blob: 227e513867dd2773fbdfbcb9a867ded4eae522b8 [file] [log] [blame] [edit]
// SPDX-License-Identifier: GPL-2.0
/*
* xhci-dbgcap.c - xHCI debug capability support
*
* Copyright (C) 2017 Intel Corporation
*
* Author: Lu Baolu <baolu.lu@linux.intel.com>
*/
#include <linux/bug.h>
#include <linux/device.h>
#include <linux/dma-mapping.h>
#include <linux/errno.h>
#include <linux/kstrtox.h>
#include <linux/list.h>
#include <linux/nls.h>
#include <linux/pm_runtime.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/string.h>
#include <linux/sysfs.h>
#include <linux/types.h>
#include <linux/workqueue.h>
#include <linux/io-64-nonatomic-lo-hi.h>
#include <asm/byteorder.h>
#include "xhci.h"
#include "xhci-trace.h"
#include "xhci-dbgcap.h"
static void dbc_free_ctx(struct device *dev, struct xhci_container_ctx *ctx)
{
if (!ctx)
return;
dma_free_coherent(dev, ctx->size, ctx->bytes, ctx->dma);
kfree(ctx);
}
/* we use only one segment for DbC rings */
static void dbc_ring_free(struct device *dev, struct xhci_ring *ring)
{
if (!ring)
return;
if (ring->first_seg) {
dma_free_coherent(dev, TRB_SEGMENT_SIZE,
ring->first_seg->trbs,
ring->first_seg->dma);
kfree(ring->first_seg);
}
kfree(ring);
}
static u32 xhci_dbc_populate_strings(struct dbc_str_descs *strings)
{
struct usb_string_descriptor *s_desc;
u32 string_length;
/* Serial string: */
s_desc = (struct usb_string_descriptor *)strings->serial;
utf8s_to_utf16s(DBC_STRING_SERIAL, strlen(DBC_STRING_SERIAL),
UTF16_LITTLE_ENDIAN, (wchar_t *)s_desc->wData,
DBC_MAX_STRING_LENGTH);
s_desc->bLength = (strlen(DBC_STRING_SERIAL) + 1) * 2;
s_desc->bDescriptorType = USB_DT_STRING;
string_length = s_desc->bLength;
string_length <<= 8;
/* Product string: */
s_desc = (struct usb_string_descriptor *)strings->product;
utf8s_to_utf16s(DBC_STRING_PRODUCT, strlen(DBC_STRING_PRODUCT),
UTF16_LITTLE_ENDIAN, (wchar_t *)s_desc->wData,
DBC_MAX_STRING_LENGTH);
s_desc->bLength = (strlen(DBC_STRING_PRODUCT) + 1) * 2;
s_desc->bDescriptorType = USB_DT_STRING;
string_length += s_desc->bLength;
string_length <<= 8;
/* Manufacture string: */
s_desc = (struct usb_string_descriptor *)strings->manufacturer;
utf8s_to_utf16s(DBC_STRING_MANUFACTURER,
strlen(DBC_STRING_MANUFACTURER),
UTF16_LITTLE_ENDIAN, (wchar_t *)s_desc->wData,
DBC_MAX_STRING_LENGTH);
s_desc->bLength = (strlen(DBC_STRING_MANUFACTURER) + 1) * 2;
s_desc->bDescriptorType = USB_DT_STRING;
string_length += s_desc->bLength;
string_length <<= 8;
/* String0: */
strings->string0[0] = 4;
strings->string0[1] = USB_DT_STRING;
strings->string0[2] = 0x09;
strings->string0[3] = 0x04;
string_length += 4;
return string_length;
}
static void xhci_dbc_init_contexts(struct xhci_dbc *dbc, u32 string_length)
{
struct dbc_info_context *info;
struct xhci_ep_ctx *ep_ctx;
u32 dev_info;
dma_addr_t deq, dma;
unsigned int max_burst;
if (!dbc)
return;
/* Populate info Context: */
info = (struct dbc_info_context *)dbc->ctx->bytes;
dma = dbc->string_dma;
info->string0 = cpu_to_le64(dma);
info->manufacturer = cpu_to_le64(dma + DBC_MAX_STRING_LENGTH);
info->product = cpu_to_le64(dma + DBC_MAX_STRING_LENGTH * 2);
info->serial = cpu_to_le64(dma + DBC_MAX_STRING_LENGTH * 3);
info->length = cpu_to_le32(string_length);
/* Populate bulk out endpoint context: */
ep_ctx = dbc_bulkout_ctx(dbc);
max_burst = DBC_CTRL_MAXBURST(readl(&dbc->regs->control));
deq = dbc_bulkout_enq(dbc);
ep_ctx->ep_info = 0;
ep_ctx->ep_info2 = dbc_epctx_info2(BULK_OUT_EP, 1024, max_burst);
ep_ctx->deq = cpu_to_le64(deq | dbc->ring_out->cycle_state);
/* Populate bulk in endpoint context: */
ep_ctx = dbc_bulkin_ctx(dbc);
deq = dbc_bulkin_enq(dbc);
