| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * Copyright (c) 2020-2024 Oracle. All Rights Reserved. |
| * Author: Darrick J. Wong <djwong@kernel.org> |
| */ |
| #include "xfs.h" |
| #include "xfs_shared.h" |
| #include "xfs_format.h" |
| #include "xfs_log_format.h" |
| #include "xfs_trans_resv.h" |
| #include "xfs_mount.h" |
| #include "xfs_defer.h" |
| #include "xfs_inode.h" |
| #include "xfs_trans.h" |
| #include "xfs_quota.h" |
| #include "xfs_bmap_util.h" |
| #include "xfs_reflink.h" |
| #include "xfs_trace.h" |
| #include "xfs_exchrange.h" |
| #include "xfs_exchmaps.h" |
| #include "xfs_sb.h" |
| #include "xfs_icache.h" |
| #include "xfs_log.h" |
| #include "xfs_rtbitmap.h" |
| #include <linux/fsnotify.h> |
| |
| /* Lock (and optionally join) two inodes for a file range exchange. */ |
| void |
| xfs_exchrange_ilock( |
| struct xfs_trans *tp, |
| struct xfs_inode *ip1, |
| struct xfs_inode *ip2) |
| { |
| if (ip1 != ip2) |
| xfs_lock_two_inodes(ip1, XFS_ILOCK_EXCL, |
| ip2, XFS_ILOCK_EXCL); |
| else |
| xfs_ilock(ip1, XFS_ILOCK_EXCL); |
| if (tp) { |
| xfs_trans_ijoin(tp, ip1, 0); |
| if (ip2 != ip1) |
| xfs_trans_ijoin(tp, ip2, 0); |
| } |
| |
| } |
| |
| /* Unlock two inodes after a file range exchange operation. */ |
| void |
| xfs_exchrange_iunlock( |
| struct xfs_inode *ip1, |
| struct xfs_inode *ip2) |
| { |
| if (ip2 != ip1) |
| xfs_iunlock(ip2, XFS_ILOCK_EXCL); |
| xfs_iunlock(ip1, XFS_ILOCK_EXCL); |
| } |
| |
| /* |
| * Estimate the resource requirements to exchange file contents between the two |
| * files. The caller is required to hold the IOLOCK and the MMAPLOCK and to |
| * have flushed both inodes' pagecache and active direct-ios. |
| */ |
| int |
| xfs_exchrange_estimate( |
| struct xfs_exchmaps_req *req) |
| { |
| int error; |
| |
| xfs_exchrange_ilock(NULL, req->ip1, req->ip2); |
| error = xfs_exchmaps_estimate(req); |
| xfs_exchrange_iunlock(req->ip1, req->ip2); |
| return error; |
| } |
| |
| /* |
| * Check that file2's metadata agree with the snapshot that we took for the |
| * range commit request. |
| * |
| * This should be called after the filesystem has locked /all/ inode metadata |
| * against modification. |
| */ |
| STATIC int |
| xfs_exchrange_check_freshness( |
| const struct xfs_exchrange *fxr, |
| struct xfs_inode *ip2) |
| { |
| struct inode *inode2 = VFS_I(ip2); |
| struct timespec64 ctime = inode_get_ctime(inode2); |
| struct timespec64 mtime = inode_get_mtime(inode2); |
| |
| trace_xfs_exchrange_freshness(fxr, ip2); |
| |
| /* Check that file2 hasn't otherwise been modified. */ |
| if (fxr->file2_ino != ip2->i_ino || |
| fxr->file2_gen != inode2->i_generation || |
| !timespec64_equal(&fxr->file2_ctime, &ctime) || |
| !timespec64_equal(&fxr->file2_mtime, &mtime)) |
| return -EBUSY; |
| |
| return 0; |
| } |
| |
| #define QRETRY_IP1 (0x1) |
| #define QRETRY_IP2 (0x2) |
| |
| /* |
| * Obtain a quota reservation to make sure we don't hit EDQUOT. We can skip |
| * this if quota enforcement is disabled or if both inodes' dquots are the |
| * same. The qretry structure must be initialized to zeroes before the first |
| * call to this function. |
| */ |
| STATIC int |
| xfs_exchrange_reserve_quota( |
| struct xfs_trans *tp, |
| const struct xfs_exchmaps_req *req, |
| unsigned int *qretry) |
| { |
| int64_t ddelta, rdelta; |
| int ip1_error = 0; |
| int error; |
| |
| /* |
| * Don't bother with a quota reservation if we're not enforcing them |
| * or the two inodes have the same dquots. |
| */ |
| if (!XFS_IS_QUOTA_ON(tp->t_mountp) || req->ip1 == req->ip2 || |
