|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | /* | 
|  | * USB4 specific functionality | 
|  | * | 
|  | * Copyright (C) 2019, Intel Corporation | 
|  | * Authors: Mika Westerberg <mika.westerberg@linux.intel.com> | 
|  | *	    Rajmohan Mani <rajmohan.mani@intel.com> | 
|  | */ | 
|  |  | 
|  | #include <linux/delay.h> | 
|  | #include <linux/ktime.h> | 
|  | #include <linux/units.h> | 
|  |  | 
|  | #include "sb_regs.h" | 
|  | #include "tb.h" | 
|  |  | 
|  | #define USB4_DATA_RETRIES		3 | 
|  | #define USB4_DATA_DWORDS		16 | 
|  |  | 
|  | enum usb4_sb_target { | 
|  | USB4_SB_TARGET_ROUTER, | 
|  | USB4_SB_TARGET_PARTNER, | 
|  | USB4_SB_TARGET_RETIMER, | 
|  | }; | 
|  |  | 
|  | #define USB4_NVM_READ_OFFSET_MASK	GENMASK(23, 2) | 
|  | #define USB4_NVM_READ_OFFSET_SHIFT	2 | 
|  | #define USB4_NVM_READ_LENGTH_MASK	GENMASK(27, 24) | 
|  | #define USB4_NVM_READ_LENGTH_SHIFT	24 | 
|  |  | 
|  | #define USB4_NVM_SET_OFFSET_MASK	USB4_NVM_READ_OFFSET_MASK | 
|  | #define USB4_NVM_SET_OFFSET_SHIFT	USB4_NVM_READ_OFFSET_SHIFT | 
|  |  | 
|  | #define USB4_DROM_ADDRESS_MASK		GENMASK(14, 2) | 
|  | #define USB4_DROM_ADDRESS_SHIFT		2 | 
|  | #define USB4_DROM_SIZE_MASK		GENMASK(19, 15) | 
|  | #define USB4_DROM_SIZE_SHIFT		15 | 
|  |  | 
|  | #define USB4_NVM_SECTOR_SIZE_MASK	GENMASK(23, 0) | 
|  |  | 
|  | #define USB4_BA_LENGTH_MASK		GENMASK(7, 0) | 
|  | #define USB4_BA_INDEX_MASK		GENMASK(15, 0) | 
|  |  | 
|  | enum usb4_ba_index { | 
|  | USB4_BA_MAX_USB3 = 0x1, | 
|  | USB4_BA_MIN_DP_AUX = 0x2, | 
|  | USB4_BA_MIN_DP_MAIN = 0x3, | 
|  | USB4_BA_MAX_PCIE = 0x4, | 
|  | USB4_BA_MAX_HI = 0x5, | 
|  | }; | 
|  |  | 
|  | #define USB4_BA_VALUE_MASK		GENMASK(31, 16) | 
|  | #define USB4_BA_VALUE_SHIFT		16 | 
|  |  | 
|  | static int usb4_native_switch_op(struct tb_switch *sw, u16 opcode, | 
|  | u32 *metadata, u8 *status, | 
|  | const void *tx_data, size_t tx_dwords, | 
|  | void *rx_data, size_t rx_dwords) | 
|  | { | 
|  | u32 val; | 
|  | int ret; | 
|  |  | 
|  | if (metadata) { | 
|  | ret = tb_sw_write(sw, metadata, TB_CFG_SWITCH, ROUTER_CS_25, 1); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  | if (tx_dwords) { | 
|  | ret = tb_sw_write(sw, tx_data, TB_CFG_SWITCH, ROUTER_CS_9, | 
|  | tx_dwords); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | val = opcode | ROUTER_CS_26_OV; | 
|  | ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_26, 1); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = tb_switch_wait_for_bit(sw, ROUTER_CS_26, ROUTER_CS_26_OV, 0, 500); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_26, 1); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | if (val & ROUTER_CS_26_ONS) | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | if (status) | 
|  | *status = (val & ROUTER_CS_26_STATUS_MASK) >> | 
|  | ROUTER_CS_26_STATUS_SHIFT; | 
|  |  | 
|  | if (metadata) { | 
|  | ret = tb_sw_read(sw, metadata, TB_CFG_SWITCH, ROUTER_CS_25, 1); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  | if (rx_dwords) { | 
|  | ret = tb_sw_read(sw, rx_data, TB_CFG_SWITCH, ROUTER_CS_9, | 
|  | rx_dwords); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int __usb4_switch_op(struct tb_switch *sw, u16 opcode, u32 *metadata, | 
|  | u8 *status, const void *tx_data, size_t tx_dwords, | 
|  | void *rx_data, size_t rx_dwords) | 
|  | { | 
|  | const struct tb_cm_ops *cm_ops = sw->tb->cm_ops; | 
|  |  | 
|  | if (tx_dwords > USB4_DATA_DWORDS || rx_dwords > USB4_DATA_DWORDS) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* | 
|  | * If the connection manager implementation provides USB4 router | 
|  | * operation proxy callback, call it here instead of running the | 
|  | * operation natively. | 
|  | */ | 
|  | if (cm_ops->usb4_switch_op) { | 
|  | int ret; | 
|  |  | 
|  | ret = cm_ops->usb4_switch_op(sw, opcode, metadata, status, | 
|  | tx_data, tx_dwords, rx_data, | 
|  | rx_dwords); | 
|  | if (ret != -EOPNOTSUPP) | 
|  | return ret; | 
|  |  | 
|  | /* | 
|  | * If the proxy was not supported then run the native | 
|  | * router operation instead. | 
|  | */ | 
|  | } | 
|  |  | 
|  | return usb4_native_switch_op(sw, opcode, metadata, status, tx_data, | 
|  | tx_dwords, rx_data, rx_dwords); | 
|  | } | 
|  |  | 
|  | static inline int usb4_switch_op(struct tb_switch *sw, u16 opcode, | 
|  | u32 *metadata, u8 *status) | 
|  | { | 
|  | return __usb4_switch_op(sw, opcode, metadata, status, NULL, 0, NULL, 0); | 
|  | } | 
|  |  | 
|  | static inline int usb4_switch_op_data(struct tb_switch *sw, u16 opcode, | 
|  | u32 *metadata, u8 *status, | 
|  | const void *tx_data, size_t tx_dwords, | 
|  | void *rx_data, size_t rx_dwords) | 
|  | { | 
|  | return __usb4_switch_op(sw, opcode, metadata, status, tx_data, | 
|  | tx_dwords, rx_data, rx_dwords); | 
|  | } | 
|  |  | 
|  | static void usb4_switch_check_wakes(struct tb_switch *sw) | 
|  | { | 
|  | bool wakeup_usb4 = false; | 
|  | struct usb4_port *usb4; | 
|  | struct tb_port *port; | 
|  | bool wakeup = false; | 
|  | u32 val; | 
|  |  | 
|  | if (!device_may_wakeup(&sw->dev)) | 
|  | return; | 
|  |  | 
|  | if (tb_route(sw)) { | 
|  | if (tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_6, 1)) | 
|  | return; | 
|  |  | 
|  | tb_sw_dbg(sw, "PCIe wake: %s, USB3 wake: %s\n", | 
|  | (val & ROUTER_CS_6_WOPS) ? "yes" : "no", | 
|  | (val & ROUTER_CS_6_WOUS) ? "yes" : "no"); | 
|  |  | 
|  | wakeup = val & (ROUTER_CS_6_WOPS | ROUTER_CS_6_WOUS); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check for any downstream ports for USB4 wake, | 
|  | * connection wake and disconnection wake. | 
|  | */ | 
|  | tb_switch_for_each_port(sw, port) { | 
|  | if (!port->cap_usb4) | 
|  | continue; | 
|  |  | 
|  | if (tb_port_read(port, &val, TB_CFG_PORT, | 
|  | port->cap_usb4 + PORT_CS_18, 1)) | 
|  | break; | 
|  |  | 
|  | tb_port_dbg(port, "USB4 wake: %s, connection wake: %s, disconnection wake: %s\n", | 
|  | (val & PORT_CS_18_WOU4S) ? "yes" : "no", | 
|  | (val & PORT_CS_18_WOCS) ? "yes" : "no", | 
|  | (val & PORT_CS_18_WODS) ? "yes" : "no"); | 
|  |  | 
|  | wakeup_usb4 = val & (PORT_CS_18_WOU4S | PORT_CS_18_WOCS | | 
|  | PORT_CS_18_WODS); | 
|  |  | 
|  | usb4 = port->usb4; | 
|  | if (device_may_wakeup(&usb4->dev) && wakeup_usb4) | 
|  | pm_wakeup_event(&usb4->dev, 0); | 
|  |  | 
|  | wakeup |= wakeup_usb4; | 
|  | } | 
|  |  | 
|  | if (wakeup) | 
|  | pm_wakeup_event(&sw->dev, 0); | 
|  | } | 
|  |  | 
|  | static bool link_is_usb4(struct tb_port *port) | 
|  | { | 
|  | u32 val; | 
|  |  | 
|  | if (!port->cap_usb4) | 
|  | return false; | 
|  |  | 
|  | if (tb_port_read(port, &val, TB_CFG_PORT, | 
|  | port->cap_usb4 + PORT_CS_18, 1)) | 
|  | return false; | 
|  |  | 
|  | return !(val & PORT_CS_18_TCM); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * usb4_switch_setup() - Additional setup for USB4 device | 
|  | * @sw: USB4 router to setup | 
|  | * | 
|  | * USB4 routers need additional settings in order to enable all the | 
|  | * tunneling. This function enables USB and PCIe tunneling if it can be | 
|  | * enabled (e.g the parent switch also supports them). If USB tunneling | 
|  | * is not available for some reason (like that there is Thunderbolt 3 | 
|  | * switch upstream) then the internal xHCI controller is enabled | 
|  | * instead. | 
|  | * | 
|  | * This does not set the configuration valid bit of the router. To do | 
|  | * that call usb4_switch_configuration_valid(). | 
|  | */ | 
|  | int usb4_switch_setup(struct tb_switch *sw) | 
|  | { | 
|  | struct tb_switch *parent = tb_switch_parent(sw); | 
|  | struct tb_port *down; | 
|  | bool tbt3, xhci; | 
|  | u32 val = 0; | 
|  | int ret; | 
|  |  | 
|  | usb4_switch_check_wakes(sw); | 
|  |  | 
|  | if (!tb_route(sw)) | 
|  | return 0; | 
|  |  | 
|  | ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_6, 1); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | down = tb_switch_downstream_port(sw); | 