ep_ctx->ep_info = 0;
ep_ctx->ep_info2 = dbc_epctx_info2(BULK_IN_EP, 1024, max_burst);
ep_ctx->deq = cpu_to_le64(deq | dbc->ring_in->cycle_state);
/* Set DbC context and info registers: */
lo_hi_writeq(dbc->ctx->dma, &dbc->regs->dccp);
dev_info = (dbc->idVendor << 16) | dbc->bInterfaceProtocol;
writel(dev_info, &dbc->regs->devinfo1);
dev_info = (dbc->bcdDevice << 16) | dbc->idProduct;
writel(dev_info, &dbc->regs->devinfo2);
}
static void xhci_dbc_giveback(struct dbc_request *req, int status)
__releases(&dbc->lock)
__acquires(&dbc->lock)
{
struct xhci_dbc *dbc = req->dbc;
struct device *dev = dbc->dev;
list_del_init(&req->list_pending);
req->trb_dma = 0;
req->trb = NULL;
if (req->status == -EINPROGRESS)
req->status = status;
trace_xhci_dbc_giveback_request(req);
dma_unmap_single(dev,
req->dma,
req->length,
dbc_ep_dma_direction(req));
/* Give back the transfer request: */
spin_unlock(&dbc->lock);
req->complete(dbc, req);
spin_lock(&dbc->lock);
}
static void trb_to_noop(union xhci_trb *trb)
{
trb->generic.field[0] = 0;
trb->generic.field[1] = 0;
trb->generic.field[2] = 0;
trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE);
trb->generic.field[3] |= cpu_to_le32(TRB_TYPE(TRB_TR_NOOP));
}
static void xhci_dbc_flush_single_request(struct dbc_request *req)
{
trb_to_noop(req->trb);
xhci_dbc_giveback(req, -ESHUTDOWN);
}
static void xhci_dbc_flush_endpoint_requests(struct dbc_ep *dep)
{
struct dbc_request *req, *tmp;
list_for_each_entry_safe(req, tmp, &dep->list_pending, list_pending)
xhci_dbc_flush_single_request(req);
}
static void xhci_dbc_flush_requests(struct xhci_dbc *dbc)
{
xhci_dbc_flush_endpoint_requests(&dbc->eps[BULK_OUT]);
xhci_dbc_flush_endpoint_requests(&dbc->eps[BULK_IN]);
}
struct dbc_request *
dbc_alloc_request(struct xhci_dbc *dbc, unsigned int direction, gfp_t flags)
{
struct dbc_request *req;
if (direction != BULK_IN &&
direction != BULK_OUT)
return NULL;
if (!dbc)
return NULL;
req = kzalloc(sizeof(*req), flags);
if (!req)
return NULL;
req->dbc = dbc;
INIT_LIST_HEAD(&req->list_pending);
INIT_LIST_HEAD(&req->list_pool);
req->direction = direction;
trace_xhci_dbc_alloc_request(req);
return req;
}
void
dbc_free_request(struct dbc_request *req)
{
trace_xhci_dbc_free_request(req);
kfree(req);
}
static void
xhci_dbc_queue_trb(struct xhci_ring *ring, u32 field1,
u32 field2, u32 field3, u32 field4)
{
union xhci_trb *trb, *next;
trb = ring->enqueue;
trb->generic.field[0] = cpu_to_le32(field1);
trb->generic.field[1] = cpu_to_le32(field2);
trb->generic.field[2] = cpu_to_le32(field3);
trb->generic.field[3] = cpu_to_le32(field4);
trace_xhci_dbc_gadget_ep_queue(ring, &trb->generic,
xhci_trb_virt_to_dma(ring->enq_seg,
ring->enqueue));
ring->num_trbs_free--;
next = ++(ring->enqueue);
if (TRB_TYPE_LINK_LE32(next->link.control)) {
next->link.control ^= cpu_to_le32(TRB_CYCLE);
ring->enqueue = ring->enq_seg->trbs;
ring->cycle_state ^= 1;
}
}
static int xhci_dbc_queue_bulk_tx(struct dbc_ep *dep,
struct dbc_request *req)
{
u64 addr;
union xhci_trb *trb;
unsigned int num_trbs;
struct xhci_dbc *dbc = req->dbc;
struct xhci_ring *ring = dep->ring;
u32 length, control, cycle;
num_trbs = count_trbs(req->dma, req->length);
WARN_ON(num_trbs != 1);
if (ring->num_trbs_free < num_trbs)
return -EBUSY;
addr = req->dma;
trb = ring->enqueue;
cycle = ring->cycle_state;
length = TRB_LEN(req->length);
control = TRB_TYPE(TRB_NORMAL) | TRB_IOC;
if (cycle)
control &= cpu_to_le32(~TRB_CYCLE);
else
control |= cpu_to_le32(TRB_CYCLE);
req->trb = ring->enqueue;
req->trb_dma = xhci_trb_virt_to_dma(ring->enq_seg, ring->enqueue);
xhci_dbc_queue_trb(ring,
lower_32_bits(addr),