| (req->ip1->i_udquot == req->ip2->i_udquot && |
| req->ip1->i_gdquot == req->ip2->i_gdquot && |
| req->ip1->i_pdquot == req->ip2->i_pdquot)) |
| return 0; |
| |
| *qretry = 0; |
| |
| /* |
| * For each file, compute the net gain in the number of regular blocks |
| * that will be mapped into that file and reserve that much quota. The |
| * quota counts must be able to absorb at least that much space. |
| */ |
| ddelta = req->ip2_bcount - req->ip1_bcount; |
| rdelta = req->ip2_rtbcount - req->ip1_rtbcount; |
| if (ddelta > 0 || rdelta > 0) { |
| error = xfs_trans_reserve_quota_nblks(tp, req->ip1, |
| ddelta > 0 ? ddelta : 0, |
| rdelta > 0 ? rdelta : 0, |
| false); |
| if (error == -EDQUOT || error == -ENOSPC) { |
| /* |
| * Save this error and see what happens if we try to |
| * reserve quota for ip2. Then report both. |
| */ |
| *qretry |= QRETRY_IP1; |
| ip1_error = error; |
| error = 0; |
| } |
| if (error) |
| return error; |
| } |
| if (ddelta < 0 || rdelta < 0) { |
| error = xfs_trans_reserve_quota_nblks(tp, req->ip2, |
| ddelta < 0 ? -ddelta : 0, |
| rdelta < 0 ? -rdelta : 0, |
| false); |
| if (error == -EDQUOT || error == -ENOSPC) |
| *qretry |= QRETRY_IP2; |
| if (error) |
| return error; |
| } |
| if (ip1_error) |
| return ip1_error; |
| |
| /* |
| * For each file, forcibly reserve the gross gain in mapped blocks so |
| * that we don't trip over any quota block reservation assertions. |
| * We must reserve the gross gain because the quota code subtracts from |
| * bcount the number of blocks that we unmap; it does not add that |
| * quantity back to the quota block reservation. |
| */ |
| error = xfs_trans_reserve_quota_nblks(tp, req->ip1, req->ip1_bcount, |
| req->ip1_rtbcount, true); |
| if (error) |
| return error; |
| |
| return xfs_trans_reserve_quota_nblks(tp, req->ip2, req->ip2_bcount, |
| req->ip2_rtbcount, true); |
| } |
| |
| /* Exchange the mappings (and hence the contents) of two files' forks. */ |
| STATIC int |
| xfs_exchrange_mappings( |
| const struct xfs_exchrange *fxr, |
| struct xfs_inode *ip1, |
| struct xfs_inode *ip2) |
| { |
| struct xfs_mount *mp = ip1->i_mount; |
| struct xfs_exchmaps_req req = { |
| .ip1 = ip1, |
| .ip2 = ip2, |
| .startoff1 = XFS_B_TO_FSBT(mp, fxr->file1_offset), |
| .startoff2 = XFS_B_TO_FSBT(mp, fxr->file2_offset), |
| .blockcount = XFS_B_TO_FSB(mp, fxr->length), |
| }; |
| struct xfs_trans *tp; |
| unsigned int qretry; |
| bool retried = false; |
| int error; |
| |
| trace_xfs_exchrange_mappings(fxr, ip1, ip2); |
| |
| if (fxr->flags & XFS_EXCHANGE_RANGE_TO_EOF) |
| req.flags |= XFS_EXCHMAPS_SET_SIZES; |
| if (fxr->flags & XFS_EXCHANGE_RANGE_FILE1_WRITTEN) |
| req.flags |= XFS_EXCHMAPS_INO1_WRITTEN; |
| |
| /* |
| * Round the request length up to the nearest file allocation unit. |
| * The prep function already checked that the request offsets and |
| * length in @fxr are safe to round up. |
| */ |
| if (xfs_inode_has_bigrtalloc(ip2)) |
| req.blockcount = xfs_blen_roundup_rtx(mp, req.blockcount); |
| |
| error = xfs_exchrange_estimate(&req); |
| if (error) |
| return error; |
| |
| retry: |
| /* Allocate the transaction, lock the inodes, and join them. */ |
| error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, req.resblks, 0, |
| XFS_TRANS_RES_FDBLKS, &tp); |
| if (error) |
| return error; |
| |
| xfs_exchrange_ilock(tp, ip1, ip2); |
| |
| trace_xfs_exchrange_before(ip2, 2); |
| trace_xfs_exchrange_before(ip1, 1); |
| |
| error = xfs_exchmaps_check_forks(mp, &req); |
| if (error) |
| goto out_trans_cancel; |
| |
| /* |
