| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * This file is subject to the terms and conditions of the GNU General Public |
| * License. See the file "COPYING" in the main directory of this archive |
| * for more details. |
| * |
| * Copyright (C) 2008 Cavium Networks |
| * |
| * Some parts of the code were originally released under BSD license: |
| * |
| * Copyright (c) 2003-2010 Cavium Networks (support@cavium.com). All rights |
| * reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions are |
| * met: |
| * |
| * * Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * |
| * * Redistributions in binary form must reproduce the above |
| * copyright notice, this list of conditions and the following |
| * disclaimer in the documentation and/or other materials provided |
| * with the distribution. |
| * |
| * * Neither the name of Cavium Networks nor the names of |
| * its contributors may be used to endorse or promote products |
| * derived from this software without specific prior written |
| * permission. |
| * |
| * This Software, including technical data, may be subject to U.S. export |
| * control laws, including the U.S. Export Administration Act and its associated |
| * regulations, and may be subject to export or import regulations in other |
| * countries. |
| * |
| * TO THE MAXIMUM EXTENT PERMITTED BY LAW, THE SOFTWARE IS PROVIDED "AS IS" |
| * AND WITH ALL FAULTS AND CAVIUM NETWORKS MAKES NO PROMISES, REPRESENTATIONS OR |
| * WARRANTIES, EITHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, WITH RESPECT TO |
| * THE SOFTWARE, INCLUDING ITS CONDITION, ITS CONFORMITY TO ANY REPRESENTATION |
| * OR DESCRIPTION, OR THE EXISTENCE OF ANY LATENT OR PATENT DEFECTS, AND CAVIUM |
| * SPECIFICALLY DISCLAIMS ALL IMPLIED (IF ANY) WARRANTIES OF TITLE, |
| * MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR A PARTICULAR PURPOSE, LACK OF |
| * VIRUSES, ACCURACY OR COMPLETENESS, QUIET ENJOYMENT, QUIET POSSESSION OR |
| * CORRESPONDENCE TO DESCRIPTION. THE ENTIRE RISK ARISING OUT OF USE OR |
| * PERFORMANCE OF THE SOFTWARE LIES WITH YOU. |
| */ |
| |
| #include <linux/usb.h> |
| #include <linux/slab.h> |
| #include <linux/module.h> |
| #include <linux/usb/hcd.h> |
| #include <linux/prefetch.h> |
| #include <linux/irqdomain.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/platform_device.h> |
| #include <linux/of.h> |
| |
| #include <asm/octeon/octeon.h> |
| |
| #include "octeon-hcd.h" |
| |
| /** |
| * enum cvmx_usb_speed - the possible USB device speeds |
| * |
| * @CVMX_USB_SPEED_HIGH: Device is operation at 480Mbps |
| * @CVMX_USB_SPEED_FULL: Device is operation at 12Mbps |
| * @CVMX_USB_SPEED_LOW: Device is operation at 1.5Mbps |
| */ |
| enum cvmx_usb_speed { |
| CVMX_USB_SPEED_HIGH = 0, |
| CVMX_USB_SPEED_FULL = 1, |
| CVMX_USB_SPEED_LOW = 2, |
| }; |
| |
| /** |
| * enum cvmx_usb_transfer - the possible USB transfer types |
| * |
| * @CVMX_USB_TRANSFER_CONTROL: USB transfer type control for hub and status |
| * transfers |
| * @CVMX_USB_TRANSFER_ISOCHRONOUS: USB transfer type isochronous for low |
| * priority periodic transfers |
| * @CVMX_USB_TRANSFER_BULK: USB transfer type bulk for large low priority |
| * transfers |
| * @CVMX_USB_TRANSFER_INTERRUPT: USB transfer type interrupt for high priority |
| * periodic transfers |
| */ |
| enum cvmx_usb_transfer { |
| CVMX_USB_TRANSFER_CONTROL = 0, |
| CVMX_USB_TRANSFER_ISOCHRONOUS = 1, |
| CVMX_USB_TRANSFER_BULK = 2, |
| CVMX_USB_TRANSFER_INTERRUPT = 3, |
| }; |
| |
| /** |
| * enum cvmx_usb_direction - the transfer directions |
| * |
| * @CVMX_USB_DIRECTION_OUT: Data is transferring from Octeon to the device/host |
| * @CVMX_USB_DIRECTION_IN: Data is transferring from the device/host to Octeon |
| */ |
| enum cvmx_usb_direction { |
| CVMX_USB_DIRECTION_OUT, |
| CVMX_USB_DIRECTION_IN, |
| }; |
| |
| /** |
| * enum cvmx_usb_status - possible callback function status codes |
| * |
| * @CVMX_USB_STATUS_OK: The transaction / operation finished without |
| * any errors |
| * @CVMX_USB_STATUS_SHORT: FIXME: This is currently not implemented |
| * @CVMX_USB_STATUS_CANCEL: The transaction was canceled while in flight |
| * by a user call to cvmx_usb_cancel |
| * @CVMX_USB_STATUS_ERROR: The transaction aborted with an unexpected |
| * error status |
| * @CVMX_USB_STATUS_STALL: The transaction received a USB STALL response |
| * from the device |
| * @CVMX_USB_STATUS_XACTERR: The transaction failed with an error from the |
| * device even after a number of retries |
| * @CVMX_USB_STATUS_DATATGLERR: The transaction failed with a data toggle |
| * error even after a number of retries |
| * @CVMX_USB_STATUS_BABBLEERR: The transaction failed with a babble error |
| * @CVMX_USB_STATUS_FRAMEERR: The transaction failed with a frame error |
| * even after a number of retries |
| */ |
| enum cvmx_usb_status { |
| CVMX_USB_STATUS_OK, |
| CVMX_USB_STATUS_SHORT, |
| CVMX_USB_STATUS_CANCEL, |
| CVMX_USB_STATUS_ERROR, |
| CVMX_USB_STATUS_STALL, |
| CVMX_USB_STATUS_XACTERR, |
| CVMX_USB_STATUS_DATATGLERR, |
| CVMX_USB_STATUS_BABBLEERR, |
| CVMX_USB_STATUS_FRAMEERR, |
| }; |
| |
| /** |
| * struct cvmx_usb_port_status - the USB port status information |
| * |
| * @port_enabled: 1 = Usb port is enabled, 0 = disabled |
| * @port_over_current: 1 = Over current detected, 0 = Over current not |
| * detected. Octeon doesn't support over current detection. |
| * @port_powered: 1 = Port power is being supplied to the device, 0 = |
| * power is off. Octeon doesn't support turning port power |
| * off. |
| * @port_speed: Current port speed. |
| * @connected: 1 = A device is connected to the port, 0 = No device is |
| * connected. |
| * @connect_change: 1 = Device connected state changed since the last set |
| * status call. |
| */ |
| struct cvmx_usb_port_status { |
| u32 reserved : 25; |
| u32 port_enabled : 1; |
| u32 port_over_current : 1; |
| u32 port_powered : 1; |
| enum cvmx_usb_speed port_speed : 2; |
| u32 connected : 1; |
| u32 connect_change : 1; |
| }; |
| |
| /** |
| * struct cvmx_usb_iso_packet - descriptor for Isochronous packets |
| * |
| * @offset: This is the offset in bytes into the main buffer where this data |
| * is stored. |
| * @length: This is the length in bytes of the data. |
| * @status: This is the status of this individual packet transfer. |
| */ |
| struct cvmx_usb_iso_packet { |
| int offset; |
| int length; |
| enum cvmx_usb_status status; |
| }; |
| |
| /** |
| * enum cvmx_usb_initialize_flags - flags used by the initialization function |
| * |
| * @CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_XI: The USB port uses a 12MHz crystal |
| * as clock source at USB_XO and |
| * USB_XI. |
| * @CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_GND: The USB port uses 12/24/48MHz 2.5V |
| * board clock source at USB_XO. |
| * USB_XI should be tied to GND. |
| * @CVMX_USB_INITIALIZE_FLAGS_CLOCK_MHZ_MASK: Mask for clock speed field |
| * @CVMX_USB_INITIALIZE_FLAGS_CLOCK_12MHZ: Speed of reference clock or |
| * crystal |
| * @CVMX_USB_INITIALIZE_FLAGS_CLOCK_24MHZ: Speed of reference clock |
| * @CVMX_USB_INITIALIZE_FLAGS_CLOCK_48MHZ: Speed of reference clock |
| * @CVMX_USB_INITIALIZE_FLAGS_NO_DMA: Disable DMA and used polled IO for |
| * data transfer use for the USB |
| */ |
| enum cvmx_usb_initialize_flags { |
| CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_XI = 1 << 0, |
| CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_GND = 1 << 1, |
| CVMX_USB_INITIALIZE_FLAGS_CLOCK_MHZ_MASK = 3 << 3, |
| CVMX_USB_INITIALIZE_FLAGS_CLOCK_12MHZ = 1 << 3, |
| CVMX_USB_INITIALIZE_FLAGS_CLOCK_24MHZ = 2 << 3, |
| CVMX_USB_INITIALIZE_FLAGS_CLOCK_48MHZ = 3 << 3, |
| /* Bits 3-4 used to encode the clock frequency */ |
| CVMX_USB_INITIALIZE_FLAGS_NO_DMA = 1 << 5, |
| }; |
| |
| /** |
| * enum cvmx_usb_pipe_flags - internal flags for a pipe. |
| * |
| * @CVMX_USB_PIPE_FLAGS_SCHEDULED: Used internally to determine if a pipe is |
| * actively using hardware. |
| * @CVMX_USB_PIPE_FLAGS_NEED_PING: Used internally to determine if a high speed |
| * pipe is in the ping state. |
| */ |
| enum cvmx_usb_pipe_flags { |
| CVMX_USB_PIPE_FLAGS_SCHEDULED = 1 << 17, |
| CVMX_USB_PIPE_FLAGS_NEED_PING = 1 << 18, |
| }; |
| |
| /* Maximum number of times to retry failed transactions */ |
| #define MAX_RETRIES 3 |
| |
| /* Maximum number of hardware channels supported by the USB block */ |
| #define MAX_CHANNELS 8 |
| |
| /* |
| * The low level hardware can transfer a maximum of this number of bytes in each |
| * transfer. The field is 19 bits wide |
| */ |
| #define MAX_TRANSFER_BYTES ((1 << 19) - 1) |
| |
| /* |
| * The low level hardware can transfer a maximum of this number of packets in |
| * each transfer. The field is 10 bits wide |
| */ |
| #define MAX_TRANSFER_PACKETS ((1 << 10) - 1) |
| |
| /** |
| * Logical transactions may take numerous low level |
| * transactions, especially when splits are concerned. This |
| * enum represents all of the possible stages a transaction can |
| * be in. Note that split completes are always even. This is so |
| * the NAK handler can backup to the previous low level |
| * transaction with a simple clearing of bit 0. |
| */ |
| enum cvmx_usb_stage { |
| CVMX_USB_STAGE_NON_CONTROL, |
| CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE, |
| CVMX_USB_STAGE_SETUP, |
| CVMX_USB_STAGE_SETUP_SPLIT_COMPLETE, |
| CVMX_USB_STAGE_DATA, |
| CVMX_USB_STAGE_DATA_SPLIT_COMPLETE, |
| CVMX_USB_STAGE_STATUS, |
| CVMX_USB_STAGE_STATUS_SPLIT_COMPLETE, |
| }; |
| |
| /** |
| * struct cvmx_usb_transaction - describes each pending USB transaction |
| * regardless of type. These are linked together |
| * to form a list of pending requests for a pipe. |
| * |
| * @node: List node for transactions in the pipe. |
| * @type: Type of transaction, duplicated of the pipe. |
| * @flags: State flags for this transaction. |
| * @buffer: User's physical buffer address to read/write. |
| * @buffer_length: Size of the user's buffer in bytes. |
| * @control_header: For control transactions, physical address of the 8 |
| * byte standard header. |
| * @iso_start_frame: For ISO transactions, the starting frame number. |
| * @iso_number_packets: For ISO transactions, the number of packets in the |
| * request. |
| * @iso_packets: For ISO transactions, the sub packets in the request. |
| * @actual_bytes: Actual bytes transfer for this transaction. |
| * @stage: For control transactions, the current stage. |
| * @urb: URB. |
| */ |
| struct cvmx_usb_transaction { |
| struct list_head node; |
| enum cvmx_usb_transfer type; |
| u64 buffer; |
| int buffer_length; |
| u64 control_header; |
| int iso_start_frame; |
| int iso_number_packets; |
| struct cvmx_usb_iso_packet *iso_packets; |
| int xfersize; |
| int pktcnt; |
| int retries; |
| int actual_bytes; |
| enum cvmx_usb_stage stage; |
| struct urb *urb; |
| }; |
| |
| /** |
| * struct cvmx_usb_pipe - a pipe represents a virtual connection between Octeon |
| * and some USB device. It contains a list of pending |
| * request to the device. |
| * |
| * @node: List node for pipe list |
| * @next: Pipe after this one in the list |
| * @transactions: List of pending transactions |
| * @interval: For periodic pipes, the interval between packets in |
| * frames |
| * @next_tx_frame: The next frame this pipe is allowed to transmit on |
| * @flags: State flags for this pipe |
| * @device_speed: Speed of device connected to this pipe |
| * @transfer_type: Type of transaction supported by this pipe |
| * @transfer_dir: IN or OUT. Ignored for Control |
| * @multi_count: Max packet in a row for the device |
| * @max_packet: The device's maximum packet size in bytes |
| * @device_addr: USB device address at other end of pipe |
| * @endpoint_num: USB endpoint number at other end of pipe |
| * @hub_device_addr: Hub address this device is connected to |
| * @hub_port: Hub port this device is connected to |
| * @pid_toggle: This toggles between 0/1 on every packet send to track |
| * the data pid needed |
| * @channel: Hardware DMA channel for this pipe |
| * @split_sc_frame: The low order bits of the frame number the split |
| * complete should be sent on |
| */ |
| struct cvmx_usb_pipe { |
| struct list_head node; |
| struct list_head transactions; |
| u64 interval; |
| u64 next_tx_frame; |
| enum cvmx_usb_pipe_flags flags; |
| enum cvmx_usb_speed device_speed; |
| enum cvmx_usb_transfer transfer_type; |
| enum cvmx_usb_direction transfer_dir; |
| int multi_count; |
| u16 max_packet; |
| u8 device_addr; |
| u8 endpoint_num; |
| u8 hub_device_addr; |
| u8 hub_port; |
| u8 pid_toggle; |
| u8 channel; |
| s8 split_sc_frame; |
| }; |
| |
| struct cvmx_usb_tx_fifo { |
| struct { |
| int channel; |
| int size; |
| u64 address; |
| } entry[MAX_CHANNELS + 1]; |
| int head; |
| int tail; |
| }; |
| |
| /** |
| * struct octeon_hcd - the state of the USB block |
| * |
| * lock: Serialization lock. |
| * init_flags: Flags passed to initialize. |
| * index: Which USB block this is for. |
| * idle_hardware_channels: Bit set for every idle hardware channel. |
| * usbcx_hprt: Stored port status so we don't need to read a CSR to |
| * determine splits. |
| * pipe_for_channel: Map channels to pipes. |
| * pipe: Storage for pipes. |
| * indent: Used by debug output to indent functions. |
| * port_status: Last port status used for change notification. |
| * idle_pipes: List of open pipes that have no transactions. |
| * active_pipes: Active pipes indexed by transfer type. |
| * frame_number: Increments every SOF interrupt for time keeping. |
| * active_split: Points to the current active split, or NULL. |
| */ |
| struct octeon_hcd { |
| spinlock_t lock; /* serialization lock */ |
| int init_flags; |
| int index; |
| int idle_hardware_channels; |
| union cvmx_usbcx_hprt usbcx_hprt; |
| struct cvmx_usb_pipe *pipe_for_channel[MAX_CHANNELS]; |
| int indent; |
| struct cvmx_usb_port_status port_status; |
| struct list_head idle_pipes; |
| struct list_head active_pipes[4]; |
| u64 frame_number; |
| struct cvmx_usb_transaction *active_split; |
| struct cvmx_usb_tx_fifo periodic; |
| struct cvmx_usb_tx_fifo nonperiodic; |
| }; |
| |
| /* |
| * This macro logically sets a single field in a CSR. It does the sequence |
| * read, modify, and write |
| */ |
| #define USB_SET_FIELD32(address, _union, field, value) \ |
| do { \ |
| union _union c; \ |
| \ |
| c.u32 = cvmx_usb_read_csr32(usb, address); \ |
| c.s.field = value; \ |
| cvmx_usb_write_csr32(usb, address, c.u32); \ |
| } while (0) |
| |
| /* Returns the IO address to push/pop stuff data from the FIFOs */ |
| #define USB_FIFO_ADDRESS(channel, usb_index) \ |
| (CVMX_USBCX_GOTGCTL(usb_index) + ((channel) + 1) * 0x1000) |
| |
| /** |
| * struct octeon_temp_buffer - a bounce buffer for USB transfers |
| * @orig_buffer: the original buffer passed by the USB stack |
| * @data: the newly allocated temporary buffer (excluding meta-data) |