upper_32_bits(addr),
length, control);
/*
* Add a barrier between writes of trb fields and flipping
* the cycle bit:
*/
wmb();
if (cycle)
trb->generic.field[3] |= cpu_to_le32(TRB_CYCLE);
else
trb->generic.field[3] &= cpu_to_le32(~TRB_CYCLE);
writel(DBC_DOOR_BELL_TARGET(dep->direction), &dbc->regs->doorbell);
return 0;
}
static int
dbc_ep_do_queue(struct dbc_request *req)
{
int ret;
struct xhci_dbc *dbc = req->dbc;
struct device *dev = dbc->dev;
struct dbc_ep *dep = &dbc->eps[req->direction];
if (!req->length || !req->buf)
return -EINVAL;
req->actual = 0;
req->status = -EINPROGRESS;
req->dma = dma_map_single(dev,
req->buf,
req->length,
dbc_ep_dma_direction(dep));
if (dma_mapping_error(dev, req->dma)) {
dev_err(dbc->dev, "failed to map buffer\n");
return -EFAULT;
}
ret = xhci_dbc_queue_bulk_tx(dep, req);
if (ret) {
dev_err(dbc->dev, "failed to queue trbs\n");
dma_unmap_single(dev,
req->dma,
req->length,
dbc_ep_dma_direction(dep));
return -EFAULT;
}
list_add_tail(&req->list_pending, &dep->list_pending);
return 0;
}
int dbc_ep_queue(struct dbc_request *req)
{
unsigned long flags;
struct xhci_dbc *dbc = req->dbc;
int ret = -ESHUTDOWN;
if (!dbc)
return -ENODEV;
if (req->direction != BULK_IN &&
req->direction != BULK_OUT)
return -EINVAL;
spin_lock_irqsave(&dbc->lock, flags);
if (dbc->state == DS_CONFIGURED)
ret = dbc_ep_do_queue(req);
spin_unlock_irqrestore(&dbc->lock, flags);
mod_delayed_work(system_wq, &dbc->event_work, 0);
trace_xhci_dbc_queue_request(req);
return ret;
}
static inline void xhci_dbc_do_eps_init(struct xhci_dbc *dbc, bool direction)
{
struct dbc_ep *dep;
dep = &dbc->eps[direction];
dep->dbc = dbc;
dep->direction = direction;
dep->ring = direction ? dbc->ring_in : dbc->ring_out;
INIT_LIST_HEAD(&dep->list_pending);
}
static void xhci_dbc_eps_init(struct xhci_dbc *dbc)
{
xhci_dbc_do_eps_init(dbc, BULK_OUT);
xhci_dbc_do_eps_init(dbc, BULK_IN);
}
static void xhci_dbc_eps_exit(struct xhci_dbc *dbc)
{
memset(dbc->eps, 0, sizeof_field(struct xhci_dbc, eps));
}
static int dbc_erst_alloc(struct device *dev, struct xhci_ring *evt_ring,
struct xhci_erst *erst, gfp_t flags)
{
erst->entries = dma_alloc_coherent(dev, sizeof(*erst->entries),
&erst->erst_dma_addr, flags);
if (!erst->entries)
return -ENOMEM;
erst->num_entries = 1;
erst->entries[0].seg_addr = cpu_to_le64(evt_ring->first_seg->dma);
erst->entries[0].seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
erst->entries[0].rsvd = 0;
return 0;
}
static void dbc_erst_free(struct device *dev, struct xhci_erst *erst)
{
dma_free_coherent(dev, sizeof(*erst->entries), erst->entries,
erst->erst_dma_addr);
erst->entries = NULL;
}
static struct xhci_container_ctx *
dbc_alloc_ctx(struct device *dev, gfp_t flags)
{
struct xhci_container_ctx *ctx;
ctx = kzalloc(sizeof(*ctx), flags);
if (!ctx)
return NULL;
/* xhci 7.6.9, all three contexts; info, ep-out and ep-in. Each 64 bytes*/
ctx->size = 3 * DBC_CONTEXT_SIZE;
ctx->bytes = dma_alloc_coherent(dev, ctx->size, &ctx->dma, flags);
if (!ctx->bytes) {
kfree(ctx);
return NULL;
}
return ctx;
}
static struct xhci_ring *
xhci_dbc_ring_alloc(struct device *dev, enum xhci_ring_type type, gfp_t flags)
{
struct xhci_ring *ring;
struct xhci_segment *seg;
dma_addr_t dma;
ring = kzalloc(sizeof(*ring), flags);
if (!ring)
return NULL;
ring->num_segs = 1;
ring->type = type;
seg = kzalloc(sizeof(*seg), flags);
if (!seg)
goto seg_fail;
ring->first_seg = seg;
ring->last_seg = seg;
seg->next = seg;
seg->trbs = dma_alloc_coherent(dev, TRB_SEGMENT_SIZE, &dma, flags);
if (!seg->trbs)
goto dma_fail;
seg->dma = dma;
/* Only event ring does not use link TRB */
