_0, |
| SDW_NUM_DEV_ID_REGISTERS, 0, SDW_MSG_FLAG_READ, buf); |
| if (ret < 0) |
| return ret; |
| |
| do { |
| ret = sdw_transfer(bus, &msg); |
| if (ret == -ENODATA) { /* end of device id reads */ |
| dev_dbg(bus->dev, "No more devices to enumerate\n"); |
| ret = 0; |
| break; |
| } |
| if (ret < 0) { |
| dev_err(bus->dev, "DEVID read fail:%d\n", ret); |
| break; |
| } |
| |
| /* |
| * Construct the addr and extract. Cast the higher shift |
| * bits to avoid truncation due to size limit. |
| */ |
| addr = buf[5] | (buf[4] << 8) | (buf[3] << 16) | |
| ((u64)buf[2] << 24) | ((u64)buf[1] << 32) | |
| ((u64)buf[0] << 40); |
| |
| sdw_extract_slave_id(bus, addr, &id); |
| |
| found = false; |
| /* Now compare with entries */ |
| list_for_each_entry_safe(slave, _s, &bus->slaves, node) { |
| if (sdw_compare_devid(slave, id) == 0) { |
| found = true; |
| |
| /* |
| * To prevent skipping state-machine stages don't |
| * program a device until we've seen it UNATTACH. |
| * Must return here because no other device on #0 |
| * can be detected until this one has been |
| * assigned a device ID. |
| */ |
| if (slave->status != SDW_SLAVE_UNATTACHED) |
| return 0; |
| |
| /* |
| * Assign a new dev_num to this Slave and |
| * not mark it present. It will be marked |
| * present after it reports ATTACHED on new |
| * dev_num |
| */ |
| ret = sdw_assign_device_num(slave); |
| if (ret < 0) { |
| dev_err(bus->dev, |
| "Assign dev_num failed:%d\n", |
| ret); |
| return ret; |
| } |
| |
| *programmed = true; |
| |
| break; |
| } |
| } |
| |
| if (!found) { |
| /* TODO: Park this device in Group 13 */ |
| |
| /* |
| * add Slave device even if there is no platform |
| * firmware description. There will be no driver probe |
| * but the user/integration will be able to see the |
| * device, enumeration status and device number in sysfs |
| */ |
| sdw_slave_add(bus, &id, NULL); |
| |
| dev_err(bus->dev, "Slave Entry not found\n"); |
| } |
| |
| count++; |
| |
| /* |
| * Check till error out or retry (count) exhausts. |
| * Device can drop off and rejoin during enumeration |
| * so count till twice the bound. |
| */ |
| |
| } while (ret == 0 && count < (SDW_MAX_DEVICES * 2)); |
| |
| return ret; |
| } |
| |
| static void sdw_modify_slave_status(struct sdw_slave *slave, |
| enum sdw_slave_status status) |
| { |
| struct sdw_bus *bus = slave->bus; |
| |
| mutex_lock(&bus->bus_lock); |
| |
| dev_vdbg(bus->dev, |
| "changing status slave %d status %d new status %d\n", |
| slave->dev_num, slave->status, status); |
| |
| if (status == SDW_SLAVE_UNATTACHED) { |
| dev_dbg(&slave->dev, |
| "initializing enumeration and init completion for Slave %d\n", |
| slave->dev_num); |
| |
| reinit_completion(&slave->enumeration_complete); |
| reinit_completion(&slave->initialization_complete); |
| |
| } else if ((status == SDW_SLAVE_ATTACHED) && |
| (slave->status == SDW_SLAVE_UNATTACHED)) { |
| dev_dbg(&slave->dev, |
| "signaling enumeration completion for Slave %d\n", |
| slave->dev_num); |
| |
| complete_all(&slave->enumeration_complete); |
| } |
| slave->status = status; |
| mutex_unlock(&bus->bus_lock); |
| } |
| |
| static int sdw_slave_clk_stop_callback(struct sdw_slave *slave, |
| enum sdw_clk_stop_mode mode, |
| enum sdw_clk_stop_type type) |
| { |
| int ret = 0; |
| |
| mutex_lock(&slave->sdw_dev_lock); |
| |
| if (slave->probed) { |
| struct device *dev = &slave->dev; |
| struct sdw_driver *drv = drv_to_sdw_driver(dev->driver); |
| |
| if (drv->ops && drv->ops->clk_stop) |
| ret = drv->ops->clk_stop(slave, mode, type); |
| } |
| |
| mutex_unlock(&slave->sdw_dev_lock); |
| |
| return ret; |
| } |
| |
| static int sdw_slave_clk_stop_prepare(struct sdw_slave *slave, |
| enum sdw_clk_stop_mode mode, |
| bool prepare) |
| { |
| bool wake_en; |
| u32 val = 0; |
| int ret; |
| |
| wake_en = slave->prop.wake_capable; |
| |
| if (prepare) { |
| val = SDW_SCP_SYSTEMCTRL_CLK_STP_PREP; |
| |
| if (mode == SDW_CLK_STOP_MODE1) |
| val |= SDW_SCP_SYSTEMCTRL_CLK_STP_MODE1; |
| |
| if (wake_en) |
| val |= SDW_SCP_SYSTEMCTRL_WAKE_UP_EN; |
| } else { |
| ret = sdw_read_no_pm(slave, SDW_SCP_SYSTEMCTRL); |
