| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright (C) 2010, 2023 Red Hat, Inc. |
| * All Rights Reserved. |
| */ |
| #include "xfs.h" |
| #include "xfs_shared.h" |
| #include "xfs_format.h" |
| #include "xfs_log_format.h" |
| #include "xfs_trans_resv.h" |
| #include "xfs_trans.h" |
| #include "xfs_mount.h" |
| #include "xfs_btree.h" |
| #include "xfs_alloc_btree.h" |
| #include "xfs_alloc.h" |
| #include "xfs_discard.h" |
| #include "xfs_error.h" |
| #include "xfs_extent_busy.h" |
| #include "xfs_trace.h" |
| #include "xfs_log.h" |
| #include "xfs_ag.h" |
| #include "xfs_health.h" |
| #include "xfs_rtbitmap.h" |
| #include "xfs_rtgroup.h" |
| |
| /* |
| * Notes on an efficient, low latency fstrim algorithm |
| * |
| * We need to walk the filesystem free space and issue discards on the free |
| * space that meet the search criteria (size and location). We cannot issue |
| * discards on extents that might be in use, or are so recently in use they are |
| * still marked as busy. To serialise against extent state changes whilst we are |
| * gathering extents to trim, we must hold the AGF lock to lock out other |
| * allocations and extent free operations that might change extent state. |
| * |
| * However, we cannot just hold the AGF for the entire AG free space walk whilst |
| * we issue discards on each free space that is found. Storage devices can have |
| * extremely slow discard implementations (e.g. ceph RBD) and so walking a |
| * couple of million free extents and issuing synchronous discards on each |
| * extent can take a *long* time. Whilst we are doing this walk, nothing else |
| * can access the AGF, and we can stall transactions and hence the log whilst |
| * modifications wait for the AGF lock to be released. This can lead hung tasks |
| * kicking the hung task timer and rebooting the system. This is bad. |
| * |
| * Hence we need to take a leaf from the bulkstat playbook. It takes the AGI |
| * lock, gathers a range of inode cluster buffers that are allocated, drops the |
| * AGI lock and then reads all the inode cluster buffers and processes them. It |
| * loops doing this, using a cursor to keep track of where it is up to in the AG |
| * for each iteration to restart the INOBT lookup from. |
| * |
| * We can't do this exactly with free space - once we drop the AGF lock, the |
| * state of the free extent is out of our control and we cannot run a discard |
| * safely on it in this situation. Unless, of course, we've marked the free |
| * extent as busy and undergoing a discard operation whilst we held the AGF |
| * locked. |
| * |
| * This is exactly how online discard works - free extents are marked busy when |
| * they are freed, and once the extent free has been committed to the journal, |
| * the busy extent record is marked as "undergoing discard" and the discard is |
| * then issued on the free extent. Once the discard completes, the busy extent |
| * record is removed and the extent is able to be allocated again. |
| * |
| * In the context of fstrim, if we find a free extent we need to discard, we |
| * don't have to discard it immediately. All we need to do it record that free |
| * extent as being busy and under discard, and all the allocation routines will |