| * |
| * Both the DMA engine and FIFO mode will always transfer full 32-bit words. If |
| * the buffer is too short, we need to allocate a temporary one, and this struct |
| * represents it. |
| */ |
| struct octeon_temp_buffer { |
| void *orig_buffer; |
| u8 data[]; |
| }; |
| |
| static inline struct usb_hcd *octeon_to_hcd(struct octeon_hcd *p) |
| { |
| return container_of((void *)p, struct usb_hcd, hcd_priv); |
| } |
| |
| /** |
| * octeon_alloc_temp_buffer - allocate a temporary buffer for USB transfer |
| * (if needed) |
| * @urb: URB. |
| * @mem_flags: Memory allocation flags. |
| * |
| * This function allocates a temporary bounce buffer whenever it's needed |
| * due to HW limitations. |
| */ |
| static int octeon_alloc_temp_buffer(struct urb *urb, gfp_t mem_flags) |
| { |
| struct octeon_temp_buffer *temp; |
| |
| if (urb->num_sgs || urb->sg || |
| (urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP) || |
| !(urb->transfer_buffer_length % sizeof(u32))) |
| return 0; |
| |
| temp = kmalloc(ALIGN(urb->transfer_buffer_length, sizeof(u32)) + |
| sizeof(*temp), mem_flags); |
| if (!temp) |
| return -ENOMEM; |
| |
| temp->orig_buffer = urb->transfer_buffer; |
| if (usb_urb_dir_out(urb)) |
| memcpy(temp->data, urb->transfer_buffer, |
| urb->transfer_buffer_length); |
| urb->transfer_buffer = temp->data; |
| urb->transfer_flags |= URB_ALIGNED_TEMP_BUFFER; |
| |
| return 0; |
| } |
| |
| /** |
| * octeon_free_temp_buffer - free a temporary buffer used by USB transfers. |
| * @urb: URB. |
| * |
| * Frees a buffer allocated by octeon_alloc_temp_buffer(). |
| */ |
| static void octeon_free_temp_buffer(struct urb *urb) |
| { |
| struct octeon_temp_buffer *temp; |
| size_t length; |
| |
| if (!(urb->transfer_flags & URB_ALIGNED_TEMP_BUFFER)) |
| return; |
| |
| temp = container_of(urb->transfer_buffer, struct octeon_temp_buffer, |
| data); |
| if (usb_urb_dir_in(urb)) { |
| if (usb_pipeisoc(urb->pipe)) |
| length = urb->transfer_buffer_length; |
| else |
| length = urb->actual_length; |
| |
| memcpy(temp->orig_buffer, urb->transfer_buffer, length); |
| } |
| urb->transfer_buffer = temp->orig_buffer; |
| urb->transfer_flags &= ~URB_ALIGNED_TEMP_BUFFER; |
| kfree(temp); |
| } |
| |
| /** |
| * octeon_map_urb_for_dma - Octeon-specific map_urb_for_dma(). |
| * @hcd: USB HCD structure. |
| * @urb: URB. |
| * @mem_flags: Memory allocation flags. |
| */ |
| static int octeon_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, |
| gfp_t mem_flags) |
| { |
| int ret; |
| |
| ret = octeon_alloc_temp_buffer(urb, mem_flags); |
| if (ret) |
| return ret; |
| |
| ret = usb_hcd_map_urb_for_dma(hcd, urb, mem_flags); |
| if (ret) |
| octeon_free_temp_buffer(urb); |
| |
| return ret; |
| } |
| |
| /** |
| * octeon_unmap_urb_for_dma - Octeon-specific unmap_urb_for_dma() |
| * @hcd: USB HCD structure. |
| * @urb: URB. |
| */ |
| static void octeon_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb) |
| { |
| usb_hcd_unmap_urb_for_dma(hcd, urb); |
| octeon_free_temp_buffer(urb); |
| } |
| |
| /** |
| * Read a USB 32bit CSR. It performs the necessary address swizzle |
| * for 32bit CSRs and logs the value in a readable format if |
| * debugging is on. |
| * |
| * @usb: USB block this access is for |
| * @address: 64bit address to read |
| * |
| * Returns: Result of the read |
| */ |
| static inline u32 cvmx_usb_read_csr32(struct octeon_hcd *usb, u64 address) |
| { |
| return cvmx_read64_uint32(address ^ 4); |
| } |
| |
| /** |
| * Write a USB 32bit CSR. It performs the necessary address |
| * swizzle for 32bit CSRs and logs the value in a readable format |
| * if debugging is on. |
| * |
| * @usb: USB block this access is for |
| * @address: 64bit address to write |
| * @value: Value to write |
| */ |
| static inline void cvmx_usb_write_csr32(struct octeon_hcd *usb, |
| u64 address, u32 value) |
| { |
| cvmx_write64_uint32(address ^ 4, value); |
| cvmx_read64_uint64(CVMX_USBNX_DMA0_INB_CHN0(usb->index)); |
| } |
| |
| /** |
| * Return non zero if this pipe connects to a non HIGH speed |
| * device through a high speed hub. |
| * |
| * @usb: USB block this access is for |
| * @pipe: Pipe to check |
| * |
| * Returns: Non zero if we need to do split transactions |
| */ |
| static inline int cvmx_usb_pipe_needs_split(struct octeon_hcd *usb, |
| struct cvmx_usb_pipe *pipe) |
| { |
| return pipe->device_speed != CVMX_USB_SPEED_HIGH && |
| usb->usbcx_hprt.s.prtspd == CVMX_USB_SPEED_HIGH; |
| } |
| |
| /** |
| * Trivial utility function to return the correct PID for a pipe |
| * |
| * @pipe: pipe to check |
| * |
| * Returns: PID for pipe |
| */ |
| static inline int cvmx_usb_get_data_pid(struct cvmx_usb_pipe *pipe) |
| { |
| if (pipe->pid_toggle) |
| return 2; /* Data1 */ |
| return 0; /* Data0 */ |
| } |
| |
| /* Loops through register until txfflsh or rxfflsh become zero.*/ |
| static int cvmx_wait_tx_rx(struct octeon_hcd *usb, int fflsh_type) |
| { |
| int result; |
| u64 address = CVMX_USBCX_GRSTCTL(usb->index); |
| u64 done = cvmx_get_cycle() + 100 * |
| (u64)octeon_get_clock_rate / 1000000; |
| union cvmx_usbcx_grstctl c; |
| |
| while (1) { |
| c.u32 = cvmx_usb_read_csr32(usb, address); |
| if (fflsh_type == 0 && c.s.txfflsh == 0) { |
| result = 0; |
| break; |
| } else if (fflsh_type == 1 && c.s.rxfflsh == 0) { |
| result = 0; |
| break; |
| } else if (cvmx_get_cycle() > done) { |
| result = -1; |
| break; |
| } |
| |
| __delay(100); |
| } |
| return result; |
| } |
| |
| static void cvmx_fifo_setup(struct octeon_hcd *usb) |
| { |
| union cvmx_usbcx_ghwcfg3 usbcx_ghwcfg3; |
| union cvmx_usbcx_gnptxfsiz npsiz; |
| union cvmx_usbcx_hptxfsiz psiz; |
| |
| usbcx_ghwcfg3.u32 = cvmx_usb_read_csr32(usb, |
| CVMX_USBCX_GHWCFG3(usb->index)); |
| |
| /* |
| * Program the USBC_GRXFSIZ register to select the size of the receive |
| * FIFO (25%). |
| */ |
| USB_SET_FIELD32(CVMX_USBCX_GRXFSIZ(usb->index), cvmx_usbcx_grxfsiz, |
| rxfdep, usbcx_ghwcfg3.s.dfifodepth / 4); |
| |
| /* |
| * Program the USBC_GNPTXFSIZ register to select the size and the start |
| * address of the non-periodic transmit FIFO for nonperiodic |
| * transactions (50%). |
| */ |
| npsiz.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_GNPTXFSIZ(usb->index)); |
| npsiz.s.nptxfdep = usbcx_ghwcfg3.s.dfifodepth / 2; |
| npsiz.s.nptxfstaddr = usbcx_ghwcfg3.s.dfifodepth / 4; |
| cvmx_usb_write_csr32(usb, CVMX_USBCX_GNPTXFSIZ(usb->index), npsiz.u32); |
| |
| /* |
| * Program the USBC_HPTXFSIZ register to select the size and start |
| * address of the periodic transmit FIFO for periodic transactions |
| * (25%). |
| */ |
| psiz.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_HPTXFSIZ(usb->index)); |
| psiz.s.ptxfsize = usbcx_ghwcfg3.s.dfifodepth / 4; |
| psiz.s.ptxfstaddr = 3 * usbcx_ghwcfg3.s.dfifodepth / 4; |
| cvmx_usb_write_csr32(usb, CVMX_USBCX_HPTXFSIZ(usb->index), psiz.u32); |
| |
| /* Flush all FIFOs */ |
| USB_SET_FIELD32(CVMX_USBCX_GRSTCTL(usb->index), |
| cvmx_usbcx_grstctl, txfnum, 0x10); |
| USB_SET_FIELD32(CVMX_USBCX_GRSTCTL(usb->index), |
| cvmx_usbcx_grstctl, txfflsh, 1); |
| cvmx_wait_tx_rx(usb, 0); |
| USB_SET_FIELD32(CVMX_USBCX_GRSTCTL(usb->index), |
| cvmx_usbcx_grstctl, rxfflsh, 1); |
| cvmx_wait_tx_rx(usb, 1); |
| } |
| |
| /** |
| * Shutdown a USB port after a call to cvmx_usb_initialize(). |
| * The port should be disabled with all pipes closed when this |
| * function is called. |
| * |
| * @usb: USB device state populated by cvmx_usb_initialize(). |
| * |
| * Returns: 0 or a negative error code. |
| */ |
| static int cvmx_usb_shutdown(struct octeon_hcd *usb) |
| { |
| union cvmx_usbnx_clk_ctl usbn_clk_ctl; |
| |
| /* Make sure all pipes are closed */ |
| if (!list_empty(&usb->idle_pipes) || |
| !list_empty(&usb->active_pipes[CVMX_USB_TRANSFER_ISOCHRONOUS]) || |
| !list_empty(&usb->active_pipes[CVMX_USB_TRANSFER_INTERRUPT]) || |
| !list_empty(&usb->active_pipes[CVMX_USB_TRANSFER_CONTROL]) || |
| !list_empty(&usb->active_pipes[CVMX_USB_TRANSFER_BULK])) |
| return -EBUSY; |
| |
| /* Disable the clocks and put them in power on reset */ |
| usbn_clk_ctl.u64 = cvmx_read64_uint64(CVMX_USBNX_CLK_CTL(usb->index)); |
| usbn_clk_ctl.s.enable = 1; |
| usbn_clk_ctl.s.por = 1; |
| usbn_clk_ctl.s.hclk_rst = 1; |
| usbn_clk_ctl.s.prst = 0; |
| usbn_clk_ctl.s.hrst = 0; |
| cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64); |
| return 0; |
| } |
| |
| /** |
| * Initialize a USB port for use. This must be called before any |
| * other access to the Octeon USB port is made. The port starts |
| * off in the disabled state. |
| * |
| * @dev: Pointer to struct device for logging purposes. |
| * @usb: Pointer to struct octeon_hcd. |
| * |
| * Returns: 0 or a negative error code. |
| */ |
| static int cvmx_usb_initialize(struct device *dev, |
| struct octeon_hcd *usb) |
| { |
| int channel; |
| int divisor; |
| int retries = 0; |
| union cvmx_usbcx_hcfg usbcx_hcfg; |
| union cvmx_usbnx_clk_ctl usbn_clk_ctl; |
| union cvmx_usbcx_gintsts usbc_gintsts; |
| union cvmx_usbcx_gahbcfg usbcx_gahbcfg; |
| union cvmx_usbcx_gintmsk usbcx_gintmsk; |
| union cvmx_usbcx_gusbcfg usbcx_gusbcfg; |
| union cvmx_usbnx_usbp_ctl_status usbn_usbp_ctl_status; |
| |
| retry: |
| /* |
| * Power On Reset and PHY Initialization |
| * |
| * 1. Wait for DCOK to assert (nothing to do) |
| * |
| * 2a. Write USBN0/1_CLK_CTL[POR] = 1 and |
| * USBN0/1_CLK_CTL[HRST,PRST,HCLK_RST] = 0 |
| */ |
| usbn_clk_ctl.u64 = cvmx_read64_uint64(CVMX_USBNX_CLK_CTL(usb->index)); |
| usbn_clk_ctl.s.por = 1; |
| usbn_clk_ctl.s.hrst = 0; |
| usbn_clk_ctl.s.prst = 0; |
| usbn_clk_ctl.s.hclk_rst = 0; |
| usbn_clk_ctl.s.enable = 0; |
| /* |
| * 2b. Select the USB reference clock/crystal parameters by writing |
| * appropriate values to USBN0/1_CLK_CTL[P_C_SEL, P_RTYPE, P_COM_ON] |
| */ |
| if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_GND) { |
| /* |
| * The USB port uses 12/24/48MHz 2.5V board clock |
| * source at USB_XO. USB_XI should be tied to GND. |
| * Most Octeon evaluation boards require this setting |
| */ |
| if (OCTEON_IS_MODEL(OCTEON_CN3XXX) || |
| OCTEON_IS_MODEL(OCTEON_CN56XX) || |
| OCTEON_IS_MODEL(OCTEON_CN50XX)) |
| /* From CN56XX,CN50XX,CN31XX,CN30XX manuals */ |
| usbn_clk_ctl.s.p_rtype = 2; /* p_rclk=1 & p_xenbn=0 */ |
| else |
| /* From CN52XX manual */ |
| usbn_clk_ctl.s.p_rtype = 1; |
| |
| switch (usb->init_flags & |
| CVMX_USB_INITIALIZE_FLAGS_CLOCK_MHZ_MASK) { |
| case CVMX_USB_INITIALIZE_FLAGS_CLOCK_12MHZ: |
| usbn_clk_ctl.s.p_c_sel = 0; |
| break; |
| case CVMX_USB_INITIALIZE_FLAGS_CLOCK_24MHZ: |
| usbn_clk_ctl.s.p_c_sel = 1; |
| break; |
| case CVMX_USB_INITIALIZE_FLAGS_CLOCK_48MHZ: |
| usbn_clk_ctl.s.p_c_sel = 2; |
| break; |
| } |
| } else { |
| /* |
| * The USB port uses a 12MHz crystal as clock source |
| * at USB_XO and USB_XI |
| */ |
| if (OCTEON_IS_MODEL(OCTEON_CN3XXX)) |
| /* From CN31XX,CN30XX manual */ |
| usbn_clk_ctl.s.p_rtype = 3; /* p_rclk=1 & p_xenbn=1 */ |
| else |
| /* From CN56XX,CN52XX,CN50XX manuals. */ |
| usbn_clk_ctl.s.p_rtype = 0; |
| |
| usbn_clk_ctl.s.p_c_sel = 0; |
| } |
| /* |
| * 2c. Select the HCLK via writing USBN0/1_CLK_CTL[DIVIDE, DIVIDE2] and |
| * setting USBN0/1_CLK_CTL[ENABLE] = 1. Divide the core clock down |
| * such that USB is as close as possible to 125Mhz |
| */ |
| divisor = DIV_ROUND_UP(octeon_get_clock_rate(), 125000000); |
| /* Lower than 4 doesn't seem to work properly */ |
| if (divisor < 4) |
| divisor = 4; |
| usbn_clk_ctl.s.divide = divisor; |
| usbn_clk_ctl.s.divide2 = 0; |
| cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64); |
| |
| /* 2d. Write USBN0/1_CLK_CTL[HCLK_RST] = 1 */ |
| usbn_clk_ctl.s.hclk_rst = 1; |
| cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64); |
| /* 2e. Wait 64 core-clock cycles for HCLK to stabilize */ |
| __delay(64); |
| /* |
| * 3. Program the power-on reset field in the USBN clock-control |
| * register: |
| * USBN_CLK_CTL[POR] = 0 |
| */ |
| usbn_clk_ctl.s.por = 0; |
| cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64); |
| /* 4. Wait 1 ms for PHY clock to start */ |
| mdelay(1); |
| /* |
| * 5. Program the Reset input from automatic test equipment field in the |
| * USBP control and status register: |
| * USBN_USBP_CTL_STATUS[ATE_RESET] = 1 |
| */ |
| usbn_usbp_ctl_status.u64 = |
| cvmx_read64_uint64(CVMX_USBNX_USBP_CTL_STATUS(usb->index)); |
| usbn_usbp_ctl_status.s.ate_reset = 1; |
| cvmx_write64_uint64(CVMX_USBNX_USBP_CTL_STATUS(usb->index), |
| usbn_usbp_ctl_status.u64); |
| /* 6. Wait 10 cycles */ |
| __delay(10); |
| /* |
| * 7. Clear ATE_RESET field in the USBN clock-control register: |
| * USBN_USBP_CTL_STATUS[ATE_RESET] = 0 |
| */ |
| usbn_usbp_ctl_status.s.ate_reset = 0; |
| cvmx_write64_uint64(CVMX_USBNX_USBP_CTL_STATUS(usb->index), |
| usbn_usbp_ctl_status.u64); |
| /* |
| * 8. Program the PHY reset field in the USBN clock-control register: |
| * USBN_CLK_CTL[PRST] = 1 |
| */ |
| usbn_clk_ctl.s.prst = 1; |
| cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64); |
| /* |
| * 9. Program the USBP control and status register to select host or |
| * device mode. USBN_USBP_CTL_STATUS[HST_MODE] = 0 for host, = 1 for |
| * device |
| */ |
| usbn_usbp_ctl_status.s.hst_mode = 0; |
| cvmx_write64_uint64(CVMX_USBNX_USBP_CTL_STATUS(usb->index), |
| usbn_usbp_ctl_status.u64); |
| /* 10. Wait 1 us */ |
| udelay(1); |
| /* |
| * 11. Program the hreset_n field in the USBN clock-control register: |
| * USBN_CLK_CTL[HRST] = 1 |
| */ |
| usbn_clk_ctl.s.hrst = 1; |
| cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64); |
| /* 12. Proceed to USB core initialization */ |
| usbn_clk_ctl.s.enable = 1; |
| cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64); |
| udelay(1); |
| |
| /* |
| * USB Core Initialization |
| * |
| * 1. Read USBC_GHWCFG1, USBC_GHWCFG2, USBC_GHWCFG3, USBC_GHWCFG4 to |
| * determine USB core configuration parameters. |
| * |
| * Nothing needed |
| * |
| * 2. Program the following fields in the global AHB configuration |
| * register (USBC_GAHBCFG) |
| * DMA mode, USBC_GAHBCFG[DMAEn]: 1 = DMA mode, 0 = slave mode |
| * Burst length, USBC_GAHBCFG[HBSTLEN] = 0 |
| * Nonperiodic TxFIFO empty level (slave mode only), |
| * USBC_GAHBCFG[NPTXFEMPLVL] |
| * Periodic TxFIFO empty level (slave mode only), |
| * USBC_GAHBCFG[PTXFEMPLVL] |
| * Global interrupt mask, USBC_GAHBCFG[GLBLINTRMSK] = 1 |
| */ |
| usbcx_gahbcfg.u32 = 0; |
| usbcx_gahbcfg.s.dmaen = !(usb->init_flags & |
| CVMX_USB_INITIALIZE_FLAGS_NO_DMA); |
| usbcx_gahbcfg.s.hbstlen = 0; |
| usbcx_gahbcfg.s.nptxfemplvl = 1; |
| usbcx_gahbcfg.s.ptxfemplvl = 1; |
| usbcx_gahbcfg.s.glblintrmsk = 1; |
| cvmx_usb_write_csr32(usb, CVMX_USBCX_GAHBCFG(usb->index), |
| usbcx_gahbcfg.u32); |
| |
| /* |
| * 3. Program the following fields in USBC_GUSBCFG register. |
| * HS/FS timeout calibration, USBC_GUSBCFG[TOUTCAL] = 0 |
| * ULPI DDR select, USBC_GUSBCFG[DDRSEL] = 0 |