| if (ret < 0) { |
| if (ret != -ENODATA) |
| dev_err(&slave->dev, "SDW_SCP_SYSTEMCTRL read failed:%d\n", ret); |
| return ret; |
| } |
| val = ret; |
| val &= ~(SDW_SCP_SYSTEMCTRL_CLK_STP_PREP); |
| } |
| |
| ret = sdw_write_no_pm(slave, SDW_SCP_SYSTEMCTRL, val); |
| |
| if (ret < 0 && ret != -ENODATA) |
| dev_err(&slave->dev, "SDW_SCP_SYSTEMCTRL write failed:%d\n", ret); |
| |
| return ret; |
| } |
| |
| static int sdw_bus_wait_for_clk_prep_deprep(struct sdw_bus *bus, u16 dev_num, bool prepare) |
| { |
| int retry = bus->clk_stop_timeout; |
| int val; |
| |
| do { |
| val = sdw_bread_no_pm(bus, dev_num, SDW_SCP_STAT); |
| if (val < 0) { |
| if (val != -ENODATA) |
| dev_err(bus->dev, "SDW_SCP_STAT bread failed:%d\n", val); |
| return val; |
| } |
| val &= SDW_SCP_STAT_CLK_STP_NF; |
| if (!val) { |
| dev_dbg(bus->dev, "clock stop %s done slave:%d\n", |
| prepare ? "prepare" : "deprepare", |
| dev_num); |
| return 0; |
| } |
| |
| usleep_range(1000, 1500); |
| retry--; |
| } while (retry); |
| |
| dev_dbg(bus->dev, "clock stop %s did not complete for slave:%d\n", |
| prepare ? "prepare" : "deprepare", |
| dev_num); |
| |
| return -ETIMEDOUT; |
| } |
| |
| /** |
| * sdw_bus_prep_clk_stop: prepare Slave(s) for clock stop |
| * |
| * @bus: SDW bus instance |
| * |
| * Query Slave for clock stop mode and prepare for that mode. |
| */ |
| int sdw_bus_prep_clk_stop(struct sdw_bus *bus) |
| { |
| bool simple_clk_stop = true; |
| struct sdw_slave *slave; |
| bool is_slave = false; |
| int ret = 0; |
| |
| /* |
| * In order to save on transition time, prepare |
| * each Slave and then wait for all Slave(s) to be |
| * prepared for clock stop. |
| * If one of the Slave devices has lost sync and |
| * replies with Command Ignored/-ENODATA, we continue |
| * the loop |
| */ |
| list_for_each_entry(slave, &bus->slaves, node) { |
| if (!slave->dev_num) |
| continue; |
| |
| if (slave->status != SDW_SLAVE_ATTACHED && |
| slave->status != SDW_SLAVE_ALERT) |
| continue; |
| |
| /* Identify if Slave(s) are available on Bus */ |
| is_slave = true; |
| |
| ret = sdw_slave_clk_stop_callback(slave, |
| SDW_CLK_STOP_MODE0, |
| SDW_CLK_PRE_PREPARE); |
| if (ret < 0 && ret != -ENODATA) { |
| dev_err(&slave->dev, "clock stop pre-prepare cb failed:%d\n", ret); |
| return ret; |
| } |
| |
| /* Only prepare a Slave device if needed */ |
| if (!slave->prop.simple_clk_stop_capable) { |
| simple_clk_stop = false; |
| |
| ret = sdw_slave_clk_stop_prepare(slave, |
| SDW_CLK_STOP_MODE0, |
| true); |
| if (ret < 0 && ret != -ENODATA) { |
| dev_err(&slave->dev, "clock stop prepare failed:%d\n", ret); |
| return ret; |
| } |
| } |
| } |
| |
| /* Skip remaining clock stop preparation if no Slave is attached */ |
| if (!is_slave) |
| return 0; |
| |
| /* |
| * Don't wait for all Slaves to be ready if they follow the simple |
| * state machine |
| */ |
| if (!simple_clk_stop) { |
| ret = sdw_bus_wait_for_clk_prep_deprep(bus, |
| SDW_BROADCAST_DEV_NUM, true); |
| /* |
| * if there are no Slave devices present and the reply is |
| * Command_Ignored/-ENODATA, we don't need to continue with the |
| * flow and can just return here. The error code is not modified |
| * and its handling left as an exercise for the caller. |
| */ |
| if (ret < 0) |
| return ret; |
| } |
| |
| /* Inform slaves that prep is done */ |
| list_for_each_entry(slave, &bus->slaves, node) { |
| if (!slave->dev_num) |
| continue; |
| |
| if (slave->status != SDW_SLAVE_ATTACHED && |
| slave->status != SDW_SLAVE_ALERT) |
| continue; |
| |
| ret = sdw_slave_clk_stop_callback(slave, |
| SDW_CLK_STOP_MODE0, |
| SDW_CLK_POST_PREPARE); |
| |
| if (ret < 0 && ret != -ENODATA) { |
| dev_err(&slave->dev, "clock stop post-prepare cb failed:%d\n", ret); |
| return ret; |
| } |
| } |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(sdw_bus_prep_clk_stop); |
| |
| /** |
| * sdw_bus_clk_stop: stop bus clock |
| * |
| * @bus: SDW bus instance |
| * |
| * After preparing the Slaves for clock stop, stop the clock by broadcasting |
| * write to SCP_CTRL register. |
| */ |
| int sdw_bus_clk_stop(struct sdw_bus *bus) |
| { |