| * now avoid trying to allocate it. Hence if we mark the extent as busy under |
| * the AGF lock, we can safely discard it without holding the AGF lock because |
| * nothing will attempt to allocate that free space until the discard completes. |
| * |
| * This also allows us to issue discards asynchronously like we do with online |
| * discard, and so for fast devices fstrim will run much faster as we can have |
| * multiple discard operations in flight at once, as well as pipeline the free |
| * extent search so that it overlaps in flight discard IO. |
| */ |
| |
| #define XFS_DISCARD_MAX_EXAMINE (100) |
| |
| struct workqueue_struct *xfs_discard_wq; |
| |
| static void |
| xfs_discard_endio_work( |
| struct work_struct *work) |
| { |
| struct xfs_busy_extents *extents = |
| container_of(work, struct xfs_busy_extents, endio_work); |
| |
| xfs_extent_busy_clear(&extents->extent_list, false); |
| kfree(extents->owner); |
| } |
| |
| /* |
| * Queue up the actual completion to a thread to avoid IRQ-safe locking for |
| * pagb_lock. |
| */ |
| static void |
| xfs_discard_endio( |
| struct bio *bio) |
| { |
| struct xfs_busy_extents *extents = bio->bi_private; |
| |
| INIT_WORK(&extents->endio_work, xfs_discard_endio_work); |
| queue_work(xfs_discard_wq, &extents->endio_work); |
| bio_put(bio); |
| } |
| |
| static inline struct block_device * |
| xfs_group_bdev( |
| const struct xfs_group *xg) |
| { |
| struct xfs_mount *mp = xg->xg_mount; |
| |
| switch (xg->xg_type) { |
| case XG_TYPE_AG: |
| return mp->m_ddev_targp->bt_bdev; |
| case XG_TYPE_RTG: |
| return mp->m_rtdev_targp->bt_bdev; |
| default: |
| ASSERT(0); |
| break; |
| } |
| return NULL; |
| } |
| |
| /* |
| * Walk the discard list and issue discards on all the busy extents in the |
| * list. We plug and chain the bios so that we only need a single completion |
| * call to clear all the busy extents once the discards are complete. |
| */ |
| int |
| xfs_discard_extents( |
| struct xfs_mount *mp, |
| struct xfs_busy_extents *extents) |
| { |
| struct xfs_extent_busy *busyp; |
| struct bio *bio = NULL; |
| struct blk_plug plug; |
| int error = 0; |
| |
| blk_start_plug(&plug); |
| list_for_each_entry(busyp, &extents->extent_list, list) { |
| trace_xfs_discard_extent(busyp->group, busyp->bno, |
| busyp->length); |
| |
| error = __blkdev_issue_discard(xfs_group_bdev(busyp->group), |
| xfs_gbno_to_daddr(busyp->group, busyp->bno), |
| XFS_FSB_TO_BB(mp, busyp->length), |
| GFP_KERNEL, &bio); |
| if (error && error != -EOPNOTSUPP) { |
| xfs_info(mp, |
| "discard failed for extent [0x%llx,%u], error %d", |
| (unsigned long long)busyp->bno, |
| busyp->length, |
| error); |
| break; |
| } |
| } |
| |
| if (bio) { |
| bio->bi_private = extents; |
| bio->bi_end_io = xfs_discard_endio; |
| submit_bio(bio); |
| } else { |
| xfs_discard_endio_work(&extents->endio_work); |
| } |
| blk_finish_plug(&plug); |
| |
| return error; |
| } |
| |
| struct xfs_trim_cur { |
| xfs_agblock_t start; |
| xfs_extlen_t count; |
| xfs_agblock_t end; |
| xfs_extlen_t minlen; |
| bool by_bno; |
| }; |
| |
| static int |
| xfs_trim_gather_extents( |
| struct xfs_perag *pag, |
| struct xfs_trim_cur *tcur, |
| struct xfs_busy_extents *extents) |
| { |
| struct xfs_mount *mp = pag_mount(pag); |
| struct xfs_trans *tp; |