| * Reserve ourselves some quota if any of them are in enforcing mode. |
| * In theory we only need enough to satisfy the change in the number |
| * of blocks between the two ranges being remapped. |
| */ |
| error = xfs_exchrange_reserve_quota(tp, &req, &qretry); |
| if ((error == -EDQUOT || error == -ENOSPC) && !retried) { |
| xfs_trans_cancel(tp); |
| xfs_exchrange_iunlock(ip1, ip2); |
| if (qretry & QRETRY_IP1) |
| xfs_blockgc_free_quota(ip1, 0); |
| if (qretry & QRETRY_IP2) |
| xfs_blockgc_free_quota(ip2, 0); |
| retried = true; |
| goto retry; |
| } |
| if (error) |
| goto out_trans_cancel; |
| |
| /* If we got this far on a dry run, all parameters are ok. */ |
| if (fxr->flags & XFS_EXCHANGE_RANGE_DRY_RUN) |
| goto out_trans_cancel; |
| |
| /* Update the mtime and ctime of both files. */ |
| if (fxr->flags & __XFS_EXCHANGE_RANGE_UPD_CMTIME1) |
| xfs_trans_ichgtime(tp, ip1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); |
| if (fxr->flags & __XFS_EXCHANGE_RANGE_UPD_CMTIME2) |
| xfs_trans_ichgtime(tp, ip2, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); |
| |
| xfs_exchange_mappings(tp, &req); |
| |
| /* |
| * Force the log to persist metadata updates if the caller or the |
| * administrator requires this. The generic prep function already |
| * flushed the relevant parts of the page cache. |
| */ |
| if (xfs_has_wsync(mp) || (fxr->flags & XFS_EXCHANGE_RANGE_DSYNC)) |
| xfs_trans_set_sync(tp); |
| |
| error = xfs_trans_commit(tp); |
| |
| trace_xfs_exchrange_after(ip2, 2); |
| trace_xfs_exchrange_after(ip1, 1); |
| |
| if (error) |
| goto out_unlock; |
| |
| /* |
| * If the caller wanted us to exchange the contents of two complete |
| * files of unequal length, exchange the incore sizes now. This should |
| * be safe because we flushed both files' page caches, exchanged all |
| * the mappings, and updated the ondisk sizes. |
| */ |
| if (fxr->flags & XFS_EXCHANGE_RANGE_TO_EOF) { |
| loff_t temp; |
| |
| temp = i_size_read(VFS_I(ip2)); |
| i_size_write(VFS_I(ip2), i_size_read(VFS_I(ip1))); |
| i_size_write(VFS_I(ip1), temp); |
| } |
| |
| out_unlock: |
| xfs_exchrange_iunlock(ip1, ip2); |
| return error; |
| |
| out_trans_cancel: |
| xfs_trans_cancel(tp); |
| goto out_unlock; |
| } |
| |
| /* |
| * Generic code for exchanging ranges of two files via XFS_IOC_EXCHANGE_RANGE. |
| * This part deals with struct file objects and byte ranges and does not deal |
| * with XFS-specific data structures such as xfs_inodes and block ranges. This |
| * separation may some day facilitate porting to another filesystem. |
| * |
| * The goal is to exchange fxr.length bytes starting at fxr.file1_offset in |
| * file1 with the same number of bytes starting at fxr.file2_offset in file2. |
| * Implementations must call xfs_exchange_range_prep to prepare the two |
| * files prior to taking locks; and they must update the inode change and mod |
| * times of both files as part of the metadata update. The timestamp update |
| * and freshness checks must be done atomically as part of the data exchange |
| * operation to ensure correctness of the freshness check. |
| * xfs_exchange_range_finish must be called after the operation completes |
| * successfully but before locks are dropped. |
| */ |
| |
| /* Verify that we have security clearance to perform this operation. */ |
| static int |
| xfs_exchange_range_verify_area( |
| struct xfs_exchrange *fxr) |
| { |
| int ret; |
| |
| ret = remap_verify_area(fxr->file1, fxr->file1_offset, fxr->length, |
| true); |
| if (ret) |
| return ret; |
| |
| return remap_verify_area(fxr->file2, fxr->file2_offset, fxr->length, |