| int ret; |
| |
| /* |
| * broadcast clock stop now, attached Slaves will ACK this, |
| * unattached will ignore |
| */ |
| ret = sdw_bwrite_no_pm(bus, SDW_BROADCAST_DEV_NUM, |
| SDW_SCP_CTRL, SDW_SCP_CTRL_CLK_STP_NOW); |
| if (ret < 0) { |
| if (ret != -ENODATA) |
| dev_err(bus->dev, "ClockStopNow Broadcast msg failed %d\n", ret); |
| return ret; |
| } |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(sdw_bus_clk_stop); |
| |
| /** |
| * sdw_bus_exit_clk_stop: Exit clock stop mode |
| * |
| * @bus: SDW bus instance |
| * |
| * This De-prepares the Slaves by exiting Clock Stop Mode 0. For the Slaves |
| * exiting Clock Stop Mode 1, they will be de-prepared after they enumerate |
| * back. |
| */ |
| int sdw_bus_exit_clk_stop(struct sdw_bus *bus) |
| { |
| bool simple_clk_stop = true; |
| struct sdw_slave *slave; |
| bool is_slave = false; |
| int ret; |
| |
| /* |
| * In order to save on transition time, de-prepare |
| * each Slave and then wait for all Slave(s) to be |
| * de-prepared after clock resume. |
| */ |
| list_for_each_entry(slave, &bus->slaves, node) { |
| if (!slave->dev_num) |
| continue; |
| |
| if (slave->status != SDW_SLAVE_ATTACHED && |
| slave->status != SDW_SLAVE_ALERT) |
| continue; |
| |
| /* Identify if Slave(s) are available on Bus */ |
| is_slave = true; |
| |
| ret = sdw_slave_clk_stop_callback(slave, SDW_CLK_STOP_MODE0, |
| SDW_CLK_PRE_DEPREPARE); |
| if (ret < 0) |
| dev_warn(&slave->dev, "clock stop pre-deprepare cb failed:%d\n", ret); |
| |
| /* Only de-prepare a Slave device if needed */ |
| if (!slave->prop.simple_clk_stop_capable) { |
| simple_clk_stop = false; |
| |
| ret = sdw_slave_clk_stop_prepare(slave, SDW_CLK_STOP_MODE0, |
| false); |
| |
| if (ret < 0) |
| dev_warn(&slave->dev, "clock stop deprepare failed:%d\n", ret); |
| } |
| } |
| |
| /* Skip remaining clock stop de-preparation if no Slave is attached */ |
| if (!is_slave) |
| return 0; |
| |
| /* |
| * Don't wait for all Slaves to be ready if they follow the simple |
| * state machine |
| */ |
| if (!simple_clk_stop) { |
| ret = sdw_bus_wait_for_clk_prep_deprep(bus, SDW_BROADCAST_DEV_NUM, false); |
| if (ret < 0) |
| dev_warn(bus->dev, "clock stop deprepare wait failed:%d\n", ret); |
| } |
| |
| list_for_each_entry(slave, &bus->slaves, node) { |
| if (!slave->dev_num) |
| continue; |
| |
| if (slave->status != SDW_SLAVE_ATTACHED && |
| slave->status != SDW_SLAVE_ALERT) |
| continue; |
| |
| ret = sdw_slave_clk_stop_callback(slave, SDW_CLK_STOP_MODE0, |
| SDW_CLK_POST_DEPREPARE); |
| if (ret < 0) |
| dev_warn(&slave->dev, "clock stop post-deprepare cb failed:%d\n", ret); |
| } |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(sdw_bus_exit_clk_stop); |
| |
| int sdw_configure_dpn_intr(struct sdw_slave *slave, |
| int port, bool enable, int mask) |
| { |
| u32 addr; |
| int ret; |
| u8 val = 0; |
| |
| if (slave->bus->params.s_data_mode != SDW_PORT_DATA_MODE_NORMAL) { |
| dev_dbg(&slave->dev, "TEST FAIL interrupt %s\n", |
| enable ? "on" : "off"); |
| mask |= SDW_DPN_INT_TEST_FAIL; |
| } |
| |
| addr = SDW_DPN_INTMASK(port); |
| |
| /* Set/Clear port ready interrupt mask */ |
| if (enable) { |
| val |= mask; |
| val |= SDW_DPN_INT_PORT_READY; |
| } else { |
| val &= ~(mask); |
| val &= ~SDW_DPN_INT_PORT_READY; |
| } |
| |
| ret = sdw_update_no_pm(slave, addr, (mask | SDW_DPN_INT_PORT_READY), val); |
| if (ret < 0) |
| dev_err(&slave->dev, |
| "SDW_DPN_INTMASK write failed:%d\n", val); |
| |
| return ret; |
| } |
| |
| static int sdw_slave_set_frequency(struct sdw_slave *slave) |
| { |
| u32 mclk_freq = slave->bus->prop.mclk_freq; |
| u32 curr_freq = slave->bus->params.curr_dr_freq >> 1; |
| unsigned int scale; |
| u8 scale_index; |
| u8 base; |
| int ret; |
| |
| /* |
| * frequency base and scale registers are required for SDCA |
| * devices. They may also be used for 1.2+/non-SDCA devices. |
| * Driver can set the property, we will need a DisCo property |
| * to discover this case from platform firmware. |
| */ |
| if (!slave->id.class_id && !slave->prop.clock_reg_supported) |
| return 0; |
| |
| if (!mclk_freq) { |
| dev_err(&slave->dev, |