| * USB turnaround time, USBC_GUSBCFG[USBTRDTIM] = 0x5 |
| * PHY low-power clock select, USBC_GUSBCFG[PHYLPWRCLKSEL] = 0 |
| */ |
| usbcx_gusbcfg.u32 = cvmx_usb_read_csr32(usb, |
| CVMX_USBCX_GUSBCFG(usb->index)); |
| usbcx_gusbcfg.s.toutcal = 0; |
| usbcx_gusbcfg.s.ddrsel = 0; |
| usbcx_gusbcfg.s.usbtrdtim = 0x5; |
| usbcx_gusbcfg.s.phylpwrclksel = 0; |
| cvmx_usb_write_csr32(usb, CVMX_USBCX_GUSBCFG(usb->index), |
| usbcx_gusbcfg.u32); |
| |
| /* |
| * 4. The software must unmask the following bits in the USBC_GINTMSK |
| * register. |
| * OTG interrupt mask, USBC_GINTMSK[OTGINTMSK] = 1 |
| * Mode mismatch interrupt mask, USBC_GINTMSK[MODEMISMSK] = 1 |
| */ |
| usbcx_gintmsk.u32 = cvmx_usb_read_csr32(usb, |
| CVMX_USBCX_GINTMSK(usb->index)); |
| usbcx_gintmsk.s.otgintmsk = 1; |
| usbcx_gintmsk.s.modemismsk = 1; |
| usbcx_gintmsk.s.hchintmsk = 1; |
| usbcx_gintmsk.s.sofmsk = 0; |
| /* We need RX FIFO interrupts if we don't have DMA */ |
| if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA) |
| usbcx_gintmsk.s.rxflvlmsk = 1; |
| cvmx_usb_write_csr32(usb, CVMX_USBCX_GINTMSK(usb->index), |
| usbcx_gintmsk.u32); |
| |
| /* |
| * Disable all channel interrupts. We'll enable them per channel later. |
| */ |
| for (channel = 0; channel < 8; channel++) |
| cvmx_usb_write_csr32(usb, |
| CVMX_USBCX_HCINTMSKX(channel, usb->index), |
| 0); |
| |
| /* |
| * Host Port Initialization |
| * |
| * 1. Program the host-port interrupt-mask field to unmask, |
| * USBC_GINTMSK[PRTINT] = 1 |
| */ |
| USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index), |
| cvmx_usbcx_gintmsk, prtintmsk, 1); |
| USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index), |
| cvmx_usbcx_gintmsk, disconnintmsk, 1); |
| |
| /* |
| * 2. Program the USBC_HCFG register to select full-speed host |
| * or high-speed host. |
| */ |
| usbcx_hcfg.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_HCFG(usb->index)); |
| usbcx_hcfg.s.fslssupp = 0; |
| usbcx_hcfg.s.fslspclksel = 0; |
| cvmx_usb_write_csr32(usb, CVMX_USBCX_HCFG(usb->index), usbcx_hcfg.u32); |
| |
| cvmx_fifo_setup(usb); |
| |
| /* |
| * If the controller is getting port events right after the reset, it |
| * means the initialization failed. Try resetting the controller again |
| * in such case. This is seen to happen after cold boot on DSR-1000N. |
| */ |
| usbc_gintsts.u32 = cvmx_usb_read_csr32(usb, |
| CVMX_USBCX_GINTSTS(usb->index)); |
| cvmx_usb_write_csr32(usb, CVMX_USBCX_GINTSTS(usb->index), |
| usbc_gintsts.u32); |
| dev_dbg(dev, "gintsts after reset: 0x%x\n", (int)usbc_gintsts.u32); |
| if (!usbc_gintsts.s.disconnint && !usbc_gintsts.s.prtint) |
| return 0; |
| if (retries++ >= 5) |
| return -EAGAIN; |
| dev_info(dev, "controller reset failed (gintsts=0x%x) - retrying\n", |
| (int)usbc_gintsts.u32); |
| msleep(50); |
| cvmx_usb_shutdown(usb); |
| msleep(50); |
| goto retry; |
| } |
| |
| /** |
| * Reset a USB port. After this call succeeds, the USB port is |
| * online and servicing requests. |
| * |
| * @usb: USB device state populated by cvmx_usb_initialize(). |
| */ |
| static void cvmx_usb_reset_port(struct octeon_hcd *usb) |
| { |
| usb->usbcx_hprt.u32 = cvmx_usb_read_csr32(usb, |
| CVMX_USBCX_HPRT(usb->index)); |
| |
| /* Program the port reset bit to start the reset process */ |
| USB_SET_FIELD32(CVMX_USBCX_HPRT(usb->index), cvmx_usbcx_hprt, |
| prtrst, 1); |
| |
| /* |
| * Wait at least 50ms (high speed), or 10ms (full speed) for the reset |
| * process to complete. |
| */ |
| mdelay(50); |
| |
| /* Program the port reset bit to 0, USBC_HPRT[PRTRST] = 0 */ |
| USB_SET_FIELD32(CVMX_USBCX_HPRT(usb->index), cvmx_usbcx_hprt, |
| prtrst, 0); |
| |
| /* |
| * Read the port speed field to get the enumerated speed, |
| * USBC_HPRT[PRTSPD]. |
| */ |
| usb->usbcx_hprt.u32 = cvmx_usb_read_csr32(usb, |
| CVMX_USBCX_HPRT(usb->index)); |
| } |
| |
| /** |
| * Disable a USB port. After this call the USB port will not |
| * generate data transfers and will not generate events. |
| * Transactions in process will fail and call their |
| * associated callbacks. |
| * |
| * @usb: USB device state populated by cvmx_usb_initialize(). |
| * |
| * Returns: 0 or a negative error code. |
| */ |
| static int cvmx_usb_disable(struct octeon_hcd *usb) |
| { |
| /* Disable the port */ |
| USB_SET_FIELD32(CVMX_USBCX_HPRT(usb->index), cvmx_usbcx_hprt, |
| prtena, 1); |
| return 0; |
| } |
| |
| /** |
| * Get the current state of the USB port. Use this call to |
| * determine if the usb port has anything connected, is enabled, |
| * or has some sort of error condition. The return value of this |
| * call has "changed" bits to signal of the value of some fields |
| * have changed between calls. |
| * |
| * @usb: USB device state populated by cvmx_usb_initialize(). |
| * |
| * Returns: Port status information |
| */ |
| static struct cvmx_usb_port_status cvmx_usb_get_status(struct octeon_hcd *usb) |
| { |
| union cvmx_usbcx_hprt usbc_hprt; |
| struct cvmx_usb_port_status result; |
| |
| memset(&result, 0, sizeof(result)); |
| |
| usbc_hprt.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_HPRT(usb->index)); |
| result.port_enabled = usbc_hprt.s.prtena; |
| result.port_over_current = usbc_hprt.s.prtovrcurract; |
| result.port_powered = usbc_hprt.s.prtpwr; |
| result.port_speed = usbc_hprt.s.prtspd; |
| result.connected = usbc_hprt.s.prtconnsts; |
| result.connect_change = |
| result.connected != usb->port_status.connected; |
| |
| return result; |
| } |
| |
| /** |
| * Open a virtual pipe between the host and a USB device. A pipe |
| * must be opened before data can be transferred between a device |
| * and Octeon. |
| * |
| * @usb: USB device state populated by cvmx_usb_initialize(). |
| * @device_addr: |
| * USB device address to open the pipe to |
| * (0-127). |
| * @endpoint_num: |
| * USB endpoint number to open the pipe to |
| * (0-15). |
| * @device_speed: |
| * The speed of the device the pipe is going |
| * to. This must match the device's speed, |
| * which may be different than the port speed. |
| * @max_packet: The maximum packet length the device can |
| * transmit/receive (low speed=0-8, full |
| * speed=0-1023, high speed=0-1024). This value |
| * comes from the standard endpoint descriptor |
| * field wMaxPacketSize bits <10:0>. |
| * @transfer_type: |
| * The type of transfer this pipe is for. |
| * @transfer_dir: |
| * The direction the pipe is in. This is not |
| * used for control pipes. |
| * @interval: For ISOCHRONOUS and INTERRUPT transfers, |
| * this is how often the transfer is scheduled |
| * for. All other transfers should specify |
| * zero. The units are in frames (8000/sec at |
| * high speed, 1000/sec for full speed). |
| * @multi_count: |
| * For high speed devices, this is the maximum |
| * allowed number of packet per microframe. |
| * Specify zero for non high speed devices. This |
| * value comes from the standard endpoint descriptor |
| * field wMaxPacketSize bits <12:11>. |
| * @hub_device_addr: |
| * Hub device address this device is connected |
| * to. Devices connected directly to Octeon |
| * use zero. This is only used when the device |
| * is full/low speed behind a high speed hub. |
| * The address will be of the high speed hub, |
| * not and full speed hubs after it. |
| * @hub_port: Which port on the hub the device is |
| * connected. Use zero for devices connected |
| * directly to Octeon. Like hub_device_addr, |
| * this is only used for full/low speed |
| * devices behind a high speed hub. |
| * |
| * Returns: A non-NULL value is a pipe. NULL means an error. |
| */ |
| static struct cvmx_usb_pipe *cvmx_usb_open_pipe(struct octeon_hcd *usb, |
| int device_addr, |
| int endpoint_num, |
| enum cvmx_usb_speed |
| device_speed, |
| int max_packet, |
| enum cvmx_usb_transfer |
| transfer_type, |
| enum cvmx_usb_direction |
| transfer_dir, |
| int interval, int multi_count, |
| int hub_device_addr, |
| int hub_port) |
| { |
| struct cvmx_usb_pipe *pipe; |
| |
| pipe = kzalloc(sizeof(*pipe), GFP_ATOMIC); |
| if (!pipe) |
| return NULL; |
| if ((device_speed == CVMX_USB_SPEED_HIGH) && |
| (transfer_dir == CVMX_USB_DIRECTION_OUT) && |
| (transfer_type == CVMX_USB_TRANSFER_BULK)) |
| pipe->flags |= CVMX_USB_PIPE_FLAGS_NEED_PING; |
| pipe->device_addr = device_addr; |
| pipe->endpoint_num = endpoint_num; |
| pipe->device_speed = device_speed; |
| pipe->max_packet = max_packet; |
| pipe->transfer_type = transfer_type; |
| pipe->transfer_dir = transfer_dir; |
| INIT_LIST_HEAD(&pipe->transactions); |
| |
| /* |
| * All pipes use interval to rate limit NAK processing. Force an |
| * interval if one wasn't supplied |
| */ |
| if (!interval) |
| interval = 1; |
| if (cvmx_usb_pipe_needs_split(usb, pipe)) { |
| pipe->interval = interval * 8; |
| /* Force start splits to be schedule on uFrame 0 */ |
| pipe->next_tx_frame = ((usb->frame_number + 7) & ~7) + |
| pipe->interval; |
| } else { |
| pipe->interval = interval; |
| pipe->next_tx_frame = usb->frame_number + pipe->interval; |
| } |
| pipe->multi_count = multi_count; |
| pipe->hub_device_addr = hub_device_addr; |
| pipe->hub_port = hub_port; |
| pipe->pid_toggle = 0; |
| pipe->split_sc_frame = -1; |
| list_add_tail(&pipe->node, &usb->idle_pipes); |
| |
| /* |
| * We don't need to tell the hardware about this pipe yet since |
| * it doesn't have any submitted requests |
| */ |
| |
| return pipe; |
| } |
| |
| /** |
| * Poll the RX FIFOs and remove data as needed. This function is only used |
| * in non DMA mode. It is very important that this function be called quickly |
| * enough to prevent FIFO overflow. |
| * |
| * @usb: USB device state populated by cvmx_usb_initialize(). |
| */ |
| static void cvmx_usb_poll_rx_fifo(struct octeon_hcd *usb) |
| { |
| union cvmx_usbcx_grxstsph rx_status; |
| int channel; |
| int bytes; |
| u64 address; |
| u32 *ptr; |
| |
| rx_status.u32 = cvmx_usb_read_csr32(usb, |
| CVMX_USBCX_GRXSTSPH(usb->index)); |
| /* Only read data if IN data is there */ |
| if (rx_status.s.pktsts != 2) |
| return; |
| /* Check if no data is available */ |
| if (!rx_status.s.bcnt) |
| return; |
| |
| channel = rx_status.s.chnum; |
| bytes = rx_status.s.bcnt; |
| if (!bytes) |
| return; |
| |
| /* Get where the DMA engine would have written this data */ |
| address = cvmx_read64_uint64(CVMX_USBNX_DMA0_INB_CHN0(usb->index) + |
| channel * 8); |
| |
| ptr = cvmx_phys_to_ptr(address); |
| cvmx_write64_uint64(CVMX_USBNX_DMA0_INB_CHN0(usb->index) + channel * 8, |
| address + bytes); |
| |
| /* Loop writing the FIFO data for this packet into memory */ |
| while (bytes > 0) { |
| *ptr++ = cvmx_usb_read_csr32(usb, |
| USB_FIFO_ADDRESS(channel, usb->index)); |
| bytes -= 4; |
| } |
| CVMX_SYNCW; |
| } |
| |
| /** |
| * Fill the TX hardware fifo with data out of the software |
| * fifos |
| * |
| * @usb: USB device state populated by cvmx_usb_initialize(). |
| * @fifo: Software fifo to use |
| * @available: Amount of space in the hardware fifo |
| * |
| * Returns: Non zero if the hardware fifo was too small and needs |
| * to be serviced again. |
| */ |
| static int cvmx_usb_fill_tx_hw(struct octeon_hcd *usb, |
| struct cvmx_usb_tx_fifo *fifo, int available) |
| { |
| /* |
| * We're done either when there isn't anymore space or the software FIFO |
| * is empty |
| */ |
| while (available && (fifo->head != fifo->tail)) { |
| int i = fifo->tail; |
| const u32 *ptr = cvmx_phys_to_ptr(fifo->entry[i].address); |
| u64 csr_address = USB_FIFO_ADDRESS(fifo->entry[i].channel, |
| usb->index) ^ 4; |
| int words = available; |
| |
| /* Limit the amount of data to what the SW fifo has */ |
| if (fifo->entry[i].size <= available) { |
| words = fifo->entry[i].size; |
| fifo->tail++; |
| if (fifo->tail > MAX_CHANNELS) |
| fifo->tail = 0; |
| } |
| |
| /* Update the next locations and counts */ |
| available -= words; |
| fifo->entry[i].address += words * 4; |
| fifo->entry[i].size -= words; |
| |
| /* |
| * Write the HW fifo data. The read every three writes is due |
| * to an errata on CN3XXX chips |
| */ |
| while (words > 3) { |
| cvmx_write64_uint32(csr_address, *ptr++); |
| cvmx_write64_uint32(csr_address, *ptr++); |
| cvmx_write64_uint32(csr_address, *ptr++); |
| cvmx_read64_uint64(CVMX_USBNX_DMA0_INB_CHN0(usb->index)); |
| words -= 3; |
| } |
| cvmx_write64_uint32(csr_address, *ptr++); |
| if (--words) { |
| cvmx_write64_uint32(csr_address, *ptr++); |
| if (--words) |
| cvmx_write64_uint32(csr_address, *ptr++); |
| } |
| cvmx_read64_uint64(CVMX_USBNX_DMA0_INB_CHN0(usb->index)); |
| } |
| return fifo->head != fifo->tail; |
| } |
| |
| /** |
| * Check the hardware FIFOs and fill them as needed |
| * |
| * @usb: USB device state populated by cvmx_usb_initialize(). |
| */ |
| static void cvmx_usb_poll_tx_fifo(struct octeon_hcd *usb) |
| { |
| if (usb->periodic.head != usb->periodic.tail) { |
| union cvmx_usbcx_hptxsts tx_status; |
| |
| tx_status.u32 = cvmx_usb_read_csr32(usb, |
| CVMX_USBCX_HPTXSTS(usb->index)); |
| if (cvmx_usb_fill_tx_hw(usb, &usb->periodic, |
| tx_status.s.ptxfspcavail)) |
| USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index), |
| cvmx_usbcx_gintmsk, ptxfempmsk, 1); |
| else |
| USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index), |
| cvmx_usbcx_gintmsk, ptxfempmsk, 0); |
| } |
| |
| if (usb->nonperiodic.head != usb->nonperiodic.tail) { |
| union cvmx_usbcx_gnptxsts tx_status; |
| |
| tx_status.u32 = cvmx_usb_read_csr32(usb, |
| CVMX_USBCX_GNPTXSTS(usb->index)); |
| if (cvmx_usb_fill_tx_hw(usb, &usb->nonperiodic, |
| tx_status.s.nptxfspcavail)) |
| USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index), |
| cvmx_usbcx_gintmsk, nptxfempmsk, 1); |
| else |
| USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index), |
| cvmx_usbcx_gintmsk, nptxfempmsk, 0); |
| } |
| } |
| |
| /** |
| * Fill the TX FIFO with an outgoing packet |
| * |
| * @usb: USB device state populated by cvmx_usb_initialize(). |
| * @channel: Channel number to get packet from |
| */ |
| static void cvmx_usb_fill_tx_fifo(struct octeon_hcd *usb, int channel) |
| { |
| union cvmx_usbcx_hccharx hcchar; |
| union cvmx_usbcx_hcspltx usbc_hcsplt; |
| union cvmx_usbcx_hctsizx usbc_hctsiz; |
| struct cvmx_usb_tx_fifo *fifo; |
| |
| /* We only need to fill data on outbound channels */ |
| hcchar.u32 = cvmx_usb_read_csr32(usb, |
| CVMX_USBCX_HCCHARX(channel, usb->index)); |
| if (hcchar.s.epdir != CVMX_USB_DIRECTION_OUT) |
| return; |
| |
| /* OUT Splits only have data on the start and not the complete */ |
| usbc_hcsplt.u32 = cvmx_usb_read_csr32(usb, |
| CVMX_USBCX_HCSPLTX(channel, usb->index)); |
| if (usbc_hcsplt.s.spltena && usbc_hcsplt.s.compsplt) |
| return; |
| |
| /* |
| * Find out how many bytes we need to fill and convert it into 32bit |
| * words. |
| */ |
| usbc_hctsiz.u32 = cvmx_usb_read_csr32(usb, |
| CVMX_USBCX_HCTSIZX(channel, usb->index)); |
| if (!usbc_hctsiz.s.xfersize) |
| return; |
| |
| if ((hcchar.s.eptype == CVMX_USB_TRANSFER_INTERRUPT) || |
