| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * SuperH MSIOF SPI Controller Interface |
| * |
| * Copyright (c) 2009 Magnus Damm |
| * Copyright (C) 2014 Renesas Electronics Corporation |
| * Copyright (C) 2014-2017 Glider bvba |
| */ |
| |
| #include <linux/bitmap.h> |
| #include <linux/clk.h> |
| #include <linux/completion.h> |
| #include <linux/delay.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/dmaengine.h> |
| #include <linux/err.h> |
| #include <linux/interrupt.h> |
| #include <linux/io.h> |
| #include <linux/iopoll.h> |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/of.h> |
| #include <linux/platform_device.h> |
| #include <linux/pm_runtime.h> |
| #include <linux/sh_dma.h> |
| |
| #include <linux/spi/sh_msiof.h> |
| #include <linux/spi/spi.h> |
| |
| #include <linux/unaligned.h> |
| |
| #define SH_MSIOF_FLAG_FIXED_DTDL_200 BIT(0) |
| |
| struct sh_msiof_chipdata { |
| u32 bits_per_word_mask; |
| u16 tx_fifo_size; |
| u16 rx_fifo_size; |
| u16 ctlr_flags; |
| u16 min_div_pow; |
| u32 flags; |
| }; |
| |
| struct sh_msiof_spi_priv { |
| struct spi_controller *ctlr; |
| void __iomem *mapbase; |
| struct clk *clk; |
| struct platform_device *pdev; |
| struct sh_msiof_spi_info *info; |
| struct completion done; |
| struct completion done_txdma; |
| unsigned int tx_fifo_size; |
| unsigned int rx_fifo_size; |
| unsigned int min_div_pow; |
| void *tx_dma_page; |
| void *rx_dma_page; |
| dma_addr_t tx_dma_addr; |
| dma_addr_t rx_dma_addr; |
| bool native_cs_inited; |
| bool native_cs_high; |
| bool target_aborted; |
| }; |
| |
| #define MAX_SS 3 /* Maximum number of native chip selects */ |
| |
| #define SITMDR1 0x00 /* Transmit Mode Register 1 */ |
| #define SITMDR2 0x04 /* Transmit Mode Register 2 */ |
| #define SITMDR3 0x08 /* Transmit Mode Register 3 */ |
| #define SIRMDR1 0x10 /* Receive Mode Register 1 */ |
| #define SIRMDR2 0x14 /* Receive Mode Register 2 */ |
| #define SIRMDR3 0x18 /* Receive Mode Register 3 */ |
| #define SITSCR 0x20 /* Transmit Clock Select Register */ |
| #define SIRSCR 0x22 /* Receive Clock Select Register (SH, A1, APE6) */ |
| #define SICTR 0x28 /* Control Register */ |
| #define SIFCTR 0x30 /* FIFO Control Register */ |
| #define SISTR 0x40 /* Status Register */ |
| #define SIIER 0x44 /* Interrupt Enable Register */ |
| #define SITDR1 0x48 /* Transmit Control Data Register 1 (SH, A1) */ |
| #define SITDR2 0x4c /* Transmit Control Data Register 2 (SH, A1) */ |
| #define SITFDR 0x50 /* Transmit FIFO Data Register */ |
| #define SIRDR1 0x58 /* Receive Control Data Register 1 (SH, A1) */ |
| #define SIRDR2 0x5c /* Receive Control Data Register 2 (SH, A1) */ |
| #define SIRFDR 0x60 /* Receive FIFO Data Register */ |
| |
| /* SITMDR1 and SIRMDR1 */ |
| #define SIMDR1_TRMD BIT(31) /* Transfer Mode (1 = Master mode) */ |
| #define SIMDR1_SYNCMD_MASK GENMASK(29, 28) /* SYNC Mode */ |
| #define SIMDR1_SYNCMD_SPI (2 << 28) /* Level mode/SPI */ |
| #define SIMDR1_SYNCMD_LR (3 << 28) /* L/R mode */ |
| #define SIMDR1_SYNCAC_SHIFT 25 /* Sync Polarity (1 = Active-low) */ |
| #define SIMDR1_BITLSB_SHIFT 24 /* MSB/LSB First (1 = LSB first) */ |
| #define SIMDR1_DTDL_SHIFT 20 /* Data Pin Bit Delay for MSIOF_SYNC */ |
| #define SIMDR1_SYNCDL_SHIFT 16 /* Frame Sync Signal Timing Delay */ |
| #define SIMDR1_FLD_MASK GENMASK(3, 2) /* Frame Sync Signal Interval (0-3) */ |
| #define SIMDR1_FLD_SHIFT 2 |
| #define SIMDR1_XXSTP BIT(0) /* Transmission/Reception Stop on FIFO */ |
| /* SITMDR1 */ |
| #define SITMDR1_PCON BIT(30) /* Transfer Signal Connection */ |
| #define SITMDR1_SYNCCH_MASK GENMASK(27, 26) /* Sync Signal Channel Select */ |
| #define SITMDR1_SYNCCH_SHIFT 26 /* 0=MSIOF_SYNC, 1=MSIOF_SS1, 2=MSIOF_SS2 */ |
| |
| /* SITMDR2 and SIRMDR2 */ |
| #define SIMDR2_BITLEN1(i) (((i) - 1) << 24) /* Data Size (8-32 bits) */ |
| #define SIMDR2_WDLEN1(i) (((i) - 1) << 16) /* Word Count (1-64/256 (SH, A1))) */ |
| #define SIMDR2_GRPMASK1 BIT(0) /* Group Output Mask 1 (SH, A1) */ |
| |
| /* SITSCR and SIRSCR */ |
| #define SISCR_BRPS_MASK GENMASK(12, 8) /* Prescaler Setting (1-32) */ |
| #define SISCR_BRPS(i) (((i) - 1) << 8) |
| #define SISCR_BRDV_MASK GENMASK(2, 0) /* Baud Rate Generator's Division Ratio */ |
| #define SISCR_BRDV_DIV_2 0 |
| #define SISCR_BRDV_DIV_4 1 |
| #define SISCR_BRDV_DIV_8 2 |
| #define SISCR_BRDV_DIV_16 3 |
| #define SISCR_BRDV_DIV_32 4 |
| #define SISCR_BRDV_DIV_1 7 |
| |
| /* SICTR */ |
| #define SICTR_TSCKIZ_MASK GENMASK(31, 30) /* Transmit Clock I/O Polarity Select */ |
| #define SICTR_TSCKIZ_SCK BIT(31) /* Disable SCK when TX disabled */ |
| #define SICTR_TSCKIZ_POL_SHIFT 30 /* Transmit Clock Polarity */ |
| #define SICTR_RSCKIZ_MASK GENMASK(29, 28) /* Receive Clock Polarity Select */ |
| #define SICTR_RSCKIZ_SCK BIT(29) /* Must match CTR_TSCKIZ_SCK */ |
| #define SICTR_RSCKIZ_POL_SHIFT 28 /* Receive Clock Polarity */ |
| #define SICTR_TEDG_SHIFT 27 /* Transmit Timing (1 = falling edge) */ |
| #define SICTR_REDG_SHIFT 26 /* Receive Timing (1 = falling edge) */ |
| #define SICTR_TXDIZ_MASK GENMASK(23, 22) /* Pin Output When TX is Disabled */ |
| #define SICTR_TXDIZ_LOW (0 << 22) /* 0 */ |
| #define SICTR_TXDIZ_HIGH (1 << 22) /* 1 */ |
| #define SICTR_TXDIZ_HIZ (2 << 22) /* High-impedance */ |
| #define SICTR_TSCKE BIT(15) /* Transmit Serial Clock Output Enable */ |
| #define SICTR_TFSE BIT(14) /* Transmit Frame Sync Signal Output Enable */ |
| #define SICTR_TXE BIT(9) /* Transmit Enable */ |
| #define SICTR_RXE BIT(8) /* Receive Enable */ |