| "no bus MCLK, cannot set SDW_SCP_BUS_CLOCK_BASE\n"); |
| return -EINVAL; |
| } |
| |
| /* |
| * map base frequency using Table 89 of SoundWire 1.2 spec. |
| * The order of the tests just follows the specification, this |
| * is not a selection between possible values or a search for |
| * the best value but just a mapping. Only one case per platform |
| * is relevant. |
| * Some BIOS have inconsistent values for mclk_freq but a |
| * correct root so we force the mclk_freq to avoid variations. |
| */ |
| if (!(19200000 % mclk_freq)) { |
| mclk_freq = 19200000; |
| base = SDW_SCP_BASE_CLOCK_19200000_HZ; |
| } else if (!(22579200 % mclk_freq)) { |
| mclk_freq = 22579200; |
| base = SDW_SCP_BASE_CLOCK_22579200_HZ; |
| } else if (!(24576000 % mclk_freq)) { |
| mclk_freq = 24576000; |
| base = SDW_SCP_BASE_CLOCK_24576000_HZ; |
| } else if (!(32000000 % mclk_freq)) { |
| mclk_freq = 32000000; |
| base = SDW_SCP_BASE_CLOCK_32000000_HZ; |
| } else if (!(96000000 % mclk_freq)) { |
| mclk_freq = 24000000; |
| base = SDW_SCP_BASE_CLOCK_24000000_HZ; |
| } else { |
| dev_err(&slave->dev, |
| "Unsupported clock base, mclk %d\n", |
| mclk_freq); |
| return -EINVAL; |
| } |
| |
| if (mclk_freq % curr_freq) { |
| dev_err(&slave->dev, |
| "mclk %d is not multiple of bus curr_freq %d\n", |
| mclk_freq, curr_freq); |
| return -EINVAL; |
| } |
| |
| scale = mclk_freq / curr_freq; |
| |
| /* |
| * map scale to Table 90 of SoundWire 1.2 spec - and check |
| * that the scale is a power of two and maximum 64 |
| */ |
| scale_index = ilog2(scale); |
| |
| if (BIT(scale_index) != scale || scale_index > 6) { |
| dev_err(&slave->dev, |
| "No match found for scale %d, bus mclk %d curr_freq %d\n", |
| scale, mclk_freq, curr_freq); |
| return -EINVAL; |
| } |
| scale_index++; |
| |
| ret = sdw_write_no_pm(slave, SDW_SCP_BUS_CLOCK_BASE, base); |
| if (ret < 0) { |
| dev_err(&slave->dev, |
| "SDW_SCP_BUS_CLOCK_BASE write failed:%d\n", ret); |
| return ret; |
| } |
| |
| /* initialize scale for both banks */ |
| ret = sdw_write_no_pm(slave, SDW_SCP_BUSCLOCK_SCALE_B0, scale_index); |
| if (ret < 0) { |
| dev_err(&slave->dev, |
| "SDW_SCP_BUSCLOCK_SCALE_B0 write failed:%d\n", ret); |
| return ret; |
| } |
| ret = sdw_write_no_pm(slave, SDW_SCP_BUSCLOCK_SCALE_B1, scale_index); |
| if (ret < 0) |
| dev_err(&slave->dev, |
| "SDW_SCP_BUSCLOCK_SCALE_B1 write failed:%d\n", ret); |
| |
| dev_dbg(&slave->dev, |
| "Configured bus base %d, scale %d, mclk %d, curr_freq %d\n", |
| base, scale_index, mclk_freq, curr_freq); |
| |
| return ret; |
| } |
| |
| static int sdw_initialize_slave(struct sdw_slave *slave) |
| { |
| struct sdw_slave_prop *prop = &slave->prop; |
| int status; |
| int ret; |
| u8 val; |
| |
| ret = sdw_slave_set_frequency(slave); |
| if (ret < 0) |
| return ret; |
| |
| if (slave->bus->prop.quirks & SDW_MASTER_QUIRKS_CLEAR_INITIAL_CLASH) { |
| /* Clear bus clash interrupt before enabling interrupt mask */ |
| status = sdw_read_no_pm(slave, SDW_SCP_INT1); |
| if (status < 0) { |
| dev_err(&slave->dev, |
| "SDW_SCP_INT1 (BUS_CLASH) read failed:%d\n", status); |
| return status; |
| } |
| if (status & SDW_SCP_INT1_BUS_CLASH) { |
| dev_warn(&slave->dev, "Bus clash detected before INT mask is enabled\n"); |
| ret = sdw_write_no_pm(slave, SDW_SCP_INT1, SDW_SCP_INT1_BUS_CLASH); |
| if (ret < 0) { |
| dev_err(&slave->dev, |
| "SDW_SCP_INT1 (BUS_CLASH) write failed:%d\n", ret); |
| return ret; |
| } |
| } |
| } |
| if ((slave->bus->prop.quirks & SDW_MASTER_QUIRKS_CLEAR_INITIAL_PARITY) && |
| !(prop->quirks & SDW_SLAVE_QUIRKS_INVALID_INITIAL_PARITY)) { |
| /* Clear parity interrupt before enabling interrupt mask */ |
| status = sdw_read_no_pm(slave, SDW_SCP_INT1); |
| if (status < 0) { |
| dev_err(&slave->dev, |
| "SDW_SCP_INT1 (PARITY) read failed:%d\n", status); |
| return status; |
| } |
| if (status & SDW_SCP_INT1_PARITY) { |
| dev_warn(&slave->dev, "PARITY error detected before INT mask is enabled\n"); |
| ret = sdw_write_no_pm(slave, SDW_SCP_INT1, SDW_SCP_INT1_PARITY); |
| if (ret < 0) { |
| dev_err(&slave->dev, |
| "SDW_SCP_INT1 (PARITY) write failed:%d\n", ret); |
| return ret; |