|  | sw->link_usb4 = link_is_usb4(down); | 
|  | tb_sw_dbg(sw, "link: %s\n", sw->link_usb4 ? "USB4" : "TBT"); | 
|  |  | 
|  | xhci = val & ROUTER_CS_6_HCI; | 
|  | tbt3 = !(val & ROUTER_CS_6_TNS); | 
|  |  | 
|  | tb_sw_dbg(sw, "TBT3 support: %s, xHCI: %s\n", | 
|  | tbt3 ? "yes" : "no", xhci ? "yes" : "no"); | 
|  |  | 
|  | ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | if (tb_acpi_may_tunnel_usb3() && sw->link_usb4 && | 
|  | tb_switch_find_port(parent, TB_TYPE_USB3_DOWN)) { | 
|  | val |= ROUTER_CS_5_UTO; | 
|  | xhci = false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Only enable PCIe tunneling if the parent router supports it | 
|  | * and it is not disabled. | 
|  | */ | 
|  | if (tb_acpi_may_tunnel_pcie() && | 
|  | tb_switch_find_port(parent, TB_TYPE_PCIE_DOWN)) { | 
|  | val |= ROUTER_CS_5_PTO; | 
|  | /* | 
|  | * xHCI can be enabled if PCIe tunneling is supported | 
|  | * and the parent does not have any USB3 dowstream | 
|  | * adapters (so we cannot do USB 3.x tunneling). | 
|  | */ | 
|  | if (xhci) | 
|  | val |= ROUTER_CS_5_HCO; | 
|  | } | 
|  |  | 
|  | /* TBT3 supported by the CM */ | 
|  | val |= ROUTER_CS_5_C3S; | 
|  |  | 
|  | return tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * usb4_switch_configuration_valid() - Set tunneling configuration to be valid | 
|  | * @sw: USB4 router | 
|  | * | 
|  | * Sets configuration valid bit for the router. Must be called before | 
|  | * any tunnels can be set through the router and after | 
|  | * usb4_switch_setup() has been called. Can be called to host and device | 
|  | * routers (does nothing for the latter). | 
|  | * | 
|  | * Returns %0 in success and negative errno otherwise. | 
|  | */ | 
|  | int usb4_switch_configuration_valid(struct tb_switch *sw) | 
|  | { | 
|  | u32 val; | 
|  | int ret; | 
|  |  | 
|  | if (!tb_route(sw)) | 
|  | return 0; | 
|  |  | 
|  | ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | val |= ROUTER_CS_5_CV; | 
|  |  | 
|  | ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | return tb_switch_wait_for_bit(sw, ROUTER_CS_6, ROUTER_CS_6_CR, | 
|  | ROUTER_CS_6_CR, 50); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * usb4_switch_read_uid() - Read UID from USB4 router | 
|  | * @sw: USB4 router | 
|  | * @uid: UID is stored here | 
|  | * | 
|  | * Reads 64-bit UID from USB4 router config space. | 
|  | */ | 
|  | int usb4_switch_read_uid(struct tb_switch *sw, u64 *uid) | 
|  | { | 
|  | return tb_sw_read(sw, uid, TB_CFG_SWITCH, ROUTER_CS_7, 2); | 
|  | } | 
|  |  | 
|  | static int usb4_switch_drom_read_block(void *data, | 
|  | unsigned int dwaddress, void *buf, | 
|  | size_t dwords) | 
|  | { | 
|  | struct tb_switch *sw = data; | 
|  | u8 status = 0; | 
|  | u32 metadata; | 
|  | int ret; | 
|  |  | 
|  | metadata = (dwords << USB4_DROM_SIZE_SHIFT) & USB4_DROM_SIZE_MASK; | 
|  | metadata |= (dwaddress << USB4_DROM_ADDRESS_SHIFT) & | 
|  | USB4_DROM_ADDRESS_MASK; | 
|  |  | 
|  | ret = usb4_switch_op_data(sw, USB4_SWITCH_OP_DROM_READ, &metadata, | 
|  | &status, NULL, 0, buf, dwords); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | return status ? -EIO : 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * usb4_switch_drom_read() - Read arbitrary bytes from USB4 router DROM | 
|  | * @sw: USB4 router | 
|  | * @address: Byte address inside DROM to start reading | 
|  | * @buf: Buffer where the DROM content is stored | 
|  | * @size: Number of bytes to read from DROM | 
|  | * | 
|  | * Uses USB4 router operations to read router DROM. For devices this | 
|  | * should always work but for hosts it may return %-EOPNOTSUPP in which | 
|  | * case the host router does not have DROM. | 
|  | */ | 
|  | int usb4_switch_drom_read(struct tb_switch *sw, unsigned int address, void *buf, | 
|  | size_t size) | 
|  | { | 
|  | return tb_nvm_read_data(address, buf, size, USB4_DATA_RETRIES, | 
|  | usb4_switch_drom_read_block, sw); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * usb4_switch_lane_bonding_possible() - Are conditions met for lane bonding | 
|  | * @sw: USB4 router | 
|  | * | 
|  | * Checks whether conditions are met so that lane bonding can be | 
|  | * established with the upstream router. Call only for device routers. | 
|  | */ | 
|  | bool usb4_switch_lane_bonding_possible(struct tb_switch *sw) | 
|  | { | 
|  | struct tb_port *up; | 
|  | int ret; | 
|  | u32 val; | 
|  |  | 
|  | up = tb_upstream_port(sw); | 
|  | ret = tb_port_read(up, &val, TB_CFG_PORT, up->cap_usb4 + PORT_CS_18, 1); | 
|  | if (ret) | 
|  | return false; | 
|  |  | 
|  | return !!(val & PORT_CS_18_BE); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * usb4_switch_set_wake() - Enabled/disable wake | 
|  | * @sw: USB4 router | 
|  | * @flags: Wakeup flags (%0 to disable) | 
|  | * | 
|  | * Enables/disables router to wake up from sleep. | 
|  | */ | 
|  | int usb4_switch_set_wake(struct tb_switch *sw, unsigned int flags) | 
|  | { | 
|  | struct usb4_port *usb4; | 
|  | struct tb_port *port; | 
|  | u64 route = tb_route(sw); | 
|  | u32 val; | 
|  | int ret; | 
|  |  | 
|  | /* | 
|  | * Enable wakes coming from all USB4 downstream ports (from | 
|  | * child routers). For device routers do this also for the | 
|  | * upstream USB4 port. | 
|  | */ | 
|  | tb_switch_for_each_port(sw, port) { | 
|  | if (!tb_port_is_null(port)) | 
|  | continue; | 
|  | if (!route && tb_is_upstream_port(port)) | 
|  | continue; | 
|  | if (!port->cap_usb4) | 
|  | continue; | 
|  |  | 
|  | ret = tb_port_read(port, &val, TB_CFG_PORT, | 
|  | port->cap_usb4 + PORT_CS_19, 1); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | val &= ~(PORT_CS_19_WOC | PORT_CS_19_WOD | PORT_CS_19_WOU4); | 
|  |  | 
|  | if (tb_is_upstream_port(port)) { | 
|  | val |= PORT_CS_19_WOU4; | 
|  | } else { | 
|  | bool configured = val & PORT_CS_19_PC; | 
|  | usb4 = port->usb4; | 
|  |  | 
|  | if (((flags & TB_WAKE_ON_CONNECT) | | 
|  | device_may_wakeup(&usb4->dev)) && !configured) | 
|  | val |= PORT_CS_19_WOC; | 
|  | if (((flags & TB_WAKE_ON_DISCONNECT) | | 
|  | device_may_wakeup(&usb4->dev)) && configured) | 
|  | val |= PORT_CS_19_WOD; | 
|  | if ((flags & TB_WAKE_ON_USB4) && configured) | 
|  | val |= PORT_CS_19_WOU4; | 
|  | } | 
|  |  | 
|  | ret = tb_port_write(port, &val, TB_CFG_PORT, | 
|  | port->cap_usb4 + PORT_CS_19, 1); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Enable wakes from PCIe, USB 3.x and DP on this router. Only | 
|  | * needed for device routers. | 
|  | */ | 
|  | if (route) { | 
|  | ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | val &= ~(ROUTER_CS_5_WOP | ROUTER_CS_5_WOU | ROUTER_CS_5_WOD); | 
|  | if (flags & TB_WAKE_ON_USB3) | 
|  | val |= ROUTER_CS_5_WOU; | 
|  | if (flags & TB_WAKE_ON_PCIE) | 
|  | val |= ROUTER_CS_5_WOP; | 
|  | if (flags & TB_WAKE_ON_DP) | 
|  | val |= ROUTER_CS_5_WOD; | 
|  |  | 
|  | ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * usb4_switch_set_sleep() - Prepare the router to enter sleep | 
|  | * @sw: USB4 router | 
|  | * | 
|  | * Sets sleep bit for the router. Returns when the router sleep ready | 
|  | * bit has been asserted. | 
|  | */ | 
|  | int usb4_switch_set_sleep(struct tb_switch *sw) | 
|  | { | 
|  | int ret; | 
|  | u32 val; | 
|  |  | 
|  | /* Set sleep bit and wait for sleep ready to be asserted */ | 
|  | ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | val |= ROUTER_CS_5_SLP; | 
|  |  | 
|  | ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | return tb_switch_wait_for_bit(sw, ROUTER_CS_6, ROUTER_CS_6_SLPR, | 
|  | ROUTER_CS_6_SLPR, 500); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * usb4_switch_nvm_sector_size() - Return router NVM sector size | 
|  | * @sw: USB4 router | 
|  | * | 
|  | * If the router supports NVM operations this function returns the NVM | 