| struct xfs_btree_cur *cur; |
| struct xfs_buf *agbp; |
| int error; |
| int i; |
| int batch = XFS_DISCARD_MAX_EXAMINE; |
| |
| /* |
| * Force out the log. This means any transactions that might have freed |
| * space before we take the AGF buffer lock are now on disk, and the |
| * volatile disk cache is flushed. |
| */ |
| xfs_log_force(mp, XFS_LOG_SYNC); |
| |
| error = xfs_trans_alloc_empty(mp, &tp); |
| if (error) |
| return error; |
| |
| error = xfs_alloc_read_agf(pag, tp, 0, &agbp); |
| if (error) |
| goto out_trans_cancel; |
| |
| if (tcur->by_bno) { |
| /* sub-AG discard request always starts at tcur->start */ |
| cur = xfs_bnobt_init_cursor(mp, tp, agbp, pag); |
| error = xfs_alloc_lookup_le(cur, tcur->start, 0, &i); |
| if (!error && !i) |
| error = xfs_alloc_lookup_ge(cur, tcur->start, 0, &i); |
| } else if (tcur->start == 0) { |
| /* first time through a by-len starts with max length */ |
| cur = xfs_cntbt_init_cursor(mp, tp, agbp, pag); |
| error = xfs_alloc_lookup_ge(cur, 0, tcur->count, &i); |
| } else { |
| /* nth time through a by-len starts where we left off */ |
| cur = xfs_cntbt_init_cursor(mp, tp, agbp, pag); |
| error = xfs_alloc_lookup_le(cur, tcur->start, tcur->count, &i); |
| } |
| if (error) |
| goto out_del_cursor; |
| if (i == 0) { |
| /* nothing of that length left in the AG, we are done */ |
| tcur->count = 0; |
| goto out_del_cursor; |
| } |
| |
| /* |
| * Loop until we are done with all extents that are large |
| * enough to be worth discarding or we hit batch limits. |
| */ |
| while (i) { |
| xfs_agblock_t fbno; |
| xfs_extlen_t flen; |
| |
| error = xfs_alloc_get_rec(cur, &fbno, &flen, &i); |
| if (error) |
| break; |
| if (XFS_IS_CORRUPT(mp, i != 1)) { |
| xfs_btree_mark_sick(cur); |
| error = -EFSCORRUPTED; |
| break; |
| } |
| |
| if (--batch <= 0) { |
| /* |
| * Update the cursor to point at this extent so we |
| * restart the next batch from this extent. |
| */ |
| tcur->start = fbno; |
| tcur->count = flen; |
| break; |
| } |
| |
| /* |
| * If the extent is entirely outside of the range we are |
| * supposed to skip it. Do not bother to trim down partially |
| * overlapping ranges for now. |
| */ |
| if (fbno + flen < tcur->start) { |
| trace_xfs_discard_exclude(pag_group(pag), fbno, flen); |
| goto next_extent; |
| } |
| if (fbno > tcur->end) { |
| trace_xfs_discard_exclude(pag_group(pag), fbno, flen); |
| if (tcur->by_bno) { |
| tcur->count = 0; |
| break; |
| } |
| goto next_extent; |
| } |
| |
| /* Trim the extent returned to the range we want. */ |
| if (fbno < tcur->start) { |
| flen -= tcur->start - fbno; |
| fbno = tcur->start; |
| } |
| if (fbno + flen > tcur->end + 1) |
| flen = tcur->end - fbno + 1; |
| |
| /* Too small? Give up. */ |
| if (flen < tcur->minlen) { |
| trace_xfs_discard_toosmall(pag_group(pag), fbno, flen); |
| if (tcur->by_bno) |
| goto next_extent; |
| tcur->count = 0; |
| break; |
| } |
| |
| /* |
| * If any blocks in the range are still busy, skip the |
| * discard and try again the next time. |
| */ |
| if (xfs_extent_busy_search(pag_group(pag), fbno, flen)) { |
| trace_xfs_discard_busy(pag_group(pag), fbno, flen); |
| goto next_extent; |
| } |
| |
| xfs_extent_busy_insert_discard(pag_group(pag), fbno, flen, |
| &extents->extent_list); |
| next_extent: |
