blob: 92a3b6ddafdc193979bd667bd4dff2cdd338bb1f [file] [log] [blame] [edit]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
* Copyright (C) 2004-2007 Red Hat, Inc. All rights reserved.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/bio.h>
#include <linux/sched/signal.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/completion.h>
#include <linux/buffer_head.h>
#include <linux/statfs.h>
#include <linux/seq_file.h>
#include <linux/mount.h>
#include <linux/kthread.h>
#include <linux/delay.h>
#include <linux/gfs2_ondisk.h>
#include <linux/crc32.h>
#include <linux/time.h>
#include <linux/wait.h>
#include <linux/writeback.h>
#include <linux/backing-dev.h>
#include <linux/kernel.h>
#include "gfs2.h"
#include "incore.h"
#include "bmap.h"
#include "dir.h"
#include "glock.h"
#include "glops.h"
#include "inode.h"
#include "log.h"
#include "meta_io.h"
#include "quota.h"
#include "recovery.h"
#include "rgrp.h"
#include "super.h"
#include "trans.h"
#include "util.h"
#include "sys.h"
#include "xattr.h"
#include "lops.h"
enum evict_behavior {
EVICT_SHOULD_DELETE,
EVICT_SHOULD_SKIP_DELETE,
EVICT_SHOULD_DEFER_DELETE,
};
/**
* gfs2_jindex_free - Clear all the journal index information
* @sdp: The GFS2 superblock
*
*/
void gfs2_jindex_free(struct gfs2_sbd *sdp)
{
struct list_head list;
struct gfs2_jdesc *jd;
spin_lock(&sdp->sd_jindex_spin);
list_add(&list, &sdp->sd_jindex_list);
list_del_init(&sdp->sd_jindex_list);
sdp->sd_journals = 0;
spin_unlock(&sdp->sd_jindex_spin);
down_write(&sdp->sd_log_flush_lock);
sdp->sd_jdesc = NULL;
up_write(&sdp->sd_log_flush_lock);
while (!list_empty(&list)) {
jd = list_first_entry(&list, struct gfs2_jdesc, jd_list);
BUG_ON(jd->jd_log_bio);
gfs2_free_journal_extents(jd);
list_del(&jd->jd_list);
iput(jd->jd_inode);
jd->jd_inode = NULL;
kfree(jd);
}
}
static struct gfs2_jdesc *jdesc_find_i(struct list_head *head, unsigned int jid)
{
struct gfs2_jdesc *jd;
list_for_each_entry(jd, head, jd_list) {
if (jd->jd_jid == jid)
return jd;
}
return NULL;
}
struct gfs2_jdesc *gfs2_jdesc_find(struct gfs2_sbd *sdp, unsigned int jid)
{
struct gfs2_jdesc *jd;
spin_lock(&sdp->sd_jindex_spin);
jd = jdesc_find_i(&sdp->sd_jindex_list, jid);
spin_unlock(&sdp->sd_jindex_spin);
return jd;
}
int gfs2_jdesc_check(struct gfs2_jdesc *jd)
{
struct gfs2_inode *ip = GFS2_I(jd->jd_inode);
struct gfs2_sbd *sdp = GFS2_SB(jd->jd_inode);
u64 size = i_size_read(jd->jd_inode);
if (gfs2_check_internal_file_size(jd->jd_inode, 8 << 20, BIT(30)))
return -EIO;
jd->jd_blocks = size >> sdp->sd_sb.sb_bsize_shift;
if (gfs2_write_alloc_required(ip, 0, size)) {
gfs2_consist_inode(ip);
return -EIO;
}
return 0;
}
/**
* gfs2_make_fs_rw - Turn a Read-Only FS into a Read-Write one
* @sdp: the filesystem
*
* Returns: errno
*/
int gfs2_make_fs_rw(struct gfs2_sbd *sdp)
{
struct gfs2_inode *ip = GFS2_I(sdp->sd_jdesc->jd_inode);
struct gfs2_glock *j_gl = ip->i_gl;
struct gfs2_log_header_host head;
int error;
j_gl->gl_ops->go_inval(j_gl, DIO_METADATA);
if (gfs2_withdrawing_or_withdrawn(sdp))
return -EIO;
error = gfs2_find_jhead(sdp->sd_jdesc, &head, false);
if (error) {
gfs2_consist(sdp);
return error;
}
if (!(head.lh_flags & GFS2_LOG_HEAD_UNMOUNT)) {
gfs2_consist(sdp);
return -EIO;
}
/* Initialize some head of the log stuff */
sdp->sd_log_sequence = head.lh_sequence + 1;
gfs2_log_pointers_init(sdp, head.lh_blkno);
error = gfs2_quota_init(sdp);
if (!error && gfs2_withdrawing_or_withdrawn(sdp))
error = -EIO;
if (!error)
set_bit(SDF_JOURNAL_LIVE, &sdp->sd_flags);
return error;
}
void gfs2_statfs_change_in(struct gfs2_statfs_change_host *sc, const void *buf)
{
const struct gfs2_statfs_change *str = buf;
sc->sc_total = be64_to_cpu(str->sc_total);
sc->sc_free = be64_to_cpu(str->sc_free);
sc->sc_dinodes = be64_to_cpu(str->sc_dinodes);
}
void gfs2_statfs_change_out(const struct gfs2_statfs_change_host *sc, void *buf)
{
struct gfs2_statfs_change *str = buf;
str->sc_total = cpu_to_be64(sc->sc_total);
str->sc_free = cpu_to_be64(sc->sc_free);
str->sc_dinodes = cpu_to_be64(sc->sc_dinodes);
}
int gfs2_statfs_init(struct gfs2_sbd *sdp)
{
struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
struct gfs2_statfs_change_host *m_sc = &sdp->sd_statfs_master;
struct gfs2_statfs_change_host *l_sc = &sdp->sd_statfs_local;
struct buffer_head *m_bh;
struct gfs2_holder gh;
int error;
error = gfs2_glock_nq_init(m_ip->i_gl, LM_ST_EXCLUSIVE, GL_NOCACHE,
&gh);
if (error)
return error;
error = gfs2_meta_inode_buffer(m_ip, &m_bh);
if (error)
goto out;
if (sdp->sd_args.ar_spectator) {
spin_lock(&sdp->sd_statfs_spin);
gfs2_statfs_change_in(m_sc, m_bh->b_data +
sizeof(struct gfs2_dinode));
spin_unlock(&sdp->sd_statfs_spin);
} else {
spin_lock(&sdp->sd_statfs_spin);
gfs2_statfs_change_in(m_sc, m_bh->b_data +
sizeof(struct gfs2_dinode));
gfs2_statfs_change_in(l_sc, sdp->sd_sc_bh->b_data +
sizeof(struct gfs2_dinode));
spin_unlock(&sdp->sd_statfs_spin);
}
brelse(m_bh);
out:
gfs2_glock_dq_uninit(&gh);
return 0;
}
void gfs2_statfs_change(struct gfs2_sbd *sdp, s64 total, s64 free,
s64 dinodes)
{
struct gfs2_inode *l_ip = GFS2_I(sdp->sd_sc_inode);
struct gfs2_statfs_change_host *l_sc = &sdp->sd_statfs_local;