| #define SICTR_TXRST BIT(1) /* Transmit Reset */ |
| #define SICTR_RXRST BIT(0) /* Receive Reset */ |
| |
| /* SIFCTR */ |
| #define SIFCTR_TFWM_MASK GENMASK(31, 29) /* Transmit FIFO Watermark */ |
| #define SIFCTR_TFWM_64 (0UL << 29) /* Transfer Request when 64 empty stages */ |
| #define SIFCTR_TFWM_32 (1UL << 29) /* Transfer Request when 32 empty stages */ |
| #define SIFCTR_TFWM_24 (2UL << 29) /* Transfer Request when 24 empty stages */ |
| #define SIFCTR_TFWM_16 (3UL << 29) /* Transfer Request when 16 empty stages */ |
| #define SIFCTR_TFWM_12 (4UL << 29) /* Transfer Request when 12 empty stages */ |
| #define SIFCTR_TFWM_8 (5UL << 29) /* Transfer Request when 8 empty stages */ |
| #define SIFCTR_TFWM_4 (6UL << 29) /* Transfer Request when 4 empty stages */ |
| #define SIFCTR_TFWM_1 (7UL << 29) /* Transfer Request when 1 empty stage */ |
| #define SIFCTR_TFUA_MASK GENMASK(26, 20) /* Transmit FIFO Usable Area */ |
| #define SIFCTR_TFUA_SHIFT 20 |
| #define SIFCTR_TFUA(i) ((i) << SIFCTR_TFUA_SHIFT) |
| #define SIFCTR_RFWM_MASK GENMASK(15, 13) /* Receive FIFO Watermark */ |
| #define SIFCTR_RFWM_1 (0 << 13) /* Transfer Request when 1 valid stages */ |
| #define SIFCTR_RFWM_4 (1 << 13) /* Transfer Request when 4 valid stages */ |
| #define SIFCTR_RFWM_8 (2 << 13) /* Transfer Request when 8 valid stages */ |
| #define SIFCTR_RFWM_16 (3 << 13) /* Transfer Request when 16 valid stages */ |
| #define SIFCTR_RFWM_32 (4 << 13) /* Transfer Request when 32 valid stages */ |
| #define SIFCTR_RFWM_64 (5 << 13) /* Transfer Request when 64 valid stages */ |
| #define SIFCTR_RFWM_128 (6 << 13) /* Transfer Request when 128 valid stages */ |
| #define SIFCTR_RFWM_256 (7 << 13) /* Transfer Request when 256 valid stages */ |
| #define SIFCTR_RFUA_MASK GENMASK(12, 4) /* Receive FIFO Usable Area (0x40 = full) */ |
| #define SIFCTR_RFUA_SHIFT 4 |
| #define SIFCTR_RFUA(i) ((i) << SIFCTR_RFUA_SHIFT) |
| |
| /* SISTR */ |
| #define SISTR_TFEMP BIT(29) /* Transmit FIFO Empty */ |
| #define SISTR_TDREQ BIT(28) /* Transmit Data Transfer Request */ |
| #define SISTR_TEOF BIT(23) /* Frame Transmission End */ |
| #define SISTR_TFSERR BIT(21) /* Transmit Frame Synchronization Error */ |
| #define SISTR_TFOVF BIT(20) /* Transmit FIFO Overflow */ |
| #define SISTR_TFUDF BIT(19) /* Transmit FIFO Underflow */ |
| #define SISTR_RFFUL BIT(13) /* Receive FIFO Full */ |
| #define SISTR_RDREQ BIT(12) /* Receive Data Transfer Request */ |
| #define SISTR_REOF BIT(7) /* Frame Reception End */ |
| #define SISTR_RFSERR BIT(5) /* Receive Frame Synchronization Error */ |
| #define SISTR_RFUDF BIT(4) /* Receive FIFO Underflow */ |
| #define SISTR_RFOVF BIT(3) /* Receive FIFO Overflow */ |
| |
| /* SIIER */ |
| #define SIIER_TDMAE BIT(31) /* Transmit Data DMA Transfer Req. Enable */ |
| #define SIIER_TFEMPE BIT(29) /* Transmit FIFO Empty Enable */ |
| #define SIIER_TDREQE BIT(28) /* Transmit Data Transfer Request Enable */ |
| #define SIIER_TEOFE BIT(23) /* Frame Transmission End Enable */ |
| #define SIIER_TFSERRE BIT(21) /* Transmit Frame Sync Error Enable */ |
| #define SIIER_TFOVFE BIT(20) /* Transmit FIFO Overflow Enable */ |
| #define SIIER_TFUDFE BIT(19) /* Transmit FIFO Underflow Enable */ |
| #define SIIER_RDMAE BIT(15) /* Receive Data DMA Transfer Req. Enable */ |
| #define SIIER_RFFULE BIT(13) /* Receive FIFO Full Enable */ |
| #define SIIER_RDREQE BIT(12) /* Receive Data Transfer Request Enable */ |
| #define SIIER_REOFE BIT(7) /* Frame Reception End Enable */ |
| #define SIIER_RFSERRE BIT(5) /* Receive Frame Sync Error Enable */ |
| #define SIIER_RFUDFE BIT(4) /* Receive FIFO Underflow Enable */ |
| #define SIIER_RFOVFE BIT(3) /* Receive FIFO Overflow Enable */ |
| |
| |
| static u32 sh_msiof_read(struct sh_msiof_spi_priv *p, int reg_offs) |
| { |
| switch (reg_offs) { |
| case SITSCR: |
| case SIRSCR: |
| return ioread16(p->mapbase + reg_offs); |
| default: |
| return ioread32(p->mapbase + reg_offs); |
| } |
| } |
| |
| static void sh_msiof_write(struct sh_msiof_spi_priv *p, int reg_offs, |
| u32 value) |
| { |
| switch (reg_offs) { |
| case SITSCR: |
| case SIRSCR: |
| iowrite16(value, p->mapbase + reg_offs); |
| break; |
| default: |
| iowrite32(value, p->mapbase + reg_offs); |
| break; |
| } |
| } |
| |
| static int sh_msiof_modify_ctr_wait(struct sh_msiof_spi_priv *p, |
| u32 clr, u32 set) |
| { |
| u32 mask = clr | set; |
| u32 data; |
| |
| data = sh_msiof_read(p, SICTR); |
| data &= ~clr; |
| data |= set; |
| sh_msiof_write(p, SICTR, data); |
| |
| return readl_poll_timeout_atomic(p->mapbase + SICTR, data, |
| (data & mask) == set, 1, 100); |
| } |
| |
| static irqreturn_t sh_msiof_spi_irq(int irq, void *data) |
| { |
| struct sh_msiof_spi_priv *p = data; |
| |
| /* just disable the interrupt and wake up */ |
| sh_msiof_write(p, SIIER, 0); |
| complete(&p->done); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static void sh_msiof_spi_reset_regs(struct sh_msiof_spi_priv *p) |
| { |
| u32 mask = SICTR_TXRST | SICTR_RXRST; |
| u32 data; |
| |
| data = sh_msiof_read(p, SICTR); |
| data |= mask; |
| sh_msiof_write(p, SICTR, data); |
| |
| readl_poll_timeout_atomic(p->mapbase + SICTR, data, !(data & mask), 1, |
| 100); |
| } |
| |
| static const u32 sh_msiof_spi_div_array[] = { |
| SISCR_BRDV_DIV_1, SISCR_BRDV_DIV_2, SISCR_BRDV_DIV_4, |
| SISCR_BRDV_DIV_8, SISCR_BRDV_DIV_16, SISCR_BRDV_DIV_32, |
| }; |
| |
| static void sh_msiof_spi_set_clk_regs(struct sh_msiof_spi_priv *p, |
| struct spi_transfer *t) |