if (type != TYPE_EVENT) {
union xhci_trb *trb = &seg->trbs[TRBS_PER_SEGMENT - 1];
trb->link.segment_ptr = cpu_to_le64(dma);
trb->link.control = cpu_to_le32(LINK_TOGGLE | TRB_TYPE(TRB_LINK));
}
INIT_LIST_HEAD(&ring->td_list);
xhci_initialize_ring_info(ring);
return ring;
dma_fail:
kfree(seg);
seg_fail:
kfree(ring);
return NULL;
}
static int xhci_dbc_mem_init(struct xhci_dbc *dbc, gfp_t flags)
{
int ret;
dma_addr_t deq;
u32 string_length;
struct device *dev = dbc->dev;
/* Allocate various rings for events and transfers: */
dbc->ring_evt = xhci_dbc_ring_alloc(dev, TYPE_EVENT, flags);
if (!dbc->ring_evt)
goto evt_fail;
dbc->ring_in = xhci_dbc_ring_alloc(dev, TYPE_BULK, flags);
if (!dbc->ring_in)
goto in_fail;
dbc->ring_out = xhci_dbc_ring_alloc(dev, TYPE_BULK, flags);
if (!dbc->ring_out)
goto out_fail;
/* Allocate and populate ERST: */
ret = dbc_erst_alloc(dev, dbc->ring_evt, &dbc->erst, flags);
if (ret)
goto erst_fail;
/* Allocate context data structure: */
dbc->ctx = dbc_alloc_ctx(dev, flags); /* was sysdev, and is still */
if (!dbc->ctx)
goto ctx_fail;
/* Allocate the string table: */
dbc->string_size = sizeof(*dbc->string);
dbc->string = dma_alloc_coherent(dev, dbc->string_size,
&dbc->string_dma, flags);
if (!dbc->string)
goto string_fail;
/* Setup ERST register: */
writel(dbc->erst.num_entries, &dbc->regs->ersts);
lo_hi_writeq(dbc->erst.erst_dma_addr, &dbc->regs->erstba);
deq = xhci_trb_virt_to_dma(dbc->ring_evt->deq_seg,
dbc->ring_evt->dequeue);
lo_hi_writeq(deq, &dbc->regs->erdp);
/* Setup strings and contexts: */
string_length = xhci_dbc_populate_strings(dbc->string);
xhci_dbc_init_contexts(dbc, string_length);
xhci_dbc_eps_init(dbc);
dbc->state = DS_INITIALIZED;
return 0;
string_fail:
dbc_free_ctx(dev, dbc->ctx);
dbc->ctx = NULL;
ctx_fail:
dbc_erst_free(dev, &dbc->erst);
erst_fail:
dbc_ring_free(dev, dbc->ring_out);
dbc->ring_out = NULL;
out_fail:
dbc_ring_free(dev, dbc->ring_in);
dbc->ring_in = NULL;
in_fail:
dbc_ring_free(dev, dbc->ring_evt);
dbc->ring_evt = NULL;
evt_fail:
return -ENOMEM;
}
static void xhci_dbc_mem_cleanup(struct xhci_dbc *dbc)
{
if (!dbc)
return;
xhci_dbc_eps_exit(dbc);
dma_free_coherent(dbc->dev, dbc->string_size, dbc->string, dbc->string_dma);
dbc->string = NULL;
dbc_free_ctx(dbc->dev, dbc->ctx);
dbc->ctx = NULL;
dbc_erst_free(dbc->dev, &dbc->erst);
dbc_ring_free(dbc->dev, dbc->ring_out);
dbc_ring_free(dbc->dev, dbc->ring_in);
dbc_ring_free(dbc->dev, dbc->ring_evt);
dbc->ring_in = NULL;
dbc->ring_out = NULL;
dbc->ring_evt = NULL;
}
static int xhci_do_dbc_start(struct xhci_dbc *dbc)
{
int ret;
u32 ctrl;
if (dbc->state != DS_DISABLED)
return -EINVAL;
writel(0, &dbc->regs->control);
ret = xhci_handshake(&dbc->regs->control,
DBC_CTRL_DBC_ENABLE,
0, 1000);
if (ret)
return ret;
ret = xhci_dbc_mem_init(dbc, GFP_ATOMIC);
if (ret)
return ret;
ctrl = readl(&dbc->regs->control);
writel(ctrl | DBC_CTRL_DBC_ENABLE | DBC_CTRL_PORT_ENABLE,
&dbc->regs->control);
ret = xhci_handshake(&dbc->regs->control,
DBC_CTRL_DBC_ENABLE,
DBC_CTRL_DBC_ENABLE, 1000);
if (ret)
return ret;
dbc->state = DS_ENABLED;
return 0;
}
static int xhci_do_dbc_stop(struct xhci_dbc *dbc)
{
if (dbc->state == DS_DISABLED)
return -EINVAL;
writel(0, &dbc->regs->control);
dbc->state = DS_DISABLED;
return 0;
}
static int xhci_dbc_start(struct xhci_dbc *dbc)
{
int ret;
unsigned long flags;
WARN_ON(!dbc);
pm_runtime_get_sync(dbc->dev); /* note this was self.controller */
spin_lock_irqsave(&dbc->lock, flags);
ret = xhci_do_dbc_start(dbc);
spin_unlock_irqrestore(&dbc->lock, flags);
if (ret) {
pm_runtime_put(dbc->dev); /* note this was self.controller */
return ret;
}