struct gfs2_statfs_change_host *m_sc = &sdp->sd_statfs_master;
s64 x, y;
int need_sync = 0;
gfs2_trans_add_meta(l_ip->i_gl, sdp->sd_sc_bh);
spin_lock(&sdp->sd_statfs_spin);
l_sc->sc_total += total;
l_sc->sc_free += free;
l_sc->sc_dinodes += dinodes;
gfs2_statfs_change_out(l_sc, sdp->sd_sc_bh->b_data +
sizeof(struct gfs2_dinode));
if (sdp->sd_args.ar_statfs_percent) {
x = 100 * l_sc->sc_free;
y = m_sc->sc_free * sdp->sd_args.ar_statfs_percent;
if (x >= y || x <= -y)
need_sync = 1;
}
spin_unlock(&sdp->sd_statfs_spin);
if (need_sync)
gfs2_wake_up_statfs(sdp);
}
void update_statfs(struct gfs2_sbd *sdp, struct buffer_head *m_bh)
{
struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
struct gfs2_inode *l_ip = GFS2_I(sdp->sd_sc_inode);
struct gfs2_statfs_change_host *m_sc = &sdp->sd_statfs_master;
struct gfs2_statfs_change_host *l_sc = &sdp->sd_statfs_local;
gfs2_trans_add_meta(l_ip->i_gl, sdp->sd_sc_bh);
gfs2_trans_add_meta(m_ip->i_gl, m_bh);
spin_lock(&sdp->sd_statfs_spin);
m_sc->sc_total += l_sc->sc_total;
m_sc->sc_free += l_sc->sc_free;
m_sc->sc_dinodes += l_sc->sc_dinodes;
memset(l_sc, 0, sizeof(struct gfs2_statfs_change));
memset(sdp->sd_sc_bh->b_data + sizeof(struct gfs2_dinode),
0, sizeof(struct gfs2_statfs_change));
gfs2_statfs_change_out(m_sc, m_bh->b_data + sizeof(struct gfs2_dinode));
spin_unlock(&sdp->sd_statfs_spin);
}
int gfs2_statfs_sync(struct super_block *sb, int type)
{
struct gfs2_sbd *sdp = sb->s_fs_info;
struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
struct gfs2_statfs_change_host *m_sc = &sdp->sd_statfs_master;
struct gfs2_statfs_change_host *l_sc = &sdp->sd_statfs_local;
struct gfs2_holder gh;
struct buffer_head *m_bh;
int error;
error = gfs2_glock_nq_init(m_ip->i_gl, LM_ST_EXCLUSIVE, GL_NOCACHE,
&gh);
if (error)
goto out;
error = gfs2_meta_inode_buffer(m_ip, &m_bh);
if (error)
goto out_unlock;
spin_lock(&sdp->sd_statfs_spin);
gfs2_statfs_change_in(m_sc, m_bh->b_data +
sizeof(struct gfs2_dinode));
if (!l_sc->sc_total && !l_sc->sc_free && !l_sc->sc_dinodes) {
spin_unlock(&sdp->sd_statfs_spin);
goto out_bh;
}
spin_unlock(&sdp->sd_statfs_spin);
error = gfs2_trans_begin(sdp, 2 * RES_DINODE, 0);
if (error)
goto out_bh;
update_statfs(sdp, m_bh);
sdp->sd_statfs_force_sync = 0;
gfs2_trans_end(sdp);
out_bh:
brelse(m_bh);
out_unlock:
gfs2_glock_dq_uninit(&gh);
out:
return error;
}
struct lfcc {
struct list_head list;
struct gfs2_holder gh;
};
/**
* gfs2_lock_fs_check_clean - Stop all writes to the FS and check that all
* journals are clean
* @sdp: the file system
*
* Returns: errno
*/
static int gfs2_lock_fs_check_clean(struct gfs2_sbd *sdp)
{
struct gfs2_inode *ip;
struct gfs2_jdesc *jd;
struct lfcc *lfcc;
LIST_HEAD(list);
struct gfs2_log_header_host lh;
int error, error2;
/*
* Grab all the journal glocks in SH mode. We are *probably* doing
* that to prevent recovery.
*/
list_for_each_entry(jd, &sdp->sd_jindex_list, jd_list) {
lfcc = kmalloc(sizeof(struct lfcc), GFP_KERNEL);
if (!lfcc) {
error = -ENOMEM;
goto out;
}
ip = GFS2_I(jd->jd_inode);
error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, 0, &lfcc->gh);
if (error) {
kfree(lfcc);
goto out;
}
list_add(&lfcc->list, &list);
}
gfs2_freeze_unlock(sdp);
error = gfs2_glock_nq_init(sdp->sd_freeze_gl, LM_ST_EXCLUSIVE,
LM_FLAG_NOEXP | GL_NOPID,
&sdp->sd_freeze_gh);
if (error)
goto relock_shared;
list_for_each_entry(jd, &sdp->sd_jindex_list, jd_list) {
error = gfs2_jdesc_check(jd);
if (error)
break;
error = gfs2_find_jhead(jd, &lh, false);
if (error)
break;
if (!(lh.lh_flags & GFS2_LOG_HEAD_UNMOUNT)) {
error = -EBUSY;
break;
}
}
if (!error)
goto out; /* success */
gfs2_freeze_unlock(sdp);
relock_shared:
error2 = gfs2_freeze_lock_shared(sdp);
gfs2_assert_withdraw(sdp, !error2);
out:
while (!list_empty(&list)) {
lfcc = list_first_entry(&list, struct lfcc, list);
list_del(&lfcc->list);
gfs2_glock_dq_uninit(&lfcc->gh);
kfree(lfcc);
}
return error;
}
void gfs2_dinode_out(const struct gfs2_inode *ip, void *buf)
{
const struct inode *inode = &ip->i_inode;
struct gfs2_dinode *str = buf;
str->di_header.mh_magic = cpu_to_be32(GFS2_MAGIC);
str->di_header.mh_type = cpu_to_be32(GFS2_METATYPE_DI);
str->di_header.mh_format = cpu_to_be32(GFS2_FORMAT_DI);
str->di_num.no_addr = cpu_to_be64(ip->i_no_addr);
str->di_num.no_formal_ino = cpu_to_be64(ip->i_no_formal_ino);
str->di_mode = cpu_to_be32(inode->i_mode);
str->di_uid = cpu_to_be32(i_uid_read(inode));
str->di_gid = cpu_to_be32(i_gid_read(inode));
str->di_nlink = cpu_to_be32(inode->i_nlink);
str->di_size = cpu_to_be64(i_size_read(inode));
str->di_blocks = cpu_to_be64(gfs2_get_inode_blocks(inode));
str->di_atime = cpu_to_be64(inode_get_atime_sec(inode));
str->di_mtime = cpu_to_be64(inode_get_mtime_sec(inode));
str->di_ctime = cpu_to_be64(inode_get_ctime_sec(inode));
str->di_goal_meta = cpu_to_be64(ip->i_goal);
str->di_goal_data = cpu_to_be64(ip->i_goal);
str->di_generation = cpu_to_be64(ip->i_generation);
str->di_flags = cpu_to_be32(ip->i_diskflags);
str->di_height = cpu_to_be16(ip->i_height);
str->di_payload_format = cpu_to_be32(S_ISDIR(inode->i_mode) &&
!(ip->i_diskflags & GFS2_DIF_EXHASH) ?