| (hcchar.s.eptype == CVMX_USB_TRANSFER_ISOCHRONOUS)) |
| fifo = &usb->periodic; |
| else |
| fifo = &usb->nonperiodic; |
| |
| fifo->entry[fifo->head].channel = channel; |
| fifo->entry[fifo->head].address = |
| cvmx_read64_uint64(CVMX_USBNX_DMA0_OUTB_CHN0(usb->index) + |
| channel * 8); |
| fifo->entry[fifo->head].size = (usbc_hctsiz.s.xfersize + 3) >> 2; |
| fifo->head++; |
| if (fifo->head > MAX_CHANNELS) |
| fifo->head = 0; |
| |
| cvmx_usb_poll_tx_fifo(usb); |
| } |
| |
| /** |
| * Perform channel specific setup for Control transactions. All |
| * the generic stuff will already have been done in cvmx_usb_start_channel(). |
| * |
| * @usb: USB device state populated by cvmx_usb_initialize(). |
| * @channel: Channel to setup |
| * @pipe: Pipe for control transaction |
| */ |
| static void cvmx_usb_start_channel_control(struct octeon_hcd *usb, |
| int channel, |
| struct cvmx_usb_pipe *pipe) |
| { |
| struct usb_hcd *hcd = octeon_to_hcd(usb); |
| struct device *dev = hcd->self.controller; |
| struct cvmx_usb_transaction *transaction = |
| list_first_entry(&pipe->transactions, typeof(*transaction), |
| node); |
| struct usb_ctrlrequest *header = |
| cvmx_phys_to_ptr(transaction->control_header); |
| int bytes_to_transfer = transaction->buffer_length - |
| transaction->actual_bytes; |
| int packets_to_transfer; |
| union cvmx_usbcx_hctsizx usbc_hctsiz; |
| |
| usbc_hctsiz.u32 = cvmx_usb_read_csr32(usb, |
| CVMX_USBCX_HCTSIZX(channel, usb->index)); |
| |
| switch (transaction->stage) { |
| case CVMX_USB_STAGE_NON_CONTROL: |
| case CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE: |
| dev_err(dev, "%s: ERROR - Non control stage\n", __func__); |
| break; |
| case CVMX_USB_STAGE_SETUP: |
| usbc_hctsiz.s.pid = 3; /* Setup */ |
| bytes_to_transfer = sizeof(*header); |
| /* All Control operations start with a setup going OUT */ |
| USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index), |
| cvmx_usbcx_hccharx, epdir, |
| CVMX_USB_DIRECTION_OUT); |
| /* |
| * Setup send the control header instead of the buffer data. The |
| * buffer data will be used in the next stage |
| */ |
| cvmx_write64_uint64(CVMX_USBNX_DMA0_OUTB_CHN0(usb->index) + |
| channel * 8, |
| transaction->control_header); |
| break; |
| case CVMX_USB_STAGE_SETUP_SPLIT_COMPLETE: |
| usbc_hctsiz.s.pid = 3; /* Setup */ |
| bytes_to_transfer = 0; |
| /* All Control operations start with a setup going OUT */ |
| USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index), |
| cvmx_usbcx_hccharx, epdir, |
| CVMX_USB_DIRECTION_OUT); |
| |
| USB_SET_FIELD32(CVMX_USBCX_HCSPLTX(channel, usb->index), |
| cvmx_usbcx_hcspltx, compsplt, 1); |
| break; |
| case CVMX_USB_STAGE_DATA: |
| usbc_hctsiz.s.pid = cvmx_usb_get_data_pid(pipe); |
| if (cvmx_usb_pipe_needs_split(usb, pipe)) { |
| if (header->bRequestType & USB_DIR_IN) |
| bytes_to_transfer = 0; |
| else if (bytes_to_transfer > pipe->max_packet) |
| bytes_to_transfer = pipe->max_packet; |
| } |
| USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index), |
| cvmx_usbcx_hccharx, epdir, |
| ((header->bRequestType & USB_DIR_IN) ? |
| CVMX_USB_DIRECTION_IN : |
| CVMX_USB_DIRECTION_OUT)); |
| break; |
| case CVMX_USB_STAGE_DATA_SPLIT_COMPLETE: |
| usbc_hctsiz.s.pid = cvmx_usb_get_data_pid(pipe); |
| if (!(header->bRequestType & USB_DIR_IN)) |
| bytes_to_transfer = 0; |
| USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index), |
| cvmx_usbcx_hccharx, epdir, |
| ((header->bRequestType & USB_DIR_IN) ? |
| CVMX_USB_DIRECTION_IN : |
| CVMX_USB_DIRECTION_OUT)); |
| USB_SET_FIELD32(CVMX_USBCX_HCSPLTX(channel, usb->index), |
| cvmx_usbcx_hcspltx, compsplt, 1); |
| break; |
| case CVMX_USB_STAGE_STATUS: |
| usbc_hctsiz.s.pid = cvmx_usb_get_data_pid(pipe); |
| bytes_to_transfer = 0; |
| USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index), |
| cvmx_usbcx_hccharx, epdir, |
| ((header->bRequestType & USB_DIR_IN) ? |
| CVMX_USB_DIRECTION_OUT : |
| CVMX_USB_DIRECTION_IN)); |
| break; |
| case CVMX_USB_STAGE_STATUS_SPLIT_COMPLETE: |
| usbc_hctsiz.s.pid = cvmx_usb_get_data_pid(pipe); |
| bytes_to_transfer = 0; |
| USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index), |
| cvmx_usbcx_hccharx, epdir, |
| ((header->bRequestType & USB_DIR_IN) ? |
| CVMX_USB_DIRECTION_OUT : |
| CVMX_USB_DIRECTION_IN)); |
| USB_SET_FIELD32(CVMX_USBCX_HCSPLTX(channel, usb->index), |
| cvmx_usbcx_hcspltx, compsplt, 1); |
| break; |
| } |
| |
| /* |
| * Make sure the transfer never exceeds the byte limit of the hardware. |
| * Further bytes will be sent as continued transactions |
| */ |
| if (bytes_to_transfer > MAX_TRANSFER_BYTES) { |
| /* Round MAX_TRANSFER_BYTES to a multiple of out packet size */ |
| bytes_to_transfer = MAX_TRANSFER_BYTES / pipe->max_packet; |
| bytes_to_transfer *= pipe->max_packet; |
| } |
| |
| /* |
| * Calculate the number of packets to transfer. If the length is zero |
| * we still need to transfer one packet |
| */ |
| packets_to_transfer = DIV_ROUND_UP(bytes_to_transfer, |
| pipe->max_packet); |
| if (packets_to_transfer == 0) { |
| packets_to_transfer = 1; |
| } else if ((packets_to_transfer > 1) && |
| (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA)) { |
| /* |
| * Limit to one packet when not using DMA. Channels must be |
| * restarted between every packet for IN transactions, so there |
| * is no reason to do multiple packets in a row |
| */ |
| packets_to_transfer = 1; |
| bytes_to_transfer = packets_to_transfer * pipe->max_packet; |
| } else if (packets_to_transfer > MAX_TRANSFER_PACKETS) { |
| /* |
| * Limit the number of packet and data transferred to what the |
| * hardware can handle |
| */ |
| packets_to_transfer = MAX_TRANSFER_PACKETS; |
| bytes_to_transfer = packets_to_transfer * pipe->max_packet; |
| } |
| |
| usbc_hctsiz.s.xfersize = bytes_to_transfer; |
| usbc_hctsiz.s.pktcnt = packets_to_transfer; |
| |
| cvmx_usb_write_csr32(usb, CVMX_USBCX_HCTSIZX(channel, usb->index), |
| usbc_hctsiz.u32); |
| } |
| |
| /** |
| * Start a channel to perform the pipe's head transaction |
| * |
| * @usb: USB device state populated by cvmx_usb_initialize(). |
| * @channel: Channel to setup |
| * @pipe: Pipe to start |
| */ |
| static void cvmx_usb_start_channel(struct octeon_hcd *usb, int channel, |
| struct cvmx_usb_pipe *pipe) |
| { |
| struct cvmx_usb_transaction *transaction = |
| list_first_entry(&pipe->transactions, typeof(*transaction), |
| node); |
| |
| /* Make sure all writes to the DMA region get flushed */ |
| CVMX_SYNCW; |
| |
| /* Attach the channel to the pipe */ |
| usb->pipe_for_channel[channel] = pipe; |
| pipe->channel = channel; |
| pipe->flags |= CVMX_USB_PIPE_FLAGS_SCHEDULED; |
| |
| /* Mark this channel as in use */ |
| usb->idle_hardware_channels &= ~(1 << channel); |
| |
| /* Enable the channel interrupt bits */ |
| { |
| union cvmx_usbcx_hcintx usbc_hcint; |
| union cvmx_usbcx_hcintmskx usbc_hcintmsk; |
| union cvmx_usbcx_haintmsk usbc_haintmsk; |
| |
| /* Clear all channel status bits */ |
| usbc_hcint.u32 = cvmx_usb_read_csr32(usb, |
| CVMX_USBCX_HCINTX(channel, usb->index)); |
| |
| cvmx_usb_write_csr32(usb, |
| CVMX_USBCX_HCINTX(channel, usb->index), |
| usbc_hcint.u32); |
| |
| usbc_hcintmsk.u32 = 0; |
| usbc_hcintmsk.s.chhltdmsk = 1; |
| if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA) { |
| /* |
| * Channels need these extra interrupts when we aren't |
| * in DMA mode. |
| */ |
| usbc_hcintmsk.s.datatglerrmsk = 1; |
| usbc_hcintmsk.s.frmovrunmsk = 1; |
| usbc_hcintmsk.s.bblerrmsk = 1; |
| usbc_hcintmsk.s.xacterrmsk = 1; |
| if (cvmx_usb_pipe_needs_split(usb, pipe)) { |
| /* |
| * Splits don't generate xfercompl, so we need |
| * ACK and NYET. |
| */ |
| usbc_hcintmsk.s.nyetmsk = 1; |
| usbc_hcintmsk.s.ackmsk = 1; |
| } |
| usbc_hcintmsk.s.nakmsk = 1; |
| usbc_hcintmsk.s.stallmsk = 1; |
| usbc_hcintmsk.s.xfercomplmsk = 1; |
| } |
| cvmx_usb_write_csr32(usb, |
| CVMX_USBCX_HCINTMSKX(channel, usb->index), |
| usbc_hcintmsk.u32); |
| |
| /* Enable the channel interrupt to propagate */ |
| usbc_haintmsk.u32 = cvmx_usb_read_csr32(usb, |
| CVMX_USBCX_HAINTMSK(usb->index)); |
| usbc_haintmsk.s.haintmsk |= 1 << channel; |
| cvmx_usb_write_csr32(usb, CVMX_USBCX_HAINTMSK(usb->index), |
| usbc_haintmsk.u32); |
| } |
| |
| /* Setup the location the DMA engine uses. */ |
| { |
| u64 reg; |
| u64 dma_address = transaction->buffer + |
| transaction->actual_bytes; |
| |
| if (transaction->type == CVMX_USB_TRANSFER_ISOCHRONOUS) |
| dma_address = transaction->buffer + |
| transaction->iso_packets[0].offset + |
| transaction->actual_bytes; |
| |
| if (pipe->transfer_dir == CVMX_USB_DIRECTION_OUT) |
| reg = CVMX_USBNX_DMA0_OUTB_CHN0(usb->index); |
| else |
| reg = CVMX_USBNX_DMA0_INB_CHN0(usb->index); |
| cvmx_write64_uint64(reg + channel * 8, dma_address); |
| } |
| |
| /* Setup both the size of the transfer and the SPLIT characteristics */ |
| { |
| union cvmx_usbcx_hcspltx usbc_hcsplt = {.u32 = 0}; |
| union cvmx_usbcx_hctsizx usbc_hctsiz = {.u32 = 0}; |
| int packets_to_transfer; |
| int bytes_to_transfer = transaction->buffer_length - |
| transaction->actual_bytes; |
| |
| /* |
| * ISOCHRONOUS transactions store each individual transfer size |
| * in the packet structure, not the global buffer_length |
| */ |
| if (transaction->type == CVMX_USB_TRANSFER_ISOCHRONOUS) |
| bytes_to_transfer = |
| transaction->iso_packets[0].length - |
| transaction->actual_bytes; |
| |
| /* |
| * We need to do split transactions when we are talking to non |
| * high speed devices that are behind a high speed hub |
| */ |
| if (cvmx_usb_pipe_needs_split(usb, pipe)) { |
| /* |
| * On the start split phase (stage is even) record the |
| * frame number we will need to send the split complete. |
| * We only store the lower two bits since the time ahead |
| * can only be two frames |
| */ |
| if ((transaction->stage & 1) == 0) { |
| if (transaction->type == CVMX_USB_TRANSFER_BULK) |
| pipe->split_sc_frame = |
| (usb->frame_number + 1) & 0x7f; |
| else |
| pipe->split_sc_frame = |
| (usb->frame_number + 2) & 0x7f; |
| } else { |
| pipe->split_sc_frame = -1; |
| } |
| |
| usbc_hcsplt.s.spltena = 1; |
| usbc_hcsplt.s.hubaddr = pipe->hub_device_addr; |
| usbc_hcsplt.s.prtaddr = pipe->hub_port; |
| usbc_hcsplt.s.compsplt = (transaction->stage == |
| CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE); |
| |
| /* |
| * SPLIT transactions can only ever transmit one data |
| * packet so limit the transfer size to the max packet |
| * size |
| */ |
| if (bytes_to_transfer > pipe->max_packet) |
| bytes_to_transfer = pipe->max_packet; |
| |
| /* |
| * ISOCHRONOUS OUT splits are unique in that they limit |
| * data transfers to 188 byte chunks representing the |
| * begin/middle/end of the data or all |
| */ |
| if (!usbc_hcsplt.s.compsplt && |
| (pipe->transfer_dir == CVMX_USB_DIRECTION_OUT) && |
| (pipe->transfer_type == |
| CVMX_USB_TRANSFER_ISOCHRONOUS)) { |
| /* |
| * Clear the split complete frame number as |
| * there isn't going to be a split complete |
| */ |
| pipe->split_sc_frame = -1; |
| /* |
| * See if we've started this transfer and sent |
| * data |
| */ |
| if (transaction->actual_bytes == 0) { |
| /* |
| * Nothing sent yet, this is either a |
| * begin or the entire payload |
| */ |
| if (bytes_to_transfer <= 188) |
| /* Entire payload in one go */ |
| usbc_hcsplt.s.xactpos = 3; |
| else |
| /* First part of payload */ |
| usbc_hcsplt.s.xactpos = 2; |
| } else { |
| /* |
| * Continuing the previous data, we must |
| * either be in the middle or at the end |
| */ |
| if (bytes_to_transfer <= 188) |
| /* End of payload */ |
| usbc_hcsplt.s.xactpos = 1; |
| else |
| /* Middle of payload */ |
| usbc_hcsplt.s.xactpos = 0; |
| } |
| /* |
| * Again, the transfer size is limited to 188 |
| * bytes |
| */ |
| if (bytes_to_transfer > 188) |
| bytes_to_transfer = 188; |
| } |
| } |
| |
| /* |
| * Make sure the transfer never exceeds the byte limit of the |
| * hardware. Further bytes will be sent as continued |
| * transactions |
| */ |
| if (bytes_to_transfer > MAX_TRANSFER_BYTES) { |
| /* |
| * Round MAX_TRANSFER_BYTES to a multiple of out packet |
| * size |
| */ |
| bytes_to_transfer = MAX_TRANSFER_BYTES / |
| pipe->max_packet; |
| bytes_to_transfer *= pipe->max_packet; |
| } |
| |
| /* |
| * Calculate the number of packets to transfer. If the length is |
| * zero we still need to transfer one packet |
| */ |
| packets_to_transfer = |
| DIV_ROUND_UP(bytes_to_transfer, pipe->max_packet); |
| if (packets_to_transfer == 0) { |
| packets_to_transfer = 1; |
| } else if ((packets_to_transfer > 1) && |
| (usb->init_flags & |
| CVMX_USB_INITIALIZE_FLAGS_NO_DMA)) { |
| /* |
| * Limit to one packet when not using DMA. Channels must |
| * be restarted between every packet for IN |
| * transactions, so there is no reason to do multiple |
| * packets in a row |
| */ |
| packets_to_transfer = 1; |
| bytes_to_transfer = packets_to_transfer * |
| pipe->max_packet; |
| } else if (packets_to_transfer > MAX_TRANSFER_PACKETS) { |
| /* |
| * Limit the number of packet and data transferred to |
| * what the hardware can handle |
| */ |
| packets_to_transfer = MAX_TRANSFER_PACKETS; |
| bytes_to_transfer = packets_to_transfer * |
| pipe->max_packet; |
| } |
| |
| usbc_hctsiz.s.xfersize = bytes_to_transfer; |
| usbc_hctsiz.s.pktcnt = packets_to_transfer; |
| |
| /* Update the DATA0/DATA1 toggle */ |
| usbc_hctsiz.s.pid = cvmx_usb_get_data_pid(pipe); |
| /* |
| * High speed pipes may need a hardware ping before they start |
| */ |
| if (pipe->flags & CVMX_USB_PIPE_FLAGS_NEED_PING) |
| usbc_hctsiz.s.dopng = 1; |
| |
| cvmx_usb_write_csr32(usb, |
| CVMX_USBCX_HCSPLTX(channel, usb->index), |
| usbc_hcsplt.u32); |
| cvmx_usb_write_csr32(usb, |
| CVMX_USBCX_HCTSIZX(channel, usb->index), |
| usbc_hctsiz.u32); |
| } |
| |
| /* Setup the Host Channel Characteristics Register */ |
| { |
| union cvmx_usbcx_hccharx usbc_hcchar = {.u32 = 0}; |
| |
| /* |
| * Set the startframe odd/even properly. This is only used for |
| * periodic |
| */ |
| usbc_hcchar.s.oddfrm = usb->frame_number & 1; |
| |
| /* |
| * Set the number of back to back packets allowed by this |
| * endpoint. Split transactions interpret "ec" as the number of |
| * immediate retries of failure. These retries happen too |
| * quickly, so we disable these entirely for splits |
| */ |
| if (cvmx_usb_pipe_needs_split(usb, pipe)) |
| usbc_hcchar.s.ec = 1; |
| else if (pipe->multi_count < 1) |
| usbc_hcchar.s.ec = 1; |
| else if (pipe->multi_count > 3) |
| usbc_hcchar.s.ec = 3; |
| else |
| usbc_hcchar.s.ec = pipe->multi_count; |
| |
| /* Set the rest of the endpoint specific settings */ |
| usbc_hcchar.s.devaddr = pipe->device_addr; |
| usbc_hcchar.s.eptype = transaction->type; |
| usbc_hcchar.s.lspddev = |
| (pipe->device_speed == CVMX_USB_SPEED_LOW); |
| usbc_hcchar.s.epdir = pipe->transfer_dir; |
| usbc_hcchar.s.epnum = pipe->endpoint_num; |