| true); |
| } |
| |
| /* |
| * Performs necessary checks before doing a range exchange, having stabilized |
| * mutable inode attributes via i_rwsem. |
| */ |
| static inline int |
| xfs_exchange_range_checks( |
| struct xfs_exchrange *fxr, |
| unsigned int alloc_unit) |
| { |
| struct inode *inode1 = file_inode(fxr->file1); |
| struct inode *inode2 = file_inode(fxr->file2); |
| uint64_t allocmask = alloc_unit - 1; |
| int64_t test_len; |
| uint64_t blen; |
| loff_t size1, size2, tmp; |
| int error; |
| |
| /* Don't touch certain kinds of inodes */ |
| if (IS_IMMUTABLE(inode1) || IS_IMMUTABLE(inode2)) |
| return -EPERM; |
| if (IS_SWAPFILE(inode1) || IS_SWAPFILE(inode2)) |
| return -ETXTBSY; |
| |
| size1 = i_size_read(inode1); |
| size2 = i_size_read(inode2); |
| |
| /* Ranges cannot start after EOF. */ |
| if (fxr->file1_offset > size1 || fxr->file2_offset > size2) |
| return -EINVAL; |
| |
| /* |
| * If the caller said to exchange to EOF, we set the length of the |
| * request large enough to cover everything to the end of both files. |
| */ |
| if (fxr->flags & XFS_EXCHANGE_RANGE_TO_EOF) { |
| fxr->length = max_t(int64_t, size1 - fxr->file1_offset, |
| size2 - fxr->file2_offset); |
| |
| error = xfs_exchange_range_verify_area(fxr); |
| if (error) |
| return error; |
| } |
| |
| /* |
| * The start of both ranges must be aligned to the file allocation |
| * unit. |
| */ |
| if (!IS_ALIGNED(fxr->file1_offset, alloc_unit) || |
| !IS_ALIGNED(fxr->file2_offset, alloc_unit)) |
| return -EINVAL; |
| |
| /* Ensure offsets don't wrap. */ |
| if (check_add_overflow(fxr->file1_offset, fxr->length, &tmp) || |
| check_add_overflow(fxr->file2_offset, fxr->length, &tmp)) |
| return -EINVAL; |
| |
| /* |
| * We require both ranges to end within EOF, unless we're exchanging |
| * to EOF. |
| */ |
| if (!(fxr->flags & XFS_EXCHANGE_RANGE_TO_EOF) && |
| (fxr->file1_offset + fxr->length > size1 || |
| fxr->file2_offset + fxr->length > size2)) |
| return -EINVAL; |
| |
| /* |
| * Make sure we don't hit any file size limits. If we hit any size |
| * limits such that test_length was adjusted, we abort the whole |
| * operation. |
| */ |
| test_len = fxr->length; |
| error = generic_write_check_limits(fxr->file2, fxr->file2_offset, |
| &test_len); |
| if (error) |
| return error; |
| error = generic_write_check_limits(fxr->file1, fxr->file1_offset, |
| &test_len); |
| if (error) |
| return error; |
| if (test_len != fxr->length) |
| return -EINVAL; |
| |
| /* |
| * If the user wanted us to exchange up to the infile's EOF, round up |
| * to the next allocation unit boundary for this check. Do the same |
| * for the outfile. |
| * |
| * Otherwise, reject the range length if it's not aligned to an |
| * allocation unit. |
| */ |
| if (fxr->file1_offset + fxr->length == size1) |
| blen = ALIGN(size1, alloc_unit) - fxr->file1_offset; |
| else if (fxr->file2_offset + fxr->length == size2) |
| blen = ALIGN(size2, alloc_unit) - fxr->file2_offset; |
| else if (!IS_ALIGNED(fxr->length, alloc_unit)) |
| return -EINVAL; |
| else |
| blen = fxr->length; |
| |
| /* Don't allow overlapped exchanges within the same file. */ |
| if (inode1 == inode2 && |
| fxr->file2_offset + blen > fxr->file1_offset && |
| fxr->file1_offset + blen > fxr->file2_offset) |
| return -EINVAL; |
| |
| /* |
| * Ensure that we don't exchange a partial EOF block into the middle of |
| * another file. |
| */ |
| if ((fxr->length & allocmask) == 0) |
| return 0; |
| |
| blen = fxr->length; |
| if (fxr->file2_offset + blen < size2) |
| blen &= ~allocmask; |