GFS2_FORMAT_DE : 0);
str->di_depth = cpu_to_be16(ip->i_depth);
str->di_entries = cpu_to_be32(ip->i_entries);
str->di_eattr = cpu_to_be64(ip->i_eattr);
str->di_atime_nsec = cpu_to_be32(inode_get_atime_nsec(inode));
str->di_mtime_nsec = cpu_to_be32(inode_get_mtime_nsec(inode));
str->di_ctime_nsec = cpu_to_be32(inode_get_ctime_nsec(inode));
}
/**
* gfs2_write_inode - Make sure the inode is stable on the disk
* @inode: The inode
* @wbc: The writeback control structure
*
* Returns: errno
*/
static int gfs2_write_inode(struct inode *inode, struct writeback_control *wbc)
{
struct gfs2_inode *ip = GFS2_I(inode);
struct gfs2_sbd *sdp = GFS2_SB(inode);
struct address_space *metamapping = gfs2_glock2aspace(ip->i_gl);
struct backing_dev_info *bdi = inode_to_bdi(metamapping->host);
int ret = 0;
bool flush_all = (wbc->sync_mode == WB_SYNC_ALL || gfs2_is_jdata(ip));
if (flush_all)
gfs2_log_flush(GFS2_SB(inode), ip->i_gl,
GFS2_LOG_HEAD_FLUSH_NORMAL |
GFS2_LFC_WRITE_INODE);
if (bdi->wb.dirty_exceeded)
gfs2_ail1_flush(sdp, wbc);
else
filemap_fdatawrite(metamapping);
if (flush_all)
ret = filemap_fdatawait(metamapping);
if (ret)
mark_inode_dirty_sync(inode);
else {
spin_lock(&inode->i_lock);
if (!(inode->i_flags & I_DIRTY))
gfs2_ordered_del_inode(ip);
spin_unlock(&inode->i_lock);
}
return ret;
}
/**
* gfs2_dirty_inode - check for atime updates
* @inode: The inode in question
* @flags: The type of dirty
*
* Unfortunately it can be called under any combination of inode
* glock and freeze glock, so we have to check carefully.
*
* At the moment this deals only with atime - it should be possible
* to expand that role in future, once a review of the locking has
* been carried out.
*/
static void gfs2_dirty_inode(struct inode *inode, int flags)
{
struct gfs2_inode *ip = GFS2_I(inode);
struct gfs2_sbd *sdp = GFS2_SB(inode);
struct buffer_head *bh;
struct gfs2_holder gh;
int need_unlock = 0;
int need_endtrans = 0;
int ret;
if (unlikely(!ip->i_gl)) {
/* This can only happen during incomplete inode creation. */
BUG_ON(!test_bit(GIF_ALLOC_FAILED, &ip->i_flags));
return;
}
if (gfs2_withdrawing_or_withdrawn(sdp))
return;
if (!gfs2_glock_is_locked_by_me(ip->i_gl)) {
ret = gfs2_glock_nq_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh);
if (ret) {
fs_err(sdp, "dirty_inode: glock %d\n", ret);
gfs2_dump_glock(NULL, ip->i_gl, true);
return;
}
need_unlock = 1;
} else if (WARN_ON_ONCE(ip->i_gl->gl_state != LM_ST_EXCLUSIVE))
return;
if (current->journal_info == NULL) {
ret = gfs2_trans_begin(sdp, RES_DINODE, 0);
if (ret) {
fs_err(sdp, "dirty_inode: gfs2_trans_begin %d\n", ret);
goto out;
}
need_endtrans = 1;
}
ret = gfs2_meta_inode_buffer(ip, &bh);
if (ret == 0) {
gfs2_trans_add_meta(ip->i_gl, bh);
gfs2_dinode_out(ip, bh->b_data);
brelse(bh);
}
if (need_endtrans)
gfs2_trans_end(sdp);
out:
if (need_unlock)
gfs2_glock_dq_uninit(&gh);
}
/**
* gfs2_make_fs_ro - Turn a Read-Write FS into a Read-Only one
* @sdp: the filesystem
*
* Returns: errno
*/
void gfs2_make_fs_ro(struct gfs2_sbd *sdp)
{
int log_write_allowed = test_bit(SDF_JOURNAL_LIVE, &sdp->sd_flags);
if (!test_bit(SDF_KILL, &sdp->sd_flags))
gfs2_flush_delete_work(sdp);
gfs2_destroy_threads(sdp);
if (log_write_allowed) {
gfs2_quota_sync(sdp->sd_vfs, 0);
gfs2_statfs_sync(sdp->sd_vfs, 0);
/* We do two log flushes here. The first one commits dirty inodes
* and rgrps to the journal, but queues up revokes to the ail list.
* The second flush writes out and removes the revokes.