| } |
| } |
| } |
| |
| /* |
| * Set SCP_INT1_MASK register, typically bus clash and |
| * implementation-defined interrupt mask. The Parity detection |
| * may not always be correct on startup so its use is |
| * device-dependent, it might e.g. only be enabled in |
| * steady-state after a couple of frames. |
| */ |
| val = prop->scp_int1_mask; |
| |
| /* Enable SCP interrupts */ |
| ret = sdw_update_no_pm(slave, SDW_SCP_INTMASK1, val, val); |
| if (ret < 0) { |
| dev_err(&slave->dev, |
| "SDW_SCP_INTMASK1 write failed:%d\n", ret); |
| return ret; |
| } |
| |
| /* No need to continue if DP0 is not present */ |
| if (!prop->dp0_prop) |
| return 0; |
| |
| /* Enable DP0 interrupts */ |
| val = prop->dp0_prop->imp_def_interrupts; |
| val |= SDW_DP0_INT_PORT_READY | SDW_DP0_INT_BRA_FAILURE; |
| |
| ret = sdw_update_no_pm(slave, SDW_DP0_INTMASK, val, val); |
| if (ret < 0) |
| dev_err(&slave->dev, |
| "SDW_DP0_INTMASK read failed:%d\n", ret); |
| return ret; |
| } |
| |
| static int sdw_handle_dp0_interrupt(struct sdw_slave *slave, u8 *slave_status) |
| { |
| u8 clear, impl_int_mask; |
| int status, status2, ret, count = 0; |
| |
| status = sdw_read_no_pm(slave, SDW_DP0_INT); |
| if (status < 0) { |
| dev_err(&slave->dev, |
| "SDW_DP0_INT read failed:%d\n", status); |
| return status; |
| } |
| |
| do { |
| clear = status & ~(SDW_DP0_INTERRUPTS | SDW_DP0_SDCA_CASCADE); |
| |
| if (status & SDW_DP0_INT_TEST_FAIL) { |
| dev_err(&slave->dev, "Test fail for port 0\n"); |
| clear |= SDW_DP0_INT_TEST_FAIL; |
| } |
| |
| /* |
| * Assumption: PORT_READY interrupt will be received only for |
| * ports implementing Channel Prepare state machine (CP_SM) |
| */ |
| |
| if (status & SDW_DP0_INT_PORT_READY) { |
| complete(&slave->port_ready[0]); |
| clear |= SDW_DP0_INT_PORT_READY; |
| } |
| |
| if (status & SDW_DP0_INT_BRA_FAILURE) { |
| dev_err(&slave->dev, "BRA failed\n"); |
| clear |= SDW_DP0_INT_BRA_FAILURE; |
| } |
| |
| impl_int_mask = SDW_DP0_INT_IMPDEF1 | |
| SDW_DP0_INT_IMPDEF2 | SDW_DP0_INT_IMPDEF3; |
| |
| if (status & impl_int_mask) { |
| clear |= impl_int_mask; |
| *slave_status = clear; |
| } |
| |
| /* clear the interrupts but don't touch reserved and SDCA_CASCADE fields */ |
| ret = sdw_write_no_pm(slave, SDW_DP0_INT, clear); |
| if (ret < 0) { |
| dev_err(&slave->dev, |
| "SDW_DP0_INT write failed:%d\n", ret); |
| return ret; |
| } |
| |
| /* Read DP0 interrupt again */ |
| status2 = sdw_read_no_pm(slave, SDW_DP0_INT); |
| if (status2 < 0) { |
| dev_err(&slave->dev, |
| "SDW_DP0_INT read failed:%d\n", status2); |
| return status2; |
| } |
| /* filter to limit loop to interrupts identified in the first status read */ |
| status &= status2; |
| |
| count++; |
| |
| /* we can get alerts while processing so keep retrying */ |
| } while ((status & SDW_DP0_INTERRUPTS) && (count < SDW_READ_INTR_CLEAR_RETRY)); |
| |
| if (count == SDW_READ_INTR_CLEAR_RETRY) |
| dev_warn(&slave->dev, "Reached MAX_RETRY on DP0 read\n"); |
| |
| return ret; |
| } |
| |
| static int sdw_handle_port_interrupt(struct sdw_slave *slave, |
| int port, u8 *slave_status) |
| { |
| u8 clear, impl_int_mask; |
| int status, status2, ret, count = 0; |
| u32 addr; |
| |
| if (port == 0) |
| return sdw_handle_dp0_interrupt(slave, slave_status); |
| |
| addr = SDW_DPN_INT(port); |
| status = sdw_read_no_pm(slave, addr); |
| if (status < 0) { |
| dev_err(&slave->dev, |
| "SDW_DPN_INT read failed:%d\n", status); |
| |
| return status; |
| } |
| |
| do { |
| clear = status & ~SDW_DPN_INTERRUPTS; |
| |
| if (status & SDW_DPN_INT_TEST_FAIL) { |
| dev_err(&slave->dev, "Test fail for port:%d\n", port); |
| clear |= SDW_DPN_INT_TEST_FAIL; |
| } |
| |
| /* |
| * Assumption: PORT_READY interrupt will be received only |
| * for ports implementing CP_SM. |
| */ |
| if (status & SDW_DPN_INT_PORT_READY) { |
| complete(&slave->port_ready[port]); |
| clear |= SDW_DPN_INT_PORT_READY; |
| } |
| |
| impl_int_mask = SDW_DPN_INT_IMPDEF1 | |
| SDW_DPN_INT_IMPDEF2 | SDW_DPN_INT_IMPDEF3; |
| |
| if (status & impl_int_mask) { |
| clear |= impl_int_mask; |
| *slave_status = clear; |
| } |
| |