| { |
| unsigned long parent_rate = clk_get_rate(p->clk); |
| unsigned int div_pow = p->min_div_pow; |
| u32 spi_hz = t->speed_hz; |
| unsigned long div; |
| u32 brps, scr; |
| |
| if (!spi_hz || !parent_rate) { |
| WARN(1, "Invalid clock rate parameters %lu and %u\n", |
| parent_rate, spi_hz); |
| return; |
| } |
| |
| div = DIV_ROUND_UP(parent_rate, spi_hz); |
| if (div <= 1024) { |
| /* SISCR_BRDV_DIV_1 is valid only if BRPS is x 1/1 or x 1/2 */ |
| if (!div_pow && div <= 32 && div > 2) |
| div_pow = 1; |
| |
| if (div_pow) |
| brps = (div + 1) >> div_pow; |
| else |
| brps = div; |
| |
| for (; brps > 32; div_pow++) |
| brps = (brps + 1) >> 1; |
| } else { |
| /* Set transfer rate composite divisor to 2^5 * 32 = 1024 */ |
| dev_err(&p->pdev->dev, |
| "Requested SPI transfer rate %d is too low\n", spi_hz); |
| div_pow = 5; |
| brps = 32; |
| } |
| |
| t->effective_speed_hz = parent_rate / (brps << div_pow); |
| |
| scr = sh_msiof_spi_div_array[div_pow] | SISCR_BRPS(brps); |
| sh_msiof_write(p, SITSCR, scr); |
| if (!(p->ctlr->flags & SPI_CONTROLLER_MUST_TX)) |
| sh_msiof_write(p, SIRSCR, scr); |
| } |
| |
| static u32 sh_msiof_get_delay_bit(u32 dtdl_or_syncdl) |
| { |
| /* |
| * DTDL/SYNCDL bit : p->info->dtdl or p->info->syncdl |
| * b'000 : 0 |
| * b'001 : 100 |
| * b'010 : 200 |
| * b'011 (SYNCDL only) : 300 |
| * b'101 : 50 |
| * b'110 : 150 |
| */ |
| if (dtdl_or_syncdl % 100) |
| return dtdl_or_syncdl / 100 + 5; |
| else |
| return dtdl_or_syncdl / 100; |
| } |
| |
| static u32 sh_msiof_spi_get_dtdl_and_syncdl(struct sh_msiof_spi_priv *p) |
| { |
| u32 val; |
| |
| if (!p->info) |
| return 0; |
| |
| /* check if DTDL and SYNCDL is allowed value */ |
| if (p->info->dtdl > 200 || p->info->syncdl > 300) { |
| dev_warn(&p->pdev->dev, "DTDL or SYNCDL is too large\n"); |
| return 0; |
| } |
| |
| /* check if the sum of DTDL and SYNCDL becomes an integer value */ |
| if ((p->info->dtdl + p->info->syncdl) % 100) { |
| dev_warn(&p->pdev->dev, "the sum of DTDL/SYNCDL is not good\n"); |
| return 0; |
| } |
| |
| val = sh_msiof_get_delay_bit(p->info->dtdl) << SIMDR1_DTDL_SHIFT; |
| val |= sh_msiof_get_delay_bit(p->info->syncdl) << SIMDR1_SYNCDL_SHIFT; |
| |
| return val; |
| } |
| |
| static void sh_msiof_spi_set_pin_regs(struct sh_msiof_spi_priv *p, u32 ss, |
| u32 cpol, u32 cpha, |
| u32 tx_hi_z, u32 lsb_first, u32 cs_high) |
| { |
| u32 tmp; |
| int edge; |
| |
| /* |
| * CPOL CPHA TSCKIZ RSCKIZ TEDG REDG |
| * 0 0 10 10 1 1 |
| * 0 1 10 10 0 0 |
| * 1 0 11 11 0 0 |
| * 1 1 11 11 1 1 |
| */ |
| tmp = SIMDR1_SYNCMD_SPI | 1 << SIMDR1_FLD_SHIFT | SIMDR1_XXSTP; |
| tmp |= !cs_high << SIMDR1_SYNCAC_SHIFT; |
| tmp |= lsb_first << SIMDR1_BITLSB_SHIFT; |
| tmp |= sh_msiof_spi_get_dtdl_and_syncdl(p); |
| if (spi_controller_is_target(p->ctlr)) { |
| sh_msiof_write(p, SITMDR1, tmp | SITMDR1_PCON); |
| } else { |
| sh_msiof_write(p, SITMDR1, |
| tmp | SIMDR1_TRMD | SITMDR1_PCON | |
| (ss < MAX_SS ? ss : 0) << SITMDR1_SYNCCH_SHIFT); |
| } |
| if (p->ctlr->flags & SPI_CONTROLLER_MUST_TX) { |
| /* These bits are reserved if RX needs TX */ |
| tmp &= ~0x0000ffff; |
| } |
| sh_msiof_write(p, SIRMDR1, tmp); |
| |
| tmp = 0; |
| tmp |= SICTR_TSCKIZ_SCK | cpol << SICTR_TSCKIZ_POL_SHIFT; |
| tmp |= SICTR_RSCKIZ_SCK | cpol << SICTR_RSCKIZ_POL_SHIFT; |
| |
| edge = cpol ^ !cpha; |
| |
| tmp |= edge << SICTR_TEDG_SHIFT; |
| tmp |= edge << SICTR_REDG_SHIFT; |
| tmp |= tx_hi_z ? SICTR_TXDIZ_HIZ : SICTR_TXDIZ_LOW; |
| sh_msiof_write(p, SICTR, tmp); |
| } |
| |
| static void sh_msiof_spi_set_mode_regs(struct sh_msiof_spi_priv *p, |
| const void *tx_buf, void *rx_buf, |
| u32 bits, u32 words) |
| { |
| u32 dr2 = SIMDR2_BITLEN1(bits) | SIMDR2_WDLEN1(words); |
| |
| if (tx_buf || (p->ctlr->flags & SPI_CONTROLLER_MUST_TX)) |
| sh_msiof_write(p, SITMDR2, dr2); |
| else |
| sh_msiof_write(p, SITMDR2, dr2 | SIMDR2_GRPMASK1); |
| |
| if (rx_buf) |
| sh_msiof_write(p, SIRMDR2, dr2); |
| } |
| |
| static void sh_msiof_reset_str(struct sh_msiof_spi_priv *p) |
| { |
| sh_msiof_write(p, SISTR, |
| sh_msiof_read(p, SISTR) & ~(SISTR_TDREQ | SISTR_RDREQ)); |
| } |
| |
| static void sh_msiof_spi_write_fifo_8(struct sh_msiof_spi_priv *p, |
| const void *tx_buf, int words, int fs) |
| { |
| const u8 *buf_8 = tx_buf; |
| int k; |
| |
| for (k = 0; k < words; k++) |
| sh_msiof_write(p, SITFDR, buf_8[k] << fs); |
| } |
| |
| static void sh_msiof_spi_write_fifo_16(struct sh_msiof_spi_priv *p, |
| const void *tx_buf, int words, int fs) |
| { |
| const u16 *buf_16 = tx_buf; |
| int k; |
| |
| for (k = 0; k < words; k++) |
| sh_msiof_write(p, SITFDR, buf_16[k] << fs); |
| } |
| |
| static void sh_msiof_spi_write_fifo_16u(struct sh_msiof_spi_priv *p, |
| const void *tx_buf, int words, int fs) |
| { |
| const u16 *buf_16 = tx_buf; |
| int k; |
| |
| for (k = 0; k < words; k++) |
| sh_msiof_write(p, SITFDR, get_unaligned(&buf_16[k]) << fs); |
| } |
| |
| static void sh_msiof_spi_write_fifo_32(struct sh_msiof_spi_priv *p, |
| const void *tx_buf, int words, int fs) |
| { |
| const u32 *buf_32 = tx_buf; |
| int k; |
| |
| for (k = 0; k < words; k++) |
| sh_msiof_write(p, SITFDR, buf_32[k] << fs); |
| } |
| |
| static void sh_msiof_spi_write_fifo_32u(struct sh_msiof_spi_priv *p, |
| const void *tx_buf, int words, int fs) |
| { |
| const u32 *buf_32 = tx_buf; |
| int k; |
| |
| for (k = 0; k < words; k++) |
| sh_msiof_write(p, SITFDR, get_unaligned(&buf_32[k]) << fs); |
| } |
| |
| static void sh_msiof_spi_write_fifo_s32(struct sh_msiof_spi_priv *p, |