| usbc_hcchar.s.mps = pipe->max_packet; |
| cvmx_usb_write_csr32(usb, |
| CVMX_USBCX_HCCHARX(channel, usb->index), |
| usbc_hcchar.u32); |
| } |
| |
| /* Do transaction type specific fixups as needed */ |
| switch (transaction->type) { |
| case CVMX_USB_TRANSFER_CONTROL: |
| cvmx_usb_start_channel_control(usb, channel, pipe); |
| break; |
| case CVMX_USB_TRANSFER_BULK: |
| case CVMX_USB_TRANSFER_INTERRUPT: |
| break; |
| case CVMX_USB_TRANSFER_ISOCHRONOUS: |
| if (!cvmx_usb_pipe_needs_split(usb, pipe)) { |
| /* |
| * ISO transactions require different PIDs depending on |
| * direction and how many packets are needed |
| */ |
| if (pipe->transfer_dir == CVMX_USB_DIRECTION_OUT) { |
| if (pipe->multi_count < 2) /* Need DATA0 */ |
| USB_SET_FIELD32( |
| CVMX_USBCX_HCTSIZX(channel, |
| usb->index), |
| cvmx_usbcx_hctsizx, pid, 0); |
| else /* Need MDATA */ |
| USB_SET_FIELD32( |
| CVMX_USBCX_HCTSIZX(channel, |
| usb->index), |
| cvmx_usbcx_hctsizx, pid, 3); |
| } |
| } |
| break; |
| } |
| { |
| union cvmx_usbcx_hctsizx usbc_hctsiz = { .u32 = |
| cvmx_usb_read_csr32(usb, |
| CVMX_USBCX_HCTSIZX(channel, |
| usb->index)) |
| }; |
| transaction->xfersize = usbc_hctsiz.s.xfersize; |
| transaction->pktcnt = usbc_hctsiz.s.pktcnt; |
| } |
| /* Remember when we start a split transaction */ |
| if (cvmx_usb_pipe_needs_split(usb, pipe)) |
| usb->active_split = transaction; |
| USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index), |
| cvmx_usbcx_hccharx, chena, 1); |
| if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA) |
| cvmx_usb_fill_tx_fifo(usb, channel); |
| } |
| |
| /** |
| * Find a pipe that is ready to be scheduled to hardware. |
| * @usb: USB device state populated by cvmx_usb_initialize(). |
| * @xfer_type: Transfer type |
| * |
| * Returns: Pipe or NULL if none are ready |
| */ |
| static struct cvmx_usb_pipe *cvmx_usb_find_ready_pipe(struct octeon_hcd *usb, |
| enum cvmx_usb_transfer xfer_type) |
| { |
| struct list_head *list = usb->active_pipes + xfer_type; |
| u64 current_frame = usb->frame_number; |
| struct cvmx_usb_pipe *pipe; |
| |
| list_for_each_entry(pipe, list, node) { |
| struct cvmx_usb_transaction *t = |
| list_first_entry(&pipe->transactions, typeof(*t), |
| node); |
| if (!(pipe->flags & CVMX_USB_PIPE_FLAGS_SCHEDULED) && t && |
| (pipe->next_tx_frame <= current_frame) && |
| ((pipe->split_sc_frame == -1) || |
| ((((int)current_frame - pipe->split_sc_frame) & 0x7f) < |
| 0x40)) && |
| (!usb->active_split || (usb->active_split == t))) { |
| prefetch(t); |
| return pipe; |
| } |
| } |
| return NULL; |
| } |
| |
| static struct cvmx_usb_pipe *cvmx_usb_next_pipe(struct octeon_hcd *usb, |
| int is_sof) |
| { |
| struct cvmx_usb_pipe *pipe; |
| |
| /* Find a pipe needing service. */ |
| if (is_sof) { |
| /* |
| * Only process periodic pipes on SOF interrupts. This way we |
| * are sure that the periodic data is sent in the beginning of |
| * the frame. |
| */ |
| pipe = cvmx_usb_find_ready_pipe(usb, |
| CVMX_USB_TRANSFER_ISOCHRONOUS); |
| if (pipe) |
| return pipe; |
| pipe = cvmx_usb_find_ready_pipe(usb, |
| CVMX_USB_TRANSFER_INTERRUPT); |
| if (pipe) |
| return pipe; |
| } |
| pipe = cvmx_usb_find_ready_pipe(usb, CVMX_USB_TRANSFER_CONTROL); |
| if (pipe) |
| return pipe; |
| return cvmx_usb_find_ready_pipe(usb, CVMX_USB_TRANSFER_BULK); |
| } |
| |
| /** |
| * Called whenever a pipe might need to be scheduled to the |
| * hardware. |
| * |
| * @usb: USB device state populated by cvmx_usb_initialize(). |
| * @is_sof: True if this schedule was called on a SOF interrupt. |
| */ |
| static void cvmx_usb_schedule(struct octeon_hcd *usb, int is_sof) |
| { |
| int channel; |
| struct cvmx_usb_pipe *pipe; |
| int need_sof; |
| enum cvmx_usb_transfer ttype; |
| |
| if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA) { |
| /* |
| * Without DMA we need to be careful to not schedule something |
| * at the end of a frame and cause an overrun. |
| */ |
| union cvmx_usbcx_hfnum hfnum = { |
| .u32 = cvmx_usb_read_csr32(usb, |
| CVMX_USBCX_HFNUM(usb->index)) |
| }; |
| |
| union cvmx_usbcx_hfir hfir = { |
| .u32 = cvmx_usb_read_csr32(usb, |
| CVMX_USBCX_HFIR(usb->index)) |
| }; |
| |
| if (hfnum.s.frrem < hfir.s.frint / 4) |
| goto done; |
| } |
| |
| while (usb->idle_hardware_channels) { |
| /* Find an idle channel */ |
| channel = __fls(usb->idle_hardware_channels); |
| if (unlikely(channel > 7)) |
| break; |
| |
| pipe = cvmx_usb_next_pipe(usb, is_sof); |
| if (!pipe) |
| break; |
| |
| cvmx_usb_start_channel(usb, channel, pipe); |
| } |
| |
| done: |
| /* |
| * Only enable SOF interrupts when we have transactions pending in the |
| * future that might need to be scheduled |
| */ |
| need_sof = 0; |
| for (ttype = CVMX_USB_TRANSFER_CONTROL; |
| ttype <= CVMX_USB_TRANSFER_INTERRUPT; ttype++) { |
| list_for_each_entry(pipe, &usb->active_pipes[ttype], node) { |
| if (pipe->next_tx_frame > usb->frame_number) { |
| need_sof = 1; |
| break; |
| } |
| } |
| } |
| USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index), |
| cvmx_usbcx_gintmsk, sofmsk, need_sof); |
| } |
| |
| static void octeon_usb_urb_complete_callback(struct octeon_hcd *usb, |
| enum cvmx_usb_status status, |
| struct cvmx_usb_pipe *pipe, |
| struct cvmx_usb_transaction |
| *transaction, |
| int bytes_transferred, |
| struct urb *urb) |
| { |
| struct usb_hcd *hcd = octeon_to_hcd(usb); |
| struct device *dev = hcd->self.controller; |
| |
| if (likely(status == CVMX_USB_STATUS_OK)) |
| urb->actual_length = bytes_transferred; |
| else |
| urb->actual_length = 0; |
| |
| urb->hcpriv = NULL; |
| |
| /* For Isochronous transactions we need to update the URB packet status |
| * list from data in our private copy |
| */ |
| if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { |
| int i; |
| /* |
| * The pointer to the private list is stored in the setup_packet |
| * field. |
| */ |
| struct cvmx_usb_iso_packet *iso_packet = |
| (struct cvmx_usb_iso_packet *)urb->setup_packet; |
| /* Recalculate the transfer size by adding up each packet */ |
| urb->actual_length = 0; |
| for (i = 0; i < urb->number_of_packets; i++) { |
| if (iso_packet[i].status == CVMX_USB_STATUS_OK) { |
| urb->iso_frame_desc[i].status = 0; |
| urb->iso_frame_desc[i].actual_length = |
| iso_packet[i].length; |
| urb->actual_length += |
| urb->iso_frame_desc[i].actual_length; |
| } else { |
| dev_dbg(dev, "ISOCHRONOUS packet=%d of %d status=%d pipe=%p transaction=%p size=%d\n", |
| i, urb->number_of_packets, |
| iso_packet[i].status, pipe, |
| transaction, iso_packet[i].length); |
| urb->iso_frame_desc[i].status = -EREMOTEIO; |
| } |
| } |
| /* Free the private list now that we don't need it anymore */ |
| kfree(iso_packet); |
| urb->setup_packet = NULL; |
| } |
| |
| switch (status) { |
| case CVMX_USB_STATUS_OK: |
| urb->status = 0; |
| break; |
| case CVMX_USB_STATUS_CANCEL: |
| if (urb->status == 0) |
| urb->status = -ENOENT; |
| break; |
| case CVMX_USB_STATUS_STALL: |
| dev_dbg(dev, "status=stall pipe=%p transaction=%p size=%d\n", |
| pipe, transaction, bytes_transferred); |
| urb->status = -EPIPE; |
| break; |
| case CVMX_USB_STATUS_BABBLEERR: |
| dev_dbg(dev, "status=babble pipe=%p transaction=%p size=%d\n", |
| pipe, transaction, bytes_transferred); |
| urb->status = -EPIPE; |
| break; |
| case CVMX_USB_STATUS_SHORT: |
| dev_dbg(dev, "status=short pipe=%p transaction=%p size=%d\n", |
| pipe, transaction, bytes_transferred); |
| urb->status = -EREMOTEIO; |
| break; |
| case CVMX_USB_STATUS_ERROR: |
| case CVMX_USB_STATUS_XACTERR: |
| case CVMX_USB_STATUS_DATATGLERR: |
| case CVMX_USB_STATUS_FRAMEERR: |
| dev_dbg(dev, "status=%d pipe=%p transaction=%p size=%d\n", |
| status, pipe, transaction, bytes_transferred); |
| urb->status = -EPROTO; |
| break; |
| } |
| usb_hcd_unlink_urb_from_ep(octeon_to_hcd(usb), urb); |
| spin_unlock(&usb->lock); |
| usb_hcd_giveback_urb(octeon_to_hcd(usb), urb, urb->status); |
| spin_lock(&usb->lock); |
| } |
| |
| /** |
| * Signal the completion of a transaction and free it. The |
| * transaction will be removed from the pipe transaction list. |
| * |
| * @usb: USB device state populated by cvmx_usb_initialize(). |
| * @pipe: Pipe the transaction is on |
| * @transaction: |
| * Transaction that completed |
| * @complete_code: |
| * Completion code |
| */ |
| static void cvmx_usb_complete(struct octeon_hcd *usb, |
| struct cvmx_usb_pipe *pipe, |
| struct cvmx_usb_transaction *transaction, |
| enum cvmx_usb_status complete_code) |
| { |
| /* If this was a split then clear our split in progress marker */ |
| if (usb->active_split == transaction) |
| usb->active_split = NULL; |
| |
| /* |
| * Isochronous transactions need extra processing as they might not be |
| * done after a single data transfer |
| */ |
| if (unlikely(transaction->type == CVMX_USB_TRANSFER_ISOCHRONOUS)) { |
| /* Update the number of bytes transferred in this ISO packet */ |
| transaction->iso_packets[0].length = transaction->actual_bytes; |
| transaction->iso_packets[0].status = complete_code; |
| |
| /* |
| * If there are more ISOs pending and we succeeded, schedule the |
| * next one |
| */ |
| if ((transaction->iso_number_packets > 1) && |
| (complete_code == CVMX_USB_STATUS_OK)) { |
| /* No bytes transferred for this packet as of yet */ |
| transaction->actual_bytes = 0; |
| /* One less ISO waiting to transfer */ |
| transaction->iso_number_packets--; |
| /* Increment to the next location in our packet array */ |
| transaction->iso_packets++; |
| transaction->stage = CVMX_USB_STAGE_NON_CONTROL; |
| return; |
| } |
| } |
| |
| /* Remove the transaction from the pipe list */ |
| list_del(&transaction->node); |
| if (list_empty(&pipe->transactions)) |
| list_move_tail(&pipe->node, &usb->idle_pipes); |
| octeon_usb_urb_complete_callback(usb, complete_code, pipe, |
| transaction, |
| transaction->actual_bytes, |
| transaction->urb); |
| kfree(transaction); |
| } |
| |
| /** |
| * Submit a usb transaction to a pipe. Called for all types |
| * of transactions. |
| * |
| * @usb: |
| * @pipe: Which pipe to submit to. |
| * @type: Transaction type |
| * @buffer: User buffer for the transaction |
| * @buffer_length: |
| * User buffer's length in bytes |
| * @control_header: |
| * For control transactions, the 8 byte standard header |
| * @iso_start_frame: |
| * For ISO transactions, the start frame |
| * @iso_number_packets: |
| * For ISO, the number of packet in the transaction. |
| * @iso_packets: |
| * A description of each ISO packet |
| * @urb: URB for the callback |
| * |
| * Returns: Transaction or NULL on failure. |
| */ |
| static struct cvmx_usb_transaction *cvmx_usb_submit_transaction( |
| struct octeon_hcd *usb, |
| struct cvmx_usb_pipe *pipe, |
| enum cvmx_usb_transfer type, |
| u64 buffer, |
| int buffer_length, |
| u64 control_header, |
| int iso_start_frame, |
| int iso_number_packets, |
| struct cvmx_usb_iso_packet *iso_packets, |
| struct urb *urb) |
| { |
| struct cvmx_usb_transaction *transaction; |
| |
| if (unlikely(pipe->transfer_type != type)) |
| return NULL; |
| |
| transaction = kzalloc(sizeof(*transaction), GFP_ATOMIC); |
| if (unlikely(!transaction)) |
| return NULL; |
| |
| transaction->type = type; |
| transaction->buffer = buffer; |
| transaction->buffer_length = buffer_length; |
| transaction->control_header = control_header; |
| /* FIXME: This is not used, implement it. */ |
| transaction->iso_start_frame = iso_start_frame; |
| transaction->iso_number_packets = iso_number_packets; |
| transaction->iso_packets = iso_packets; |
| transaction->urb = urb; |
| if (transaction->type == CVMX_USB_TRANSFER_CONTROL) |
| transaction->stage = CVMX_USB_STAGE_SETUP; |
| else |
| transaction->stage = CVMX_USB_STAGE_NON_CONTROL; |
| |
| if (!list_empty(&pipe->transactions)) { |
| list_add_tail(&transaction->node, &pipe->transactions); |
| } else { |
| list_add_tail(&transaction->node, &pipe->transactions); |
| list_move_tail(&pipe->node, |
| &usb->active_pipes[pipe->transfer_type]); |
| |
| /* |
| * We may need to schedule the pipe if this was the head of the |
| * pipe. |
| */ |
| cvmx_usb_schedule(usb, 0); |
| } |
| |
| return transaction; |
| } |
| |
| /** |
| * Call to submit a USB Bulk transfer to a pipe. |
| * |
| * @usb: USB device state populated by cvmx_usb_initialize(). |
| * @pipe: Handle to the pipe for the transfer. |
| * @urb: URB. |
| * |
| * Returns: A submitted transaction or NULL on failure. |
| */ |
| static struct cvmx_usb_transaction *cvmx_usb_submit_bulk( |
| struct octeon_hcd *usb, |
| struct cvmx_usb_pipe *pipe, |
| struct urb *urb) |
| { |
| return cvmx_usb_submit_transaction(usb, pipe, CVMX_USB_TRANSFER_BULK, |
| urb->transfer_dma, |
| urb->transfer_buffer_length, |
| 0, /* control_header */ |
| 0, /* iso_start_frame */ |
| 0, /* iso_number_packets */ |
| NULL, /* iso_packets */ |
| urb); |
| } |
| |
| /** |
| * Call to submit a USB Interrupt transfer to a pipe. |
| * |
| * @usb: USB device state populated by cvmx_usb_initialize(). |
| * @pipe: Handle to the pipe for the transfer. |
| * @urb: URB returned when the callback is called. |
| * |
| * Returns: A submitted transaction or NULL on failure. |
| */ |
| static struct cvmx_usb_transaction *cvmx_usb_submit_interrupt( |
| struct octeon_hcd *usb, |
| struct cvmx_usb_pipe *pipe, |
| struct urb *urb) |
| { |
| return cvmx_usb_submit_transaction(usb, pipe, |
| CVMX_USB_TRANSFER_INTERRUPT, |
| urb->transfer_dma, |
| urb->transfer_buffer_length, |
| 0, /* control_header */ |
| 0, /* iso_start_frame */ |
| 0, /* iso_number_packets */ |
| NULL, /* iso_packets */ |
| urb); |
| } |
| |
| /** |
| * Call to submit a USB Control transfer to a pipe. |
| * |
| * @usb: USB device state populated by cvmx_usb_initialize(). |
| * @pipe: Handle to the pipe for the transfer. |
| * @urb: URB. |
| * |
| * Returns: A submitted transaction or NULL on failure. |
| */ |
| static struct cvmx_usb_transaction *cvmx_usb_submit_control( |
| struct octeon_hcd *usb, |
| struct cvmx_usb_pipe *pipe, |
| struct urb *urb) |
| { |
| int buffer_length = urb->transfer_buffer_length; |
| u64 control_header = urb->setup_dma; |
| struct usb_ctrlrequest *header = cvmx_phys_to_ptr(control_header); |
| |
| if ((header->bRequestType & USB_DIR_IN) == 0) |
| buffer_length = le16_to_cpu(header->wLength); |
| |
| return cvmx_usb_submit_transaction(usb, pipe, |
| CVMX_USB_TRANSFER_CONTROL, |
| urb->transfer_dma, buffer_length, |
| control_header, |
| 0, /* iso_start_frame */ |
| 0, /* iso_number_packets */ |
| NULL, /* iso_packets */ |
| urb); |
| } |
| |
| /** |
| * Call to submit a USB Isochronous transfer to a pipe. |
| * |
| * @usb: USB device state populated by cvmx_usb_initialize(). |
| * @pipe: Handle to the pipe for the transfer. |
| * @urb: URB returned when the callback is called. |
| * |
| * Returns: A submitted transaction or NULL on failure. |
| */ |
| static struct cvmx_usb_transaction *cvmx_usb_submit_isochronous( |