| if (tcur->by_bno) |
| error = xfs_btree_increment(cur, 0, &i); |
| else |
| error = xfs_btree_decrement(cur, 0, &i); |
| if (error) |
| break; |
| |
| /* |
| * If there's no more records in the tree, we are done. Set the |
| * cursor block count to 0 to indicate to the caller that there |
| * is no more extents to search. |
| */ |
| if (i == 0) |
| tcur->count = 0; |
| } |
| |
| /* |
| * If there was an error, release all the gathered busy extents because |
| * we aren't going to issue a discard on them any more. |
| */ |
| if (error) |
| xfs_extent_busy_clear(&extents->extent_list, false); |
| out_del_cursor: |
| xfs_btree_del_cursor(cur, error); |
| out_trans_cancel: |
| xfs_trans_cancel(tp); |
| return error; |
| } |
| |
| static bool |
| xfs_trim_should_stop(void) |
| { |
| return fatal_signal_pending(current) || freezing(current); |
| } |
| |
| /* |
| * Iterate the free list gathering extents and discarding them. We need a cursor |
| * for the repeated iteration of gather/discard loop, so use the longest extent |
| * we found in the last batch as the key to start the next. |
| */ |
| static int |
| xfs_trim_perag_extents( |
| struct xfs_perag *pag, |
| xfs_agblock_t start, |
| xfs_agblock_t end, |
| xfs_extlen_t minlen) |
| { |
| struct xfs_trim_cur tcur = { |
| .start = start, |
| .count = pag->pagf_longest, |
| .end = end, |
| .minlen = minlen, |
| }; |
| int error = 0; |
| |
| if (start != 0 || end != pag_group(pag)->xg_block_count) |
| tcur.by_bno = true; |
| |
| do { |
| struct xfs_busy_extents *extents; |
| |
| extents = kzalloc(sizeof(*extents), GFP_KERNEL); |
| if (!extents) { |
| error = -ENOMEM; |
| break; |
| } |
| |
| extents->owner = extents; |
| INIT_LIST_HEAD(&extents->extent_list); |
| |
| error = xfs_trim_gather_extents(pag, &tcur, extents); |
| if (error) { |
| kfree(extents); |
| break; |
| } |
| |
| /* |
| * We hand the extent list to the discard function here so the |
| * discarded extents can be removed from the busy extent list. |
| * This allows the discards to run asynchronously with gathering |
| * the next round of extents to discard. |
| * |
| * However, we must ensure that we do not reference the extent |
| * list after this function call, as it may have been freed by |
| * the time control returns to us. |
| */ |
| error = xfs_discard_extents(pag_mount(pag), extents); |
| if (error) |
| break; |
| |
| if (xfs_trim_should_stop()) |
| break; |
| |
| } while (tcur.count != 0); |
| |
| return error; |
| |
| } |
| |
| static int |
| xfs_trim_datadev_extents( |
| struct xfs_mount *mp, |
| xfs_daddr_t start, |
| xfs_daddr_t end, |
| xfs_extlen_t minlen) |
| { |
| xfs_agnumber_t start_agno, end_agno; |
| xfs_agblock_t start_agbno, end_agbno; |
| struct xfs_perag *pag = NULL; |
| xfs_daddr_t ddev_end; |
| int last_error = 0, error; |
| |
| ddev_end = min_t(xfs_daddr_t, end, |
| XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks) - 1); |
| |
| start_agno = xfs_daddr_to_agno(mp, start); |
| start_agbno = xfs_daddr_to_agbno(mp, start); |
| end_agno = xfs_daddr_to_agno(mp, ddev_end); |
| end_agbno = xfs_daddr_to_agbno(mp, ddev_end); |
| |
| while ((pag = xfs_perag_next_range(mp, pag, start_agno, end_agno))) { |
| xfs_agblock_t agend = pag_group(pag)->xg_block_count; |
| |
| if (pag_agno(pag) == end_agno) |