| /* clear the interrupt but don't touch reserved fields */ |
| ret = sdw_write_no_pm(slave, addr, clear); |
| if (ret < 0) { |
| dev_err(&slave->dev, |
| "SDW_DPN_INT write failed:%d\n", ret); |
| return ret; |
| } |
| |
| /* Read DPN interrupt again */ |
| status2 = sdw_read_no_pm(slave, addr); |
| if (status2 < 0) { |
| dev_err(&slave->dev, |
| "SDW_DPN_INT read failed:%d\n", status2); |
| return status2; |
| } |
| /* filter to limit loop to interrupts identified in the first status read */ |
| status &= status2; |
| |
| count++; |
| |
| /* we can get alerts while processing so keep retrying */ |
| } while ((status & SDW_DPN_INTERRUPTS) && (count < SDW_READ_INTR_CLEAR_RETRY)); |
| |
| if (count == SDW_READ_INTR_CLEAR_RETRY) |
| dev_warn(&slave->dev, "Reached MAX_RETRY on port read"); |
| |
| return ret; |
| } |
| |
| static int sdw_handle_slave_alerts(struct sdw_slave *slave) |
| { |
| struct sdw_slave_intr_status slave_intr; |
| u8 clear = 0, bit, port_status[15] = {0}; |
| int port_num, stat, ret, count = 0; |
| unsigned long port; |
| bool slave_notify; |
| u8 sdca_cascade = 0; |
| u8 buf, buf2[2]; |
| bool parity_check; |
| bool parity_quirk; |
| |
| sdw_modify_slave_status(slave, SDW_SLAVE_ALERT); |
| |
| ret = pm_runtime_get_sync(&slave->dev); |
| if (ret < 0 && ret != -EACCES) { |
| dev_err(&slave->dev, "Failed to resume device: %d\n", ret); |
| pm_runtime_put_noidle(&slave->dev); |
| return ret; |
| } |
| |
| /* Read Intstat 1, Intstat 2 and Intstat 3 registers */ |
| ret = sdw_read_no_pm(slave, SDW_SCP_INT1); |
| if (ret < 0) { |
| dev_err(&slave->dev, |
| "SDW_SCP_INT1 read failed:%d\n", ret); |
| goto io_err; |
| } |
| buf = ret; |
| |
| ret = sdw_nread_no_pm(slave, SDW_SCP_INTSTAT2, 2, buf2); |
| if (ret < 0) { |
| dev_err(&slave->dev, |
| "SDW_SCP_INT2/3 read failed:%d\n", ret); |
| goto io_err; |
| } |
| |
| if (slave->id.class_id) { |
| ret = sdw_read_no_pm(slave, SDW_DP0_INT); |
| if (ret < 0) { |
| dev_err(&slave->dev, |
| "SDW_DP0_INT read failed:%d\n", ret); |
| goto io_err; |
| } |
| sdca_cascade = ret & SDW_DP0_SDCA_CASCADE; |
| } |
| |
| do { |
| slave_notify = false; |
| |
| /* |
| * Check parity, bus clash and Slave (impl defined) |
| * interrupt |
| */ |
| if (buf & SDW_SCP_INT1_PARITY) { |
| parity_check = slave->prop.scp_int1_mask & SDW_SCP_INT1_PARITY; |
| parity_quirk = !slave->first_interrupt_done && |
| (slave->prop.quirks & SDW_SLAVE_QUIRKS_INVALID_INITIAL_PARITY); |
| |
| if (parity_check && !parity_quirk) |
| dev_err(&slave->dev, "Parity error detected\n"); |
| clear |= SDW_SCP_INT1_PARITY; |
| } |
| |
| if (buf & SDW_SCP_INT1_BUS_CLASH) { |
| if (slave->prop.scp_int1_mask & SDW_SCP_INT1_BUS_CLASH) |
| dev_err(&slave->dev, "Bus clash detected\n"); |
| clear |= SDW_SCP_INT1_BUS_CLASH; |
| } |
| |
| /* |
| * When bus clash or parity errors are detected, such errors |
| * are unlikely to be recoverable errors. |
| * TODO: In such scenario, reset bus. Make this configurable |
| * via sysfs property with bus reset being the default. |
| */ |
| |
| if (buf & SDW_SCP_INT1_IMPL_DEF) { |
| if (slave->prop.scp_int1_mask & SDW_SCP_INT1_IMPL_DEF) { |
| dev_dbg(&slave->dev, "Slave impl defined interrupt\n"); |
| slave_notify = true; |
| } |
| clear |= SDW_SCP_INT1_IMPL_DEF; |
| } |
| |
| /* the SDCA interrupts are cleared in the codec driver .interrupt_callback() */ |
| if (sdca_cascade) |
| slave_notify = true; |
| |
| /* Check port 0 - 3 interrupts */ |
| port = buf & SDW_SCP_INT1_PORT0_3; |
| |
| /* To get port number corresponding to bits, shift it */ |
| port = FIELD_GET(SDW_SCP_INT1_PORT0_3, port); |
| for_each_set_bit(bit, &port, 8) { |
| sdw_handle_port_interrupt(slave, bit, |
| &port_status[bit]); |
| } |
| |
| /* Check if cascade 2 interrupt is present */ |
| if (buf & SDW_SCP_INT1_SCP2_CASCADE) { |
| port = buf2[0] & SDW_SCP_INTSTAT2_PORT4_10; |
| for_each_set_bit(bit, &port, 8) { |
| /* scp2 ports start from 4 */ |
| port_num = bit + 4; |
| sdw_handle_port_interrupt(slave, |
| port_num, |
| &port_status[port_num]); |
| } |
| } |
| |
| /* now check last cascade */ |
| if (buf2[0] & SDW_SCP_INTSTAT2_SCP3_CASCADE) { |