|  | * sector size in bytes. If NVM operations are not supported returns | 
|  | * %-EOPNOTSUPP. | 
|  | */ | 
|  | int usb4_switch_nvm_sector_size(struct tb_switch *sw) | 
|  | { | 
|  | u32 metadata; | 
|  | u8 status; | 
|  | int ret; | 
|  |  | 
|  | ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_SECTOR_SIZE, &metadata, | 
|  | &status); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | if (status) | 
|  | return status == 0x2 ? -EOPNOTSUPP : -EIO; | 
|  |  | 
|  | return metadata & USB4_NVM_SECTOR_SIZE_MASK; | 
|  | } | 
|  |  | 
|  | static int usb4_switch_nvm_read_block(void *data, | 
|  | unsigned int dwaddress, void *buf, size_t dwords) | 
|  | { | 
|  | struct tb_switch *sw = data; | 
|  | u8 status = 0; | 
|  | u32 metadata; | 
|  | int ret; | 
|  |  | 
|  | metadata = (dwords << USB4_NVM_READ_LENGTH_SHIFT) & | 
|  | USB4_NVM_READ_LENGTH_MASK; | 
|  | metadata |= (dwaddress << USB4_NVM_READ_OFFSET_SHIFT) & | 
|  | USB4_NVM_READ_OFFSET_MASK; | 
|  |  | 
|  | ret = usb4_switch_op_data(sw, USB4_SWITCH_OP_NVM_READ, &metadata, | 
|  | &status, NULL, 0, buf, dwords); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | return status ? -EIO : 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * usb4_switch_nvm_read() - Read arbitrary bytes from router NVM | 
|  | * @sw: USB4 router | 
|  | * @address: Starting address in bytes | 
|  | * @buf: Read data is placed here | 
|  | * @size: How many bytes to read | 
|  | * | 
|  | * Reads NVM contents of the router. If NVM is not supported returns | 
|  | * %-EOPNOTSUPP. | 
|  | */ | 
|  | int usb4_switch_nvm_read(struct tb_switch *sw, unsigned int address, void *buf, | 
|  | size_t size) | 
|  | { | 
|  | return tb_nvm_read_data(address, buf, size, USB4_DATA_RETRIES, | 
|  | usb4_switch_nvm_read_block, sw); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * usb4_switch_nvm_set_offset() - Set NVM write offset | 
|  | * @sw: USB4 router | 
|  | * @address: Start offset | 
|  | * | 
|  | * Explicitly sets NVM write offset. Normally when writing to NVM this | 
|  | * is done automatically by usb4_switch_nvm_write(). | 
|  | * | 
|  | * Returns %0 in success and negative errno if there was a failure. | 
|  | */ | 
|  | int usb4_switch_nvm_set_offset(struct tb_switch *sw, unsigned int address) | 
|  | { | 
|  | u32 metadata, dwaddress; | 
|  | u8 status = 0; | 
|  | int ret; | 
|  |  | 
|  | dwaddress = address / 4; | 
|  | metadata = (dwaddress << USB4_NVM_SET_OFFSET_SHIFT) & | 
|  | USB4_NVM_SET_OFFSET_MASK; | 
|  |  | 
|  | ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_SET_OFFSET, &metadata, | 
|  | &status); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | return status ? -EIO : 0; | 
|  | } | 
|  |  | 
|  | static int usb4_switch_nvm_write_next_block(void *data, unsigned int dwaddress, | 
|  | const void *buf, size_t dwords) | 
|  | { | 
|  | struct tb_switch *sw = data; | 
|  | u8 status; | 
|  | int ret; | 
|  |  | 
|  | ret = usb4_switch_op_data(sw, USB4_SWITCH_OP_NVM_WRITE, NULL, &status, | 
|  | buf, dwords, NULL, 0); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | return status ? -EIO : 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * usb4_switch_nvm_write() - Write to the router NVM | 
|  | * @sw: USB4 router | 
|  | * @address: Start address where to write in bytes | 
|  | * @buf: Pointer to the data to write | 
|  | * @size: Size of @buf in bytes | 
|  | * | 
|  | * Writes @buf to the router NVM using USB4 router operations. If NVM | 
|  | * write is not supported returns %-EOPNOTSUPP. | 
|  | */ | 
|  | int usb4_switch_nvm_write(struct tb_switch *sw, unsigned int address, | 
|  | const void *buf, size_t size) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = usb4_switch_nvm_set_offset(sw, address); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | return tb_nvm_write_data(address, buf, size, USB4_DATA_RETRIES, | 
|  | usb4_switch_nvm_write_next_block, sw); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * usb4_switch_nvm_authenticate() - Authenticate new NVM | 
|  | * @sw: USB4 router | 
|  | * | 
|  | * After the new NVM has been written via usb4_switch_nvm_write(), this | 
|  | * function triggers NVM authentication process. The router gets power | 
|  | * cycled and if the authentication is successful the new NVM starts | 
|  | * running. In case of failure returns negative errno. | 
|  | * | 
|  | * The caller should call usb4_switch_nvm_authenticate_status() to read | 
|  | * the status of the authentication after power cycle. It should be the | 
|  | * first router operation to avoid the status being lost. | 
|  | */ | 
|  | int usb4_switch_nvm_authenticate(struct tb_switch *sw) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_AUTH, NULL, NULL); | 
|  | switch (ret) { | 
|  | /* | 
|  | * The router is power cycled once NVM_AUTH is started so it is | 
|  | * expected to get any of the following errors back. | 
|  | */ | 
|  | case -EACCES: | 
|  | case -ENOTCONN: | 
|  | case -ETIMEDOUT: | 
|  | return 0; | 
|  |  | 
|  | default: | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * usb4_switch_nvm_authenticate_status() - Read status of last NVM authenticate | 
|  | * @sw: USB4 router | 
|  | * @status: Status code of the operation | 
|  | * | 
|  | * The function checks if there is status available from the last NVM | 
|  | * authenticate router operation. If there is status then %0 is returned | 
|  | * and the status code is placed in @status. Returns negative errno in case | 
|  | * of failure. | 
|  | * | 
|  | * Must be called before any other router operation. | 
|  | */ | 
|  | int usb4_switch_nvm_authenticate_status(struct tb_switch *sw, u32 *status) | 
|  | { | 
|  | const struct tb_cm_ops *cm_ops = sw->tb->cm_ops; | 
|  | u16 opcode; | 
|  | u32 val; | 
|  | int ret; | 
|  |  | 
|  | if (cm_ops->usb4_switch_nvm_authenticate_status) { | 
|  | ret = cm_ops->usb4_switch_nvm_authenticate_status(sw, status); | 
|  | if (ret != -EOPNOTSUPP) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_26, 1); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | /* Check that the opcode is correct */ | 
|  | opcode = val & ROUTER_CS_26_OPCODE_MASK; | 
|  | if (opcode == USB4_SWITCH_OP_NVM_AUTH) { | 
|  | if (val & ROUTER_CS_26_OV) | 
|  | return -EBUSY; | 
|  | if (val & ROUTER_CS_26_ONS) | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | *status = (val & ROUTER_CS_26_STATUS_MASK) >> | 
|  | ROUTER_CS_26_STATUS_SHIFT; | 
|  | } else { | 
|  | *status = 0; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * usb4_switch_credits_init() - Read buffer allocation parameters | 
|  | * @sw: USB4 router | 
|  | * | 
|  | * Reads @sw buffer allocation parameters and initializes @sw buffer | 
|  | * allocation fields accordingly. Specifically @sw->credits_allocation | 
|  | * is set to %true if these parameters can be used in tunneling. | 
|  | * | 
|  | * Returns %0 on success and negative errno otherwise. | 
|  | */ | 
|  | int usb4_switch_credits_init(struct tb_switch *sw) | 
|  | { | 
|  | int max_usb3, min_dp_aux, min_dp_main, max_pcie, max_dma; | 
|  | int ret, length, i, nports; | 
|  | const struct tb_port *port; | 
|  | u32 data[USB4_DATA_DWORDS]; | 
|  | u32 metadata = 0; | 
|  | u8 status = 0; | 
|  |  | 
|  | memset(data, 0, sizeof(data)); | 
|  | ret = usb4_switch_op_data(sw, USB4_SWITCH_OP_BUFFER_ALLOC, &metadata, | 
|  | &status, NULL, 0, data, ARRAY_SIZE(data)); | 
|  | if (ret) | 
|  | return ret; | 
|  | if (status) | 
|  | return -EIO; | 
|  |  | 
|  | length = metadata & USB4_BA_LENGTH_MASK; | 
|  | if (WARN_ON(length > ARRAY_SIZE(data))) | 
|  | return -EMSGSIZE; | 
|  |  | 
|  | max_usb3 = -1; | 
|  | min_dp_aux = -1; | 
|  | min_dp_main = -1; | 
|  | max_pcie = -1; | 
|  | max_dma = -1; | 
|  |  | 
|  | tb_sw_dbg(sw, "credit allocation parameters:\n"); | 
|  |  | 
|  | for (i = 0; i < length; i++) { | 
|  | u16 index, value; | 
|  |  | 