| agend = end_agbno; |
| error = xfs_trim_perag_extents(pag, start_agbno, agend, minlen); |
| if (error) |
| last_error = error; |
| |
| if (xfs_trim_should_stop()) { |
| xfs_perag_rele(pag); |
| break; |
| } |
| start_agbno = 0; |
| } |
| |
| return last_error; |
| } |
| |
| #ifdef CONFIG_XFS_RT |
| struct xfs_trim_rtdev { |
| /* list of rt extents to free */ |
| struct list_head extent_list; |
| |
| /* minimum length that caller allows us to trim */ |
| xfs_rtblock_t minlen_fsb; |
| |
| /* restart point for the rtbitmap walk */ |
| xfs_rtxnum_t restart_rtx; |
| |
| /* stopping point for the current rtbitmap walk */ |
| xfs_rtxnum_t stop_rtx; |
| }; |
| |
| struct xfs_rtx_busy { |
| struct list_head list; |
| xfs_rtblock_t bno; |
| xfs_rtblock_t length; |
| }; |
| |
| static void |
| xfs_discard_free_rtdev_extents( |
| struct xfs_trim_rtdev *tr) |
| { |
| struct xfs_rtx_busy *busyp, *n; |
| |
| list_for_each_entry_safe(busyp, n, &tr->extent_list, list) { |
| list_del_init(&busyp->list); |
| kfree(busyp); |
| } |
| } |
| |
| /* |
| * Walk the discard list and issue discards on all the busy extents in the |
| * list. We plug and chain the bios so that we only need a single completion |
| * call to clear all the busy extents once the discards are complete. |
| */ |
| static int |
| xfs_discard_rtdev_extents( |
| struct xfs_mount *mp, |
| struct xfs_trim_rtdev *tr) |
| { |
| struct block_device *bdev = mp->m_rtdev_targp->bt_bdev; |
| struct xfs_rtx_busy *busyp; |
| struct bio *bio = NULL; |
| struct blk_plug plug; |
| xfs_rtblock_t start = NULLRTBLOCK, length = 0; |
| int error = 0; |
| |
| blk_start_plug(&plug); |
| list_for_each_entry(busyp, &tr->extent_list, list) { |
| if (start == NULLRTBLOCK) |
| start = busyp->bno; |
| length += busyp->length; |
| |
| trace_xfs_discard_rtextent(mp, busyp->bno, busyp->length); |
| |
| error = __blkdev_issue_discard(bdev, |
| xfs_rtb_to_daddr(mp, busyp->bno), |
| XFS_FSB_TO_BB(mp, busyp->length), |
| GFP_NOFS, &bio); |
| if (error) |
| break; |
| } |
| xfs_discard_free_rtdev_extents(tr); |
| |
| if (bio) { |
| error = submit_bio_wait(bio); |
| if (error == -EOPNOTSUPP) |
| error = 0; |
| if (error) |
| xfs_info(mp, |
| "discard failed for rtextent [0x%llx,%llu], error %d", |
| (unsigned long long)start, |
| (unsigned long long)length, |
| error); |
| bio_put(bio); |
| } |
| blk_finish_plug(&plug); |
| |
| return error; |
| } |
| |
| static int |
| xfs_trim_gather_rtextent( |
| struct xfs_rtgroup *rtg, |
| struct xfs_trans *tp, |
| const struct xfs_rtalloc_rec *rec, |
| void *priv) |
| { |
| struct xfs_trim_rtdev *tr = priv; |
| struct xfs_rtx_busy *busyp; |
| xfs_rtblock_t rbno, rlen; |
| |
| if (rec->ar_startext > tr->stop_rtx) { |
| /* |
| * If we've scanned a large number of rtbitmap blocks, update |
| * the cursor to point at this extent so we restart the next |
| * batch from this extent. |
| */ |
| tr->restart_rtx = rec->ar_startext; |
| return -ECANCELED; |
| } |
| |
| rbno = xfs_rtx_to_rtb(rtg, rec->ar_startext); |
| rlen = xfs_rtbxlen_to_blen(rtg_mount(rtg), rec->ar_extcount); |
| |
| /* Ignore too small. */ |
| if (rlen < tr->minlen_fsb) { |
| trace_xfs_discard_rttoosmall(rtg_mount(rtg), rbno, rlen); |
| return 0; |
| } |
| |
| busyp = kzalloc(sizeof(struct xfs_rtx_busy), GFP_KERNEL); |