| struct octeon_hcd *usb, |
| struct cvmx_usb_pipe *pipe, |
| struct urb *urb) |
| { |
| struct cvmx_usb_iso_packet *packets; |
| |
| packets = (struct cvmx_usb_iso_packet *)urb->setup_packet; |
| return cvmx_usb_submit_transaction(usb, pipe, |
| CVMX_USB_TRANSFER_ISOCHRONOUS, |
| urb->transfer_dma, |
| urb->transfer_buffer_length, |
| 0, /* control_header */ |
| urb->start_frame, |
| urb->number_of_packets, |
| packets, urb); |
| } |
| |
| /** |
| * Cancel one outstanding request in a pipe. Canceling a request |
| * can fail if the transaction has already completed before cancel |
| * is called. Even after a successful cancel call, it may take |
| * a frame or two for the cvmx_usb_poll() function to call the |
| * associated callback. |
| * |
| * @usb: USB device state populated by cvmx_usb_initialize(). |
| * @pipe: Pipe to cancel requests in. |
| * @transaction: Transaction to cancel, returned by the submit function. |
| * |
| * Returns: 0 or a negative error code. |
| */ |
| static int cvmx_usb_cancel(struct octeon_hcd *usb, |
| struct cvmx_usb_pipe *pipe, |
| struct cvmx_usb_transaction *transaction) |
| { |
| /* |
| * If the transaction is the HEAD of the queue and scheduled. We need to |
| * treat it special |
| */ |
| if (list_first_entry(&pipe->transactions, typeof(*transaction), node) == |
| transaction && (pipe->flags & CVMX_USB_PIPE_FLAGS_SCHEDULED)) { |
| union cvmx_usbcx_hccharx usbc_hcchar; |
| |
| usb->pipe_for_channel[pipe->channel] = NULL; |
| pipe->flags &= ~CVMX_USB_PIPE_FLAGS_SCHEDULED; |
| |
| CVMX_SYNCW; |
| |
| usbc_hcchar.u32 = cvmx_usb_read_csr32(usb, |
| CVMX_USBCX_HCCHARX(pipe->channel, |
| usb->index)); |
| /* |
| * If the channel isn't enabled then the transaction already |
| * completed. |
| */ |
| if (usbc_hcchar.s.chena) { |
| usbc_hcchar.s.chdis = 1; |
| cvmx_usb_write_csr32(usb, |
| CVMX_USBCX_HCCHARX(pipe->channel, |
| usb->index), |
| usbc_hcchar.u32); |
| } |
| } |
| cvmx_usb_complete(usb, pipe, transaction, CVMX_USB_STATUS_CANCEL); |
| return 0; |
| } |
| |
| /** |
| * Cancel all outstanding requests in a pipe. Logically all this |
| * does is call cvmx_usb_cancel() in a loop. |
| * |
| * @usb: USB device state populated by cvmx_usb_initialize(). |
| * @pipe: Pipe to cancel requests in. |
| * |
| * Returns: 0 or a negative error code. |
| */ |
| static int cvmx_usb_cancel_all(struct octeon_hcd *usb, |
| struct cvmx_usb_pipe *pipe) |
| { |
| struct cvmx_usb_transaction *transaction, *next; |
| |
| /* Simply loop through and attempt to cancel each transaction */ |
| list_for_each_entry_safe(transaction, next, &pipe->transactions, node) { |
| int result = cvmx_usb_cancel(usb, pipe, transaction); |
| |
| if (unlikely(result != 0)) |
| return result; |
| } |
| return 0; |
| } |
| |
| /** |
| * Close a pipe created with cvmx_usb_open_pipe(). |
| * |
| * @usb: USB device state populated by cvmx_usb_initialize(). |
| * @pipe: Pipe to close. |
| * |
| * Returns: 0 or a negative error code. EBUSY is returned if the pipe has |
| * outstanding transfers. |
| */ |
| static int cvmx_usb_close_pipe(struct octeon_hcd *usb, |
| struct cvmx_usb_pipe *pipe) |
| { |
| /* Fail if the pipe has pending transactions */ |
| if (!list_empty(&pipe->transactions)) |
| return -EBUSY; |
| |
| list_del(&pipe->node); |
| kfree(pipe); |
| |
| return 0; |
| } |
| |
| /** |
| * Get the current USB protocol level frame number. The frame |
| * number is always in the range of 0-0x7ff. |
| * |
| * @usb: USB device state populated by cvmx_usb_initialize(). |
| * |
| * Returns: USB frame number |
| */ |
| static int cvmx_usb_get_frame_number(struct octeon_hcd *usb) |
| { |
| union cvmx_usbcx_hfnum usbc_hfnum; |
| |
| usbc_hfnum.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_HFNUM(usb->index)); |
| |
| return usbc_hfnum.s.frnum; |
| } |
| |
| static void cvmx_usb_transfer_control(struct octeon_hcd *usb, |
| struct cvmx_usb_pipe *pipe, |
| struct cvmx_usb_transaction *transaction, |
| union cvmx_usbcx_hccharx usbc_hcchar, |
| int buffer_space_left, |
| int bytes_in_last_packet) |
| { |
| switch (transaction->stage) { |
| case CVMX_USB_STAGE_NON_CONTROL: |
| case CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE: |
| /* This should be impossible */ |
| cvmx_usb_complete(usb, pipe, transaction, |
| CVMX_USB_STATUS_ERROR); |
| break; |
| case CVMX_USB_STAGE_SETUP: |
| pipe->pid_toggle = 1; |
| if (cvmx_usb_pipe_needs_split(usb, pipe)) { |
| transaction->stage = |
| CVMX_USB_STAGE_SETUP_SPLIT_COMPLETE; |
| } else { |
| struct usb_ctrlrequest *header = |
| cvmx_phys_to_ptr(transaction->control_header); |
| if (header->wLength) |
| transaction->stage = CVMX_USB_STAGE_DATA; |
| else |
| transaction->stage = CVMX_USB_STAGE_STATUS; |
| } |
| break; |
| case CVMX_USB_STAGE_SETUP_SPLIT_COMPLETE: |
| { |
| struct usb_ctrlrequest *header = |
| cvmx_phys_to_ptr(transaction->control_header); |
| if (header->wLength) |
| transaction->stage = CVMX_USB_STAGE_DATA; |
| else |
| transaction->stage = CVMX_USB_STAGE_STATUS; |
| } |
| break; |
| case CVMX_USB_STAGE_DATA: |
| if (cvmx_usb_pipe_needs_split(usb, pipe)) { |
| transaction->stage = CVMX_USB_STAGE_DATA_SPLIT_COMPLETE; |
| /* |
| * For setup OUT data that are splits, |
| * the hardware doesn't appear to count |
| * transferred data. Here we manually |
| * update the data transferred |
| */ |
| if (!usbc_hcchar.s.epdir) { |
| if (buffer_space_left < pipe->max_packet) |
| transaction->actual_bytes += |
| buffer_space_left; |
| else |
| transaction->actual_bytes += |
| pipe->max_packet; |
| } |
| } else if ((buffer_space_left == 0) || |
| (bytes_in_last_packet < pipe->max_packet)) { |
| pipe->pid_toggle = 1; |
| transaction->stage = CVMX_USB_STAGE_STATUS; |
| } |
| break; |
| case CVMX_USB_STAGE_DATA_SPLIT_COMPLETE: |
| if ((buffer_space_left == 0) || |
| (bytes_in_last_packet < pipe->max_packet)) { |
| pipe->pid_toggle = 1; |
| transaction->stage = CVMX_USB_STAGE_STATUS; |
| } else { |
| transaction->stage = CVMX_USB_STAGE_DATA; |
| } |
| break; |
| case CVMX_USB_STAGE_STATUS: |
| if (cvmx_usb_pipe_needs_split(usb, pipe)) |
| transaction->stage = |
| CVMX_USB_STAGE_STATUS_SPLIT_COMPLETE; |
| else |
| cvmx_usb_complete(usb, pipe, transaction, |
| CVMX_USB_STATUS_OK); |
| break; |
| case CVMX_USB_STAGE_STATUS_SPLIT_COMPLETE: |
| cvmx_usb_complete(usb, pipe, transaction, CVMX_USB_STATUS_OK); |
| break; |
| } |
| } |
| |
| static void cvmx_usb_transfer_bulk(struct octeon_hcd *usb, |
| struct cvmx_usb_pipe *pipe, |
| struct cvmx_usb_transaction *transaction, |
| union cvmx_usbcx_hcintx usbc_hcint, |
| int buffer_space_left, |
| int bytes_in_last_packet) |
| { |
| /* |
| * The only time a bulk transfer isn't complete when it finishes with |
| * an ACK is during a split transaction. For splits we need to continue |
| * the transfer if more data is needed. |
| */ |
| if (cvmx_usb_pipe_needs_split(usb, pipe)) { |
| if (transaction->stage == CVMX_USB_STAGE_NON_CONTROL) |
| transaction->stage = |
| CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE; |
| else if (buffer_space_left && |
| (bytes_in_last_packet == pipe->max_packet)) |
| transaction->stage = CVMX_USB_STAGE_NON_CONTROL; |
| else |
| cvmx_usb_complete(usb, pipe, transaction, |
| CVMX_USB_STATUS_OK); |
| } else { |
| if ((pipe->device_speed == CVMX_USB_SPEED_HIGH) && |
| (pipe->transfer_dir == CVMX_USB_DIRECTION_OUT) && |
| (usbc_hcint.s.nak)) |
| pipe->flags |= CVMX_USB_PIPE_FLAGS_NEED_PING; |
| if (!buffer_space_left || |
| (bytes_in_last_packet < pipe->max_packet)) |
| cvmx_usb_complete(usb, pipe, transaction, |
| CVMX_USB_STATUS_OK); |
| } |
| } |
| |
| static void cvmx_usb_transfer_intr(struct octeon_hcd *usb, |
| struct cvmx_usb_pipe *pipe, |
| struct cvmx_usb_transaction *transaction, |
| int buffer_space_left, |
| int bytes_in_last_packet) |
| { |
| if (cvmx_usb_pipe_needs_split(usb, pipe)) { |
| if (transaction->stage == CVMX_USB_STAGE_NON_CONTROL) { |
| transaction->stage = |
| CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE; |
| } else if (buffer_space_left && |
| (bytes_in_last_packet == pipe->max_packet)) { |
| transaction->stage = CVMX_USB_STAGE_NON_CONTROL; |
| } else { |
| pipe->next_tx_frame += pipe->interval; |
| cvmx_usb_complete(usb, pipe, transaction, |
| CVMX_USB_STATUS_OK); |
| } |
| } else if (!buffer_space_left || |
| (bytes_in_last_packet < pipe->max_packet)) { |
| pipe->next_tx_frame += pipe->interval; |
| cvmx_usb_complete(usb, pipe, transaction, CVMX_USB_STATUS_OK); |
| } |
| } |
| |
| static void cvmx_usb_transfer_isoc(struct octeon_hcd *usb, |
| struct cvmx_usb_pipe *pipe, |
| struct cvmx_usb_transaction *transaction, |
| int buffer_space_left, |
| int bytes_in_last_packet, |
| int bytes_this_transfer) |
| { |
| if (cvmx_usb_pipe_needs_split(usb, pipe)) { |
| /* |
| * ISOCHRONOUS OUT splits don't require a complete split stage. |
| * Instead they use a sequence of begin OUT splits to transfer |
| * the data 188 bytes at a time. Once the transfer is complete, |
| * the pipe sleeps until the next schedule interval. |
| */ |
| if (pipe->transfer_dir == CVMX_USB_DIRECTION_OUT) { |
| /* |
| * If no space left or this wasn't a max size packet |
| * then this transfer is complete. Otherwise start it |
| * again to send the next 188 bytes |
| */ |
| if (!buffer_space_left || (bytes_this_transfer < 188)) { |
| pipe->next_tx_frame += pipe->interval; |
| cvmx_usb_complete(usb, pipe, transaction, |
| CVMX_USB_STATUS_OK); |
| } |
| return; |
| } |
| if (transaction->stage == |
| CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE) { |
| /* |
| * We are in the incoming data phase. Keep getting data |
| * until we run out of space or get a small packet |
| */ |
| if ((buffer_space_left == 0) || |
| (bytes_in_last_packet < pipe->max_packet)) { |
| pipe->next_tx_frame += pipe->interval; |
| cvmx_usb_complete(usb, pipe, transaction, |
| CVMX_USB_STATUS_OK); |
| } |
| } else { |
| transaction->stage = |
| CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE; |
| } |
| } else { |
| pipe->next_tx_frame += pipe->interval; |
| cvmx_usb_complete(usb, pipe, transaction, CVMX_USB_STATUS_OK); |
| } |
| } |
| |
| /** |
| * Poll a channel for status |
| * |
| * @usb: USB device |
| * @channel: Channel to poll |
| * |
| * Returns: Zero on success |
| */ |
| static int cvmx_usb_poll_channel(struct octeon_hcd *usb, int channel) |
| { |
| struct usb_hcd *hcd = octeon_to_hcd(usb); |
| struct device *dev = hcd->self.controller; |
| union cvmx_usbcx_hcintx usbc_hcint; |
| union cvmx_usbcx_hctsizx usbc_hctsiz; |
| union cvmx_usbcx_hccharx usbc_hcchar; |
| struct cvmx_usb_pipe *pipe; |
| struct cvmx_usb_transaction *transaction; |
| int bytes_this_transfer; |
| int bytes_in_last_packet; |
| int packets_processed; |
| int buffer_space_left; |
| |
| /* Read the interrupt status bits for the channel */ |
| usbc_hcint.u32 = cvmx_usb_read_csr32(usb, |
| CVMX_USBCX_HCINTX(channel, usb->index)); |
| |
| if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA) { |
| usbc_hcchar.u32 = cvmx_usb_read_csr32(usb, |
| CVMX_USBCX_HCCHARX(channel, |
| usb->index)); |
| |
| if (usbc_hcchar.s.chena && usbc_hcchar.s.chdis) { |
| /* |
| * There seems to be a bug in CN31XX which can cause |
| * interrupt IN transfers to get stuck until we do a |
| * write of HCCHARX without changing things |
| */ |
| cvmx_usb_write_csr32(usb, |
| CVMX_USBCX_HCCHARX(channel, |
| usb->index), |
| usbc_hcchar.u32); |
| return 0; |
| } |
| |
| /* |
| * In non DMA mode the channels don't halt themselves. We need |
| * to manually disable channels that are left running |
| */ |
| if (!usbc_hcint.s.chhltd) { |
| if (usbc_hcchar.s.chena) { |
| union cvmx_usbcx_hcintmskx hcintmsk; |
| /* Disable all interrupts except CHHLTD */ |
| hcintmsk.u32 = 0; |
| hcintmsk.s.chhltdmsk = 1; |
| cvmx_usb_write_csr32(usb, |
| CVMX_USBCX_HCINTMSKX(channel, usb->index), |
| hcintmsk.u32); |
| usbc_hcchar.s.chdis = 1; |
| cvmx_usb_write_csr32(usb, |
| CVMX_USBCX_HCCHARX(channel, usb->index), |
| usbc_hcchar.u32); |
| return 0; |
| } else if (usbc_hcint.s.xfercompl) { |
| /* |
| * Successful IN/OUT with transfer complete. |
| * Channel halt isn't needed. |
| */ |
| } else { |
| dev_err(dev, "USB%d: Channel %d interrupt without halt\n", |
| usb->index, channel); |
| return 0; |
| } |
| } |
| } else { |
| /* |
| * There is are no interrupts that we need to process when the |
| * channel is still running |
| */ |
| if (!usbc_hcint.s.chhltd) |
| return 0; |
| } |
| |
| /* Disable the channel interrupts now that it is done */ |
| cvmx_usb_write_csr32(usb, CVMX_USBCX_HCINTMSKX(channel, usb->index), 0); |
| usb->idle_hardware_channels |= (1 << channel); |
| |
| /* Make sure this channel is tied to a valid pipe */ |
| pipe = usb->pipe_for_channel[channel]; |
| prefetch(pipe); |
| if (!pipe) |
| return 0; |
| transaction = list_first_entry(&pipe->transactions, |
| typeof(*transaction), |
| node); |
| prefetch(transaction); |
| |
| /* |
| * Disconnect this pipe from the HW channel. Later the schedule |
| * function will figure out which pipe needs to go |
| */ |
| usb->pipe_for_channel[channel] = NULL; |
| pipe->flags &= ~CVMX_USB_PIPE_FLAGS_SCHEDULED; |
| |
| /* |
| * Read the channel config info so we can figure out how much data |
| * transferred |
| */ |
| usbc_hcchar.u32 = cvmx_usb_read_csr32(usb, |
| CVMX_USBCX_HCCHARX(channel, usb->index)); |
| usbc_hctsiz.u32 = cvmx_usb_read_csr32(usb, |
| CVMX_USBCX_HCTSIZX(channel, usb->index)); |
| |
| /* |
| * Calculating the number of bytes successfully transferred is dependent |
| * on the transfer direction |
| */ |
| packets_processed = transaction->pktcnt - usbc_hctsiz.s.pktcnt; |
| if (usbc_hcchar.s.epdir) { |
| /* |
| * IN transactions are easy. For every byte received the |
| * hardware decrements xfersize. All we need to do is subtract |
| * the current value of xfersize from its starting value and we |
| * know how many bytes were written to the buffer |
| */ |
| bytes_this_transfer = transaction->xfersize - |
| usbc_hctsiz.s.xfersize; |
| } else { |
| /* |
| * OUT transaction don't decrement xfersize. Instead pktcnt is |
| * decremented on every successful packet send. The hardware |
| * does this when it receives an ACK, or NYET. If it doesn't |
| * receive one of these responses pktcnt doesn't change |
| */ |
| bytes_this_transfer = packets_processed * usbc_hcchar.s.mps; |
| /* |
| * The last packet may not be a full transfer if we didn't have |
| * enough data |
| */ |
| if (bytes_this_transfer > transaction->xfersize) |
| bytes_this_transfer = transaction->xfersize; |
| } |
| /* Figure out how many bytes were in the last packet of the transfer */ |
| if (packets_processed) |
| bytes_in_last_packet = bytes_this_transfer - |
| (packets_processed - 1) * usbc_hcchar.s.mps; |
| else |
| bytes_in_last_packet = bytes_this_transfer; |
| |
| /* |
| * As a special case, setup transactions output the setup header, not |