| const void *tx_buf, int words, int fs) |
| { |
| const u32 *buf_32 = tx_buf; |
| int k; |
| |
| for (k = 0; k < words; k++) |
| sh_msiof_write(p, SITFDR, swab32(buf_32[k] << fs)); |
| } |
| |
| static void sh_msiof_spi_write_fifo_s32u(struct sh_msiof_spi_priv *p, |
| const void *tx_buf, int words, int fs) |
| { |
| const u32 *buf_32 = tx_buf; |
| int k; |
| |
| for (k = 0; k < words; k++) |
| sh_msiof_write(p, SITFDR, swab32(get_unaligned(&buf_32[k]) << fs)); |
| } |
| |
| static void sh_msiof_spi_read_fifo_8(struct sh_msiof_spi_priv *p, |
| void *rx_buf, int words, int fs) |
| { |
| u8 *buf_8 = rx_buf; |
| int k; |
| |
| for (k = 0; k < words; k++) |
| buf_8[k] = sh_msiof_read(p, SIRFDR) >> fs; |
| } |
| |
| static void sh_msiof_spi_read_fifo_16(struct sh_msiof_spi_priv *p, |
| void *rx_buf, int words, int fs) |
| { |
| u16 *buf_16 = rx_buf; |
| int k; |
| |
| for (k = 0; k < words; k++) |
| buf_16[k] = sh_msiof_read(p, SIRFDR) >> fs; |
| } |
| |
| static void sh_msiof_spi_read_fifo_16u(struct sh_msiof_spi_priv *p, |
| void *rx_buf, int words, int fs) |
| { |
| u16 *buf_16 = rx_buf; |
| int k; |
| |
| for (k = 0; k < words; k++) |
| put_unaligned(sh_msiof_read(p, SIRFDR) >> fs, &buf_16[k]); |
| } |
| |
| static void sh_msiof_spi_read_fifo_32(struct sh_msiof_spi_priv *p, |
| void *rx_buf, int words, int fs) |
| { |
| u32 *buf_32 = rx_buf; |
| int k; |
| |
| for (k = 0; k < words; k++) |
| buf_32[k] = sh_msiof_read(p, SIRFDR) >> fs; |
| } |
| |
| static void sh_msiof_spi_read_fifo_32u(struct sh_msiof_spi_priv *p, |
| void *rx_buf, int words, int fs) |
| { |
| u32 *buf_32 = rx_buf; |
| int k; |
| |
| for (k = 0; k < words; k++) |
| put_unaligned(sh_msiof_read(p, SIRFDR) >> fs, &buf_32[k]); |
| } |
| |
| static void sh_msiof_spi_read_fifo_s32(struct sh_msiof_spi_priv *p, |
| void *rx_buf, int words, int fs) |
| { |
| u32 *buf_32 = rx_buf; |
| int k; |
| |
| for (k = 0; k < words; k++) |
| buf_32[k] = swab32(sh_msiof_read(p, SIRFDR) >> fs); |
| } |
| |
| static void sh_msiof_spi_read_fifo_s32u(struct sh_msiof_spi_priv *p, |
| void *rx_buf, int words, int fs) |
| { |
| u32 *buf_32 = rx_buf; |
| int k; |
| |
| for (k = 0; k < words; k++) |
| put_unaligned(swab32(sh_msiof_read(p, SIRFDR) >> fs), &buf_32[k]); |
| } |
| |
| static int sh_msiof_spi_setup(struct spi_device *spi) |
| { |
| struct sh_msiof_spi_priv *p = |
| spi_controller_get_devdata(spi->controller); |
| u32 clr, set, tmp; |
| |
| if (spi_get_csgpiod(spi, 0) || spi_controller_is_target(p->ctlr)) |
| return 0; |
| |
| if (p->native_cs_inited && |
| (p->native_cs_high == !!(spi->mode & SPI_CS_HIGH))) |
| return 0; |
| |
| /* Configure native chip select mode/polarity early */ |
| clr = SIMDR1_SYNCMD_MASK; |
| set = SIMDR1_SYNCMD_SPI; |
| if (spi->mode & SPI_CS_HIGH) |
| clr |= BIT(SIMDR1_SYNCAC_SHIFT); |
| else |
| set |= BIT(SIMDR1_SYNCAC_SHIFT); |
| pm_runtime_get_sync(&p->pdev->dev); |
| tmp = sh_msiof_read(p, SITMDR1) & ~clr; |
| sh_msiof_write(p, SITMDR1, tmp | set | SIMDR1_TRMD | SITMDR1_PCON); |
| tmp = sh_msiof_read(p, SIRMDR1) & ~clr; |
| sh_msiof_write(p, SIRMDR1, tmp | set); |
| pm_runtime_put(&p->pdev->dev); |
| p->native_cs_high = spi->mode & SPI_CS_HIGH; |
| p->native_cs_inited = true; |
| return 0; |
| } |
| |
| static int sh_msiof_prepare_message(struct spi_controller *ctlr, |
| struct spi_message *msg) |
| { |
| struct sh_msiof_spi_priv *p = spi_controller_get_devdata(ctlr); |
| const struct spi_device *spi = msg->spi; |
| u32 ss, cs_high; |
| |
| /* Configure pins before asserting CS */ |
| if (spi_get_csgpiod(spi, 0)) { |
| ss = ctlr->unused_native_cs; |
| cs_high = p->native_cs_high; |
| } else { |
| ss = spi_get_chipselect(spi, 0); |
| cs_high = !!(spi->mode & SPI_CS_HIGH); |
| } |
| sh_msiof_spi_set_pin_regs(p, ss, !!(spi->mode & SPI_CPOL), |
| !!(spi->mode & SPI_CPHA), |
| !!(spi->mode & SPI_3WIRE), |
| !!(spi->mode & SPI_LSB_FIRST), cs_high); |
| return 0; |
| } |
| |
| static int sh_msiof_spi_start(struct sh_msiof_spi_priv *p, void *rx_buf) |
| { |
| bool target = spi_controller_is_target(p->ctlr); |
| int ret = 0; |
| |
| /* setup clock and rx/tx signals */ |
| if (!target) |
| ret = sh_msiof_modify_ctr_wait(p, 0, SICTR_TSCKE); |
| if (rx_buf && !ret) |
| ret = sh_msiof_modify_ctr_wait(p, 0, SICTR_RXE); |
| if (!ret) |
| ret = sh_msiof_modify_ctr_wait(p, 0, SICTR_TXE); |
| |
| /* start by setting frame bit */ |
| if (!ret && !target) |
| ret = sh_msiof_modify_ctr_wait(p, 0, SICTR_TFSE); |
| |
| return ret; |
| } |
| |
| static int sh_msiof_spi_stop(struct sh_msiof_spi_priv *p, void *rx_buf) |
| { |
| bool target = spi_controller_is_target(p->ctlr); |
| int ret = 0; |
| |
| /* shut down frame, rx/tx and clock signals */ |
| if (!target) |
| ret = sh_msiof_modify_ctr_wait(p, SICTR_TFSE, 0); |
| if (!ret) |
| ret = sh_msiof_modify_ctr_wait(p, SICTR_TXE, 0); |
| if (rx_buf && !ret) |
| ret = sh_msiof_modify_ctr_wait(p, SICTR_RXE, 0); |
| if (!ret && !target) |
| ret = sh_msiof_modify_ctr_wait(p, SICTR_TSCKE, 0); |
| |
| return ret; |
| } |
| |
| static int sh_msiof_target_abort(struct spi_controller *ctlr) |
| { |
| struct sh_msiof_spi_priv *p = spi_controller_get_devdata(ctlr); |
| |
| p->target_aborted = true; |
| complete(&p->done); |
| complete(&p->done_txdma); |
| return 0; |
| } |
| |
| static int sh_msiof_wait_for_completion(struct sh_msiof_spi_priv *p, |
| struct completion *x) |
| { |
| if (spi_controller_is_target(p->ctlr)) { |
| if (wait_for_completion_interruptible(x) || |
| p->target_aborted) { |