| if (!busyp) |
| return -ENOMEM; |
| |
| busyp->bno = rbno; |
| busyp->length = rlen; |
| INIT_LIST_HEAD(&busyp->list); |
| list_add_tail(&busyp->list, &tr->extent_list); |
| |
| tr->restart_rtx = rec->ar_startext + rec->ar_extcount; |
| return 0; |
| } |
| |
| /* Trim extents on an !rtgroups realtime device */ |
| static int |
| xfs_trim_rtextents( |
| struct xfs_rtgroup *rtg, |
| xfs_rtxnum_t low, |
| xfs_rtxnum_t high, |
| xfs_daddr_t minlen) |
| { |
| struct xfs_mount *mp = rtg_mount(rtg); |
| struct xfs_trim_rtdev tr = { |
| .minlen_fsb = XFS_BB_TO_FSB(mp, minlen), |
| .extent_list = LIST_HEAD_INIT(tr.extent_list), |
| }; |
| struct xfs_trans *tp; |
| int error; |
| |
| error = xfs_trans_alloc_empty(mp, &tp); |
| if (error) |
| return error; |
| |
| /* |
| * Walk the free ranges between low and high. The query_range function |
| * trims the extents returned. |
| */ |
| do { |
| tr.stop_rtx = low + xfs_rtbitmap_rtx_per_rbmblock(mp); |
| xfs_rtgroup_lock(rtg, XFS_RTGLOCK_BITMAP_SHARED); |
| error = xfs_rtalloc_query_range(rtg, tp, low, high, |
| xfs_trim_gather_rtextent, &tr); |
| |
| if (error == -ECANCELED) |
| error = 0; |
| if (error) { |
| xfs_rtgroup_unlock(rtg, XFS_RTGLOCK_BITMAP_SHARED); |
| xfs_discard_free_rtdev_extents(&tr); |
| break; |
| } |
| |
| if (list_empty(&tr.extent_list)) { |
| xfs_rtgroup_unlock(rtg, XFS_RTGLOCK_BITMAP_SHARED); |
| break; |
| } |
| |
| error = xfs_discard_rtdev_extents(mp, &tr); |
| xfs_rtgroup_unlock(rtg, XFS_RTGLOCK_BITMAP_SHARED); |
| if (error) |
| break; |
| |
| low = tr.restart_rtx; |
| } while (!xfs_trim_should_stop() && low <= high); |
| |
| xfs_trans_cancel(tp); |
| return error; |
| } |
| |
| struct xfs_trim_rtgroup { |
| /* list of rtgroup extents to free */ |
| struct xfs_busy_extents *extents; |
| |
| /* minimum length that caller allows us to trim */ |
| xfs_rtblock_t minlen_fsb; |
| |
| /* restart point for the rtbitmap walk */ |
| xfs_rtxnum_t restart_rtx; |
| |
| /* number of extents to examine before stopping to issue discard ios */ |
| int batch; |
| |
| /* number of extents queued for discard */ |
| int queued; |
| }; |
| |
| static int |
| xfs_trim_gather_rtgroup_extent( |
| struct xfs_rtgroup *rtg, |
| struct xfs_trans *tp, |
| const struct xfs_rtalloc_rec *rec, |
| void *priv) |
| { |
| struct xfs_trim_rtgroup *tr = priv; |
| xfs_rgblock_t rgbno; |
| xfs_extlen_t len; |
| |
| if (--tr->batch <= 0) { |
| /* |
| * If we've checked a large number of extents, update the |
| * cursor to point at this extent so we restart the next batch |
| * from this extent. |
| */ |
| tr->restart_rtx = rec->ar_startext; |
| return -ECANCELED; |
| } |
| |
| rgbno = xfs_rtx_to_rgbno(rtg, rec->ar_startext); |
| len = xfs_rtxlen_to_extlen(rtg_mount(rtg), rec->ar_extcount); |
| |
| /* Ignore too small. */ |
| if (len < tr->minlen_fsb) { |
| trace_xfs_discard_toosmall(rtg_group(rtg), rgbno, len); |
| return 0; |
| } |
| |
| /* |
| * If any blocks in the range are still busy, skip the discard and try |
| * again the next time. |
| */ |
| if (xfs_extent_busy_search(rtg_group(rtg), rgbno, len)) { |
| trace_xfs_discard_busy(rtg_group(rtg), rgbno, len); |
| return 0; |
| } |
| |
| xfs_extent_busy_insert_discard(rtg_group(rtg), rgbno, len, |
| &tr->extents->extent_list); |