*
* The first must be done before the FLUSH_SHUTDOWN code
* clears the LIVE flag, otherwise it will not be able to start
* a transaction to write its revokes, and the error will cause
* a withdraw of the file system. */
gfs2_log_flush(sdp, NULL, GFS2_LFC_MAKE_FS_RO);
gfs2_log_flush(sdp, NULL, GFS2_LOG_HEAD_FLUSH_SHUTDOWN |
GFS2_LFC_MAKE_FS_RO);
wait_event_timeout(sdp->sd_log_waitq,
gfs2_log_is_empty(sdp),
HZ * 5);
gfs2_assert_warn(sdp, gfs2_log_is_empty(sdp));
}
gfs2_quota_cleanup(sdp);
}
/**
* gfs2_put_super - Unmount the filesystem
* @sb: The VFS superblock
*
*/
static void gfs2_put_super(struct super_block *sb)
{
struct gfs2_sbd *sdp = sb->s_fs_info;
struct gfs2_jdesc *jd;
/* No more recovery requests */
set_bit(SDF_NORECOVERY, &sdp->sd_flags);
smp_mb();
/* Wait on outstanding recovery */
restart:
spin_lock(&sdp->sd_jindex_spin);
list_for_each_entry(jd, &sdp->sd_jindex_list, jd_list) {
if (!test_bit(JDF_RECOVERY, &jd->jd_flags))
continue;
spin_unlock(&sdp->sd_jindex_spin);
wait_on_bit(&jd->jd_flags, JDF_RECOVERY,
TASK_UNINTERRUPTIBLE);
goto restart;
}
spin_unlock(&sdp->sd_jindex_spin);
if (!sb_rdonly(sb))
gfs2_make_fs_ro(sdp);
else {
if (gfs2_withdrawing_or_withdrawn(sdp))
gfs2_destroy_threads(sdp);
gfs2_quota_cleanup(sdp);
}
WARN_ON(gfs2_withdrawing(sdp));
/* At this point, we're through modifying the disk */
/* Release stuff */
gfs2_freeze_unlock(sdp);
iput(sdp->sd_jindex);
iput(sdp->sd_statfs_inode);
iput(sdp->sd_rindex);
iput(sdp->sd_quota_inode);
gfs2_glock_put(sdp->sd_rename_gl);
gfs2_glock_put(sdp->sd_freeze_gl);
if (!sdp->sd_args.ar_spectator) {
if (gfs2_holder_initialized(&sdp->sd_journal_gh))
gfs2_glock_dq_uninit(&sdp->sd_journal_gh);
if (gfs2_holder_initialized(&sdp->sd_jinode_gh))
gfs2_glock_dq_uninit(&sdp->sd_jinode_gh);
brelse(sdp->sd_sc_bh);
gfs2_glock_dq_uninit(&sdp->sd_sc_gh);
gfs2_glock_dq_uninit(&sdp->sd_qc_gh);
free_local_statfs_inodes(sdp);
iput(sdp->sd_qc_inode);
}
gfs2_glock_dq_uninit(&sdp->sd_live_gh);
gfs2_clear_rgrpd(sdp);
gfs2_jindex_free(sdp);
/* Take apart glock structures and buffer lists */
gfs2_gl_hash_clear(sdp);
truncate_inode_pages_final(&sdp->sd_aspace);
gfs2_delete_debugfs_file(sdp);
gfs2_sys_fs_del(sdp);
free_sbd(sdp);
}
/**
* gfs2_sync_fs - sync the filesystem
* @sb: the superblock
* @wait: true to wait for completion
*
* Flushes the log to disk.
*/
static int gfs2_sync_fs(struct super_block *sb, int wait)
{
struct gfs2_sbd *sdp = sb->s_fs_info;
gfs2_quota_sync(sb, -1);
if (wait)
gfs2_log_flush(sdp, NULL, GFS2_LOG_HEAD_FLUSH_NORMAL |
GFS2_LFC_SYNC_FS);
return sdp->sd_log_error;
}
static int gfs2_do_thaw(struct gfs2_sbd *sdp)
{
struct super_block *sb = sdp->sd_vfs;
int error;
error = gfs2_freeze_lock_shared(sdp);
if (error)
goto fail;
error = thaw_super(sb, FREEZE_HOLDER_USERSPACE);
if (!error)
return 0;
fail:
fs_info(sdp, "GFS2: couldn't thaw filesystem: %d\n", error);
gfs2_assert_withdraw(sdp, 0);
return error;
}
void gfs2_freeze_func(struct work_struct *work)
{
struct gfs2_sbd *sdp = container_of(work, struct gfs2_sbd, sd_freeze_work);
struct super_block *sb = sdp->sd_vfs;
int error;
mutex_lock(&sdp->sd_freeze_mutex);
error = -EBUSY;
if (test_bit(SDF_FROZEN, &sdp->sd_flags))
goto freeze_failed;
error = freeze_super(sb, FREEZE_HOLDER_USERSPACE);
if (error)
goto freeze_failed;
gfs2_freeze_unlock(sdp);
set_bit(SDF_FROZEN, &sdp->sd_flags);
error = gfs2_do_thaw(sdp);
if (error)
goto out;
clear_bit(SDF_FROZEN, &sdp->sd_flags);
goto out;
freeze_failed:
fs_info(sdp, "GFS2: couldn't freeze filesystem: %d\n", error);
out:
mutex_unlock(&sdp->sd_freeze_mutex);
deactivate_super(sb);
}
/**
* gfs2_freeze_super - prevent further writes to the filesystem
* @sb: the VFS structure for the filesystem
*
*/
static int gfs2_freeze_super(struct super_block *sb, enum freeze_holder who)
{
struct gfs2_sbd *sdp = sb->s_fs_info;
int error;
if (!mutex_trylock(&sdp->sd_freeze_mutex))
return -EBUSY;
if (test_bit(SDF_FROZEN, &sdp->sd_flags)) {
mutex_unlock(&sdp->sd_freeze_mutex);
return -EBUSY;
}
for (;;) {
error = freeze_super(sb, FREEZE_HOLDER_USERSPACE);
if (error) {
fs_info(sdp, "GFS2: couldn't freeze filesystem: %d\n",
error);
goto out;
}
error = gfs2_lock_fs_check_clean(sdp);
if (!error) {
set_bit(SDF_FREEZE_INITIATOR, &sdp->sd_flags);
set_bit(SDF_FROZEN, &sdp->sd_flags);
break;
}
error = gfs2_do_thaw(sdp);
if (error)
goto out;
if (error == -EBUSY)
fs_err(sdp, "waiting for recovery before freeze\n");
else if (error == -EIO) {
fs_err(sdp, "Fatal IO error: cannot freeze gfs2 due "
"to recovery error.\n");
goto out;
} else {
fs_err(sdp, "error freezing FS: %d\n", error);
}
fs_err(sdp, "retrying...\n");
msleep(1000);
}
out:
mutex_unlock(&sdp->sd_freeze_mutex);
return error;
}
static int gfs2_freeze_fs(struct super_block *sb)
{
struct gfs2_sbd *sdp = sb->s_fs_info;
if (test_bit(SDF_JOURNAL_LIVE, &sdp->sd_flags)) {
gfs2_log_flush(sdp, NULL, GFS2_LOG_HEAD_FLUSH_FREEZE |
GFS2_LFC_FREEZE_GO_SYNC);
if (gfs2_withdrawing_or_withdrawn(sdp))
return -EIO;
}
return 0;
}
/**
* gfs2_thaw_super - reallow writes to the filesystem
* @sb: the VFS structure for the filesystem
*
*/
static int gfs2_thaw_super(struct super_block *sb, enum freeze_holder who)
{
struct gfs2_sbd *sdp = sb->s_fs_info;
int error;
if (!mutex_trylock(&sdp->sd_freeze_mutex))
return -EBUSY;
if (!test_bit(SDF_FREEZE_INITIATOR, &sdp->sd_flags)) {
mutex_unlock(&sdp->sd_freeze_mutex);
return -EINVAL;
}
atomic_inc(&sb->s_active);
gfs2_freeze_unlock(sdp);
error = gfs2_do_thaw(sdp);
if (!error) {
clear_bit(SDF_FREEZE_INITIATOR, &sdp->sd_flags);
clear_bit(SDF_FROZEN, &sdp->sd_flags);
}
mutex_unlock(&sdp->sd_freeze_mutex);
deactivate_super(sb);
return error;
}
void gfs2_thaw_freeze_initiator(struct super_block *sb)
{
struct gfs2_sbd *sdp = sb->s_fs_info;
mutex_lock(&sdp->sd_freeze_mutex);
if (!test_bit(SDF_FREEZE_INITIATOR, &sdp->sd_flags))
goto out;
gfs2_freeze_unlock(sdp);
out:
mutex_unlock(&sdp->sd_freeze_mutex);
}
/**
* statfs_slow_fill - fill in the sg for a given RG
* @rgd: the RG
* @sc: the sc structure
*
* Returns: 0 on success, -ESTALE if the LVB is invalid
*/
static int statfs_slow_fill(struct gfs2_rgrpd *rgd,
struct gfs2_statfs_change_host *sc)
{
gfs2_rgrp_verify(rgd);
sc->sc_total += rgd->rd_data;
sc->sc_free += rgd->rd_free;
sc->sc_dinodes += rgd->rd_dinodes;
return 0;
}
/**
* gfs2_statfs_slow - Stat a filesystem using asynchronous locking
* @sdp: the filesystem
* @sc: the sc info that will be returned
*
* Any error (other than a signal) will cause this routine to fall back
* to the synchronous version.