| dev_dbg(&p->pdev->dev, "interrupted\n"); |
| return -EINTR; |
| } |
| } else { |
| if (!wait_for_completion_timeout(x, HZ)) { |
| dev_err(&p->pdev->dev, "timeout\n"); |
| return -ETIMEDOUT; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int sh_msiof_spi_txrx_once(struct sh_msiof_spi_priv *p, |
| void (*tx_fifo)(struct sh_msiof_spi_priv *, |
| const void *, int, int), |
| void (*rx_fifo)(struct sh_msiof_spi_priv *, |
| void *, int, int), |
| const void *tx_buf, void *rx_buf, |
| int words, int bits) |
| { |
| int fifo_shift; |
| int ret; |
| |
| /* limit maximum word transfer to rx/tx fifo size */ |
| if (tx_buf) |
| words = min_t(int, words, p->tx_fifo_size); |
| if (rx_buf) |
| words = min_t(int, words, p->rx_fifo_size); |
| |
| /* the fifo contents need shifting */ |
| fifo_shift = 32 - bits; |
| |
| /* default FIFO watermarks for PIO */ |
| sh_msiof_write(p, SIFCTR, 0); |
| |
| /* setup msiof transfer mode registers */ |
| sh_msiof_spi_set_mode_regs(p, tx_buf, rx_buf, bits, words); |
| sh_msiof_write(p, SIIER, SIIER_TEOFE | SIIER_REOFE); |
| |
| /* write tx fifo */ |
| if (tx_buf) |
| tx_fifo(p, tx_buf, words, fifo_shift); |
| |
| reinit_completion(&p->done); |
| p->target_aborted = false; |
| |
| ret = sh_msiof_spi_start(p, rx_buf); |
| if (ret) { |
| dev_err(&p->pdev->dev, "failed to start hardware\n"); |
| goto stop_ier; |
| } |
| |
| /* wait for tx fifo to be emptied / rx fifo to be filled */ |
| ret = sh_msiof_wait_for_completion(p, &p->done); |
| if (ret) |
| goto stop_reset; |
| |
| /* read rx fifo */ |
| if (rx_buf) |
| rx_fifo(p, rx_buf, words, fifo_shift); |
| |
| /* clear status bits */ |
| sh_msiof_reset_str(p); |
| |
| ret = sh_msiof_spi_stop(p, rx_buf); |
| if (ret) { |
| dev_err(&p->pdev->dev, "failed to shut down hardware\n"); |
| return ret; |
| } |
| |
| return words; |
| |
| stop_reset: |
| sh_msiof_reset_str(p); |
| sh_msiof_spi_stop(p, rx_buf); |
| stop_ier: |
| sh_msiof_write(p, SIIER, 0); |
| return ret; |
| } |
| |
| static void sh_msiof_dma_complete(void *arg) |
| { |
| complete(arg); |
| } |
| |
| static int sh_msiof_dma_once(struct sh_msiof_spi_priv *p, const void *tx, |
| void *rx, unsigned int len) |
| { |
| u32 ier_bits = 0; |
| struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL; |
| dma_cookie_t cookie; |
| int ret; |
| |
| /* First prepare and submit the DMA request(s), as this may fail */ |
| if (rx) { |
| ier_bits |= SIIER_RDREQE | SIIER_RDMAE; |
| desc_rx = dmaengine_prep_slave_single(p->ctlr->dma_rx, |
| p->rx_dma_addr, len, DMA_DEV_TO_MEM, |
| DMA_PREP_INTERRUPT | DMA_CTRL_ACK); |
| if (!desc_rx) |
| return -EAGAIN; |
| |
| desc_rx->callback = sh_msiof_dma_complete; |
| desc_rx->callback_param = &p->done; |
| cookie = dmaengine_submit(desc_rx); |
| if (dma_submit_error(cookie)) |
| return cookie; |
| } |
| |
| if (tx) { |
| ier_bits |= SIIER_TDREQE | SIIER_TDMAE; |
| dma_sync_single_for_device(p->ctlr->dma_tx->device->dev, |
| p->tx_dma_addr, len, DMA_TO_DEVICE); |
| desc_tx = dmaengine_prep_slave_single(p->ctlr->dma_tx, |
| p->tx_dma_addr, len, DMA_MEM_TO_DEV, |
| DMA_PREP_INTERRUPT | DMA_CTRL_ACK); |
| if (!desc_tx) { |
| ret = -EAGAIN; |
| goto no_dma_tx; |
| } |
| |
| desc_tx->callback = sh_msiof_dma_complete; |
| desc_tx->callback_param = &p->done_txdma; |
| cookie = dmaengine_submit(desc_tx); |
| if (dma_submit_error(cookie)) { |
| ret = cookie; |
| goto no_dma_tx; |
| } |
| } |
| |
| /* 1 stage FIFO watermarks for DMA */ |
| sh_msiof_write(p, SIFCTR, SIFCTR_TFWM_1 | SIFCTR_RFWM_1); |
| |
| /* setup msiof transfer mode registers (32-bit words) */ |
| sh_msiof_spi_set_mode_regs(p, tx, rx, 32, len / 4); |
| |
| sh_msiof_write(p, SIIER, ier_bits); |
| |
| reinit_completion(&p->done); |
| if (tx) |
| reinit_completion(&p->done_txdma); |
| p->target_aborted = false; |
| |
| /* Now start DMA */ |
| if (rx) |
| dma_async_issue_pending(p->ctlr->dma_rx); |
| if (tx) |
| dma_async_issue_pending(p->ctlr->dma_tx); |
| |
| ret = sh_msiof_spi_start(p, rx); |
| if (ret) { |
| dev_err(&p->pdev->dev, "failed to start hardware\n"); |
| goto stop_dma; |
| } |
| |
| if (tx) { |
| /* wait for tx DMA completion */ |
| ret = sh_msiof_wait_for_completion(p, &p->done_txdma); |
| if (ret) |
| goto stop_reset; |
| } |
| |
| if (rx) { |
| /* wait for rx DMA completion */ |
| ret = sh_msiof_wait_for_completion(p, &p->done); |
| if (ret) |
| goto stop_reset; |
| |
| sh_msiof_write(p, SIIER, 0); |
| } else { |
| /* wait for tx fifo to be emptied */ |
| sh_msiof_write(p, SIIER, SIIER_TEOFE); |
| ret = sh_msiof_wait_for_completion(p, &p->done); |
| if (ret) |
| goto stop_reset; |
| } |
| |
| /* clear status bits */ |
| sh_msiof_reset_str(p); |
| |
| ret = sh_msiof_spi_stop(p, rx); |
| if (ret) { |
| dev_err(&p->pdev->dev, "failed to shut down hardware\n"); |
| return ret; |
| } |
| |
| if (rx) |
| dma_sync_single_for_cpu(p->ctlr->dma_rx->device->dev, |
| p->rx_dma_addr, len, DMA_FROM_DEVICE); |
| |
| return 0; |
| |
| stop_reset: |
| sh_msiof_reset_str(p); |
| sh_msiof_spi_stop(p, rx); |
| stop_dma: |
| if (tx) |
| dmaengine_terminate_sync(p->ctlr->dma_tx); |
| no_dma_tx: |
| if (rx) |
| dmaengine_terminate_sync(p->ctlr->dma_rx); |
| sh_msiof_write(p, SIIER, 0); |
| return ret; |
| } |
| |
| static void copy_bswap32(u32 *dst, const u32 *src, unsigned int words) |
| { |
| /* src or dst can be unaligned, but not both */ |
| if ((unsigned long)src & 3) { |
| while (words--) { |
| *dst++ = swab32(get_unaligned(src)); |
| src++; |
| } |