return mod_delayed_work(system_wq, &dbc->event_work,
msecs_to_jiffies(dbc->poll_interval));
}
static void xhci_dbc_stop(struct xhci_dbc *dbc)
{
int ret;
unsigned long flags;
WARN_ON(!dbc);
switch (dbc->state) {
case DS_DISABLED:
return;
case DS_CONFIGURED:
if (dbc->driver->disconnect)
dbc->driver->disconnect(dbc);
break;
default:
break;
}
cancel_delayed_work_sync(&dbc->event_work);
spin_lock_irqsave(&dbc->lock, flags);
ret = xhci_do_dbc_stop(dbc);
spin_unlock_irqrestore(&dbc->lock, flags);
if (ret)
return;
xhci_dbc_mem_cleanup(dbc);
pm_runtime_put_sync(dbc->dev); /* note, was self.controller */
}
static void
handle_ep_halt_changes(struct xhci_dbc *dbc, struct dbc_ep *dep, bool halted)
{
if (halted) {
dev_info(dbc->dev, "DbC Endpoint halted\n");
dep->halted = 1;
} else if (dep->halted) {
dev_info(dbc->dev, "DbC Endpoint halt cleared\n");
dep->halted = 0;
if (!list_empty(&dep->list_pending))
writel(DBC_DOOR_BELL_TARGET(dep->direction),
&dbc->regs->doorbell);
}
}
static void
dbc_handle_port_status(struct xhci_dbc *dbc, union xhci_trb *event)
{
u32 portsc;
portsc = readl(&dbc->regs->portsc);
if (portsc & DBC_PORTSC_CONN_CHANGE)
dev_info(dbc->dev, "DbC port connect change\n");
if (portsc & DBC_PORTSC_RESET_CHANGE)
dev_info(dbc->dev, "DbC port reset change\n");
if (portsc & DBC_PORTSC_LINK_CHANGE)
dev_info(dbc->dev, "DbC port link status change\n");
if (portsc & DBC_PORTSC_CONFIG_CHANGE)
dev_info(dbc->dev, "DbC config error change\n");
/* Port reset change bit will be cleared in other place: */
writel(portsc & ~DBC_PORTSC_RESET_CHANGE, &dbc->regs->portsc);
}
static void dbc_handle_xfer_event(struct xhci_dbc *dbc, union xhci_trb *event)
{
struct dbc_ep *dep;
struct xhci_ring *ring;
int ep_id;
int status;
struct xhci_ep_ctx *ep_ctx;
u32 comp_code;
size_t remain_length;
struct dbc_request *req = NULL, *r;
comp_code = GET_COMP_CODE(le32_to_cpu(event->generic.field[2]));
remain_length = EVENT_TRB_LEN(le32_to_cpu(event->generic.field[2]));
ep_id = TRB_TO_EP_ID(le32_to_cpu(event->generic.field[3]));
dep = (ep_id == EPID_OUT) ?
get_out_ep(dbc) : get_in_ep(dbc);
ep_ctx = (ep_id == EPID_OUT) ?
dbc_bulkout_ctx(dbc) : dbc_bulkin_ctx(dbc);
ring = dep->ring;
/* Match the pending request: */
list_for_each_entry(r, &dep->list_pending, list_pending) {
if (r->trb_dma == event->trans_event.buffer) {
req = r;
break;
}
if (r->status == -COMP_STALL_ERROR) {
dev_warn(dbc->dev, "Give back stale stalled req\n");
ring->num_trbs_free++;
xhci_dbc_giveback(r, 0);
}
}
if (!req) {
dev_warn(dbc->dev, "no matched request\n");
return;
}
trace_xhci_dbc_handle_transfer(ring, &req->trb->generic, req->trb_dma);
switch (comp_code) {
case COMP_SUCCESS:
remain_length = 0;
fallthrough;
case COMP_SHORT_PACKET:
status = 0;
break;
case COMP_TRB_ERROR:
case COMP_BABBLE_DETECTED_ERROR:
case COMP_USB_TRANSACTION_ERROR:
dev_warn(dbc->dev, "tx error %d detected\n", comp_code);
status = -comp_code;
break;
case COMP_STALL_ERROR:
dev_warn(dbc->dev, "Stall error at bulk TRB %llx, remaining %zu, ep deq %llx\n",
event->trans_event.buffer, remain_length, ep_ctx->deq);
status = 0;
dep->halted = 1;
/*
* xHC DbC may trigger a STALL bulk xfer event when host sends a
* ClearFeature(ENDPOINT_HALT) request even if there wasn't an
* active bulk transfer.
*
* Don't give back this transfer request as hardware will later
* start processing TRBs starting from this 'STALLED' TRB,
* causing TRBs and requests to be out of sync.
*
* If STALL event shows some bytes were transferred then assume
* it's an actual transfer issue and give back the request.
* In this case mark the TRB as No-Op to avoid hw from using the
* TRB again.