| |
| if (fxr->file1_offset + blen < size1) |
| blen &= ~allocmask; |
| |
| return blen == fxr->length ? 0 : -EINVAL; |
| } |
| |
| /* |
| * Check that the two inodes are eligible for range exchanges, the ranges make |
| * sense, and then flush all dirty data. Caller must ensure that the inodes |
| * have been locked against any other modifications. |
| */ |
| static inline int |
| xfs_exchange_range_prep( |
| struct xfs_exchrange *fxr, |
| unsigned int alloc_unit) |
| { |
| struct inode *inode1 = file_inode(fxr->file1); |
| struct inode *inode2 = file_inode(fxr->file2); |
| bool same_inode = (inode1 == inode2); |
| int error; |
| |
| /* Check that we don't violate system file offset limits. */ |
| error = xfs_exchange_range_checks(fxr, alloc_unit); |
| if (error || fxr->length == 0) |
| return error; |
| |
| /* Wait for the completion of any pending IOs on both files */ |
| inode_dio_wait(inode1); |
| if (!same_inode) |
| inode_dio_wait(inode2); |
| |
| error = filemap_write_and_wait_range(inode1->i_mapping, |
| fxr->file1_offset, |
| fxr->file1_offset + fxr->length - 1); |
| if (error) |
| return error; |
| |
| error = filemap_write_and_wait_range(inode2->i_mapping, |
| fxr->file2_offset, |
| fxr->file2_offset + fxr->length - 1); |
| if (error) |
| return error; |
| |
| /* |
| * If the files or inodes involved require synchronous writes, amend |
| * the request to force the filesystem to flush all data and metadata |
| * to disk after the operation completes. |
| */ |
| if (((fxr->file1->f_flags | fxr->file2->f_flags) & O_SYNC) || |
| IS_SYNC(inode1) || IS_SYNC(inode2)) |
| fxr->flags |= XFS_EXCHANGE_RANGE_DSYNC; |
| |
| return 0; |
| } |
| |
| /* |
| * Finish a range exchange operation, if it was successful. Caller must ensure |
| * that the inodes are still locked against any other modifications. |
| */ |
| static inline int |
| xfs_exchange_range_finish( |
| struct xfs_exchrange *fxr) |
| { |
| int error; |
| |
| error = file_remove_privs(fxr->file1); |
| if (error) |
| return error; |
| if (file_inode(fxr->file1) == file_inode(fxr->file2)) |
| return 0; |
| |
| return file_remove_privs(fxr->file2); |
| } |
| |
| /* |
| * Check the alignment of an exchange request when the allocation unit size |
| * isn't a power of two. The generic file-level helpers use (fast) |
| * bitmask-based alignment checks, but here we have to use slow long division. |
| */ |
| static int |
| xfs_exchrange_check_rtalign( |
| const struct xfs_exchrange *fxr, |
| struct xfs_inode *ip1, |
| struct xfs_inode *ip2, |
| unsigned int alloc_unit) |
| { |
| uint64_t length = fxr->length; |
| uint64_t blen; |
| loff_t size1, size2; |
| |
| size1 = i_size_read(VFS_I(ip1)); |
| size2 = i_size_read(VFS_I(ip2)); |
| |
| /* The start of both ranges must be aligned to a rt extent. */ |
| if (!isaligned_64(fxr->file1_offset, alloc_unit) || |
| !isaligned_64(fxr->file2_offset, alloc_unit)) |
| return -EINVAL; |
| |
| if (fxr->flags & XFS_EXCHANGE_RANGE_TO_EOF) |
| length = max_t(int64_t, size1 - fxr->file1_offset, |
| size2 - fxr->file2_offset); |
| |
| /* |
| * If the user wanted us to exchange up to the infile's EOF, round up |
| * to the next rt extent boundary for this check. Do the same for the |
| * outfile. |
| * |
| * Otherwise, reject the range length if it's not rt extent aligned. |
| * We already confirmed the starting offsets' rt extent block |
| * alignment. |
| */ |
| if (fxr->file1_offset + length == size1) |
| blen = roundup_64(size1, alloc_unit) - fxr->file1_offset; |
| else if (fxr->file2_offset + length == size2) |