| port = buf2[1] & SDW_SCP_INTSTAT3_PORT11_14; |
| for_each_set_bit(bit, &port, 8) { |
| /* scp3 ports start from 11 */ |
| port_num = bit + 11; |
| sdw_handle_port_interrupt(slave, |
| port_num, |
| &port_status[port_num]); |
| } |
| } |
| |
| /* Update the Slave driver */ |
| if (slave_notify) { |
| mutex_lock(&slave->sdw_dev_lock); |
| |
| if (slave->probed) { |
| struct device *dev = &slave->dev; |
| struct sdw_driver *drv = drv_to_sdw_driver(dev->driver); |
| |
| if (slave->prop.use_domain_irq && slave->irq) |
| handle_nested_irq(slave->irq); |
| |
| if (drv->ops && drv->ops->interrupt_callback) { |
| slave_intr.sdca_cascade = sdca_cascade; |
| slave_intr.control_port = clear; |
| memcpy(slave_intr.port, &port_status, |
| sizeof(slave_intr.port)); |
| |
| drv->ops->interrupt_callback(slave, &slave_intr); |
| } |
| } |
| |
| mutex_unlock(&slave->sdw_dev_lock); |
| } |
| |
| /* Ack interrupt */ |
| ret = sdw_write_no_pm(slave, SDW_SCP_INT1, clear); |
| if (ret < 0) { |
| dev_err(&slave->dev, |
| "SDW_SCP_INT1 write failed:%d\n", ret); |
| goto io_err; |
| } |
| |
| /* at this point all initial interrupt sources were handled */ |
| slave->first_interrupt_done = true; |
| |
| /* |
| * Read status again to ensure no new interrupts arrived |
| * while servicing interrupts. |
| */ |
| ret = sdw_read_no_pm(slave, SDW_SCP_INT1); |
| if (ret < 0) { |
| dev_err(&slave->dev, |
| "SDW_SCP_INT1 recheck read failed:%d\n", ret); |
| goto io_err; |
| } |
| buf = ret; |
| |
| ret = sdw_nread_no_pm(slave, SDW_SCP_INTSTAT2, 2, buf2); |
| if (ret < 0) { |
| dev_err(&slave->dev, |
| "SDW_SCP_INT2/3 recheck read failed:%d\n", ret); |
| goto io_err; |
| } |
| |
| if (slave->id.class_id) { |
| ret = sdw_read_no_pm(slave, SDW_DP0_INT); |
| if (ret < 0) { |
| dev_err(&slave->dev, |
| "SDW_DP0_INT recheck read failed:%d\n", ret); |
| goto io_err; |
| } |
| sdca_cascade = ret & SDW_DP0_SDCA_CASCADE; |
| } |
| |
| /* |
| * Make sure no interrupts are pending |
| */ |
| stat = buf || buf2[0] || buf2[1] || sdca_cascade; |
| |
| /* |
| * Exit loop if Slave is continuously in ALERT state even |
| * after servicing the interrupt multiple times. |
| */ |
| count++; |
| |
| /* we can get alerts while processing so keep retrying */ |
| } while (stat != 0 && count < SDW_READ_INTR_CLEAR_RETRY); |
| |
| if (count == SDW_READ_INTR_CLEAR_RETRY) |
| dev_warn(&slave->dev, "Reached MAX_RETRY on alert read\n"); |
| |
| io_err: |
| pm_runtime_mark_last_busy(&slave->dev); |
| pm_runtime_put_autosuspend(&slave->dev); |
| |
| return ret; |
| } |
| |
| static int sdw_update_slave_status(struct sdw_slave *slave, |
| enum sdw_slave_status status) |
| { |
| int ret = 0; |
| |
| mutex_lock(&slave->sdw_dev_lock); |
| |
| if (slave->probed) { |
| struct device *dev = &slave->dev; |
| struct sdw_driver *drv = drv_to_sdw_driver(dev->driver); |
| |
| if (drv->ops && drv->ops->update_status) |
| ret = drv->ops->update_status(slave, status); |
| } |
| |
| mutex_unlock(&slave->sdw_dev_lock); |
| |
| return ret; |
| } |
| |
| /** |
| * sdw_handle_slave_status() - Handle Slave status |
| * @bus: SDW bus instance |
| * @status: Status for all Slave(s) |
| */ |
| int sdw_handle_slave_status(struct sdw_bus *bus, |
| enum sdw_slave_status status[]) |
| { |
| enum sdw_slave_status prev_status; |
| struct sdw_slave *slave; |
| bool attached_initializing, id_programmed; |
| int i, ret = 0; |
| |
| /* first check if any Slaves fell off the bus */ |
| for (i = 1; i <= SDW_MAX_DEVICES; i++) { |
| mutex_lock(&bus->bus_lock); |
| if (test_bit(i, bus->assigned) == false) { |
| mutex_unlock(&bus->bus_lock); |
| continue; |
| } |
| mutex_unlock(&bus->bus_lock); |
| |
| slave = sdw_get_slave(bus, i); |
| if (!slave) |
| continue; |
| |
| if (status[i] == SDW_SLAVE_UNATTACHED && |
| slave->status != SDW_SLAVE_UNATTACHED) { |
| dev_warn(&slave->dev, "Slave %d state check1: UNATTACHED, status was %d\n", |
| i, slave->status); |
| sdw_modify_slave_status(slave, SDW_SLAVE_UNATTACHED); |
| |
| /* Ensure driver knows that peripheral unattached */ |
| ret = sdw_update_slave_status(slave, status[i]); |
| if (ret < 0) |