*/
if ((ep_ctx->deq & ~TRB_CYCLE) == event->trans_event.buffer) {
dev_dbg(dbc->dev, "Ep stopped on Stalled TRB\n");
if (remain_length == req->length) {
dev_dbg(dbc->dev, "Spurious stall event, keep req\n");
req->status = -COMP_STALL_ERROR;
req->actual = 0;
return;
}
dev_dbg(dbc->dev, "Give back stalled req, but turn TRB to No-op\n");
trb_to_noop(req->trb);
}
break;
default:
dev_err(dbc->dev, "unknown tx error %d\n", comp_code);
status = -comp_code;
break;
}
ring->num_trbs_free++;
req->actual = req->length - remain_length;
xhci_dbc_giveback(req, status);
}
static void inc_evt_deq(struct xhci_ring *ring)
{
/* If on the last TRB of the segment go back to the beginning */
if (ring->dequeue == &ring->deq_seg->trbs[TRBS_PER_SEGMENT - 1]) {
ring->cycle_state ^= 1;
ring->dequeue = ring->deq_seg->trbs;
return;
}
ring->dequeue++;
}
static enum evtreturn xhci_dbc_do_handle_events(struct xhci_dbc *dbc)
{
dma_addr_t deq;
union xhci_trb *evt;
u32 ctrl, portsc;
bool update_erdp = false;
/* DbC state machine: */
switch (dbc->state) {
case DS_DISABLED:
case DS_INITIALIZED:
return EVT_ERR;
case DS_ENABLED:
portsc = readl(&dbc->regs->portsc);
if (portsc & DBC_PORTSC_CONN_STATUS) {
dbc->state = DS_CONNECTED;
dev_info(dbc->dev, "DbC connected\n");
}
return EVT_DONE;
case DS_CONNECTED:
ctrl = readl(&dbc->regs->control);
if (ctrl & DBC_CTRL_DBC_RUN) {
dbc->state = DS_CONFIGURED;
dev_info(dbc->dev, "DbC configured\n");
portsc = readl(&dbc->regs->portsc);
writel(portsc, &dbc->regs->portsc);
return EVT_GSER;
}
return EVT_DONE;
case DS_CONFIGURED:
/* Handle cable unplug event: */
portsc = readl(&dbc->regs->portsc);
if (!(portsc & DBC_PORTSC_PORT_ENABLED) &&
!(portsc & DBC_PORTSC_CONN_STATUS)) {
dev_info(dbc->dev, "DbC cable unplugged\n");
dbc->state = DS_ENABLED;
xhci_dbc_flush_requests(dbc);
return EVT_DISC;
}
/* Handle debug port reset event: */
if (portsc & DBC_PORTSC_RESET_CHANGE) {
dev_info(dbc->dev, "DbC port reset\n");
writel(portsc, &dbc->regs->portsc);
dbc->state = DS_ENABLED;
xhci_dbc_flush_requests(dbc);
return EVT_DISC;
}
/* Check and handle changes in endpoint halt status */
ctrl = readl(&dbc->regs->control);
handle_ep_halt_changes(dbc, get_in_ep(dbc), ctrl & DBC_CTRL_HALT_IN_TR);
handle_ep_halt_changes(dbc, get_out_ep(dbc), ctrl & DBC_CTRL_HALT_OUT_TR);
/* Clear DbC run change bit: */
if (ctrl & DBC_CTRL_DBC_RUN_CHANGE) {
writel(ctrl, &dbc->regs->control);
ctrl = readl(&dbc->regs->control);
}
break;
default:
dev_err(dbc->dev, "Unknown DbC state %d\n", dbc->state);
break;
}
/* Handle the events in the event ring: */
evt = dbc->ring_evt->dequeue;
while ((le32_to_cpu(evt->event_cmd.flags) & TRB_CYCLE) ==
dbc->ring_evt->cycle_state) {
/*
* Add a barrier between reading the cycle flag and any
* reads of the event's flags/data below:
*/
rmb();
trace_xhci_dbc_handle_event(dbc->ring_evt, &evt->generic,
xhci_trb_virt_to_dma(dbc->ring_evt->deq_seg,
dbc->ring_evt->dequeue));
switch (le32_to_cpu(evt->event_cmd.flags) & TRB_TYPE_BITMASK) {
case TRB_TYPE(TRB_PORT_STATUS):
dbc_handle_port_status(dbc, evt);
break;
case TRB_TYPE(TRB_TRANSFER):
dbc_handle_xfer_event(dbc, evt);
break;
default:
break;
}
inc_evt_deq(dbc->ring_evt);
evt = dbc->ring_evt->dequeue;
update_erdp = true;
}
/* Update event ring dequeue pointer: */
if (update_erdp) {
deq = xhci_trb_virt_to_dma(dbc->ring_evt->deq_seg,
dbc->ring_evt->dequeue);
lo_hi_writeq(deq, &dbc->regs->erdp);
}
return EVT_DONE;
}
static void xhci_dbc_handle_events(struct work_struct *work)
{
enum evtreturn evtr;
struct xhci_dbc *dbc;
unsigned long flags;
unsigned int poll_interval;
dbc = container_of(to_delayed_work(work), struct xhci_dbc, event_work);
poll_interval = dbc->poll_interval;
spin_lock_irqsave(&dbc->lock, flags);
evtr = xhci_dbc_do_handle_events(dbc);
spin_unlock_irqrestore(&dbc->lock, flags);
switch (evtr) {
case EVT_GSER:
if (dbc->driver->configure)
dbc->driver->configure(dbc);
break;