|  | index = data[i] & USB4_BA_INDEX_MASK; | 
|  | value = (data[i] & USB4_BA_VALUE_MASK) >> USB4_BA_VALUE_SHIFT; | 
|  |  | 
|  | switch (index) { | 
|  | case USB4_BA_MAX_USB3: | 
|  | tb_sw_dbg(sw, " USB3: %u\n", value); | 
|  | max_usb3 = value; | 
|  | break; | 
|  | case USB4_BA_MIN_DP_AUX: | 
|  | tb_sw_dbg(sw, " DP AUX: %u\n", value); | 
|  | min_dp_aux = value; | 
|  | break; | 
|  | case USB4_BA_MIN_DP_MAIN: | 
|  | tb_sw_dbg(sw, " DP main: %u\n", value); | 
|  | min_dp_main = value; | 
|  | break; | 
|  | case USB4_BA_MAX_PCIE: | 
|  | tb_sw_dbg(sw, " PCIe: %u\n", value); | 
|  | max_pcie = value; | 
|  | break; | 
|  | case USB4_BA_MAX_HI: | 
|  | tb_sw_dbg(sw, " DMA: %u\n", value); | 
|  | max_dma = value; | 
|  | break; | 
|  | default: | 
|  | tb_sw_dbg(sw, " unknown credit allocation index %#x, skipping\n", | 
|  | index); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Validate the buffer allocation preferences. If we find | 
|  | * issues, log a warning and fall back using the hard-coded | 
|  | * values. | 
|  | */ | 
|  |  | 
|  | /* Host router must report baMaxHI */ | 
|  | if (!tb_route(sw) && max_dma < 0) { | 
|  | tb_sw_warn(sw, "host router is missing baMaxHI\n"); | 
|  | goto err_invalid; | 
|  | } | 
|  |  | 
|  | nports = 0; | 
|  | tb_switch_for_each_port(sw, port) { | 
|  | if (tb_port_is_null(port)) | 
|  | nports++; | 
|  | } | 
|  |  | 
|  | /* Must have DP buffer allocation (multiple USB4 ports) */ | 
|  | if (nports > 2 && (min_dp_aux < 0 || min_dp_main < 0)) { | 
|  | tb_sw_warn(sw, "multiple USB4 ports require baMinDPaux/baMinDPmain\n"); | 
|  | goto err_invalid; | 
|  | } | 
|  |  | 
|  | tb_switch_for_each_port(sw, port) { | 
|  | if (tb_port_is_dpout(port) && min_dp_main < 0) { | 
|  | tb_sw_warn(sw, "missing baMinDPmain"); | 
|  | goto err_invalid; | 
|  | } | 
|  | if ((tb_port_is_dpin(port) || tb_port_is_dpout(port)) && | 
|  | min_dp_aux < 0) { | 
|  | tb_sw_warn(sw, "missing baMinDPaux"); | 
|  | goto err_invalid; | 
|  | } | 
|  | if ((tb_port_is_usb3_down(port) || tb_port_is_usb3_up(port)) && | 
|  | max_usb3 < 0) { | 
|  | tb_sw_warn(sw, "missing baMaxUSB3"); | 
|  | goto err_invalid; | 
|  | } | 
|  | if ((tb_port_is_pcie_down(port) || tb_port_is_pcie_up(port)) && | 
|  | max_pcie < 0) { | 
|  | tb_sw_warn(sw, "missing baMaxPCIe"); | 
|  | goto err_invalid; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Buffer allocation passed the validation so we can use it in | 
|  | * path creation. | 
|  | */ | 
|  | sw->credit_allocation = true; | 
|  | if (max_usb3 > 0) | 
|  | sw->max_usb3_credits = max_usb3; | 
|  | if (min_dp_aux > 0) | 
|  | sw->min_dp_aux_credits = min_dp_aux; | 
|  | if (min_dp_main > 0) | 
|  | sw->min_dp_main_credits = min_dp_main; | 
|  | if (max_pcie > 0) | 
|  | sw->max_pcie_credits = max_pcie; | 
|  | if (max_dma > 0) | 
|  | sw->max_dma_credits = max_dma; | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | err_invalid: | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * usb4_switch_query_dp_resource() - Query availability of DP IN resource | 
|  | * @sw: USB4 router | 
|  | * @in: DP IN adapter | 
|  | * | 
|  | * For DP tunneling this function can be used to query availability of | 
|  | * DP IN resource. Returns true if the resource is available for DP | 
|  | * tunneling, false otherwise. | 
|  | */ | 
|  | bool usb4_switch_query_dp_resource(struct tb_switch *sw, struct tb_port *in) | 
|  | { | 
|  | u32 metadata = in->port; | 
|  | u8 status; | 
|  | int ret; | 
|  |  | 
|  | ret = usb4_switch_op(sw, USB4_SWITCH_OP_QUERY_DP_RESOURCE, &metadata, | 
|  | &status); | 
|  | /* | 
|  | * If DP resource allocation is not supported assume it is | 
|  | * always available. | 
|  | */ | 
|  | if (ret == -EOPNOTSUPP) | 
|  | return true; | 
|  | if (ret) | 
|  | return false; | 
|  |  | 
|  | return !status; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * usb4_switch_alloc_dp_resource() - Allocate DP IN resource | 
|  | * @sw: USB4 router | 
|  | * @in: DP IN adapter | 
|  | * | 
|  | * Allocates DP IN resource for DP tunneling using USB4 router | 
|  | * operations. If the resource was allocated returns %0. Otherwise | 
|  | * returns negative errno, in particular %-EBUSY if the resource is | 
|  | * already allocated. | 
|  | */ | 
|  | int usb4_switch_alloc_dp_resource(struct tb_switch *sw, struct tb_port *in) | 
|  | { | 
|  | u32 metadata = in->port; | 
|  | u8 status; | 
|  | int ret; | 
|  |  | 
|  | ret = usb4_switch_op(sw, USB4_SWITCH_OP_ALLOC_DP_RESOURCE, &metadata, | 
|  | &status); | 
|  | if (ret == -EOPNOTSUPP) | 
|  | return 0; | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | return status ? -EBUSY : 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * usb4_switch_dealloc_dp_resource() - Releases allocated DP IN resource | 
|  | * @sw: USB4 router | 
|  | * @in: DP IN adapter | 
|  | * | 
|  | * Releases the previously allocated DP IN resource. | 
|  | */ | 
|  | int usb4_switch_dealloc_dp_resource(struct tb_switch *sw, struct tb_port *in) | 
|  | { | 
|  | u32 metadata = in->port; | 
|  | u8 status; | 
|  | int ret; | 
|  |  | 
|  | ret = usb4_switch_op(sw, USB4_SWITCH_OP_DEALLOC_DP_RESOURCE, &metadata, | 
|  | &status); | 
|  | if (ret == -EOPNOTSUPP) | 
|  | return 0; | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | return status ? -EIO : 0; | 
|  | } | 
|  |  | 
|  | static int usb4_port_idx(const struct tb_switch *sw, const struct tb_port *port) | 
|  | { | 
|  | struct tb_port *p; | 
|  | int usb4_idx = 0; | 
|  |  | 
|  | /* Assume port is primary */ | 
|  | tb_switch_for_each_port(sw, p) { | 
|  | if (!tb_port_is_null(p)) | 
|  | continue; | 
|  | if (tb_is_upstream_port(p)) | 
|  | continue; | 
|  | if (!p->link_nr) { | 
|  | if (p == port) | 
|  | break; | 
|  | usb4_idx++; | 
|  | } | 
|  | } | 
|  |  | 
|  | return usb4_idx; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * usb4_switch_map_pcie_down() - Map USB4 port to a PCIe downstream adapter | 
|  | * @sw: USB4 router | 
|  | * @port: USB4 port | 
|  | * | 
|  | * USB4 routers have direct mapping between USB4 ports and PCIe | 
|  | * downstream adapters where the PCIe topology is extended. This | 
|  | * function returns the corresponding downstream PCIe adapter or %NULL | 
|  | * if no such mapping was possible. | 
|  | */ | 
|  | struct tb_port *usb4_switch_map_pcie_down(struct tb_switch *sw, | 
|  | const struct tb_port *port) | 
|  | { | 
|  | int usb4_idx = usb4_port_idx(sw, port); | 
|  | struct tb_port *p; | 
|  | int pcie_idx = 0; | 
|  |  | 
|  | /* Find PCIe down port matching usb4_port */ | 
|  | tb_switch_for_each_port(sw, p) { | 
|  | if (!tb_port_is_pcie_down(p)) | 
|  | continue; | 
|  |  | 
|  | if (pcie_idx == usb4_idx) | 
|  | return p; | 
|  |  | 
|  | pcie_idx++; | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * usb4_switch_map_usb3_down() - Map USB4 port to a USB3 downstream adapter | 
|  | * @sw: USB4 router | 
|  | * @port: USB4 port | 
|  | * | 
|  | * USB4 routers have direct mapping between USB4 ports and USB 3.x | 
|  | * downstream adapters where the USB 3.x topology is extended. This | 
|  | * function returns the corresponding downstream USB 3.x adapter or | 
|  | * %NULL if no such mapping was possible. | 
|  | */ | 
|  | struct tb_port *usb4_switch_map_usb3_down(struct tb_switch *sw, | 
|  | const struct tb_port *port) | 
|  | { | 
|  | int usb4_idx = usb4_port_idx(sw, port); | 
|  | struct tb_port *p; | 
|  | int usb_idx = 0; | 
|  |  | 
|  | /* Find USB3 down port matching usb4_port */ | 
|  | tb_switch_for_each_port(sw, p) { | 
|  | if (!tb_port_is_usb3_down(p)) | 
|  | continue; | 
|  |  | 
|  | if (usb_idx == usb4_idx) | 
|  | return p; | 
|  |  | 
|  | usb_idx++; | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * usb4_switch_add_ports() - Add USB4 ports for this router | 
|  | * @sw: USB4 router | 
|  | * | 