*
* FIXME: This really shouldn't busy wait like this.
*
* Returns: errno
*/
static int gfs2_statfs_slow(struct gfs2_sbd *sdp, struct gfs2_statfs_change_host *sc)
{
struct gfs2_rgrpd *rgd_next;
struct gfs2_holder *gha, *gh;
unsigned int slots = 64;
unsigned int x;
int done;
int error = 0, err;
memset(sc, 0, sizeof(struct gfs2_statfs_change_host));
gha = kmalloc_array(slots, sizeof(struct gfs2_holder), GFP_KERNEL);
if (!gha)
return -ENOMEM;
for (x = 0; x < slots; x++)
gfs2_holder_mark_uninitialized(gha + x);
rgd_next = gfs2_rgrpd_get_first(sdp);
for (;;) {
done = 1;
for (x = 0; x < slots; x++) {
gh = gha + x;
if (gfs2_holder_initialized(gh) && gfs2_glock_poll(gh)) {
err = gfs2_glock_wait(gh);
if (err) {
gfs2_holder_uninit(gh);
error = err;
} else {
if (!error) {
struct gfs2_rgrpd *rgd =
gfs2_glock2rgrp(gh->gh_gl);
error = statfs_slow_fill(rgd, sc);
}
gfs2_glock_dq_uninit(gh);
}
}
if (gfs2_holder_initialized(gh))
done = 0;
else if (rgd_next && !error) {
error = gfs2_glock_nq_init(rgd_next->rd_gl,
LM_ST_SHARED,
GL_ASYNC,
gh);
rgd_next = gfs2_rgrpd_get_next(rgd_next);
done = 0;
}
if (signal_pending(current))
error = -ERESTARTSYS;
}
if (done)
break;
yield();
}
kfree(gha);
return error;
}
/**
* gfs2_statfs_i - Do a statfs
* @sdp: the filesystem
* @sc: the sc structure
*
* Returns: errno
*/
static int gfs2_statfs_i(struct gfs2_sbd *sdp, struct gfs2_statfs_change_host *sc)
{
struct gfs2_statfs_change_host *m_sc = &sdp->sd_statfs_master;
struct gfs2_statfs_change_host *l_sc = &sdp->sd_statfs_local;
spin_lock(&sdp->sd_statfs_spin);
*sc = *m_sc;
sc->sc_total += l_sc->sc_total;
sc->sc_free += l_sc->sc_free;
sc->sc_dinodes += l_sc->sc_dinodes;
spin_unlock(&sdp->sd_statfs_spin);
if (sc->sc_free < 0)
sc->sc_free = 0;
if (sc->sc_free > sc->sc_total)
sc->sc_free = sc->sc_total;
if (sc->sc_dinodes < 0)
sc->sc_dinodes = 0;
return 0;
}
/**
* gfs2_statfs - Gather and return stats about the filesystem
* @dentry: The name of the link
* @buf: The buffer
*
* Returns: 0 on success or error code
*/
static int gfs2_statfs(struct dentry *dentry, struct kstatfs *buf)
{
struct super_block *sb = dentry->d_sb;
struct gfs2_sbd *sdp = sb->s_fs_info;
struct gfs2_statfs_change_host sc;
int error;
error = gfs2_rindex_update(sdp);
if (error)
return error;
if (gfs2_tune_get(sdp, gt_statfs_slow))
error = gfs2_statfs_slow(sdp, &sc);
else
error = gfs2_statfs_i(sdp, &sc);
if (error)
return error;
buf->f_type = GFS2_MAGIC;
buf->f_bsize = sdp->sd_sb.sb_bsize;
buf->f_blocks = sc.sc_total;
buf->f_bfree = sc.sc_free;
buf->f_bavail = sc.sc_free;
buf->f_files = sc.sc_dinodes + sc.sc_free;
buf->f_ffree = sc.sc_free;
buf->f_namelen = GFS2_FNAMESIZE;
buf->f_fsid = uuid_to_fsid(sb->s_uuid.b);
return 0;
}
/**
* gfs2_drop_inode - Drop an inode (test for remote unlink)
* @inode: The inode to drop
*
* If we've received a callback on an iopen lock then it's because a
* remote node tried to deallocate the inode but failed due to this node
* still having the inode open. Here we mark the link count zero
* since we know that it must have reached zero if the GLF_DEMOTE flag
* is set on the iopen glock. If we didn't do a disk read since the
* remote node removed the final link then we might otherwise miss
* this event. This check ensures that this node will deallocate the
* inode's blocks, or alternatively pass the baton on to another
* node for later deallocation.