case EVT_DISC:
if (dbc->driver->disconnect)
dbc->driver->disconnect(dbc);
break;
case EVT_DONE:
/* set fast poll rate if there are pending data transfers */
if (!list_empty(&dbc->eps[BULK_OUT].list_pending) ||
!list_empty(&dbc->eps[BULK_IN].list_pending))
poll_interval = 1;
break;
default:
dev_info(dbc->dev, "stop handling dbc events\n");
return;
}
mod_delayed_work(system_wq, &dbc->event_work,
msecs_to_jiffies(poll_interval));
}
static const char * const dbc_state_strings[DS_MAX] = {
[DS_DISABLED] = "disabled",
[DS_INITIALIZED] = "initialized",
[DS_ENABLED] = "enabled",
[DS_CONNECTED] = "connected",
[DS_CONFIGURED] = "configured",
};
static ssize_t dbc_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct xhci_dbc *dbc;
struct xhci_hcd *xhci;
xhci = hcd_to_xhci(dev_get_drvdata(dev));
dbc = xhci->dbc;
if (dbc->state >= ARRAY_SIZE(dbc_state_strings))
return sysfs_emit(buf, "unknown\n");
return sysfs_emit(buf, "%s\n", dbc_state_strings[dbc->state]);
}
static ssize_t dbc_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct xhci_hcd *xhci;
struct xhci_dbc *dbc;
xhci = hcd_to_xhci(dev_get_drvdata(dev));
dbc = xhci->dbc;
if (sysfs_streq(buf, "enable"))
xhci_dbc_start(dbc);
else if (sysfs_streq(buf, "disable"))
xhci_dbc_stop(dbc);
else
return -EINVAL;
return count;
}
static ssize_t dbc_idVendor_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct xhci_dbc *dbc;
struct xhci_hcd *xhci;
xhci = hcd_to_xhci(dev_get_drvdata(dev));
dbc = xhci->dbc;
return sysfs_emit(buf, "%04x\n", dbc->idVendor);
}
static ssize_t dbc_idVendor_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
struct xhci_dbc *dbc;
struct xhci_hcd *xhci;
void __iomem *ptr;
u16 value;
u32 dev_info;
int ret;
ret = kstrtou16(buf, 0, &value);
if (ret)
return ret;
xhci = hcd_to_xhci(dev_get_drvdata(dev));
dbc = xhci->dbc;
if (dbc->state != DS_DISABLED)
return -EBUSY;
dbc->idVendor = value;
ptr = &dbc->regs->devinfo1;
dev_info = readl(ptr);
dev_info = (dev_info & ~(0xffffu << 16)) | (value << 16);
writel(dev_info, ptr);
return size;
}
static ssize_t dbc_idProduct_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct xhci_dbc *dbc;
struct xhci_hcd *xhci;
xhci = hcd_to_xhci(dev_get_drvdata(dev));
dbc = xhci->dbc;
return sysfs_emit(buf, "%04x\n", dbc->idProduct);
}
static ssize_t dbc_idProduct_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
struct xhci_dbc *dbc;
struct xhci_hcd *xhci;
void __iomem *ptr;
u32 dev_info;
u16 value;
int ret;
ret = kstrtou16(buf, 0, &value);
if (ret)
return ret;
xhci = hcd_to_xhci(dev_get_drvdata(dev));
dbc = xhci->dbc;
if (dbc->state != DS_DISABLED)
return -EBUSY;
dbc->idProduct = value;
ptr = &dbc->regs->devinfo2;
dev_info = readl(ptr);
dev_info = (dev_info & ~(0xffffu)) | value;
writel(dev_info, ptr);
return size;
}
static ssize_t dbc_bcdDevice_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct xhci_dbc *dbc;
struct xhci_hcd *xhci;
xhci = hcd_to_xhci(dev_get_drvdata(dev));
dbc = xhci->dbc;
return sysfs_emit(buf, "%04x\n", dbc->bcdDevice);
}
static ssize_t dbc_bcdDevice_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
struct xhci_dbc *dbc;
struct xhci_hcd *xhci;
void __iomem *ptr;
u32 dev_info;
u16 value;
int ret;
ret = kstrtou16(buf, 0, &value);
if (ret)
return ret;
xhci = hcd_to_xhci(dev_get_drvdata(dev));
dbc = xhci->dbc;
if (dbc->state != DS_DISABLED)
return -EBUSY;
dbc->bcdDevice = value;
ptr = &dbc->regs->devinfo2;
dev_info = readl(ptr);
dev_info = (dev_info & ~(0xffffu << 16)) | (value << 16);
writel(dev_info, ptr);
return size;
}
static ssize_t dbc_bInterfaceProtocol_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct xhci_dbc *dbc;
struct xhci_hcd *xhci;
xhci = hcd_to_xhci(dev_get_drvdata(dev));
dbc = xhci->dbc;
return sysfs_emit(buf, "%02x\n", dbc->bInterfaceProtocol);
}
static ssize_t dbc_bInterfaceProtocol_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
struct xhci_dbc *dbc;