|  | * For USB4 router finds all USB4 ports and registers devices for each. | 
|  | * Can be called to any router. | 
|  | * | 
|  | * Return %0 in case of success and negative errno in case of failure. | 
|  | */ | 
|  | int usb4_switch_add_ports(struct tb_switch *sw) | 
|  | { | 
|  | struct tb_port *port; | 
|  |  | 
|  | if (tb_switch_is_icm(sw) || !tb_switch_is_usb4(sw)) | 
|  | return 0; | 
|  |  | 
|  | tb_switch_for_each_port(sw, port) { | 
|  | struct usb4_port *usb4; | 
|  |  | 
|  | if (!tb_port_is_null(port)) | 
|  | continue; | 
|  | if (!port->cap_usb4) | 
|  | continue; | 
|  |  | 
|  | usb4 = usb4_port_device_add(port); | 
|  | if (IS_ERR(usb4)) { | 
|  | usb4_switch_remove_ports(sw); | 
|  | return PTR_ERR(usb4); | 
|  | } | 
|  |  | 
|  | port->usb4 = usb4; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * usb4_switch_remove_ports() - Removes USB4 ports from this router | 
|  | * @sw: USB4 router | 
|  | * | 
|  | * Unregisters previously registered USB4 ports. | 
|  | */ | 
|  | void usb4_switch_remove_ports(struct tb_switch *sw) | 
|  | { | 
|  | struct tb_port *port; | 
|  |  | 
|  | tb_switch_for_each_port(sw, port) { | 
|  | if (port->usb4) { | 
|  | usb4_port_device_remove(port->usb4); | 
|  | port->usb4 = NULL; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * usb4_port_unlock() - Unlock USB4 downstream port | 
|  | * @port: USB4 port to unlock | 
|  | * | 
|  | * Unlocks USB4 downstream port so that the connection manager can | 
|  | * access the router below this port. | 
|  | */ | 
|  | int usb4_port_unlock(struct tb_port *port) | 
|  | { | 
|  | int ret; | 
|  | u32 val; | 
|  |  | 
|  | ret = tb_port_read(port, &val, TB_CFG_PORT, ADP_CS_4, 1); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | val &= ~ADP_CS_4_LCK; | 
|  | return tb_port_write(port, &val, TB_CFG_PORT, ADP_CS_4, 1); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * usb4_port_hotplug_enable() - Enables hotplug for a port | 
|  | * @port: USB4 port to operate on | 
|  | * | 
|  | * Enables hot plug events on a given port. This is only intended | 
|  | * to be used on lane, DP-IN, and DP-OUT adapters. | 
|  | */ | 
|  | int usb4_port_hotplug_enable(struct tb_port *port) | 
|  | { | 
|  | int ret; | 
|  | u32 val; | 
|  |  | 
|  | ret = tb_port_read(port, &val, TB_CFG_PORT, ADP_CS_5, 1); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | val &= ~ADP_CS_5_DHP; | 
|  | return tb_port_write(port, &val, TB_CFG_PORT, ADP_CS_5, 1); | 
|  | } | 
|  |  | 
|  | static int usb4_port_set_configured(struct tb_port *port, bool configured) | 
|  | { | 
|  | int ret; | 
|  | u32 val; | 
|  |  | 
|  | if (!port->cap_usb4) | 
|  | return -EINVAL; | 
|  |  | 
|  | ret = tb_port_read(port, &val, TB_CFG_PORT, | 
|  | port->cap_usb4 + PORT_CS_19, 1); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | if (configured) | 
|  | val |= PORT_CS_19_PC; | 
|  | else | 
|  | val &= ~PORT_CS_19_PC; | 
|  |  | 
|  | return tb_port_write(port, &val, TB_CFG_PORT, | 
|  | port->cap_usb4 + PORT_CS_19, 1); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * usb4_port_configure() - Set USB4 port configured | 
|  | * @port: USB4 router | 
|  | * | 
|  | * Sets the USB4 link to be configured for power management purposes. | 
|  | */ | 
|  | int usb4_port_configure(struct tb_port *port) | 
|  | { | 
|  | return usb4_port_set_configured(port, true); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * usb4_port_unconfigure() - Set USB4 port unconfigured | 
|  | * @port: USB4 router | 
|  | * | 
|  | * Sets the USB4 link to be unconfigured for power management purposes. | 
|  | */ | 
|  | void usb4_port_unconfigure(struct tb_port *port) | 
|  | { | 
|  | usb4_port_set_configured(port, false); | 
|  | } | 
|  |  | 
|  | static int usb4_set_xdomain_configured(struct tb_port *port, bool configured) | 
|  | { | 
|  | int ret; | 
|  | u32 val; | 
|  |  | 
|  | if (!port->cap_usb4) | 
|  | return -EINVAL; | 
|  |  | 
|  | ret = tb_port_read(port, &val, TB_CFG_PORT, | 
|  | port->cap_usb4 + PORT_CS_19, 1); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | if (configured) | 
|  | val |= PORT_CS_19_PID; | 
|  | else | 
|  | val &= ~PORT_CS_19_PID; | 
|  |  | 
|  | return tb_port_write(port, &val, TB_CFG_PORT, | 
|  | port->cap_usb4 + PORT_CS_19, 1); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * usb4_port_configure_xdomain() - Configure port for XDomain | 
|  | * @port: USB4 port connected to another host | 
|  | * @xd: XDomain that is connected to the port | 
|  | * | 
|  | * Marks the USB4 port as being connected to another host and updates | 
|  | * the link type. Returns %0 in success and negative errno in failure. | 
|  | */ | 
|  | int usb4_port_configure_xdomain(struct tb_port *port, struct tb_xdomain *xd) | 
|  | { | 
|  | xd->link_usb4 = link_is_usb4(port); | 
|  | return usb4_set_xdomain_configured(port, true); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * usb4_port_unconfigure_xdomain() - Unconfigure port for XDomain | 
|  | * @port: USB4 port that was connected to another host | 
|  | * | 
|  | * Clears USB4 port from being marked as XDomain. | 
|  | */ | 
|  | void usb4_port_unconfigure_xdomain(struct tb_port *port) | 
|  | { | 
|  | usb4_set_xdomain_configured(port, false); | 
|  | } | 
|  |  | 
|  | static int usb4_port_wait_for_bit(struct tb_port *port, u32 offset, u32 bit, | 
|  | u32 value, int timeout_msec) | 
|  | { | 
|  | ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec); | 
|  |  | 
|  | do { | 
|  | u32 val; | 
|  | int ret; | 
|  |  | 
|  | ret = tb_port_read(port, &val, TB_CFG_PORT, offset, 1); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | if ((val & bit) == value) | 
|  | return 0; | 
|  |  | 
|  | usleep_range(50, 100); | 
|  | } while (ktime_before(ktime_get(), timeout)); | 
|  |  | 
|  | return -ETIMEDOUT; | 
|  | } | 
|  |  | 
|  | static int usb4_port_read_data(struct tb_port *port, void *data, size_t dwords) | 
|  | { | 
|  | if (dwords > USB4_DATA_DWORDS) | 
|  | return -EINVAL; | 
|  |  | 
|  | return tb_port_read(port, data, TB_CFG_PORT, port->cap_usb4 + PORT_CS_2, | 
|  | dwords); | 
|  | } | 
|  |  | 
|  | static int usb4_port_write_data(struct tb_port *port, const void *data, | 
|  | size_t dwords) | 
|  | { | 
|  | if (dwords > USB4_DATA_DWORDS) | 
|  | return -EINVAL; | 
|  |  | 
|  | return tb_port_write(port, data, TB_CFG_PORT, port->cap_usb4 + PORT_CS_2, | 
|  | dwords); | 
|  | } | 
|  |  | 
|  | static int usb4_port_sb_read(struct tb_port *port, enum usb4_sb_target target, | 
|  | u8 index, u8 reg, void *buf, u8 size) | 
|  | { | 
|  | size_t dwords = DIV_ROUND_UP(size, 4); | 
|  | int ret; | 
|  | u32 val; | 
|  |  | 
|  | if (!port->cap_usb4) | 
|  | return -EINVAL; | 
|  |  | 
|  | val = reg; | 
|  | val |= size << PORT_CS_1_LENGTH_SHIFT; | 
|  | val |= (target << PORT_CS_1_TARGET_SHIFT) & PORT_CS_1_TARGET_MASK; | 
|  | if (target == USB4_SB_TARGET_RETIMER) | 
|  | val |= (index << PORT_CS_1_RETIMER_INDEX_SHIFT); | 
|  | val |= PORT_CS_1_PND; | 
|  |  | 
|  | ret = tb_port_write(port, &val, TB_CFG_PORT, | 
|  | port->cap_usb4 + PORT_CS_1, 1); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = usb4_port_wait_for_bit(port, port->cap_usb4 + PORT_CS_1, | 
|  | PORT_CS_1_PND, 0, 500); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = tb_port_read(port, &val, TB_CFG_PORT, | 
|  | port->cap_usb4 + PORT_CS_1, 1); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | if (val & PORT_CS_1_NR) | 
|  | return -ENODEV; | 
|  | if (val & PORT_CS_1_RC) | 
|  | return -EIO; | 
|  |  | 
|  | return buf ? usb4_port_read_data(port, buf, dwords) : 0; | 
|  | } | 
|  |  | 
|  | static int usb4_port_sb_write(struct tb_port *port, enum usb4_sb_target target, | 
|  | u8 index, u8 reg, const void *buf, u8 size) | 
|  | { | 
|  | size_t dwords = DIV_ROUND_UP(size, 4); | 
|  | int ret; | 
|  | u32 val; | 
|  |  | 