| |
| tr->queued++; |
| tr->restart_rtx = rec->ar_startext + rec->ar_extcount; |
| return 0; |
| } |
| |
| /* Trim extents in this rtgroup using the busy extent machinery. */ |
| static int |
| xfs_trim_rtgroup_extents( |
| struct xfs_rtgroup *rtg, |
| xfs_rtxnum_t low, |
| xfs_rtxnum_t high, |
| xfs_daddr_t minlen) |
| { |
| struct xfs_mount *mp = rtg_mount(rtg); |
| struct xfs_trim_rtgroup tr = { |
| .minlen_fsb = XFS_BB_TO_FSB(mp, minlen), |
| }; |
| struct xfs_trans *tp; |
| int error; |
| |
| error = xfs_trans_alloc_empty(mp, &tp); |
| if (error) |
| return error; |
| |
| /* |
| * Walk the free ranges between low and high. The query_range function |
| * trims the extents returned. |
| */ |
| do { |
| tr.extents = kzalloc(sizeof(*tr.extents), GFP_KERNEL); |
| if (!tr.extents) { |
| error = -ENOMEM; |
| break; |
| } |
| |
| tr.queued = 0; |
| tr.batch = XFS_DISCARD_MAX_EXAMINE; |
| tr.extents->owner = tr.extents; |
| INIT_LIST_HEAD(&tr.extents->extent_list); |
| |
| xfs_rtgroup_lock(rtg, XFS_RTGLOCK_BITMAP_SHARED); |
| error = xfs_rtalloc_query_range(rtg, tp, low, high, |
| xfs_trim_gather_rtgroup_extent, &tr); |
| xfs_rtgroup_unlock(rtg, XFS_RTGLOCK_BITMAP_SHARED); |
| if (error == -ECANCELED) |
| error = 0; |
| if (error) { |
| kfree(tr.extents); |
| break; |
| } |
| |
| if (!tr.queued) |
| break; |
| |
| /* |
| * We hand the extent list to the discard function here so the |
| * discarded extents can be removed from the busy extent list. |
| * This allows the discards to run asynchronously with |
| * gathering the next round of extents to discard. |
| * |
| * However, we must ensure that we do not reference the extent |
| * list after this function call, as it may have been freed by |
| * the time control returns to us. |
| */ |
| error = xfs_discard_extents(rtg_mount(rtg), tr.extents); |
| if (error) |
| break; |
| |
| low = tr.restart_rtx; |
| } while (!xfs_trim_should_stop() && low <= high); |
| |
| xfs_trans_cancel(tp); |
| return error; |
| } |
| |
| static int |
| xfs_trim_rtdev_extents( |
| struct xfs_mount *mp, |
| xfs_daddr_t start, |
| xfs_daddr_t end, |
| xfs_daddr_t minlen) |
| { |
| xfs_rtblock_t start_rtbno, end_rtbno; |
| xfs_rtxnum_t start_rtx, end_rtx; |
| xfs_rgnumber_t start_rgno, end_rgno; |
| xfs_daddr_t daddr_offset; |
| int last_error = 0, error; |
| struct xfs_rtgroup *rtg = NULL; |
| |
| /* Shift the start and end downwards to match the rt device. */ |
| daddr_offset = XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks); |
| if (start > daddr_offset) |
| start -= daddr_offset; |
| else |
| start = 0; |
| start_rtbno = xfs_daddr_to_rtb(mp, start); |
| start_rtx = xfs_rtb_to_rtx(mp, start_rtbno); |
| start_rgno = xfs_rtb_to_rgno(mp, start_rtbno); |
| |
| if (end <= daddr_offset) |
| return 0; |
| else |
| end -= daddr_offset; |
| end_rtbno = xfs_daddr_to_rtb(mp, end); |
| end_rtx = xfs_rtb_to_rtx(mp, end_rtbno + mp->m_sb.sb_rextsize - 1); |
| end_rgno = xfs_rtb_to_rgno(mp, end_rtbno); |
| |
| while ((rtg = xfs_rtgroup_next_range(mp, rtg, start_rgno, end_rgno))) { |
| xfs_rtxnum_t rtg_end = rtg->rtg_extents; |
| |
| if (rtg_rgno(rtg) == end_rgno) |
| rtg_end = min(rtg_end, end_rtx); |
| |
| if (xfs_has_rtgroups(mp)) |
| error = xfs_trim_rtgroup_extents(rtg, start_rtx, |