| } else if ((unsigned long)dst & 3) { |
| while (words--) { |
| put_unaligned(swab32(*src++), dst); |
| dst++; |
| } |
| } else { |
| while (words--) |
| *dst++ = swab32(*src++); |
| } |
| } |
| |
| static void copy_wswap32(u32 *dst, const u32 *src, unsigned int words) |
| { |
| /* src or dst can be unaligned, but not both */ |
| if ((unsigned long)src & 3) { |
| while (words--) { |
| *dst++ = swahw32(get_unaligned(src)); |
| src++; |
| } |
| } else if ((unsigned long)dst & 3) { |
| while (words--) { |
| put_unaligned(swahw32(*src++), dst); |
| dst++; |
| } |
| } else { |
| while (words--) |
| *dst++ = swahw32(*src++); |
| } |
| } |
| |
| static void copy_plain32(u32 *dst, const u32 *src, unsigned int words) |
| { |
| memcpy(dst, src, words * 4); |
| } |
| |
| static int sh_msiof_transfer_one(struct spi_controller *ctlr, |
| struct spi_device *spi, |
| struct spi_transfer *t) |
| { |
| struct sh_msiof_spi_priv *p = spi_controller_get_devdata(ctlr); |
| void (*copy32)(u32 *, const u32 *, unsigned int); |
| void (*tx_fifo)(struct sh_msiof_spi_priv *, const void *, int, int); |
| void (*rx_fifo)(struct sh_msiof_spi_priv *, void *, int, int); |
| const void *tx_buf = t->tx_buf; |
| void *rx_buf = t->rx_buf; |
| unsigned int len = t->len; |
| unsigned int bits = t->bits_per_word; |
| unsigned int bytes_per_word; |
| unsigned int words; |
| int n; |
| bool swab; |
| int ret; |
| |
| /* reset registers */ |
| sh_msiof_spi_reset_regs(p); |
| |
| /* setup clocks (clock already enabled in chipselect()) */ |
| if (!spi_controller_is_target(p->ctlr)) |
| sh_msiof_spi_set_clk_regs(p, t); |
| |
| while (ctlr->dma_tx && len > 15) { |
| /* |
| * DMA supports 32-bit words only, hence pack 8-bit and 16-bit |
| * words, with byte resp. word swapping. |
| */ |
| unsigned int l = 0; |
| |
| if (tx_buf) |
| l = min(round_down(len, 4), p->tx_fifo_size * 4); |
| if (rx_buf) |
| l = min(round_down(len, 4), p->rx_fifo_size * 4); |
| |
| if (bits <= 8) { |
| copy32 = copy_bswap32; |
| } else if (bits <= 16) { |
| copy32 = copy_wswap32; |
| } else { |
| copy32 = copy_plain32; |
| } |
| |
| if (tx_buf) |
| copy32(p->tx_dma_page, tx_buf, l / 4); |
| |
| ret = sh_msiof_dma_once(p, tx_buf, rx_buf, l); |
| if (ret == -EAGAIN) { |
| dev_warn_once(&p->pdev->dev, |
| "DMA not available, falling back to PIO\n"); |
| break; |
| } |
| if (ret) |
| return ret; |
| |
| if (rx_buf) { |
| copy32(rx_buf, p->rx_dma_page, l / 4); |
| rx_buf += l; |
| } |
| if (tx_buf) |
| tx_buf += l; |
| |
| len -= l; |
| if (!len) |
| return 0; |
| } |
| |
| if (bits <= 8 && len > 15) { |
| bits = 32; |
| swab = true; |
| } else { |
| swab = false; |
| } |
| |
| /* setup bytes per word and fifo read/write functions */ |
| if (bits <= 8) { |
| bytes_per_word = 1; |
| tx_fifo = sh_msiof_spi_write_fifo_8; |
| rx_fifo = sh_msiof_spi_read_fifo_8; |
| } else if (bits <= 16) { |
| bytes_per_word = 2; |
| if ((unsigned long)tx_buf & 0x01) |
| tx_fifo = sh_msiof_spi_write_fifo_16u; |
| else |
| tx_fifo = sh_msiof_spi_write_fifo_16; |
| |
| if ((unsigned long)rx_buf & 0x01) |
| rx_fifo = sh_msiof_spi_read_fifo_16u; |
| else |
| rx_fifo = sh_msiof_spi_read_fifo_16; |
| } else if (swab) { |
| bytes_per_word = 4; |
| if ((unsigned long)tx_buf & 0x03) |
| tx_fifo = sh_msiof_spi_write_fifo_s32u; |
| else |
| tx_fifo = sh_msiof_spi_write_fifo_s32; |
| |
| if ((unsigned long)rx_buf & 0x03) |
| rx_fifo = sh_msiof_spi_read_fifo_s32u; |
| else |
| rx_fifo = sh_msiof_spi_read_fifo_s32; |
| } else { |
| bytes_per_word = 4; |
| if ((unsigned long)tx_buf & 0x03) |
| tx_fifo = sh_msiof_spi_write_fifo_32u; |
| else |
| tx_fifo = sh_msiof_spi_write_fifo_32; |
| |
| if ((unsigned long)rx_buf & 0x03) |
| rx_fifo = sh_msiof_spi_read_fifo_32u; |
| else |
| rx_fifo = sh_msiof_spi_read_fifo_32; |
| } |
| |
| /* transfer in fifo sized chunks */ |
| words = len / bytes_per_word; |
| |
| while (words > 0) { |
| n = sh_msiof_spi_txrx_once(p, tx_fifo, rx_fifo, tx_buf, rx_buf, |
| words, bits); |
| if (n < 0) |
| return n; |
| |
| if (tx_buf) |
| tx_buf += n * bytes_per_word; |
| if (rx_buf) |
| rx_buf += n * bytes_per_word; |
| words -= n; |
| |
| if (words == 0 && (len % bytes_per_word)) { |
| words = len % bytes_per_word; |
| bits = t->bits_per_word; |
| bytes_per_word = 1; |
| tx_fifo = sh_msiof_spi_write_fifo_8; |
| rx_fifo = sh_msiof_spi_read_fifo_8; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static const struct sh_msiof_chipdata sh_data = { |
| .bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 32), |
| .tx_fifo_size = 64, |
| .rx_fifo_size = 64, |
| .ctlr_flags = 0, |
| .min_div_pow = 0, |
| }; |
| |
| static const struct sh_msiof_chipdata rcar_gen2_data = { |
| .bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16) | |
| SPI_BPW_MASK(24) | SPI_BPW_MASK(32), |
| .tx_fifo_size = 64, |
| .rx_fifo_size = 64, |
| .ctlr_flags = SPI_CONTROLLER_MUST_TX, |
| .min_div_pow = 0, |
| }; |
| |
| static const struct sh_msiof_chipdata rcar_gen3_data = { |
| .bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16) | |
| SPI_BPW_MASK(24) | SPI_BPW_MASK(32), |
| .tx_fifo_size = 64, |
| .rx_fifo_size = 64, |
| .ctlr_flags = SPI_CONTROLLER_MUST_TX, |
| .min_div_pow = 1, |
| }; |
| |
| static const struct sh_msiof_chipdata rcar_r8a7795_data = { |
| .bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16) | |
| SPI_BPW_MASK(24) | SPI_BPW_MASK(32), |
| .tx_fifo_size = 64, |
| .rx_fifo_size = 64, |
| .ctlr_flags = SPI_CONTROLLER_MUST_TX, |
| .min_div_pow = 1, |
| .flags = SH_MSIOF_FLAG_FIXED_DTDL_200, |