|  | if (!port->cap_usb4) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (buf) { | 
|  | ret = usb4_port_write_data(port, buf, dwords); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | val = reg; | 
|  | val |= size << PORT_CS_1_LENGTH_SHIFT; | 
|  | val |= PORT_CS_1_WNR_WRITE; | 
|  | val |= (target << PORT_CS_1_TARGET_SHIFT) & PORT_CS_1_TARGET_MASK; | 
|  | if (target == USB4_SB_TARGET_RETIMER) | 
|  | val |= (index << PORT_CS_1_RETIMER_INDEX_SHIFT); | 
|  | val |= PORT_CS_1_PND; | 
|  |  | 
|  | ret = tb_port_write(port, &val, TB_CFG_PORT, | 
|  | port->cap_usb4 + PORT_CS_1, 1); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = usb4_port_wait_for_bit(port, port->cap_usb4 + PORT_CS_1, | 
|  | PORT_CS_1_PND, 0, 500); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = tb_port_read(port, &val, TB_CFG_PORT, | 
|  | port->cap_usb4 + PORT_CS_1, 1); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | if (val & PORT_CS_1_NR) | 
|  | return -ENODEV; | 
|  | if (val & PORT_CS_1_RC) | 
|  | return -EIO; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int usb4_port_sb_opcode_err_to_errno(u32 val) | 
|  | { | 
|  | switch (val) { | 
|  | case 0: | 
|  | return 0; | 
|  | case USB4_SB_OPCODE_ERR: | 
|  | return -EAGAIN; | 
|  | case USB4_SB_OPCODE_ONS: | 
|  | return -EOPNOTSUPP; | 
|  | default: | 
|  | return -EIO; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int usb4_port_sb_op(struct tb_port *port, enum usb4_sb_target target, | 
|  | u8 index, enum usb4_sb_opcode opcode, int timeout_msec) | 
|  | { | 
|  | ktime_t timeout; | 
|  | u32 val; | 
|  | int ret; | 
|  |  | 
|  | val = opcode; | 
|  | ret = usb4_port_sb_write(port, target, index, USB4_SB_OPCODE, &val, | 
|  | sizeof(val)); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | timeout = ktime_add_ms(ktime_get(), timeout_msec); | 
|  |  | 
|  | do { | 
|  | /* Check results */ | 
|  | ret = usb4_port_sb_read(port, target, index, USB4_SB_OPCODE, | 
|  | &val, sizeof(val)); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | if (val != opcode) | 
|  | return usb4_port_sb_opcode_err_to_errno(val); | 
|  | } while (ktime_before(ktime_get(), timeout)); | 
|  |  | 
|  | return -ETIMEDOUT; | 
|  | } | 
|  |  | 
|  | static int usb4_port_set_router_offline(struct tb_port *port, bool offline) | 
|  | { | 
|  | u32 val = !offline; | 
|  | int ret; | 
|  |  | 
|  | ret = usb4_port_sb_write(port, USB4_SB_TARGET_ROUTER, 0, | 
|  | USB4_SB_METADATA, &val, sizeof(val)); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | val = USB4_SB_OPCODE_ROUTER_OFFLINE; | 
|  | return usb4_port_sb_write(port, USB4_SB_TARGET_ROUTER, 0, | 
|  | USB4_SB_OPCODE, &val, sizeof(val)); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * usb4_port_router_offline() - Put the USB4 port to offline mode | 
|  | * @port: USB4 port | 
|  | * | 
|  | * This function puts the USB4 port into offline mode. In this mode the | 
|  | * port does not react on hotplug events anymore. This needs to be | 
|  | * called before retimer access is done when the USB4 links is not up. | 
|  | * | 
|  | * Returns %0 in case of success and negative errno if there was an | 
|  | * error. | 
|  | */ | 
|  | int usb4_port_router_offline(struct tb_port *port) | 
|  | { | 
|  | return usb4_port_set_router_offline(port, true); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * usb4_port_router_online() - Put the USB4 port back to online | 
|  | * @port: USB4 port | 
|  | * | 
|  | * Makes the USB4 port functional again. | 
|  | */ | 
|  | int usb4_port_router_online(struct tb_port *port) | 
|  | { | 
|  | return usb4_port_set_router_offline(port, false); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * usb4_port_enumerate_retimers() - Send RT broadcast transaction | 
|  | * @port: USB4 port | 
|  | * | 
|  | * This forces the USB4 port to send broadcast RT transaction which | 
|  | * makes the retimers on the link to assign index to themselves. Returns | 
|  | * %0 in case of success and negative errno if there was an error. | 
|  | */ | 
|  | int usb4_port_enumerate_retimers(struct tb_port *port) | 
|  | { | 
|  | u32 val; | 
|  |  | 
|  | val = USB4_SB_OPCODE_ENUMERATE_RETIMERS; | 
|  | return usb4_port_sb_write(port, USB4_SB_TARGET_ROUTER, 0, | 
|  | USB4_SB_OPCODE, &val, sizeof(val)); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * usb4_port_clx_supported() - Check if CLx is supported by the link | 
|  | * @port: Port to check for CLx support for | 
|  | * | 
|  | * PORT_CS_18_CPS bit reflects if the link supports CLx including | 
|  | * active cables (if connected on the link). | 
|  | */ | 
|  | bool usb4_port_clx_supported(struct tb_port *port) | 
|  | { | 
|  | int ret; | 
|  | u32 val; | 
|  |  | 
|  | ret = tb_port_read(port, &val, TB_CFG_PORT, | 
|  | port->cap_usb4 + PORT_CS_18, 1); | 
|  | if (ret) | 
|  | return false; | 
|  |  | 
|  | return !!(val & PORT_CS_18_CPS); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * usb4_port_margining_caps() - Read USB4 port marginig capabilities | 
|  | * @port: USB4 port | 
|  | * @caps: Array with at least two elements to hold the results | 
|  | * | 
|  | * Reads the USB4 port lane margining capabilities into @caps. | 
|  | */ | 
|  | int usb4_port_margining_caps(struct tb_port *port, u32 *caps) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = usb4_port_sb_op(port, USB4_SB_TARGET_ROUTER, 0, | 
|  | USB4_SB_OPCODE_READ_LANE_MARGINING_CAP, 500); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | return usb4_port_sb_read(port, USB4_SB_TARGET_ROUTER, 0, | 
|  | USB4_SB_DATA, caps, sizeof(*caps) * 2); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * usb4_port_hw_margin() - Run hardware lane margining on port | 
|  | * @port: USB4 port | 
|  | * @lanes: Which lanes to run (must match the port capabilities). Can be | 
|  | *	   %0, %1 or %7. | 
|  | * @ber_level: BER level contour value | 
|  | * @timing: Perform timing margining instead of voltage | 
|  | * @right_high: Use Right/high margin instead of left/low | 
|  | * @results: Array with at least two elements to hold the results | 
|  | * | 
|  | * Runs hardware lane margining on USB4 port and returns the result in | 
|  | * @results. | 
|  | */ | 
|  | int usb4_port_hw_margin(struct tb_port *port, unsigned int lanes, | 
|  | unsigned int ber_level, bool timing, bool right_high, | 
|  | u32 *results) | 
|  | { | 
|  | u32 val; | 
|  | int ret; | 
|  |  | 
|  | val = lanes; | 
|  | if (timing) | 
|  | val |= USB4_MARGIN_HW_TIME; | 
|  | if (right_high) | 
|  | val |= USB4_MARGIN_HW_RH; | 
|  | if (ber_level) | 
|  | val |= (ber_level << USB4_MARGIN_HW_BER_SHIFT) & | 
|  | USB4_MARGIN_HW_BER_MASK; | 
|  |  | 
|  | ret = usb4_port_sb_write(port, USB4_SB_TARGET_ROUTER, 0, | 
|  | USB4_SB_METADATA, &val, sizeof(val)); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = usb4_port_sb_op(port, USB4_SB_TARGET_ROUTER, 0, | 
|  | USB4_SB_OPCODE_RUN_HW_LANE_MARGINING, 2500); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | return usb4_port_sb_read(port, USB4_SB_TARGET_ROUTER, 0, | 
|  | USB4_SB_DATA, results, sizeof(*results) * 2); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * usb4_port_sw_margin() - Run software lane margining on port | 
|  | * @port: USB4 port | 
|  | * @lanes: Which lanes to run (must match the port capabilities). Can be | 
|  | *	   %0, %1 or %7. | 
|  | * @timing: Perform timing margining instead of voltage | 
|  | * @right_high: Use Right/high margin instead of left/low | 
|  | * @counter: What to do with the error counter | 
|  | * | 
|  | * Runs software lane margining on USB4 port. Read back the error | 
|  | * counters by calling usb4_port_sw_margin_errors(). Returns %0 in | 
|  | * success and negative errno otherwise. | 
|  | */ | 
|  | int usb4_port_sw_margin(struct tb_port *port, unsigned int lanes, bool timing, | 
|  | bool right_high, u32 counter) | 
|  | { | 