| rtg_end, minlen); |
| else |
| error = xfs_trim_rtextents(rtg, start_rtx, rtg_end, |
| minlen); |
| if (error) |
| last_error = error; |
| |
| if (xfs_trim_should_stop()) { |
| xfs_rtgroup_rele(rtg); |
| break; |
| } |
| start_rtx = 0; |
| } |
| |
| return last_error; |
| } |
| #else |
| # define xfs_trim_rtdev_extents(...) (-EOPNOTSUPP) |
| #endif /* CONFIG_XFS_RT */ |
| |
| /* |
| * trim a range of the filesystem. |
| * |
| * Note: the parameters passed from userspace are byte ranges into the |
| * filesystem which does not match to the format we use for filesystem block |
| * addressing. FSB addressing is sparse (AGNO|AGBNO), while the incoming format |
| * is a linear address range. Hence we need to use DADDR based conversions and |
| * comparisons for determining the correct offset and regions to trim. |
| * |
| * The realtime device is mapped into the FITRIM "address space" immediately |
| * after the data device. |
| */ |
| int |
| xfs_ioc_trim( |
| struct xfs_mount *mp, |
| struct fstrim_range __user *urange) |
| { |
| unsigned int granularity = |
| bdev_discard_granularity(mp->m_ddev_targp->bt_bdev); |
| struct block_device *rt_bdev = NULL; |
| struct fstrim_range range; |
| xfs_daddr_t start, end; |
| xfs_extlen_t minlen; |
| xfs_rfsblock_t max_blocks; |
| int error, last_error = 0; |
| |
| if (!capable(CAP_SYS_ADMIN)) |
| return -EPERM; |
| if (mp->m_rtdev_targp && |
| bdev_max_discard_sectors(mp->m_rtdev_targp->bt_bdev)) |
| rt_bdev = mp->m_rtdev_targp->bt_bdev; |
| if (!bdev_max_discard_sectors(mp->m_ddev_targp->bt_bdev) && !rt_bdev) |
| return -EOPNOTSUPP; |
| |
| if (rt_bdev) |
| granularity = max(granularity, |
| bdev_discard_granularity(rt_bdev)); |
| |
| /* |
| * We haven't recovered the log, so we cannot use our bnobt-guided |
| * storage zapping commands. |
| */ |
| if (xfs_has_norecovery(mp)) |
| return -EROFS; |
| |
| if (copy_from_user(&range, urange, sizeof(range))) |
| return -EFAULT; |
| |
| range.minlen = max_t(u64, granularity, range.minlen); |
| minlen = XFS_B_TO_FSB(mp, range.minlen); |
| |
| /* |
| * Truncating down the len isn't actually quite correct, but using |
| * BBTOB would mean we trivially get overflows for values |
| * of ULLONG_MAX or slightly lower. And ULLONG_MAX is the default |
| * used by the fstrim application. In the end it really doesn't |
| * matter as trimming blocks is an advisory interface. |
| */ |
| max_blocks = mp->m_sb.sb_dblocks + mp->m_sb.sb_rblocks; |
| if (range.start >= XFS_FSB_TO_B(mp, max_blocks) || |
| range.minlen > XFS_FSB_TO_B(mp, mp->m_ag_max_usable) || |
| range.len < mp->m_sb.sb_blocksize) |
| return -EINVAL; |
| |
| start = BTOBB(range.start); |
| end = start + BTOBBT(range.len) - 1; |
| |
| if (bdev_max_discard_sectors(mp->m_ddev_targp->bt_bdev)) { |
| error = xfs_trim_datadev_extents(mp, start, end, minlen); |
| if (error) |
| last_error = error; |
| } |
| |
| if (rt_bdev && !xfs_trim_should_stop()) { |
| error = xfs_trim_rtdev_extents(mp, start, end, minlen); |
| if (error) |
| last_error = error; |
| } |
| |
| if (last_error) |
| return last_error; |
| |
| range.len = min_t(unsigned long long, range.len, |
| XFS_FSB_TO_B(mp, max_blocks) - range.start); |
| if (copy_to_user(urange, &range, sizeof(range))) |
| return -EFAULT; |
| return 0; |
| } |