| }; |
| |
| static const struct of_device_id sh_msiof_match[] __maybe_unused = { |
| { .compatible = "renesas,sh-mobile-msiof", .data = &sh_data }, |
| { .compatible = "renesas,msiof-r8a7743", .data = &rcar_gen2_data }, |
| { .compatible = "renesas,msiof-r8a7745", .data = &rcar_gen2_data }, |
| { .compatible = "renesas,msiof-r8a7790", .data = &rcar_gen2_data }, |
| { .compatible = "renesas,msiof-r8a7791", .data = &rcar_gen2_data }, |
| { .compatible = "renesas,msiof-r8a7792", .data = &rcar_gen2_data }, |
| { .compatible = "renesas,msiof-r8a7793", .data = &rcar_gen2_data }, |
| { .compatible = "renesas,msiof-r8a7794", .data = &rcar_gen2_data }, |
| { .compatible = "renesas,rcar-gen2-msiof", .data = &rcar_gen2_data }, |
| { .compatible = "renesas,msiof-r8a7795", .data = &rcar_r8a7795_data }, |
| { .compatible = "renesas,msiof-r8a7796", .data = &rcar_gen3_data }, |
| { .compatible = "renesas,rcar-gen3-msiof", .data = &rcar_gen3_data }, |
| { .compatible = "renesas,rcar-gen4-msiof", .data = &rcar_gen3_data }, |
| { .compatible = "renesas,sh-msiof", .data = &sh_data }, /* Deprecated */ |
| {}, |
| }; |
| MODULE_DEVICE_TABLE(of, sh_msiof_match); |
| |
| #ifdef CONFIG_OF |
| static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev) |
| { |
| struct sh_msiof_spi_info *info; |
| struct device_node *np = dev->of_node; |
| u32 num_cs = 1; |
| |
| info = devm_kzalloc(dev, sizeof(struct sh_msiof_spi_info), GFP_KERNEL); |
| if (!info) |
| return NULL; |
| |
| info->mode = of_property_read_bool(np, "spi-slave") ? MSIOF_SPI_TARGET |
| : MSIOF_SPI_HOST; |
| |
| /* Parse the MSIOF properties */ |
| if (info->mode == MSIOF_SPI_HOST) |
| of_property_read_u32(np, "num-cs", &num_cs); |
| of_property_read_u32(np, "renesas,tx-fifo-size", |
| &info->tx_fifo_override); |
| of_property_read_u32(np, "renesas,rx-fifo-size", |
| &info->rx_fifo_override); |
| of_property_read_u32(np, "renesas,dtdl", &info->dtdl); |
| of_property_read_u32(np, "renesas,syncdl", &info->syncdl); |
| |
| info->num_chipselect = num_cs; |
| |
| return info; |
| } |
| #else |
| static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev) |
| { |
| return NULL; |
| } |
| #endif |
| |
| static struct dma_chan *sh_msiof_request_dma_chan(struct device *dev, |
| enum dma_transfer_direction dir, unsigned int id, dma_addr_t port_addr) |
| { |
| dma_cap_mask_t mask; |
| struct dma_chan *chan; |
| struct dma_slave_config cfg; |
| int ret; |
| |
| dma_cap_zero(mask); |
| dma_cap_set(DMA_SLAVE, mask); |
| |
| chan = dma_request_slave_channel_compat(mask, shdma_chan_filter, |
| (void *)(unsigned long)id, dev, |
| dir == DMA_MEM_TO_DEV ? "tx" : "rx"); |
| if (!chan) { |
| dev_warn(dev, "dma_request_slave_channel_compat failed\n"); |
| return NULL; |
| } |
| |
| memset(&cfg, 0, sizeof(cfg)); |
| cfg.direction = dir; |
| if (dir == DMA_MEM_TO_DEV) { |
| cfg.dst_addr = port_addr; |
| cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; |
| } else { |
| cfg.src_addr = port_addr; |
| cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; |
| } |
| |
| ret = dmaengine_slave_config(chan, &cfg); |
| if (ret) { |
| dev_warn(dev, "dmaengine_slave_config failed %d\n", ret); |
| dma_release_channel(chan); |
| return NULL; |
| } |
| |
| return chan; |
| } |
| |
| static int sh_msiof_request_dma(struct sh_msiof_spi_priv *p) |
| { |
| struct platform_device *pdev = p->pdev; |
| struct device *dev = &pdev->dev; |
| const struct sh_msiof_spi_info *info = p->info; |
| unsigned int dma_tx_id, dma_rx_id; |
| const struct resource *res; |
| struct spi_controller *ctlr; |
| struct device *tx_dev, *rx_dev; |
| |
| if (dev->of_node) { |
| /* In the OF case we will get the slave IDs from the DT */ |
| dma_tx_id = 0; |
| dma_rx_id = 0; |
| } else if (info && info->dma_tx_id && info->dma_rx_id) { |
| dma_tx_id = info->dma_tx_id; |
| dma_rx_id = info->dma_rx_id; |
| } else { |
| /* The driver assumes no error */ |
| return 0; |
| } |
| |
| /* The DMA engine uses the second register set, if present */ |
| res = platform_get_resource(pdev, IORESOURCE_MEM, 1); |
| if (!res) |
| res = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| |
| ctlr = p->ctlr; |
| ctlr->dma_tx = sh_msiof_request_dma_chan(dev, DMA_MEM_TO_DEV, |
| dma_tx_id, res->start + SITFDR); |
| if (!ctlr->dma_tx) |
| return -ENODEV; |
| |
| ctlr->dma_rx = sh_msiof_request_dma_chan(dev, DMA_DEV_TO_MEM, |
| dma_rx_id, res->start + SIRFDR); |
| if (!ctlr->dma_rx) |
| goto free_tx_chan; |
| |
| p->tx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA); |
| if (!p->tx_dma_page) |
| goto free_rx_chan; |
| |
| p->rx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA); |
| if (!p->rx_dma_page) |
| goto free_tx_page; |
| |
| tx_dev = ctlr->dma_tx->device->dev; |
| p->tx_dma_addr = dma_map_single(tx_dev, p->tx_dma_page, PAGE_SIZE, |
| DMA_TO_DEVICE); |
| if (dma_mapping_error(tx_dev, p->tx_dma_addr)) |
| goto free_rx_page; |
| |
| rx_dev = ctlr->dma_rx->device->dev; |
| p->rx_dma_addr = dma_map_single(rx_dev, p->rx_dma_page, PAGE_SIZE, |
| DMA_FROM_DEVICE); |
| if (dma_mapping_error(rx_dev, p->rx_dma_addr)) |
| goto unmap_tx_page; |
| |
| dev_info(dev, "DMA available"); |
| return 0; |
| |
| unmap_tx_page: |
| dma_unmap_single(tx_dev, p->tx_dma_addr, PAGE_SIZE, DMA_TO_DEVICE); |
| free_rx_page: |
| free_page((unsigned long)p->rx_dma_page); |
| free_tx_page: |
| free_page((unsigned long)p->tx_dma_page); |
| free_rx_chan: |
| dma_release_channel(ctlr->dma_rx); |
| free_tx_chan: |
| dma_release_channel(ctlr->dma_tx); |