| blen = roundup_64(size2, alloc_unit) - fxr->file2_offset; |
| else if (!isaligned_64(length, alloc_unit)) |
| return -EINVAL; |
| else |
| blen = length; |
| |
| /* Don't allow overlapped exchanges within the same file. */ |
| if (ip1 == ip2 && |
| fxr->file2_offset + blen > fxr->file1_offset && |
| fxr->file1_offset + blen > fxr->file2_offset) |
| return -EINVAL; |
| |
| /* |
| * Ensure that we don't exchange a partial EOF rt extent into the |
| * middle of another file. |
| */ |
| if (isaligned_64(length, alloc_unit)) |
| return 0; |
| |
| blen = length; |
| if (fxr->file2_offset + length < size2) |
| blen = rounddown_64(blen, alloc_unit); |
| |
| if (fxr->file1_offset + blen < size1) |
| blen = rounddown_64(blen, alloc_unit); |
| |
| return blen == length ? 0 : -EINVAL; |
| } |
| |
| /* Prepare two files to have their data exchanged. */ |
| STATIC int |
| xfs_exchrange_prep( |
| struct xfs_exchrange *fxr, |
| struct xfs_inode *ip1, |
| struct xfs_inode *ip2) |
| { |
| struct xfs_mount *mp = ip2->i_mount; |
| unsigned int alloc_unit = xfs_inode_alloc_unitsize(ip2); |
| int error; |
| |
| trace_xfs_exchrange_prep(fxr, ip1, ip2); |
| |
| /* Verify both files are either real-time or non-realtime */ |
| if (XFS_IS_REALTIME_INODE(ip1) != XFS_IS_REALTIME_INODE(ip2)) |
| return -EINVAL; |
| |
| /* Check non-power of two alignment issues, if necessary. */ |
| if (!is_power_of_2(alloc_unit)) { |
| error = xfs_exchrange_check_rtalign(fxr, ip1, ip2, alloc_unit); |
| if (error) |
| return error; |
| |
| /* |
| * Do the generic file-level checks with the regular block |
| * alignment. |
| */ |
| alloc_unit = mp->m_sb.sb_blocksize; |
| } |
| |
| error = xfs_exchange_range_prep(fxr, alloc_unit); |
| if (error || fxr->length == 0) |
| return error; |
| |
| if (fxr->flags & __XFS_EXCHANGE_RANGE_CHECK_FRESH2) { |
| error = xfs_exchrange_check_freshness(fxr, ip2); |
| if (error) |
| return error; |
| } |
| |
| /* Attach dquots to both inodes before changing block maps. */ |
| error = xfs_qm_dqattach(ip2); |
| if (error) |
| return error; |
| error = xfs_qm_dqattach(ip1); |
| if (error) |
| return error; |
| |
| trace_xfs_exchrange_flush(fxr, ip1, ip2); |
| |
| /* Flush the relevant ranges of both files. */ |
| error = xfs_flush_unmap_range(ip2, fxr->file2_offset, fxr->length); |
| if (error) |
| return error; |
| error = xfs_flush_unmap_range(ip1, fxr->file1_offset, fxr->length); |
| if (error) |
| return error; |
| |
| /* |
| * Cancel CoW fork preallocations for the ranges of both files. The |
| * prep function should have flushed all the dirty data, so the only |
| * CoW mappings remaining should be speculative. |
| */ |
| if (xfs_inode_has_cow_data(ip1)) { |
| error = xfs_reflink_cancel_cow_range(ip1, fxr->file1_offset, |
| fxr->length, true); |
| if (error) |
| return error; |
| } |
| |
| if (xfs_inode_has_cow_data(ip2)) { |
| error = xfs_reflink_cancel_cow_range(ip2, fxr->file2_offset, |
| fxr->length, true); |
| if (error) |
| return error; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Exchange contents of files. This is the binding between the generic |
| * file-level concepts and the XFS inode-specific implementation. |
| */ |
| STATIC int |
| xfs_exchrange_contents( |
| struct xfs_exchrange *fxr) |
| { |
| struct inode *inode1 = file_inode(fxr->file1); |
| struct inode *inode2 = file_inode(fxr->file2); |
| struct xfs_inode *ip1 = XFS_I(inode1); |
| struct xfs_inode *ip2 = XFS_I(inode2); |
| struct xfs_mount *mp = ip1->i_mount; |
| int error; |
| |
| if (!xfs_has_exchange_range(mp)) |
| return -EOPNOTSUPP; |
| |