|  | u32 val; | 
|  | int ret; | 
|  |  | 
|  | val = lanes; | 
|  | if (timing) | 
|  | val |= USB4_MARGIN_SW_TIME; | 
|  | if (right_high) | 
|  | val |= USB4_MARGIN_SW_RH; | 
|  | val |= (counter << USB4_MARGIN_SW_COUNTER_SHIFT) & | 
|  | USB4_MARGIN_SW_COUNTER_MASK; | 
|  |  | 
|  | ret = usb4_port_sb_write(port, USB4_SB_TARGET_ROUTER, 0, | 
|  | USB4_SB_METADATA, &val, sizeof(val)); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | return usb4_port_sb_op(port, USB4_SB_TARGET_ROUTER, 0, | 
|  | USB4_SB_OPCODE_RUN_SW_LANE_MARGINING, 2500); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * usb4_port_sw_margin_errors() - Read the software margining error counters | 
|  | * @port: USB4 port | 
|  | * @errors: Error metadata is copied here. | 
|  | * | 
|  | * This reads back the software margining error counters from the port. | 
|  | * Returns %0 in success and negative errno otherwise. | 
|  | */ | 
|  | int usb4_port_sw_margin_errors(struct tb_port *port, u32 *errors) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = usb4_port_sb_op(port, USB4_SB_TARGET_ROUTER, 0, | 
|  | USB4_SB_OPCODE_READ_SW_MARGIN_ERR, 150); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | return usb4_port_sb_read(port, USB4_SB_TARGET_ROUTER, 0, | 
|  | USB4_SB_METADATA, errors, sizeof(*errors)); | 
|  | } | 
|  |  | 
|  | static inline int usb4_port_retimer_op(struct tb_port *port, u8 index, | 
|  | enum usb4_sb_opcode opcode, | 
|  | int timeout_msec) | 
|  | { | 
|  | return usb4_port_sb_op(port, USB4_SB_TARGET_RETIMER, index, opcode, | 
|  | timeout_msec); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * usb4_port_retimer_set_inbound_sbtx() - Enable sideband channel transactions | 
|  | * @port: USB4 port | 
|  | * @index: Retimer index | 
|  | * | 
|  | * Enables sideband channel transations on SBTX. Can be used when USB4 | 
|  | * link does not go up, for example if there is no device connected. | 
|  | */ | 
|  | int usb4_port_retimer_set_inbound_sbtx(struct tb_port *port, u8 index) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_SET_INBOUND_SBTX, | 
|  | 500); | 
|  |  | 
|  | if (ret != -ENODEV) | 
|  | return ret; | 
|  |  | 
|  | /* | 
|  | * Per the USB4 retimer spec, the retimer is not required to | 
|  | * send an RT (Retimer Transaction) response for the first | 
|  | * SET_INBOUND_SBTX command | 
|  | */ | 
|  | return usb4_port_retimer_op(port, index, USB4_SB_OPCODE_SET_INBOUND_SBTX, | 
|  | 500); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * usb4_port_retimer_unset_inbound_sbtx() - Disable sideband channel transactions | 
|  | * @port: USB4 port | 
|  | * @index: Retimer index | 
|  | * | 
|  | * Disables sideband channel transations on SBTX. The reverse of | 
|  | * usb4_port_retimer_set_inbound_sbtx(). | 
|  | */ | 
|  | int usb4_port_retimer_unset_inbound_sbtx(struct tb_port *port, u8 index) | 
|  | { | 
|  | return usb4_port_retimer_op(port, index, | 
|  | USB4_SB_OPCODE_UNSET_INBOUND_SBTX, 500); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * usb4_port_retimer_read() - Read from retimer sideband registers | 
|  | * @port: USB4 port | 
|  | * @index: Retimer index | 
|  | * @reg: Sideband register to read | 
|  | * @buf: Data from @reg is stored here | 
|  | * @size: Number of bytes to read | 
|  | * | 
|  | * Function reads retimer sideband registers starting from @reg. The | 
|  | * retimer is connected to @port at @index. Returns %0 in case of | 
|  | * success, and read data is copied to @buf. If there is no retimer | 
|  | * present at given @index returns %-ENODEV. In any other failure | 
|  | * returns negative errno. | 
|  | */ | 
|  | int usb4_port_retimer_read(struct tb_port *port, u8 index, u8 reg, void *buf, | 
|  | u8 size) | 
|  | { | 
|  | return usb4_port_sb_read(port, USB4_SB_TARGET_RETIMER, index, reg, buf, | 
|  | size); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * usb4_port_retimer_write() - Write to retimer sideband registers | 
|  | * @port: USB4 port | 
|  | * @index: Retimer index | 
|  | * @reg: Sideband register to write | 
|  | * @buf: Data that is written starting from @reg | 
|  | * @size: Number of bytes to write | 
|  | * | 
|  | * Writes retimer sideband registers starting from @reg. The retimer is | 
|  | * connected to @port at @index. Returns %0 in case of success. If there | 
|  | * is no retimer present at given @index returns %-ENODEV. In any other | 
|  | * failure returns negative errno. | 
|  | */ | 
|  | int usb4_port_retimer_write(struct tb_port *port, u8 index, u8 reg, | 
|  | const void *buf, u8 size) | 
|  | { | 
|  | return usb4_port_sb_write(port, USB4_SB_TARGET_RETIMER, index, reg, buf, | 
|  | size); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * usb4_port_retimer_is_last() - Is the retimer last on-board retimer | 
|  | * @port: USB4 port | 
|  | * @index: Retimer index | 
|  | * | 
|  | * If the retimer at @index is last one (connected directly to the | 
|  | * Type-C port) this function returns %1. If it is not returns %0. If | 
|  | * the retimer is not present returns %-ENODEV. Otherwise returns | 
|  | * negative errno. | 
|  | */ | 
|  | int usb4_port_retimer_is_last(struct tb_port *port, u8 index) | 
|  | { | 
|  | u32 metadata; | 
|  | int ret; | 
|  |  | 
|  | ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_QUERY_LAST_RETIMER, | 
|  | 500); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = usb4_port_retimer_read(port, index, USB4_SB_METADATA, &metadata, | 
|  | sizeof(metadata)); | 
|  | return ret ? ret : metadata & 1; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * usb4_port_retimer_nvm_sector_size() - Read retimer NVM sector size | 
|  | * @port: USB4 port | 
|  | * @index: Retimer index | 
|  | * | 
|  | * Reads NVM sector size (in bytes) of a retimer at @index. This | 
|  | * operation can be used to determine whether the retimer supports NVM | 
|  | * upgrade for example. Returns sector size in bytes or negative errno | 
|  | * in case of error. Specifically returns %-ENODEV if there is no | 
|  | * retimer at @index. | 
|  | */ | 
|  | int usb4_port_retimer_nvm_sector_size(struct tb_port *port, u8 index) | 
|  | { | 
|  | u32 metadata; | 
|  | int ret; | 
|  |  | 
|  | ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_GET_NVM_SECTOR_SIZE, | 
|  | 500); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = usb4_port_retimer_read(port, index, USB4_SB_METADATA, &metadata, | 
|  | sizeof(metadata)); | 
|  | return ret ? ret : metadata & USB4_NVM_SECTOR_SIZE_MASK; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * usb4_port_retimer_nvm_set_offset() - Set NVM write offset | 
|  | * @port: USB4 port | 
|  | * @index: Retimer index | 
|  | * @address: Start offset | 
|  | * | 
|  | * Exlicitly sets NVM write offset. Normally when writing to NVM this is | 
|  | * done automatically by usb4_port_retimer_nvm_write(). | 
|  | * | 
|  | * Returns %0 in success and negative errno if there was a failure. | 
|  | */ | 
|  | int usb4_port_retimer_nvm_set_offset(struct tb_port *port, u8 index, | 
|  | unsigned int address) | 
|  | { | 
|  | u32 metadata, dwaddress; | 
|  | int ret; | 
|  |  | 
|  | dwaddress = address / 4; | 
|  | metadata = (dwaddress << USB4_NVM_SET_OFFSET_SHIFT) & | 
|  | USB4_NVM_SET_OFFSET_MASK; | 
|  |  | 
|  | ret = usb4_port_retimer_write(port, index, USB4_SB_METADATA, &metadata, | 
|  | sizeof(metadata)); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | return usb4_port_retimer_op(port, index, USB4_SB_OPCODE_NVM_SET_OFFSET, | 
|  | 500); | 
|  | } | 
|  |  | 
|  | struct retimer_info { | 
|  | struct tb_port *port; | 
|  | u8 index; | 
|  | }; | 
|  |  | 
|  | static int usb4_port_retimer_nvm_write_next_block(void *data, | 
|  | unsigned int dwaddress, const void *buf, size_t dwords) | 
|  |  | 
|  | { | 
|  | const struct retimer_info *info = data; | 
|  | struct tb_port *port = info->port; | 