*/
static int gfs2_drop_inode(struct inode *inode)
{
struct gfs2_inode *ip = GFS2_I(inode);
struct gfs2_sbd *sdp = GFS2_SB(inode);
if (inode->i_nlink &&
gfs2_holder_initialized(&ip->i_iopen_gh)) {
struct gfs2_glock *gl = ip->i_iopen_gh.gh_gl;
if (glock_needs_demote(gl))
clear_nlink(inode);
}
/*
* When under memory pressure when an inode's link count has dropped to
* zero, defer deleting the inode to the delete workqueue. This avoids
* calling into DLM under memory pressure, which can deadlock.
*/
if (!inode->i_nlink &&
unlikely(current->flags & PF_MEMALLOC) &&
gfs2_holder_initialized(&ip->i_iopen_gh)) {
struct gfs2_glock *gl = ip->i_iopen_gh.gh_gl;
gfs2_glock_hold(gl);
if (!gfs2_queue_verify_delete(gl, true))
gfs2_glock_put_async(gl);
return 0;
}
/*
* No longer cache inodes when trying to evict them all.
*/
if (test_bit(SDF_EVICTING, &sdp->sd_flags))
return 1;
return generic_drop_inode(inode);
}
/**
* gfs2_show_options - Show mount options for /proc/mounts
* @s: seq_file structure
* @root: root of this (sub)tree
*
* Returns: 0 on success or error code
*/
static int gfs2_show_options(struct seq_file *s, struct dentry *root)
{
struct gfs2_sbd *sdp = root->d_sb->s_fs_info;
struct gfs2_args *args = &sdp->sd_args;
unsigned int logd_secs, statfs_slow, statfs_quantum, quota_quantum;
spin_lock(&sdp->sd_tune.gt_spin);
logd_secs = sdp->sd_tune.gt_logd_secs;
quota_quantum = sdp->sd_tune.gt_quota_quantum;
statfs_quantum = sdp->sd_tune.gt_statfs_quantum;
statfs_slow = sdp->sd_tune.gt_statfs_slow;
spin_unlock(&sdp->sd_tune.gt_spin);
if (is_subdir(root, sdp->sd_master_dir))
seq_puts(s, ",meta");
if (args->ar_lockproto[0])
seq_show_option(s, "lockproto", args->ar_lockproto);
if (args->ar_locktable[0])
seq_show_option(s, "locktable", args->ar_locktable);
if (args->ar_hostdata[0])
seq_show_option(s, "hostdata", args->ar_hostdata);
if (args->ar_spectator)
seq_puts(s, ",spectator");
if (args->ar_localflocks)
seq_puts(s, ",localflocks");
if (args->ar_debug)
seq_puts(s, ",debug");
if (args->ar_posix_acl)
seq_puts(s, ",acl");
if (args->ar_quota != GFS2_QUOTA_DEFAULT) {
char *state;
switch (args->ar_quota) {
case GFS2_QUOTA_OFF:
state = "off";
break;
case GFS2_QUOTA_ACCOUNT:
state = "account";
break;
case GFS2_QUOTA_ON:
state = "on";
break;
case GFS2_QUOTA_QUIET:
state = "quiet";
break;
default:
state = "unknown";
break;
}
seq_printf(s, ",quota=%s", state);
}
if (args->ar_suiddir)
seq_puts(s, ",suiddir");
if (args->ar_data != GFS2_DATA_DEFAULT) {
char *state;
switch (args->ar_data) {
case GFS2_DATA_WRITEBACK:
state = "writeback";
break;
case GFS2_DATA_ORDERED:
state = "ordered";
break;
default:
state = "unknown";
break;
}
seq_printf(s, ",data=%s", state);
}
if (args->ar_discard)
seq_puts(s, ",discard");
if (logd_secs != 30)
seq_printf(s, ",commit=%d", logd_secs);
if (statfs_quantum != 30)
seq_printf(s, ",statfs_quantum=%d", statfs_quantum);
else if (statfs_slow)
seq_puts(s, ",statfs_quantum=0");
if (quota_quantum != 60)
seq_printf(s, ",quota_quantum=%d", quota_quantum);
if (args->ar_statfs_percent)
seq_printf(s, ",statfs_percent=%d", args->ar_statfs_percent);
if (args->ar_errors != GFS2_ERRORS_DEFAULT) {
const char *state;
switch (args->ar_errors) {
case GFS2_ERRORS_WITHDRAW:
state = "withdraw";
break;
case GFS2_ERRORS_PANIC:
state = "panic";
break;
default:
state = "unknown";
break;
}
seq_printf(s, ",errors=%s", state);
}
if (test_bit(SDF_NOBARRIERS, &sdp->sd_flags))
seq_puts(s, ",nobarrier");
if (test_bit(SDF_DEMOTE, &sdp->sd_flags))
seq_puts(s, ",demote_interface_used");
if (args->ar_rgrplvb)
seq_puts(s, ",rgrplvb");
if (args->ar_loccookie)
seq_puts(s, ",loccookie");
return 0;
}
static void gfs2_final_release_pages(struct gfs2_inode *ip)
{
struct inode *inode = &ip->i_inode;
struct gfs2_glock *gl = ip->i_gl;
if (unlikely(!gl)) {
/* This can only happen during incomplete inode creation. */
BUG_ON(!test_bit(GIF_ALLOC_FAILED, &ip->i_flags));
return;
}
truncate_inode_pages(gfs2_glock2aspace(gl), 0);
truncate_inode_pages(&inode->i_data, 0);
if (atomic_read(&gl->gl_revokes) == 0) {
clear_bit(GLF_LFLUSH, &gl->gl_flags);
clear_bit(GLF_DIRTY, &gl->gl_flags);
}
}
static int gfs2_dinode_dealloc(struct gfs2_inode *ip)
{
struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
struct gfs2_rgrpd *rgd;
struct gfs2_holder gh;
int error;
if (gfs2_get_inode_blocks(&ip->i_inode) != 1) {
gfs2_consist_inode(ip);
return -EIO;
}
gfs2_rindex_update(sdp);
error = gfs2_quota_hold(ip, NO_UID_QUOTA_CHANGE, NO_GID_QUOTA_CHANGE);
if (error)
return error;
rgd = gfs2_blk2rgrpd(sdp, ip->i_no_addr, 1);
if (!rgd) {
gfs2_consist_inode(ip);
error = -EIO;
goto out_qs;
}
error = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE,
LM_FLAG_NODE_SCOPE, &gh);
if (error)
goto out_qs;
error = gfs2_trans_begin(sdp, RES_RG_BIT + RES_STATFS + RES_QUOTA,
sdp->sd_jdesc->jd_blocks);
if (error)
goto out_rg_gunlock;
gfs2_free_di(rgd, ip);
gfs2_final_release_pages(ip);
gfs2_trans_end(sdp);
out_rg_gunlock:
gfs2_glock_dq_uninit(&gh);
out_qs:
gfs2_quota_unhold(ip);
return error;
}
/**
* gfs2_glock_put_eventually
* @gl: The glock to put
*
* When under memory pressure, trigger a deferred glock put to make sure we
* won't call into DLM and deadlock. Otherwise, put the glock directly.