| if (fxr->flags & ~(XFS_EXCHANGE_RANGE_ALL_FLAGS | |
| XFS_EXCHANGE_RANGE_PRIV_FLAGS)) |
| return -EINVAL; |
| |
| if (xfs_is_shutdown(mp)) |
| return -EIO; |
| |
| /* Lock both files against IO */ |
| error = xfs_ilock2_io_mmap(ip1, ip2); |
| if (error) |
| goto out_err; |
| |
| /* Prepare and then exchange file contents. */ |
| error = xfs_exchrange_prep(fxr, ip1, ip2); |
| if (error) |
| goto out_unlock; |
| |
| error = xfs_exchrange_mappings(fxr, ip1, ip2); |
| if (error) |
| goto out_unlock; |
| |
| /* |
| * Finish the exchange by removing special file privileges like any |
| * other file write would do. This may involve turning on support for |
| * logged xattrs if either file has security capabilities. |
| */ |
| error = xfs_exchange_range_finish(fxr); |
| if (error) |
| goto out_unlock; |
| |
| out_unlock: |
| xfs_iunlock2_io_mmap(ip1, ip2); |
| out_err: |
| if (error) |
| trace_xfs_exchrange_error(ip2, error, _RET_IP_); |
| return error; |
| } |
| |
| /* Exchange parts of two files. */ |
| static int |
| xfs_exchange_range( |
| struct xfs_exchrange *fxr) |
| { |
| struct inode *inode1 = file_inode(fxr->file1); |
| struct inode *inode2 = file_inode(fxr->file2); |
| int ret; |
| |
| BUILD_BUG_ON(XFS_EXCHANGE_RANGE_ALL_FLAGS & |
| XFS_EXCHANGE_RANGE_PRIV_FLAGS); |
| |
| /* Both files must be on the same mount/filesystem. */ |
| if (fxr->file1->f_path.mnt != fxr->file2->f_path.mnt) |
| return -EXDEV; |
| |
| if (fxr->flags & ~(XFS_EXCHANGE_RANGE_ALL_FLAGS | |
| __XFS_EXCHANGE_RANGE_CHECK_FRESH2)) |
| return -EINVAL; |
| |
| /* Userspace requests only honored for regular files. */ |
| if (S_ISDIR(inode1->i_mode) || S_ISDIR(inode2->i_mode)) |
| return -EISDIR; |
| if (!S_ISREG(inode1->i_mode) || !S_ISREG(inode2->i_mode)) |
| return -EINVAL; |
| |
| /* Both files must be opened for read and write. */ |
| if (!(fxr->file1->f_mode & FMODE_READ) || |
| !(fxr->file1->f_mode & FMODE_WRITE) || |
| !(fxr->file2->f_mode & FMODE_READ) || |
| !(fxr->file2->f_mode & FMODE_WRITE)) |
| return -EBADF; |
| |
| /* Neither file can be opened append-only. */ |
| if ((fxr->file1->f_flags & O_APPEND) || |
| (fxr->file2->f_flags & O_APPEND)) |
| return -EBADF; |
| |
| /* |
| * If we're not exchanging to EOF, we can check the areas before |
| * stabilizing both files' i_size. |
| */ |
| if (!(fxr->flags & XFS_EXCHANGE_RANGE_TO_EOF)) { |
| ret = xfs_exchange_range_verify_area(fxr); |
| if (ret) |
| return ret; |
| } |
| |
| /* Update cmtime if the fd/inode don't forbid it. */ |
| if (!(fxr->file1->f_mode & FMODE_NOCMTIME) && !IS_NOCMTIME(inode1)) |
| fxr->flags |= __XFS_EXCHANGE_RANGE_UPD_CMTIME1; |
| if (!(fxr->file2->f_mode & FMODE_NOCMTIME) && !IS_NOCMTIME(inode2)) |
| fxr->flags |= __XFS_EXCHANGE_RANGE_UPD_CMTIME2; |
| |
| file_start_write(fxr->file2); |
| ret = xfs_exchrange_contents(fxr); |
| file_end_write(fxr->file2); |
| if (ret) |
| return ret; |
| |
| fsnotify_modify(fxr->file1); |
| if (fxr->file2 != fxr->file1) |
| fsnotify_modify(fxr->file2); |
| return 0; |
| } |
| |
| /* Collect exchange-range arguments from userspace. */ |
| long |
| xfs_ioc_exchange_range( |
| struct file *file, |
| struct xfs_exchange_range __user *argp) |
| { |
| struct xfs_exchrange fxr = { |
| .file2 = file, |
| }; |
| struct xfs_exchange_range args; |
| |
| if (copy_from_user(&args, argp, sizeof(args))) |
| return -EFAULT; |
| if (memchr_inv(&args.pad, 0, sizeof(args.pad))) |
| return -EINVAL; |
| if (args.flags & ~XFS_EXCHANGE_RANGE_ALL_FLAGS) |
| return -EINVAL; |
| |
| fxr.file1_offset = args.file1_offset; |
| fxr.file2_offset = args.file2_offset; |