struct xhci_hcd *xhci;
void __iomem *ptr;
u32 dev_info;
u8 value;
int ret;
/* bInterfaceProtocol is 8 bit, but... */
ret = kstrtou8(buf, 0, &value);
if (ret)
return ret;
/* ...xhci only supports values 0 and 1 */
if (value > 1)
return -EINVAL;
xhci = hcd_to_xhci(dev_get_drvdata(dev));
dbc = xhci->dbc;
if (dbc->state != DS_DISABLED)
return -EBUSY;
dbc->bInterfaceProtocol = value;
ptr = &dbc->regs->devinfo1;
dev_info = readl(ptr);
dev_info = (dev_info & ~(0xffu)) | value;
writel(dev_info, ptr);
return size;
}
static ssize_t dbc_poll_interval_ms_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct xhci_dbc *dbc;
struct xhci_hcd *xhci;
xhci = hcd_to_xhci(dev_get_drvdata(dev));
dbc = xhci->dbc;
return sysfs_emit(buf, "%u\n", dbc->poll_interval);
}
static ssize_t dbc_poll_interval_ms_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
struct xhci_dbc *dbc;
struct xhci_hcd *xhci;
u32 value;
int ret;
ret = kstrtou32(buf, 0, &value);
if (ret || value > DBC_POLL_INTERVAL_MAX)
return -EINVAL;
xhci = hcd_to_xhci(dev_get_drvdata(dev));
dbc = xhci->dbc;
dbc->poll_interval = value;
mod_delayed_work(system_wq, &dbc->event_work, 0);
return size;
}
static DEVICE_ATTR_RW(dbc);
static DEVICE_ATTR_RW(dbc_idVendor);
static DEVICE_ATTR_RW(dbc_idProduct);
static DEVICE_ATTR_RW(dbc_bcdDevice);
static DEVICE_ATTR_RW(dbc_bInterfaceProtocol);
static DEVICE_ATTR_RW(dbc_poll_interval_ms);
static struct attribute *dbc_dev_attrs[] = {
&dev_attr_dbc.attr,
&dev_attr_dbc_idVendor.attr,
&dev_attr_dbc_idProduct.attr,
&dev_attr_dbc_bcdDevice.attr,
&dev_attr_dbc_bInterfaceProtocol.attr,
&dev_attr_dbc_poll_interval_ms.attr,
NULL
};
ATTRIBUTE_GROUPS(dbc_dev);
struct xhci_dbc *
xhci_alloc_dbc(struct device *dev, void __iomem *base, const struct dbc_driver *driver)
{
struct xhci_dbc *dbc;
int ret;
dbc = kzalloc(sizeof(*dbc), GFP_KERNEL);
if (!dbc)
return NULL;
dbc->regs = base;
dbc->dev = dev;
dbc->driver = driver;
dbc->idProduct = DBC_PRODUCT_ID;
dbc->idVendor = DBC_VENDOR_ID;
dbc->bcdDevice = DBC_DEVICE_REV;
dbc->bInterfaceProtocol = DBC_PROTOCOL;
dbc->poll_interval = DBC_POLL_INTERVAL_DEFAULT;
if (readl(&dbc->regs->control) & DBC_CTRL_DBC_ENABLE)
goto err;
INIT_DELAYED_WORK(&dbc->event_work, xhci_dbc_handle_events);
spin_lock_init(&dbc->lock);
ret = sysfs_create_groups(&dev->kobj, dbc_dev_groups);
if (ret)
goto err;
return dbc;
err:
kfree(dbc);
return NULL;
}
/* undo what xhci_alloc_dbc() did */
void xhci_dbc_remove(struct xhci_dbc *dbc)
{
if (!dbc)
return;
/* stop hw, stop wq and call dbc->ops->stop() */
xhci_dbc_stop(dbc);
/* remove sysfs files */
sysfs_remove_groups(&dbc->dev->kobj, dbc_dev_groups);
kfree(dbc);
}
int xhci_create_dbc_dev(struct xhci_hcd *xhci)
{
struct device *dev;
void __iomem *base;
int ret;
int dbc_cap_offs;
/* create all parameters needed resembling a dbc device */
dev = xhci_to_hcd(xhci)->self.controller;
base = &xhci->cap_regs->hc_capbase;
dbc_cap_offs = xhci_find_next_ext_cap(base, 0, XHCI_EXT_CAPS_DEBUG);
if (!dbc_cap_offs)
return -ENODEV;
/* already allocated and in use */
if (xhci->dbc)
return -EBUSY;
ret = xhci_dbc_tty_probe(dev, base + dbc_cap_offs, xhci);
return ret;
}
void xhci_remove_dbc_dev(struct xhci_hcd *xhci)
{
unsigned long flags;
if (!xhci->dbc)
return;
xhci_dbc_tty_remove(xhci->dbc);
spin_lock_irqsave(&xhci->lock, flags);
xhci->dbc = NULL;
spin_unlock_irqrestore(&xhci->lock, flags);
}
#ifdef CONFIG_PM
int xhci_dbc_suspend(struct xhci_hcd *xhci)
{
struct xhci_dbc *dbc = xhci->dbc;
if (!dbc)
return 0;
if (dbc->state == DS_CONFIGURED)
dbc->resume_required = 1;
xhci_dbc_stop(dbc);
return 0;
}
int xhci_dbc_resume(struct xhci_hcd *xhci)
{
int ret = 0;
struct xhci_dbc *dbc = xhci->dbc;
if (!dbc)
return 0;
if (dbc->resume_required) {
dbc->resume_required = 0;
xhci_dbc_start(dbc);
}
return ret;
}
#endif /* CONFIG_PM */
int xhci_dbc_init(void)
{
return dbc_tty_init();
}
void xhci_dbc_exit(void)
{
dbc_tty_exit();
}