*/
static void gfs2_glock_put_eventually(struct gfs2_glock *gl)
{
if (current->flags & PF_MEMALLOC)
gfs2_glock_put_async(gl);
else
gfs2_glock_put(gl);
}
static enum evict_behavior gfs2_upgrade_iopen_glock(struct inode *inode)
{
struct gfs2_inode *ip = GFS2_I(inode);
struct gfs2_sbd *sdp = GFS2_SB(inode);
struct gfs2_holder *gh = &ip->i_iopen_gh;
int error;
gh->gh_flags |= GL_NOCACHE;
gfs2_glock_dq_wait(gh);
/*
* If there are no other lock holders, we will immediately get
* exclusive access to the iopen glock here.
*
* Otherwise, the other nodes holding the lock will be notified about
* our locking request (see iopen_go_callback()). If they do not have
* the inode open, they are expected to evict the cached inode and
* release the lock, allowing us to proceed.
*
* Otherwise, if they cannot evict the inode, they are expected to poke
* the inode glock (note: not the iopen glock). We will notice that
* and stop waiting for the iopen glock immediately. The other node(s)
* are then expected to take care of deleting the inode when they no
* longer use it.
*
* As a last resort, if another node keeps holding the iopen glock
* without showing any activity on the inode glock, we will eventually
* time out and fail the iopen glock upgrade.
*/
gfs2_holder_reinit(LM_ST_EXCLUSIVE, GL_ASYNC | GL_NOCACHE, gh);
error = gfs2_glock_nq(gh);
if (error)
return EVICT_SHOULD_SKIP_DELETE;
wait_event_interruptible_timeout(sdp->sd_async_glock_wait,
!test_bit(HIF_WAIT, &gh->gh_iflags) ||
glock_needs_demote(ip->i_gl),
5 * HZ);
if (!test_bit(HIF_HOLDER, &gh->gh_iflags)) {
gfs2_glock_dq(gh);
if (glock_needs_demote(ip->i_gl))
return EVICT_SHOULD_SKIP_DELETE;
return EVICT_SHOULD_DEFER_DELETE;
}
error = gfs2_glock_holder_ready(gh);
if (error)
return EVICT_SHOULD_SKIP_DELETE;
return EVICT_SHOULD_DELETE;
}
/**
* evict_should_delete - determine whether the inode is eligible for deletion
* @inode: The inode to evict
* @gh: The glock holder structure
*
* This function determines whether the evicted inode is eligible to be deleted
* and locks the inode glock.
*
* Returns: the fate of the dinode
*/
static enum evict_behavior evict_should_delete(struct inode *inode,
struct gfs2_holder *gh)
{
struct gfs2_inode *ip = GFS2_I(inode);
struct super_block *sb = inode->i_sb;
struct gfs2_sbd *sdp = sb->s_fs_info;
int ret;
if (unlikely(test_bit(GIF_ALLOC_FAILED, &ip->i_flags)))
goto should_delete;
if (test_bit(GIF_DEFER_DELETE, &ip->i_flags))
return EVICT_SHOULD_DEFER_DELETE;
/* Deletes should never happen under memory pressure anymore. */
if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
return EVICT_SHOULD_DEFER_DELETE;
/* Must not read inode block until block type has been verified */
ret = gfs2_glock_nq_init(ip->i_gl, LM_ST_EXCLUSIVE, GL_SKIP, gh);
if (unlikely(ret)) {
glock_clear_object(ip->i_iopen_gh.gh_gl, ip);
ip->i_iopen_gh.gh_flags |= GL_NOCACHE;
gfs2_glock_dq_uninit(&ip->i_iopen_gh);
return EVICT_SHOULD_DEFER_DELETE;
}
if (gfs2_inode_already_deleted(ip->i_gl, ip->i_no_formal_ino))
return EVICT_SHOULD_SKIP_DELETE;
ret = gfs2_check_blk_type(sdp, ip->i_no_addr, GFS2_BLKST_UNLINKED);
if (ret)
return EVICT_SHOULD_SKIP_DELETE;
ret = gfs2_instantiate(gh);
if (ret)
return EVICT_SHOULD_SKIP_DELETE;
/*
* The inode may have been recreated in the meantime.
*/
if (inode->i_nlink)
return EVICT_SHOULD_SKIP_DELETE;
should_delete:
if (gfs2_holder_initialized(&ip->i_iopen_gh) &&
test_bit(HIF_HOLDER, &ip->i_iopen_gh.gh_iflags)) {
enum evict_behavior behavior =
gfs2_upgrade_iopen_glock(inode);
if (behavior != EVICT_SHOULD_DELETE) {
gfs2_holder_uninit(&ip->i_iopen_gh);
return behavior;
}
}
return EVICT_SHOULD_DELETE;
}
/**
* evict_unlinked_inode - delete the pieces of an unlinked evicted inode
* @inode: The inode to evict
*/
static int evict_unlinked_inode(struct inode *inode)
{
struct gfs2_inode *ip = GFS2_I(inode);
int ret;
if (S_ISDIR(inode->i_mode) &&
(ip->i_diskflags & GFS2_DIF_EXHASH)) {
ret = gfs2_dir_exhash_dealloc(ip);
if (ret)
goto out;
}
if (ip->i_eattr) {
ret = gfs2_ea_dealloc(ip);
if (ret)
goto out;
}
if (!gfs2_is_stuffed(ip)) {
ret = gfs2_file_dealloc(ip);
if (ret)
goto out;
}
/*
* As soon as we clear the bitmap for the dinode, gfs2_create_inode()
* can get called to recreate it, or even gfs2_inode_lookup() if the
* inode was recreated on another node in the meantime.
*
* However, inserting the new inode into the inode hash table will not
* succeed until the old inode is removed, and that only happens after
* ->evict_inode() returns. The new inode is attached to its inode and
* iopen glocks after inserting it into the inode hash table, so at
* that point we can be sure that both glocks are unused.