| dev_warn(&slave->dev, "Update Slave status failed:%d\n", ret); |
| } |
| } |
| |
| if (status[0] == SDW_SLAVE_ATTACHED) { |
| dev_dbg(bus->dev, "Slave attached, programming device number\n"); |
| |
| /* |
| * Programming a device number will have side effects, |
| * so we deal with other devices at a later time. |
| * This relies on those devices reporting ATTACHED, which will |
| * trigger another call to this function. This will only |
| * happen if at least one device ID was programmed. |
| * Error returns from sdw_program_device_num() are currently |
| * ignored because there's no useful recovery that can be done. |
| * Returning the error here could result in the current status |
| * of other devices not being handled, because if no device IDs |
| * were programmed there's nothing to guarantee a status change |
| * to trigger another call to this function. |
| */ |
| sdw_program_device_num(bus, &id_programmed); |
| if (id_programmed) |
| return 0; |
| } |
| |
| /* Continue to check other slave statuses */ |
| for (i = 1; i <= SDW_MAX_DEVICES; i++) { |
| mutex_lock(&bus->bus_lock); |
| if (test_bit(i, bus->assigned) == false) { |
| mutex_unlock(&bus->bus_lock); |
| continue; |
| } |
| mutex_unlock(&bus->bus_lock); |
| |
| slave = sdw_get_slave(bus, i); |
| if (!slave) |
| continue; |
| |
| attached_initializing = false; |
| |
| switch (status[i]) { |
| case SDW_SLAVE_UNATTACHED: |
| if (slave->status == SDW_SLAVE_UNATTACHED) |
| break; |
| |
| dev_warn(&slave->dev, "Slave %d state check2: UNATTACHED, status was %d\n", |
| i, slave->status); |
| |
| sdw_modify_slave_status(slave, SDW_SLAVE_UNATTACHED); |
| break; |
| |
| case SDW_SLAVE_ALERT: |
| ret = sdw_handle_slave_alerts(slave); |
| if (ret < 0) |
| dev_err(&slave->dev, |
| "Slave %d alert handling failed: %d\n", |
| i, ret); |
| break; |
| |
| case SDW_SLAVE_ATTACHED: |
| if (slave->status == SDW_SLAVE_ATTACHED) |
| break; |
| |
| prev_status = slave->status; |
| sdw_modify_slave_status(slave, SDW_SLAVE_ATTACHED); |
| |
| if (prev_status == SDW_SLAVE_ALERT) |
| break; |
| |
| attached_initializing = true; |
| |
| ret = sdw_initialize_slave(slave); |
| if (ret < 0) |
| dev_err(&slave->dev, |
| "Slave %d initialization failed: %d\n", |
| i, ret); |
| |
| break; |
| |
| default: |
| dev_err(&slave->dev, "Invalid slave %d status:%d\n", |
| i, status[i]); |
| break; |
| } |
| |
| ret = sdw_update_slave_status(slave, status[i]); |
| if (ret < 0) |
| dev_err(&slave->dev, |
| "Update Slave status failed:%d\n", ret); |
| if (attached_initializing) { |
| dev_dbg(&slave->dev, |
| "signaling initialization completion for Slave %d\n", |
| slave->dev_num); |
| |
| complete_all(&slave->initialization_complete); |
| |
| /* |
| * If the manager became pm_runtime active, the peripherals will be |
| * restarted and attach, but their pm_runtime status may remain |
| * suspended. If the 'update_slave_status' callback initiates |
| * any sort of deferred processing, this processing would not be |
| * cancelled on pm_runtime suspend. |
| * To avoid such zombie states, we queue a request to resume. |
| * This would be a no-op in case the peripheral was being resumed |
| * by e.g. the ALSA/ASoC framework. |
| */ |
| pm_request_resume(&slave->dev); |
| } |
| } |
| |
| return ret; |
| } |
| EXPORT_SYMBOL(sdw_handle_slave_status); |
| |
| void sdw_clear_slave_status(struct sdw_bus *bus, u32 request) |
| { |
| struct sdw_slave *slave; |
| int i; |
| |
| /* Check all non-zero devices */ |
| for (i = 1; i <= SDW_MAX_DEVICES; i++) { |
| mutex_lock(&bus->bus_lock); |
| if (test_bit(i, bus->assigned) == false) { |
| mutex_unlock(&bus->bus_lock); |
| continue; |
| } |
| mutex_unlock(&bus->bus_lock); |
| |
| slave = sdw_get_slave(bus, i); |
| if (!slave) |
| continue; |
| |
| if (slave->status != SDW_SLAVE_UNATTACHED) { |
| sdw_modify_slave_status(slave, SDW_SLAVE_UNATTACHED); |
| slave->first_interrupt_done = false; |
| sdw_update_slave_status(slave, SDW_SLAVE_UNATTACHED); |
| } |
| |
| /* keep track of request, used in pm_runtime resume */ |
| slave->unattach_request = request; |
| } |
| } |
| EXPORT_SYMBOL(sdw_clear_slave_status); |