| * the user's data. For this reason we don't count setup data as bytes |
| * transferred |
| */ |
| if ((transaction->stage == CVMX_USB_STAGE_SETUP) || |
| (transaction->stage == CVMX_USB_STAGE_SETUP_SPLIT_COMPLETE)) |
| bytes_this_transfer = 0; |
| |
| /* |
| * Add the bytes transferred to the running total. It is important that |
| * bytes_this_transfer doesn't count any data that needs to be |
| * retransmitted |
| */ |
| transaction->actual_bytes += bytes_this_transfer; |
| if (transaction->type == CVMX_USB_TRANSFER_ISOCHRONOUS) |
| buffer_space_left = transaction->iso_packets[0].length - |
| transaction->actual_bytes; |
| else |
| buffer_space_left = transaction->buffer_length - |
| transaction->actual_bytes; |
| |
| /* |
| * We need to remember the PID toggle state for the next transaction. |
| * The hardware already updated it for the next transaction |
| */ |
| pipe->pid_toggle = !(usbc_hctsiz.s.pid == 0); |
| |
| /* |
| * For high speed bulk out, assume the next transaction will need to do |
| * a ping before proceeding. If this isn't true the ACK processing below |
| * will clear this flag |
| */ |
| if ((pipe->device_speed == CVMX_USB_SPEED_HIGH) && |
| (pipe->transfer_type == CVMX_USB_TRANSFER_BULK) && |
| (pipe->transfer_dir == CVMX_USB_DIRECTION_OUT)) |
| pipe->flags |= CVMX_USB_PIPE_FLAGS_NEED_PING; |
| |
| if (WARN_ON_ONCE(bytes_this_transfer < 0)) { |
| /* |
| * In some rare cases the DMA engine seems to get stuck and |
| * keeps substracting same byte count over and over again. In |
| * such case we just need to fail every transaction. |
| */ |
| cvmx_usb_complete(usb, pipe, transaction, |
| CVMX_USB_STATUS_ERROR); |
| return 0; |
| } |
| |
| if (usbc_hcint.s.stall) { |
| /* |
| * STALL as a response means this transaction cannot be |
| * completed because the device can't process transactions. Tell |
| * the user. Any data that was transferred will be counted on |
| * the actual bytes transferred |
| */ |
| pipe->pid_toggle = 0; |
| cvmx_usb_complete(usb, pipe, transaction, |
| CVMX_USB_STATUS_STALL); |
| } else if (usbc_hcint.s.xacterr) { |
| /* |
| * XactErr as a response means the device signaled |
| * something wrong with the transfer. For example, PID |
| * toggle errors cause these. |
| */ |
| cvmx_usb_complete(usb, pipe, transaction, |
| CVMX_USB_STATUS_XACTERR); |
| } else if (usbc_hcint.s.bblerr) { |
| /* Babble Error (BblErr) */ |
| cvmx_usb_complete(usb, pipe, transaction, |
| CVMX_USB_STATUS_BABBLEERR); |
| } else if (usbc_hcint.s.datatglerr) { |
| /* Data toggle error */ |
| cvmx_usb_complete(usb, pipe, transaction, |
| CVMX_USB_STATUS_DATATGLERR); |
| } else if (usbc_hcint.s.nyet) { |
| /* |
| * NYET as a response is only allowed in three cases: as a |
| * response to a ping, as a response to a split transaction, and |
| * as a response to a bulk out. The ping case is handled by |
| * hardware, so we only have splits and bulk out |
| */ |
| if (!cvmx_usb_pipe_needs_split(usb, pipe)) { |
| transaction->retries = 0; |
| /* |
| * If there is more data to go then we need to try |
| * again. Otherwise this transaction is complete |
| */ |
| if ((buffer_space_left == 0) || |
| (bytes_in_last_packet < pipe->max_packet)) |
| cvmx_usb_complete(usb, pipe, |
| transaction, |
| CVMX_USB_STATUS_OK); |
| } else { |
| /* |
| * Split transactions retry the split complete 4 times |
| * then rewind to the start split and do the entire |
| * transactions again |
| */ |
| transaction->retries++; |
| if ((transaction->retries & 0x3) == 0) { |
| /* |
| * Rewind to the beginning of the transaction by |
| * anding off the split complete bit |
| */ |
| transaction->stage &= ~1; |
| pipe->split_sc_frame = -1; |
| } |
| } |
| } else if (usbc_hcint.s.ack) { |
| transaction->retries = 0; |
| /* |
| * The ACK bit can only be checked after the other error bits. |
| * This is because a multi packet transfer may succeed in a |
| * number of packets and then get a different response on the |
| * last packet. In this case both ACK and the last response bit |
| * will be set. If none of the other response bits is set, then |
| * the last packet must have been an ACK |
| * |
| * Since we got an ACK, we know we don't need to do a ping on |
| * this pipe |
| */ |
| pipe->flags &= ~CVMX_USB_PIPE_FLAGS_NEED_PING; |
| |
| switch (transaction->type) { |
| case CVMX_USB_TRANSFER_CONTROL: |
| cvmx_usb_transfer_control(usb, pipe, transaction, |
| usbc_hcchar, |
| buffer_space_left, |
| bytes_in_last_packet); |
| break; |
| case CVMX_USB_TRANSFER_BULK: |
| cvmx_usb_transfer_bulk(usb, pipe, transaction, |
| usbc_hcint, buffer_space_left, |
| bytes_in_last_packet); |
| break; |
| case CVMX_USB_TRANSFER_INTERRUPT: |
| cvmx_usb_transfer_intr(usb, pipe, transaction, |
| buffer_space_left, |
| bytes_in_last_packet); |
| break; |
| case CVMX_USB_TRANSFER_ISOCHRONOUS: |
| cvmx_usb_transfer_isoc(usb, pipe, transaction, |
| buffer_space_left, |
| bytes_in_last_packet, |
| bytes_this_transfer); |
| break; |
| } |
| } else if (usbc_hcint.s.nak) { |
| /* |
| * If this was a split then clear our split in progress marker. |
| */ |
| if (usb->active_split == transaction) |
| usb->active_split = NULL; |
| /* |
| * NAK as a response means the device couldn't accept the |
| * transaction, but it should be retried in the future. Rewind |
| * to the beginning of the transaction by anding off the split |
| * complete bit. Retry in the next interval |
| */ |
| transaction->retries = 0; |
| transaction->stage &= ~1; |
| pipe->next_tx_frame += pipe->interval; |
| if (pipe->next_tx_frame < usb->frame_number) |
| pipe->next_tx_frame = usb->frame_number + |
| pipe->interval - |
| (usb->frame_number - pipe->next_tx_frame) % |
| pipe->interval; |
| } else { |
| struct cvmx_usb_port_status port; |
| |
| port = cvmx_usb_get_status(usb); |
| if (port.port_enabled) { |
| /* We'll retry the exact same transaction again */ |
| transaction->retries++; |
| } else { |
| /* |
| * We get channel halted interrupts with no result bits |
| * sets when the cable is unplugged |
| */ |
| cvmx_usb_complete(usb, pipe, transaction, |
| CVMX_USB_STATUS_ERROR); |
| } |
| } |
| return 0; |
| } |
| |
| static void octeon_usb_port_callback(struct octeon_hcd *usb) |
| { |
| spin_unlock(&usb->lock); |
| usb_hcd_poll_rh_status(octeon_to_hcd(usb)); |
| spin_lock(&usb->lock); |
| } |
| |
| /** |
| * Poll the USB block for status and call all needed callback |
| * handlers. This function is meant to be called in the interrupt |
| * handler for the USB controller. It can also be called |
| * periodically in a loop for non-interrupt based operation. |
| * |
| * @usb: USB device state populated by cvmx_usb_initialize(). |
| * |
| * Returns: 0 or a negative error code. |
| */ |
| static int cvmx_usb_poll(struct octeon_hcd *usb) |
| { |
| union cvmx_usbcx_hfnum usbc_hfnum; |
| union cvmx_usbcx_gintsts usbc_gintsts; |
| |
| prefetch_range(usb, sizeof(*usb)); |
| |
| /* Update the frame counter */ |
| usbc_hfnum.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_HFNUM(usb->index)); |
| if ((usb->frame_number & 0x3fff) > usbc_hfnum.s.frnum) |
| usb->frame_number += 0x4000; |
| usb->frame_number &= ~0x3fffull; |
| usb->frame_number |= usbc_hfnum.s.frnum; |
| |
| /* Read the pending interrupts */ |
| usbc_gintsts.u32 = cvmx_usb_read_csr32(usb, |
| CVMX_USBCX_GINTSTS(usb->index)); |
| |
| /* Clear the interrupts now that we know about them */ |
| cvmx_usb_write_csr32(usb, CVMX_USBCX_GINTSTS(usb->index), |
| usbc_gintsts.u32); |
| |
| if (usbc_gintsts.s.rxflvl) { |
| /* |
| * RxFIFO Non-Empty (RxFLvl) |
| * Indicates that there is at least one packet pending to be |
| * read from the RxFIFO. |
| * |
| * In DMA mode this is handled by hardware |
| */ |
| if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA) |
| cvmx_usb_poll_rx_fifo(usb); |
| } |
| if (usbc_gintsts.s.ptxfemp || usbc_gintsts.s.nptxfemp) { |
| /* Fill the Tx FIFOs when not in DMA mode */ |
| if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA) |
| cvmx_usb_poll_tx_fifo(usb); |
| } |
| if (usbc_gintsts.s.disconnint || usbc_gintsts.s.prtint) { |
| union cvmx_usbcx_hprt usbc_hprt; |
| /* |
| * Disconnect Detected Interrupt (DisconnInt) |
| * Asserted when a device disconnect is detected. |
| * |
| * Host Port Interrupt (PrtInt) |
| * The core sets this bit to indicate a change in port status of |
| * one of the O2P USB core ports in Host mode. The application |
| * must read the Host Port Control and Status (HPRT) register to |
| * determine the exact event that caused this interrupt. The |
| * application must clear the appropriate status bit in the Host |
| * Port Control and Status register to clear this bit. |
| * |
| * Call the user's port callback |
| */ |
| octeon_usb_port_callback(usb); |
| /* Clear the port change bits */ |
| usbc_hprt.u32 = |
| cvmx_usb_read_csr32(usb, CVMX_USBCX_HPRT(usb->index)); |
| usbc_hprt.s.prtena = 0; |
| cvmx_usb_write_csr32(usb, CVMX_USBCX_HPRT(usb->index), |
| usbc_hprt.u32); |
| } |
| if (usbc_gintsts.s.hchint) { |
| /* |
| * Host Channels Interrupt (HChInt) |
| * The core sets this bit to indicate that an interrupt is |
| * pending on one of the channels of the core (in Host mode). |
| * The application must read the Host All Channels Interrupt |
| * (HAINT) register to determine the exact number of the channel |
| * on which the interrupt occurred, and then read the |
| * corresponding Host Channel-n Interrupt (HCINTn) register to |
| * determine the exact cause of the interrupt. The application |
| * must clear the appropriate status bit in the HCINTn register |
| * to clear this bit. |
| */ |
| union cvmx_usbcx_haint usbc_haint; |
| |
| usbc_haint.u32 = cvmx_usb_read_csr32(usb, |
| CVMX_USBCX_HAINT(usb->index)); |
| while (usbc_haint.u32) { |
| int channel; |
| |
| channel = __fls(usbc_haint.u32); |
| cvmx_usb_poll_channel(usb, channel); |
| usbc_haint.u32 ^= 1 << channel; |
| } |
| } |
| |
| cvmx_usb_schedule(usb, usbc_gintsts.s.sof); |
| |
| return 0; |
| } |
| |
| /* convert between an HCD pointer and the corresponding struct octeon_hcd */ |
| static inline struct octeon_hcd *hcd_to_octeon(struct usb_hcd *hcd) |
| { |
| return (struct octeon_hcd *)(hcd->hcd_priv); |
| } |
| |
| static irqreturn_t octeon_usb_irq(struct usb_hcd *hcd) |
| { |
| struct octeon_hcd *usb = hcd_to_octeon(hcd); |
| unsigned long flags; |
| |
| spin_lock_irqsave(&usb->lock, flags); |
| cvmx_usb_poll(usb); |
| spin_unlock_irqrestore(&usb->lock, flags); |
| return IRQ_HANDLED; |
| } |
| |
| static int octeon_usb_start(struct usb_hcd *hcd) |
| { |
| hcd->state = HC_STATE_RUNNING; |
| return 0; |
| } |
| |
| static void octeon_usb_stop(struct usb_hcd *hcd) |
| { |
| hcd->state = HC_STATE_HALT; |
| } |
| |
| static int octeon_usb_get_frame_number(struct usb_hcd *hcd) |
| { |
| struct octeon_hcd *usb = hcd_to_octeon(hcd); |
| |
| return cvmx_usb_get_frame_number(usb); |
| } |
| |
| static int octeon_usb_urb_enqueue(struct usb_hcd *hcd, |
| struct urb *urb, |
| gfp_t mem_flags) |
| { |
| struct octeon_hcd *usb = hcd_to_octeon(hcd); |
| struct device *dev = hcd->self.controller; |
| struct cvmx_usb_transaction *transaction = NULL; |
| struct cvmx_usb_pipe *pipe; |
| unsigned long flags; |
| struct cvmx_usb_iso_packet *iso_packet; |
| struct usb_host_endpoint *ep = urb->ep; |
| int rc; |
| |
| urb->status = 0; |
| spin_lock_irqsave(&usb->lock, flags); |
| |
| rc = usb_hcd_link_urb_to_ep(hcd, urb); |
| if (rc) { |
| spin_unlock_irqrestore(&usb->lock, flags); |
| return rc; |
| } |
| |
| if (!ep->hcpriv) { |
| enum cvmx_usb_transfer transfer_type; |
| enum cvmx_usb_speed speed; |
| int split_device = 0; |
| int split_port = 0; |
| |
| switch (usb_pipetype(urb->pipe)) { |
| case PIPE_ISOCHRONOUS: |
| transfer_type = CVMX_USB_TRANSFER_ISOCHRONOUS; |
| break; |
| case PIPE_INTERRUPT: |
| transfer_type = CVMX_USB_TRANSFER_INTERRUPT; |
| break; |
| case PIPE_CONTROL: |
| transfer_type = CVMX_USB_TRANSFER_CONTROL; |
| break; |
| default: |
| transfer_type = CVMX_USB_TRANSFER_BULK; |
| break; |
| } |
| switch (urb->dev->speed) { |
| case USB_SPEED_LOW: |
| speed = CVMX_USB_SPEED_LOW; |
| break; |
| case USB_SPEED_FULL: |
| speed = CVMX_USB_SPEED_FULL; |
| break; |
| default: |
| speed = CVMX_USB_SPEED_HIGH; |
| break; |
| } |
| /* |
| * For slow devices on high speed ports we need to find the hub |
| * that does the speed translation so we know where to send the |
| * split transactions. |
| */ |
| if (speed != CVMX_USB_SPEED_HIGH) { |
| /* |
| * Start at this device and work our way up the usb |
| * tree. |
| */ |
| struct usb_device *dev = urb->dev; |
| |
| while (dev->parent) { |
| /* |
| * If our parent is high speed then he'll |
| * receive the splits. |
| */ |
| if (dev->parent->speed == USB_SPEED_HIGH) { |
| split_device = dev->parent->devnum; |
| split_port = dev->portnum; |
| break; |
| } |
| /* |
| * Move up the tree one level. If we make it all |
| * the way up the tree, then the port must not |
| * be in high speed mode and we don't need a |
| * split. |
| */ |
| dev = dev->parent; |
| } |
| } |
| pipe = cvmx_usb_open_pipe(usb, usb_pipedevice(urb->pipe), |
| usb_pipeendpoint(urb->pipe), speed, |
| le16_to_cpu(ep->desc.wMaxPacketSize) |
| & 0x7ff, |
| transfer_type, |
| usb_pipein(urb->pipe) ? |
| CVMX_USB_DIRECTION_IN : |
| CVMX_USB_DIRECTION_OUT, |
| urb->interval, |
| (le16_to_cpu(ep->desc.wMaxPacketSize) |
| >> 11) & 0x3, |
| split_device, split_port); |
| if (!pipe) { |
| usb_hcd_unlink_urb_from_ep(hcd, urb); |
| spin_unlock_irqrestore(&usb->lock, flags); |
| dev_dbg(dev, "Failed to create pipe\n"); |
| return -ENOMEM; |
| } |
| ep->hcpriv = pipe; |
| } else { |
| pipe = ep->hcpriv; |
| } |
| |
| switch (usb_pipetype(urb->pipe)) { |
| case PIPE_ISOCHRONOUS: |
| dev_dbg(dev, "Submit isochronous to %d.%d\n", |
| usb_pipedevice(urb->pipe), |
| usb_pipeendpoint(urb->pipe)); |
| /* |
| * Allocate a structure to use for our private list of |
| * isochronous packets. |
| */ |
| iso_packet = kmalloc_array(urb->number_of_packets, |
| sizeof(struct cvmx_usb_iso_packet), |
| GFP_ATOMIC); |
| if (iso_packet) { |
| int i; |
| /* Fill the list with the data from the URB */ |
| for (i = 0; i < urb->number_of_packets; i++) { |
| iso_packet[i].offset = |
| urb->iso_frame_desc[i].offset; |
| iso_packet[i].length = |
| urb->iso_frame_desc[i].length; |
| iso_packet[i].status = CVMX_USB_STATUS_ERROR; |
| } |
| /* |
| * Store a pointer to the list in the URB setup_packet |
| * field. We know this currently isn't being used and |
| * this saves us a bunch of logic. |
| */ |
| urb->setup_packet = (char *)iso_packet; |
| transaction = cvmx_usb_submit_isochronous(usb, |
| pipe, urb); |
| /* |
| * If submit failed we need to free our private packet |
| * list. |
| */ |
| if (!transaction) { |
| urb->setup_packet = NULL; |
| kfree(iso_packet); |
| } |
| } |
| break; |
| case PIPE_INTERRUPT: |
| dev_dbg(dev, "Submit interrupt to %d.%d\n", |
| usb_pipedevice(urb->pipe), |