| fxr.length = args.length; |
| fxr.flags = args.flags; |
| |
| CLASS(fd, file1)(args.file1_fd); |
| if (fd_empty(file1)) |
| return -EBADF; |
| fxr.file1 = fd_file(file1); |
| |
| return xfs_exchange_range(&fxr); |
| } |
| |
| /* Opaque freshness blob for XFS_IOC_COMMIT_RANGE */ |
| struct xfs_commit_range_fresh { |
| xfs_fsid_t fsid; /* m_fixedfsid */ |
| __u64 file2_ino; /* inode number */ |
| __s64 file2_mtime; /* modification time */ |
| __s64 file2_ctime; /* change time */ |
| __s32 file2_mtime_nsec; /* mod time, nsec */ |
| __s32 file2_ctime_nsec; /* change time, nsec */ |
| __u32 file2_gen; /* inode generation */ |
| __u32 magic; /* zero */ |
| }; |
| #define XCR_FRESH_MAGIC 0x444F524B /* DORK */ |
| |
| /* Set up a commitrange operation by sampling file2's write-related attrs */ |
| long |
| xfs_ioc_start_commit( |
| struct file *file, |
| struct xfs_commit_range __user *argp) |
| { |
| struct xfs_commit_range args = { }; |
| struct timespec64 ts; |
| struct xfs_commit_range_fresh *kern_f; |
| struct xfs_commit_range_fresh __user *user_f; |
| struct inode *inode2 = file_inode(file); |
| struct xfs_inode *ip2 = XFS_I(inode2); |
| const unsigned int lockflags = XFS_IOLOCK_SHARED | |
| XFS_MMAPLOCK_SHARED | |
| XFS_ILOCK_SHARED; |
| |
| BUILD_BUG_ON(sizeof(struct xfs_commit_range_fresh) != |
| sizeof(args.file2_freshness)); |
| |
| kern_f = (struct xfs_commit_range_fresh *)&args.file2_freshness; |
| |
| memcpy(&kern_f->fsid, ip2->i_mount->m_fixedfsid, sizeof(xfs_fsid_t)); |
| |
| xfs_ilock(ip2, lockflags); |
| ts = inode_get_ctime(inode2); |
| kern_f->file2_ctime = ts.tv_sec; |
| kern_f->file2_ctime_nsec = ts.tv_nsec; |
| ts = inode_get_mtime(inode2); |
| kern_f->file2_mtime = ts.tv_sec; |
| kern_f->file2_mtime_nsec = ts.tv_nsec; |
| kern_f->file2_ino = ip2->i_ino; |
| kern_f->file2_gen = inode2->i_generation; |
| kern_f->magic = XCR_FRESH_MAGIC; |
| xfs_iunlock(ip2, lockflags); |
| |
| user_f = (struct xfs_commit_range_fresh __user *)&argp->file2_freshness; |
| if (copy_to_user(user_f, kern_f, sizeof(*kern_f))) |
| return -EFAULT; |
| |
| return 0; |
| } |
| |
| /* |
| * Exchange file1 and file2 contents if file2 has not been written since the |
| * start commit operation. |
| */ |
| long |
| xfs_ioc_commit_range( |
| struct file *file, |
| struct xfs_commit_range __user *argp) |
| { |
| struct xfs_exchrange fxr = { |
| .file2 = file, |
| }; |
| struct xfs_commit_range args; |
| struct xfs_commit_range_fresh *kern_f; |
| struct xfs_inode *ip2 = XFS_I(file_inode(file)); |
| struct xfs_mount *mp = ip2->i_mount; |
| |
| kern_f = (struct xfs_commit_range_fresh *)&args.file2_freshness; |
| |
| if (copy_from_user(&args, argp, sizeof(args))) |
| return -EFAULT; |
| if (args.flags & ~XFS_EXCHANGE_RANGE_ALL_FLAGS) |
| return -EINVAL; |
| if (kern_f->magic != XCR_FRESH_MAGIC) |
| return -EBUSY; |
| if (memcmp(&kern_f->fsid, mp->m_fixedfsid, sizeof(xfs_fsid_t))) |
| return -EBUSY; |
| |
| fxr.file1_offset = args.file1_offset; |
| fxr.file2_offset = args.file2_offset; |
| fxr.length = args.length; |
| fxr.flags = args.flags | __XFS_EXCHANGE_RANGE_CHECK_FRESH2; |
| fxr.file2_ino = kern_f->file2_ino; |
| fxr.file2_gen = kern_f->file2_gen; |
| fxr.file2_mtime.tv_sec = kern_f->file2_mtime; |
| fxr.file2_mtime.tv_nsec = kern_f->file2_mtime_nsec; |
| fxr.file2_ctime.tv_sec = kern_f->file2_ctime; |
| fxr.file2_ctime.tv_nsec = kern_f->file2_ctime_nsec; |
| |
| CLASS(fd, file1)(args.file1_fd); |
| if (fd_empty(file1)) |
| return -EBADF; |
| fxr.file1 = fd_file(file1); |
| |
| return xfs_exchange_range(&fxr); |
| } |