*/
ret = gfs2_dinode_dealloc(ip);
if (!ret && ip->i_gl)
gfs2_inode_remember_delete(ip->i_gl, ip->i_no_formal_ino);
out:
return ret;
}
/*
* evict_linked_inode - evict an inode whose dinode has not been unlinked
* @inode: The inode to evict
*/
static int evict_linked_inode(struct inode *inode)
{
struct super_block *sb = inode->i_sb;
struct gfs2_sbd *sdp = sb->s_fs_info;
struct gfs2_inode *ip = GFS2_I(inode);
struct address_space *metamapping;
int ret;
gfs2_log_flush(sdp, ip->i_gl, GFS2_LOG_HEAD_FLUSH_NORMAL |
GFS2_LFC_EVICT_INODE);
metamapping = gfs2_glock2aspace(ip->i_gl);
if (test_bit(GLF_DIRTY, &ip->i_gl->gl_flags)) {
filemap_fdatawrite(metamapping);
filemap_fdatawait(metamapping);
}
write_inode_now(inode, 1);
gfs2_ail_flush(ip->i_gl, 0);
ret = gfs2_trans_begin(sdp, 0, sdp->sd_jdesc->jd_blocks);
if (ret)
return ret;
/* Needs to be done before glock release & also in a transaction */
truncate_inode_pages(&inode->i_data, 0);
truncate_inode_pages(metamapping, 0);
gfs2_trans_end(sdp);
return 0;
}
/**
* gfs2_evict_inode - Remove an inode from cache
* @inode: The inode to evict
*
* There are three cases to consider:
* 1. i_nlink == 0, we are final opener (and must deallocate)
* 2. i_nlink == 0, we are not the final opener (and cannot deallocate)
* 3. i_nlink > 0
*
* If the fs is read only, then we have to treat all cases as per #3
* since we are unable to do any deallocation. The inode will be
* deallocated by the next read/write node to attempt an allocation
* in the same resource group
*
* We have to (at the moment) hold the inodes main lock to cover
* the gap between unlocking the shared lock on the iopen lock and
* taking the exclusive lock. I'd rather do a shared -> exclusive
* conversion on the iopen lock, but we can change that later. This
* is safe, just less efficient.
*/
static void gfs2_evict_inode(struct inode *inode)
{
struct super_block *sb = inode->i_sb;
struct gfs2_sbd *sdp = sb->s_fs_info;
struct gfs2_inode *ip = GFS2_I(inode);
struct gfs2_holder gh;
enum evict_behavior behavior;
int ret;
gfs2_holder_mark_uninitialized(&gh);
if (inode->i_nlink || sb_rdonly(sb) || !ip->i_no_addr)
goto out;
/*
* In case of an incomplete mount, gfs2_evict_inode() may be called for
* system files without having an active journal to write to. In that
* case, skip the filesystem evict.
*/
if (!sdp->sd_jdesc)
goto out;
behavior = evict_should_delete(inode, &gh);
if (behavior == EVICT_SHOULD_DEFER_DELETE &&
!test_bit(SDF_KILL, &sdp->sd_flags)) {
struct gfs2_glock *io_gl = ip->i_iopen_gh.gh_gl;
if (io_gl) {
gfs2_glock_hold(io_gl);
if (!gfs2_queue_verify_delete(io_gl, true))
gfs2_glock_put(io_gl);
goto out;
}
behavior = EVICT_SHOULD_DELETE;
}
if (behavior == EVICT_SHOULD_DELETE)
ret = evict_unlinked_inode(inode);
else
ret = evict_linked_inode(inode);
if (gfs2_rs_active(&ip->i_res))
gfs2_rs_deltree(&ip->i_res);
if (ret && ret != GLR_TRYFAILED && ret != -EROFS)
fs_warn(sdp, "gfs2_evict_inode: %d\n", ret);
out:
if (gfs2_holder_initialized(&gh))
gfs2_glock_dq_uninit(&gh);
truncate_inode_pages_final(&inode->i_data);
if (ip->i_qadata)
gfs2_assert_warn(sdp, ip->i_qadata->qa_ref == 0);
gfs2_rs_deltree(&ip->i_res);
gfs2_ordered_del_inode(ip);
clear_inode(inode);
gfs2_dir_hash_inval(ip);
if (gfs2_holder_initialized(&ip->i_iopen_gh)) {
struct gfs2_glock *gl = ip->i_iopen_gh.gh_gl;
glock_clear_object(gl, ip);
gfs2_glock_hold(gl);
ip->i_iopen_gh.gh_flags |= GL_NOCACHE;
gfs2_glock_dq_uninit(&ip->i_iopen_gh);
gfs2_glock_put_eventually(gl);
}
if (ip->i_gl) {
glock_clear_object(ip->i_gl, ip);
wait_on_bit_io(&ip->i_flags, GIF_GLOP_PENDING, TASK_UNINTERRUPTIBLE);
gfs2_glock_put_eventually(ip->i_gl);
rcu_assign_pointer(ip->i_gl, NULL);
}
}
static struct inode *gfs2_alloc_inode(struct super_block *sb)
{
struct gfs2_inode *ip;
ip = alloc_inode_sb(sb, gfs2_inode_cachep, GFP_KERNEL);
if (!ip)
return NULL;
ip->i_no_addr = 0;
ip->i_no_formal_ino = 0;
ip->i_flags = 0;
ip->i_gl = NULL;
gfs2_holder_mark_uninitialized(&ip->i_iopen_gh);
memset(&ip->i_res, 0, sizeof(ip->i_res));
RB_CLEAR_NODE(&ip->i_res.rs_node);
ip->i_diskflags = 0;
ip->i_rahead = 0;
return &ip->i_inode;
}
static void gfs2_free_inode(struct inode *inode)
{
kmem_cache_free(gfs2_inode_cachep, GFS2_I(inode));
}
void free_local_statfs_inodes(struct gfs2_sbd *sdp)
{
struct local_statfs_inode *lsi, *safe;
/* Run through the statfs inodes list to iput and free memory */
list_for_each_entry_safe(lsi, safe, &sdp->sd_sc_inodes_list, si_list) {
if (lsi->si_jid == sdp->sd_jdesc->jd_jid)
sdp->sd_sc_inode = NULL; /* belongs to this node */
if (lsi->si_sc_inode)
iput(lsi->si_sc_inode);
list_del(&lsi->si_list);
kfree(lsi);
}
}
struct inode *find_local_statfs_inode(struct gfs2_sbd *sdp,
unsigned int index)
{
struct local_statfs_inode *lsi;
/* Return the local (per node) statfs inode in the
* sdp->sd_sc_inodes_list corresponding to the 'index'. */
list_for_each_entry(lsi, &sdp->sd_sc_inodes_list, si_list) {
if (lsi->si_jid == index)
return lsi->si_sc_inode;
}
return NULL;
}
const struct super_operations gfs2_super_ops = {
.alloc_inode = gfs2_alloc_inode,
.free_inode = gfs2_free_inode,
.write_inode = gfs2_write_inode,
.dirty_inode = gfs2_dirty_inode,
.evict_inode = gfs2_evict_inode,
.put_super = gfs2_put_super,
.sync_fs = gfs2_sync_fs,
.freeze_super = gfs2_freeze_super,
.freeze_fs = gfs2_freeze_fs,
.thaw_super = gfs2_thaw_super,
.statfs = gfs2_statfs,
.drop_inode = gfs2_drop_inode,
.show_options = gfs2_show_options,
};