| usb_pipeendpoint(urb->pipe)); |
| transaction = cvmx_usb_submit_interrupt(usb, pipe, urb); |
| break; |
| case PIPE_CONTROL: |
| dev_dbg(dev, "Submit control to %d.%d\n", |
| usb_pipedevice(urb->pipe), |
| usb_pipeendpoint(urb->pipe)); |
| transaction = cvmx_usb_submit_control(usb, pipe, urb); |
| break; |
| case PIPE_BULK: |
| dev_dbg(dev, "Submit bulk to %d.%d\n", |
| usb_pipedevice(urb->pipe), |
| usb_pipeendpoint(urb->pipe)); |
| transaction = cvmx_usb_submit_bulk(usb, pipe, urb); |
| break; |
| } |
| if (!transaction) { |
| usb_hcd_unlink_urb_from_ep(hcd, urb); |
| spin_unlock_irqrestore(&usb->lock, flags); |
| dev_dbg(dev, "Failed to submit\n"); |
| return -ENOMEM; |
| } |
| urb->hcpriv = transaction; |
| spin_unlock_irqrestore(&usb->lock, flags); |
| return 0; |
| } |
| |
| static int octeon_usb_urb_dequeue(struct usb_hcd *hcd, |
| struct urb *urb, |
| int status) |
| { |
| struct octeon_hcd *usb = hcd_to_octeon(hcd); |
| unsigned long flags; |
| int rc; |
| |
| if (!urb->dev) |
| return -EINVAL; |
| |
| spin_lock_irqsave(&usb->lock, flags); |
| |
| rc = usb_hcd_check_unlink_urb(hcd, urb, status); |
| if (rc) |
| goto out; |
| |
| urb->status = status; |
| cvmx_usb_cancel(usb, urb->ep->hcpriv, urb->hcpriv); |
| |
| out: |
| spin_unlock_irqrestore(&usb->lock, flags); |
| |
| return rc; |
| } |
| |
| static void octeon_usb_endpoint_disable(struct usb_hcd *hcd, |
| struct usb_host_endpoint *ep) |
| { |
| struct device *dev = hcd->self.controller; |
| |
| if (ep->hcpriv) { |
| struct octeon_hcd *usb = hcd_to_octeon(hcd); |
| struct cvmx_usb_pipe *pipe = ep->hcpriv; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&usb->lock, flags); |
| cvmx_usb_cancel_all(usb, pipe); |
| if (cvmx_usb_close_pipe(usb, pipe)) |
| dev_dbg(dev, "Closing pipe %p failed\n", pipe); |
| spin_unlock_irqrestore(&usb->lock, flags); |
| ep->hcpriv = NULL; |
| } |
| } |
| |
| static int octeon_usb_hub_status_data(struct usb_hcd *hcd, char *buf) |
| { |
| struct octeon_hcd *usb = hcd_to_octeon(hcd); |
| struct cvmx_usb_port_status port_status; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&usb->lock, flags); |
| port_status = cvmx_usb_get_status(usb); |
| spin_unlock_irqrestore(&usb->lock, flags); |
| buf[0] = port_status.connect_change << 1; |
| |
| return buf[0] != 0; |
| } |
| |
| static int octeon_usb_hub_control(struct usb_hcd *hcd, u16 typeReq, u16 wValue, |
| u16 wIndex, char *buf, u16 wLength) |
| { |
| struct octeon_hcd *usb = hcd_to_octeon(hcd); |
| struct device *dev = hcd->self.controller; |
| struct cvmx_usb_port_status usb_port_status; |
| int port_status; |
| struct usb_hub_descriptor *desc; |
| unsigned long flags; |
| |
| switch (typeReq) { |
| case ClearHubFeature: |
| dev_dbg(dev, "ClearHubFeature\n"); |
| switch (wValue) { |
| case C_HUB_LOCAL_POWER: |
| case C_HUB_OVER_CURRENT: |
| /* Nothing required here */ |
| break; |
| default: |
| return -EINVAL; |
| } |
| break; |
| case ClearPortFeature: |
| dev_dbg(dev, "ClearPortFeature\n"); |
| if (wIndex != 1) { |
| dev_dbg(dev, " INVALID\n"); |
| return -EINVAL; |
| } |
| |
| switch (wValue) { |
| case USB_PORT_FEAT_ENABLE: |
| dev_dbg(dev, " ENABLE\n"); |
| spin_lock_irqsave(&usb->lock, flags); |
| cvmx_usb_disable(usb); |
| spin_unlock_irqrestore(&usb->lock, flags); |
| break; |
| case USB_PORT_FEAT_SUSPEND: |
| dev_dbg(dev, " SUSPEND\n"); |
| /* Not supported on Octeon */ |
| break; |
| case USB_PORT_FEAT_POWER: |
| dev_dbg(dev, " POWER\n"); |
| /* Not supported on Octeon */ |
| break; |
| case USB_PORT_FEAT_INDICATOR: |
| dev_dbg(dev, " INDICATOR\n"); |
| /* Port indicator not supported */ |
| break; |
| case USB_PORT_FEAT_C_CONNECTION: |
| dev_dbg(dev, " C_CONNECTION\n"); |
| /* Clears drivers internal connect status change flag */ |
| spin_lock_irqsave(&usb->lock, flags); |
| usb->port_status = cvmx_usb_get_status(usb); |
| spin_unlock_irqrestore(&usb->lock, flags); |
| break; |
| case USB_PORT_FEAT_C_RESET: |
| dev_dbg(dev, " C_RESET\n"); |
| /* |
| * Clears the driver's internal Port Reset Change flag. |
| */ |
| spin_lock_irqsave(&usb->lock, flags); |
| usb->port_status = cvmx_usb_get_status(usb); |
| spin_unlock_irqrestore(&usb->lock, flags); |
| break; |
| case USB_PORT_FEAT_C_ENABLE: |
| dev_dbg(dev, " C_ENABLE\n"); |
| /* |
| * Clears the driver's internal Port Enable/Disable |
| * Change flag. |
| */ |
| spin_lock_irqsave(&usb->lock, flags); |
| usb->port_status = cvmx_usb_get_status(usb); |
| spin_unlock_irqrestore(&usb->lock, flags); |
| break; |
| case USB_PORT_FEAT_C_SUSPEND: |
| dev_dbg(dev, " C_SUSPEND\n"); |
| /* |
| * Clears the driver's internal Port Suspend Change |
| * flag, which is set when resume signaling on the host |
| * port is complete. |
| */ |
| break; |
| case USB_PORT_FEAT_C_OVER_CURRENT: |
| dev_dbg(dev, " C_OVER_CURRENT\n"); |
| /* Clears the driver's overcurrent Change flag */ |
| spin_lock_irqsave(&usb->lock, flags); |
| usb->port_status = cvmx_usb_get_status(usb); |
| spin_unlock_irqrestore(&usb->lock, flags); |
| break; |
| default: |
| dev_dbg(dev, " UNKNOWN\n"); |
| return -EINVAL; |
| } |
| break; |
| case GetHubDescriptor: |
| dev_dbg(dev, "GetHubDescriptor\n"); |
| desc = (struct usb_hub_descriptor *)buf; |
| desc->bDescLength = 9; |
| desc->bDescriptorType = 0x29; |
| desc->bNbrPorts = 1; |
| desc->wHubCharacteristics = cpu_to_le16(0x08); |
| desc->bPwrOn2PwrGood = 1; |
| desc->bHubContrCurrent = 0; |
| desc->u.hs.DeviceRemovable[0] = 0; |
| desc->u.hs.DeviceRemovable[1] = 0xff; |
| break; |
| case GetHubStatus: |
| dev_dbg(dev, "GetHubStatus\n"); |
| *(__le32 *)buf = 0; |
| break; |
| case GetPortStatus: |
| dev_dbg(dev, "GetPortStatus\n"); |
| if (wIndex != 1) { |
| dev_dbg(dev, " INVALID\n"); |
| return -EINVAL; |
| } |
| |
| spin_lock_irqsave(&usb->lock, flags); |
| usb_port_status = cvmx_usb_get_status(usb); |
| spin_unlock_irqrestore(&usb->lock, flags); |
| port_status = 0; |
| |
| if (usb_port_status.connect_change) { |
| port_status |= (1 << USB_PORT_FEAT_C_CONNECTION); |
| dev_dbg(dev, " C_CONNECTION\n"); |
| } |
| |
| if (usb_port_status.port_enabled) { |
| port_status |= (1 << USB_PORT_FEAT_C_ENABLE); |
| dev_dbg(dev, " C_ENABLE\n"); |
| } |
| |
| if (usb_port_status.connected) { |
| port_status |= (1 << USB_PORT_FEAT_CONNECTION); |
| dev_dbg(dev, " CONNECTION\n"); |
| } |
| |
| if (usb_port_status.port_enabled) { |
| port_status |= (1 << USB_PORT_FEAT_ENABLE); |
| dev_dbg(dev, " ENABLE\n"); |
| } |
| |
| if (usb_port_status.port_over_current) { |
| port_status |= (1 << USB_PORT_FEAT_OVER_CURRENT); |
| dev_dbg(dev, " OVER_CURRENT\n"); |
| } |
| |
| if (usb_port_status.port_powered) { |
| port_status |= (1 << USB_PORT_FEAT_POWER); |
| dev_dbg(dev, " POWER\n"); |
| } |
| |
| if (usb_port_status.port_speed == CVMX_USB_SPEED_HIGH) { |
| port_status |= USB_PORT_STAT_HIGH_SPEED; |
| dev_dbg(dev, " HIGHSPEED\n"); |
| } else if (usb_port_status.port_speed == CVMX_USB_SPEED_LOW) { |
| port_status |= (1 << USB_PORT_FEAT_LOWSPEED); |
| dev_dbg(dev, " LOWSPEED\n"); |
| } |
| |
| *((__le32 *)buf) = cpu_to_le32(port_status); |
| break; |
| case SetHubFeature: |
| dev_dbg(dev, "SetHubFeature\n"); |
| /* No HUB features supported */ |
| break; |
| case SetPortFeature: |
| dev_dbg(dev, "SetPortFeature\n"); |
| if (wIndex != 1) { |
| dev_dbg(dev, " INVALID\n"); |
| return -EINVAL; |
| } |
| |
| switch (wValue) { |
| case USB_PORT_FEAT_SUSPEND: |
| dev_dbg(dev, " SUSPEND\n"); |
| return -EINVAL; |
| case USB_PORT_FEAT_POWER: |
| dev_dbg(dev, " POWER\n"); |
| /* |
| * Program the port power bit to drive VBUS on the USB. |
| */ |
| spin_lock_irqsave(&usb->lock, flags); |
| USB_SET_FIELD32(CVMX_USBCX_HPRT(usb->index), |
| cvmx_usbcx_hprt, prtpwr, 1); |
| spin_unlock_irqrestore(&usb->lock, flags); |
| return 0; |
| case USB_PORT_FEAT_RESET: |
| dev_dbg(dev, " RESET\n"); |
| spin_lock_irqsave(&usb->lock, flags); |
| cvmx_usb_reset_port(usb); |
| spin_unlock_irqrestore(&usb->lock, flags); |
| return 0; |
| case USB_PORT_FEAT_INDICATOR: |
| dev_dbg(dev, " INDICATOR\n"); |
| /* Not supported */ |
| break; |
| default: |
| dev_dbg(dev, " UNKNOWN\n"); |
| return -EINVAL; |
| } |
| break; |
| default: |
| dev_dbg(dev, "Unknown root hub request\n"); |
| return -EINVAL; |
| } |
| return 0; |
| } |
| |
| static const struct hc_driver octeon_hc_driver = { |
| .description = "Octeon USB", |
| .product_desc = "Octeon Host Controller", |
| .hcd_priv_size = sizeof(struct octeon_hcd), |
| .irq = octeon_usb_irq, |
| .flags = HCD_MEMORY | HCD_DMA | HCD_USB2, |
| .start = octeon_usb_start, |
| .stop = octeon_usb_stop, |
| .urb_enqueue = octeon_usb_urb_enqueue, |
| .urb_dequeue = octeon_usb_urb_dequeue, |
| .endpoint_disable = octeon_usb_endpoint_disable, |
| .get_frame_number = octeon_usb_get_frame_number, |
| .hub_status_data = octeon_usb_hub_status_data, |
| .hub_control = octeon_usb_hub_control, |
| .map_urb_for_dma = octeon_map_urb_for_dma, |
| .unmap_urb_for_dma = octeon_unmap_urb_for_dma, |
| }; |
| |
| static int octeon_usb_probe(struct platform_device *pdev) |
| { |
| int status; |
| int initialize_flags; |
| int usb_num; |
| struct resource *res_mem; |
| struct device_node *usbn_node; |
| int irq = platform_get_irq(pdev, 0); |
| struct device *dev = &pdev->dev; |
| struct octeon_hcd *usb; |
| struct usb_hcd *hcd; |
| u32 clock_rate = 48000000; |
| bool is_crystal_clock = false; |
| const char *clock_type; |
| int i; |
| |
| if (!dev->of_node) { |
| dev_err(dev, "Error: empty of_node\n"); |
| return -ENXIO; |
| } |
| usbn_node = dev->of_node->parent; |
| |
| i = of_property_read_u32(usbn_node, |
| "clock-frequency", &clock_rate); |
| if (i) |
| i = of_property_read_u32(usbn_node, |
| "refclk-frequency", &clock_rate); |
| if (i) { |
| dev_err(dev, "No USBN \"clock-frequency\"\n"); |
| return -ENXIO; |
| } |
| switch (clock_rate) { |
| case 12000000: |
| initialize_flags = CVMX_USB_INITIALIZE_FLAGS_CLOCK_12MHZ; |
| break; |
| case 24000000: |
| initialize_flags = CVMX_USB_INITIALIZE_FLAGS_CLOCK_24MHZ; |
| break; |
| case 48000000: |
| initialize_flags = CVMX_USB_INITIALIZE_FLAGS_CLOCK_48MHZ; |
| break; |
| default: |
| dev_err(dev, "Illegal USBN \"clock-frequency\" %u\n", |
| clock_rate); |
| return -ENXIO; |
| } |
| |
| i = of_property_read_string(usbn_node, |
| "cavium,refclk-type", &clock_type); |
| if (i) |
| i = of_property_read_string(usbn_node, |
| "refclk-type", &clock_type); |
| |
| if (!i && strcmp("crystal", clock_type) == 0) |
| is_crystal_clock = true; |
| |
| if (is_crystal_clock) |
| initialize_flags |= CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_XI; |
| else |
| initialize_flags |= CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_GND; |
| |
| res_mem = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| if (!res_mem) { |
| dev_err(dev, "found no memory resource\n"); |
| return -ENXIO; |
| } |
| usb_num = (res_mem->start >> 44) & 1; |
| |
| if (irq < 0) { |
| /* Defective device tree, but we know how to fix it. */ |
| irq_hw_number_t hwirq = usb_num ? (1 << 6) + 17 : 56; |
| |
| irq = irq_create_mapping(NULL, hwirq); |
| } |
| |
| /* |
| * Set the DMA mask to 64bits so we get buffers already translated for |
| * DMA. |
| */ |
| i = dma_coerce_mask_and_coherent(dev, DMA_BIT_MASK(64)); |
| if (i) |
| return i; |
| |
| /* |
| * Only cn52XX and cn56XX have DWC_OTG USB hardware and the |
| * IOB priority registers. Under heavy network load USB |
| * hardware can be starved by the IOB causing a crash. Give |
| * it a priority boost if it has been waiting more than 400 |
| * cycles to avoid this situation. |
| * |
| * Testing indicates that a cnt_val of 8192 is not sufficient, |
| * but no failures are seen with 4096. We choose a value of |
| * 400 to give a safety factor of 10. |
| */ |
| if (OCTEON_IS_MODEL(OCTEON_CN52XX) || OCTEON_IS_MODEL(OCTEON_CN56XX)) { |
| union cvmx_iob_n2c_l2c_pri_cnt pri_cnt; |
| |
| pri_cnt.u64 = 0; |
| pri_cnt.s.cnt_enb = 1; |
| pri_cnt.s.cnt_val = 400; |
| cvmx_write_csr(CVMX_IOB_N2C_L2C_PRI_CNT, pri_cnt.u64); |
| } |
| |
| hcd = usb_create_hcd(&octeon_hc_driver, dev, dev_name(dev)); |
| if (!hcd) { |
| dev_dbg(dev, "Failed to allocate memory for HCD\n"); |
| return -1; |
| } |
| hcd->uses_new_polling = 1; |
| usb = (struct octeon_hcd *)hcd->hcd_priv; |
| |
| spin_lock_init(&usb->lock); |
| |
| usb->init_flags = initialize_flags; |
| |
| /* Initialize the USB state structure */ |
| usb->index = usb_num; |
| INIT_LIST_HEAD(&usb->idle_pipes); |
| for (i = 0; i < ARRAY_SIZE(usb->active_pipes); i++) |
| INIT_LIST_HEAD(&usb->active_pipes[i]); |
| |
| /* Due to an errata, CN31XX doesn't support DMA */ |
| if (OCTEON_IS_MODEL(OCTEON_CN31XX)) { |
| usb->init_flags |= CVMX_USB_INITIALIZE_FLAGS_NO_DMA; |
| /* Only use one channel with non DMA */ |
| usb->idle_hardware_channels = 0x1; |
| } else if (OCTEON_IS_MODEL(OCTEON_CN5XXX)) { |
| /* CN5XXX have an errata with channel 3 */ |
| usb->idle_hardware_channels = 0xf7; |
| } else { |
| usb->idle_hardware_channels = 0xff; |
| } |
| |
| status = cvmx_usb_initialize(dev, usb); |
| if (status) { |
| dev_dbg(dev, "USB initialization failed with %d\n", status); |
| usb_put_hcd(hcd); |
| return -1; |
| } |
| |
| status = usb_add_hcd(hcd, irq, 0); |
| if (status) { |
| dev_dbg(dev, "USB add HCD failed with %d\n", status); |
| usb_put_hcd(hcd); |
| return -1; |
| } |
| device_wakeup_enable(hcd->self.controller); |
| |
| dev_info(dev, "Registered HCD for port %d on irq %d\n", usb_num, irq); |
| |
| return 0; |
| } |
| |
| static void octeon_usb_remove(struct platform_device *pdev) |
| { |
| int status; |
| struct device *dev = &pdev->dev; |
| struct usb_hcd *hcd = dev_get_drvdata(dev); |
| struct octeon_hcd *usb = hcd_to_octeon(hcd); |
| unsigned long flags; |
| |
| usb_remove_hcd(hcd); |
| spin_lock_irqsave(&usb->lock, flags); |
| status = cvmx_usb_shutdown(usb); |
| spin_unlock_irqrestore(&usb->lock, flags); |
| if (status) |
| dev_dbg(dev, "USB shutdown failed with %d\n", status); |
| |
| usb_put_hcd(hcd); |
| } |
| |
| static const struct of_device_id octeon_usb_match[] = { |
| { |
| .compatible = "cavium,octeon-5750-usbc", |
| }, |
| {}, |
| }; |
| MODULE_DEVICE_TABLE(of, octeon_usb_match); |
| |
| static struct platform_driver octeon_usb_driver = { |
| .driver = { |
| .name = "octeon-hcd", |
| .of_match_table = octeon_usb_match, |
| }, |
| .probe = octeon_usb_probe, |
| .remove = octeon_usb_remove, |
| }; |
| |
| static int __init octeon_usb_driver_init(void) |
| { |
| if (usb_disabled()) |
| return 0; |
| |
| return platform_driver_register(&octeon_usb_driver); |
| } |
| module_init(octeon_usb_driver_init); |
| |
| static void __exit octeon_usb_driver_exit(void) |
| { |
| if (usb_disabled()) |
| return; |
| |
| platform_driver_unregister(&octeon_usb_driver); |
| } |
| module_exit(octeon_usb_driver_exit); |
| |
| MODULE_LICENSE("GPL"); |
| MODULE_AUTHOR("Cavium, Inc. <support@cavium.com>"); |
| MODULE_DESCRIPTION("Cavium Inc. OCTEON USB Host driver."); |