| ctlr->dma_tx = NULL; |
| return -ENODEV; |
| } |
| |
| static void sh_msiof_release_dma(struct sh_msiof_spi_priv *p) |
| { |
| struct spi_controller *ctlr = p->ctlr; |
| |
| if (!ctlr->dma_tx) |
| return; |
| |
| dma_unmap_single(ctlr->dma_rx->device->dev, p->rx_dma_addr, PAGE_SIZE, |
| DMA_FROM_DEVICE); |
| dma_unmap_single(ctlr->dma_tx->device->dev, p->tx_dma_addr, PAGE_SIZE, |
| DMA_TO_DEVICE); |
| free_page((unsigned long)p->rx_dma_page); |
| free_page((unsigned long)p->tx_dma_page); |
| dma_release_channel(ctlr->dma_rx); |
| dma_release_channel(ctlr->dma_tx); |
| } |
| |
| static int sh_msiof_spi_probe(struct platform_device *pdev) |
| { |
| struct spi_controller *ctlr; |
| const struct sh_msiof_chipdata *chipdata; |
| struct sh_msiof_spi_info *info; |
| struct sh_msiof_spi_priv *p; |
| unsigned long clksrc; |
| int i; |
| int ret; |
| |
| chipdata = of_device_get_match_data(&pdev->dev); |
| if (chipdata) { |
| info = sh_msiof_spi_parse_dt(&pdev->dev); |
| } else { |
| chipdata = (const void *)pdev->id_entry->driver_data; |
| info = dev_get_platdata(&pdev->dev); |
| } |
| |
| if (!info) { |
| dev_err(&pdev->dev, "failed to obtain device info\n"); |
| return -ENXIO; |
| } |
| |
| if (chipdata->flags & SH_MSIOF_FLAG_FIXED_DTDL_200) |
| info->dtdl = 200; |
| |
| if (info->mode == MSIOF_SPI_TARGET) |
| ctlr = spi_alloc_target(&pdev->dev, |
| sizeof(struct sh_msiof_spi_priv)); |
| else |
| ctlr = spi_alloc_host(&pdev->dev, |
| sizeof(struct sh_msiof_spi_priv)); |
| if (ctlr == NULL) |
| return -ENOMEM; |
| |
| p = spi_controller_get_devdata(ctlr); |
| |
| platform_set_drvdata(pdev, p); |
| p->ctlr = ctlr; |
| p->info = info; |
| p->min_div_pow = chipdata->min_div_pow; |
| |
| init_completion(&p->done); |
| init_completion(&p->done_txdma); |
| |
| p->clk = devm_clk_get(&pdev->dev, NULL); |
| if (IS_ERR(p->clk)) { |
| dev_err(&pdev->dev, "cannot get clock\n"); |
| ret = PTR_ERR(p->clk); |
| goto err1; |
| } |
| |
| i = platform_get_irq(pdev, 0); |
| if (i < 0) { |
| ret = i; |
| goto err1; |
| } |
| |
| p->mapbase = devm_platform_ioremap_resource(pdev, 0); |
| if (IS_ERR(p->mapbase)) { |
| ret = PTR_ERR(p->mapbase); |
| goto err1; |
| } |
| |
| ret = devm_request_irq(&pdev->dev, i, sh_msiof_spi_irq, 0, |
| dev_name(&pdev->dev), p); |
| if (ret) { |
| dev_err(&pdev->dev, "unable to request irq\n"); |
| goto err1; |
| } |
| |
| p->pdev = pdev; |
| pm_runtime_enable(&pdev->dev); |
| |
| /* Platform data may override FIFO sizes */ |
| p->tx_fifo_size = chipdata->tx_fifo_size; |
| p->rx_fifo_size = chipdata->rx_fifo_size; |
| if (p->info->tx_fifo_override) |
| p->tx_fifo_size = p->info->tx_fifo_override; |
| if (p->info->rx_fifo_override) |
| p->rx_fifo_size = p->info->rx_fifo_override; |
| |
| /* init controller code */ |
| ctlr->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH; |
| ctlr->mode_bits |= SPI_LSB_FIRST | SPI_3WIRE; |
| clksrc = clk_get_rate(p->clk); |
| ctlr->min_speed_hz = DIV_ROUND_UP(clksrc, 1024); |
| ctlr->max_speed_hz = DIV_ROUND_UP(clksrc, 1 << p->min_div_pow); |
| ctlr->flags = chipdata->ctlr_flags; |
| ctlr->bus_num = pdev->id; |
| ctlr->num_chipselect = p->info->num_chipselect; |
| ctlr->dev.of_node = pdev->dev.of_node; |
| ctlr->setup = sh_msiof_spi_setup; |
| ctlr->prepare_message = sh_msiof_prepare_message; |
| ctlr->target_abort = sh_msiof_target_abort; |
| ctlr->bits_per_word_mask = chipdata->bits_per_word_mask; |
| ctlr->auto_runtime_pm = true; |
| ctlr->transfer_one = sh_msiof_transfer_one; |
| ctlr->use_gpio_descriptors = true; |
| ctlr->max_native_cs = MAX_SS; |
| |
| ret = sh_msiof_request_dma(p); |
| if (ret < 0) |
| dev_warn(&pdev->dev, "DMA not available, using PIO\n"); |
| |
| ret = devm_spi_register_controller(&pdev->dev, ctlr); |
| if (ret < 0) { |
| dev_err(&pdev->dev, "devm_spi_register_controller error.\n"); |
| goto err2; |
| } |
| |
| return 0; |
| |
| err2: |
| sh_msiof_release_dma(p); |
| pm_runtime_disable(&pdev->dev); |
| err1: |
| spi_controller_put(ctlr); |
| return ret; |
| } |
| |
| static void sh_msiof_spi_remove(struct platform_device *pdev) |
| { |
| struct sh_msiof_spi_priv *p = platform_get_drvdata(pdev); |
| |
| sh_msiof_release_dma(p); |
| pm_runtime_disable(&pdev->dev); |
| } |
| |
| static const struct platform_device_id spi_driver_ids[] = { |
| { "spi_sh_msiof", (kernel_ulong_t)&sh_data }, |
| {}, |
| }; |
| MODULE_DEVICE_TABLE(platform, spi_driver_ids); |
| |
| #ifdef CONFIG_PM_SLEEP |
| static int sh_msiof_spi_suspend(struct device *dev) |
| { |
| struct sh_msiof_spi_priv *p = dev_get_drvdata(dev); |
| |
| return spi_controller_suspend(p->ctlr); |
| } |
| |
| static int sh_msiof_spi_resume(struct device *dev) |
| { |
| struct sh_msiof_spi_priv *p = dev_get_drvdata(dev); |
| |
| return spi_controller_resume(p->ctlr); |
| } |
| |
| static SIMPLE_DEV_PM_OPS(sh_msiof_spi_pm_ops, sh_msiof_spi_suspend, |
| sh_msiof_spi_resume); |
| #define DEV_PM_OPS (&sh_msiof_spi_pm_ops) |
| #else |
| #define DEV_PM_OPS NULL |
| #endif /* CONFIG_PM_SLEEP */ |
| |
| static struct platform_driver sh_msiof_spi_drv = { |
| .probe = sh_msiof_spi_probe, |
| .remove = sh_msiof_spi_remove, |
| .id_table = spi_driver_ids, |
| .driver = { |
| .name = "spi_sh_msiof", |
| .pm = DEV_PM_OPS, |
| .of_match_table = of_match_ptr(sh_msiof_match), |
| }, |
| }; |
| module_platform_driver(sh_msiof_spi_drv); |
| |
| MODULE_DESCRIPTION("SuperH MSIOF SPI Controller Interface Driver"); |
| MODULE_AUTHOR("Magnus Damm"); |
| MODULE_LICENSE("GPL v2"); |