|  | u8 index = info->index; | 
|  | int ret; | 
|  |  | 
|  | ret = usb4_port_retimer_write(port, index, USB4_SB_DATA, | 
|  | buf, dwords * 4); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | return usb4_port_retimer_op(port, index, | 
|  | USB4_SB_OPCODE_NVM_BLOCK_WRITE, 1000); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * usb4_port_retimer_nvm_write() - Write to retimer NVM | 
|  | * @port: USB4 port | 
|  | * @index: Retimer index | 
|  | * @address: Byte address where to start the write | 
|  | * @buf: Data to write | 
|  | * @size: Size in bytes how much to write | 
|  | * | 
|  | * Writes @size bytes from @buf to the retimer NVM. Used for NVM | 
|  | * upgrade. Returns %0 if the data was written successfully and negative | 
|  | * errno in case of failure. Specifically returns %-ENODEV if there is | 
|  | * no retimer at @index. | 
|  | */ | 
|  | int usb4_port_retimer_nvm_write(struct tb_port *port, u8 index, unsigned int address, | 
|  | const void *buf, size_t size) | 
|  | { | 
|  | struct retimer_info info = { .port = port, .index = index }; | 
|  | int ret; | 
|  |  | 
|  | ret = usb4_port_retimer_nvm_set_offset(port, index, address); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | return tb_nvm_write_data(address, buf, size, USB4_DATA_RETRIES, | 
|  | usb4_port_retimer_nvm_write_next_block, &info); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * usb4_port_retimer_nvm_authenticate() - Start retimer NVM upgrade | 
|  | * @port: USB4 port | 
|  | * @index: Retimer index | 
|  | * | 
|  | * After the new NVM image has been written via usb4_port_retimer_nvm_write() | 
|  | * this function can be used to trigger the NVM upgrade process. If | 
|  | * successful the retimer restarts with the new NVM and may not have the | 
|  | * index set so one needs to call usb4_port_enumerate_retimers() to | 
|  | * force index to be assigned. | 
|  | */ | 
|  | int usb4_port_retimer_nvm_authenticate(struct tb_port *port, u8 index) | 
|  | { | 
|  | u32 val; | 
|  |  | 
|  | /* | 
|  | * We need to use the raw operation here because once the | 
|  | * authentication completes the retimer index is not set anymore | 
|  | * so we do not get back the status now. | 
|  | */ | 
|  | val = USB4_SB_OPCODE_NVM_AUTH_WRITE; | 
|  | return usb4_port_sb_write(port, USB4_SB_TARGET_RETIMER, index, | 
|  | USB4_SB_OPCODE, &val, sizeof(val)); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * usb4_port_retimer_nvm_authenticate_status() - Read status of NVM upgrade | 
|  | * @port: USB4 port | 
|  | * @index: Retimer index | 
|  | * @status: Raw status code read from metadata | 
|  | * | 
|  | * This can be called after usb4_port_retimer_nvm_authenticate() and | 
|  | * usb4_port_enumerate_retimers() to fetch status of the NVM upgrade. | 
|  | * | 
|  | * Returns %0 if the authentication status was successfully read. The | 
|  | * completion metadata (the result) is then stored into @status. If | 
|  | * reading the status fails, returns negative errno. | 
|  | */ | 
|  | int usb4_port_retimer_nvm_authenticate_status(struct tb_port *port, u8 index, | 
|  | u32 *status) | 
|  | { | 
|  | u32 metadata, val; | 
|  | int ret; | 
|  |  | 
|  | ret = usb4_port_retimer_read(port, index, USB4_SB_OPCODE, &val, | 
|  | sizeof(val)); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = usb4_port_sb_opcode_err_to_errno(val); | 
|  | switch (ret) { | 
|  | case 0: | 
|  | *status = 0; | 
|  | return 0; | 
|  |  | 
|  | case -EAGAIN: | 
|  | ret = usb4_port_retimer_read(port, index, USB4_SB_METADATA, | 
|  | &metadata, sizeof(metadata)); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | *status = metadata & USB4_SB_METADATA_NVM_AUTH_WRITE_MASK; | 
|  | return 0; | 
|  |  | 
|  | default: | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int usb4_port_retimer_nvm_read_block(void *data, unsigned int dwaddress, | 
|  | void *buf, size_t dwords) | 
|  | { | 
|  | const struct retimer_info *info = data; | 
|  | struct tb_port *port = info->port; | 
|  | u8 index = info->index; | 
|  | u32 metadata; | 
|  | int ret; | 
|  |  | 
|  | metadata = dwaddress << USB4_NVM_READ_OFFSET_SHIFT; | 
|  | if (dwords < USB4_DATA_DWORDS) | 
|  | metadata |= dwords << USB4_NVM_READ_LENGTH_SHIFT; | 
|  |  | 
|  | ret = usb4_port_retimer_write(port, index, USB4_SB_METADATA, &metadata, | 
|  | sizeof(metadata)); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_NVM_READ, 500); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | return usb4_port_retimer_read(port, index, USB4_SB_DATA, buf, | 
|  | dwords * 4); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * usb4_port_retimer_nvm_read() - Read contents of retimer NVM | 
|  | * @port: USB4 port | 
|  | * @index: Retimer index | 
|  | * @address: NVM address (in bytes) to start reading | 
|  | * @buf: Data read from NVM is stored here | 
|  | * @size: Number of bytes to read | 
|  | * | 
|  | * Reads retimer NVM and copies the contents to @buf. Returns %0 if the | 
|  | * read was successful and negative errno in case of failure. | 
|  | * Specifically returns %-ENODEV if there is no retimer at @index. | 
|  | */ | 
|  | int usb4_port_retimer_nvm_read(struct tb_port *port, u8 index, | 
|  | unsigned int address, void *buf, size_t size) | 
|  | { | 
|  | struct retimer_info info = { .port = port, .index = index }; | 
|  |  | 
|  | return tb_nvm_read_data(address, buf, size, USB4_DATA_RETRIES, | 
|  | usb4_port_retimer_nvm_read_block, &info); | 
|  | } | 
|  |  | 
|  | static inline unsigned int | 
|  | usb4_usb3_port_max_bandwidth(const struct tb_port *port, unsigned int bw) | 
|  | { | 
|  | /* Take the possible bandwidth limitation into account */ | 
|  | if (port->max_bw) | 
|  | return min(bw, port->max_bw); | 
|  | return bw; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * usb4_usb3_port_max_link_rate() - Maximum support USB3 link rate | 
|  | * @port: USB3 adapter port | 
|  | * | 
|  | * Return maximum supported link rate of a USB3 adapter in Mb/s. | 
|  | * Negative errno in case of error. | 
|  | */ | 
|  | int usb4_usb3_port_max_link_rate(struct tb_port *port) | 
|  | { | 
|  | int ret, lr; | 
|  | u32 val; | 
|  |  | 
|  | if (!tb_port_is_usb3_down(port) && !tb_port_is_usb3_up(port)) | 
|  | return -EINVAL; | 
|  |  | 
|  | ret = tb_port_read(port, &val, TB_CFG_PORT, | 
|  | port->cap_adap + ADP_USB3_CS_4, 1); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | lr = (val & ADP_USB3_CS_4_MSLR_MASK) >> ADP_USB3_CS_4_MSLR_SHIFT; | 
|  | ret = lr == ADP_USB3_CS_4_MSLR_20G ? 20000 : 10000; | 
|  |  | 
|  | return usb4_usb3_port_max_bandwidth(port, ret); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * usb4_usb3_port_actual_link_rate() - Established USB3 link rate | 
|  | * @port: USB3 adapter port | 
|  | * | 
|  | * Return actual established link rate of a USB3 adapter in Mb/s. If the | 
|  | * link is not up returns %0 and negative errno in case of failure. | 
|  | */ | 
|  | int usb4_usb3_port_actual_link_rate(struct tb_port *port) | 
|  | { | 
|  | int ret, lr; | 
|  | u32 val; | 
|  |  | 
|  | if (!tb_port_is_usb3_down(port) && !tb_port_is_usb3_up(port)) | 
|  | return -EINVAL; | 
|  |  | 
|  | ret = tb_port_read(port, &val, TB_CFG_PORT, | 
|  | port->cap_adap + ADP_USB3_CS_4, 1); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | if (!(val & ADP_USB3_CS_4_ULV)) | 
|  | return 0; | 
|  |  | 
|  | lr = val & ADP_USB3_CS_4_ALR_MASK; | 
|  | ret = lr == ADP_USB3_CS_4_ALR_20G ? 20000 : 10000; | 
|  |  | 
|  | return usb4_usb3_port_max_bandwidth(port, ret); | 
|  | } | 
|  |  | 
|  | static int usb4_usb3_port_cm_request(struct tb_port *port, bool request) | 
|  | { | 
|  | int ret; | 
|  | u32 val; | 
|  |  | 
|  | if (!tb_port_is_usb3_down(port)) | 
|  | return -EINVAL; | 
|  | if (tb_route(port->sw)) | 
|  | return -EINVAL; | 
|  |  | 
|  | ret = tb_port_read(port, &val, TB_CFG_PORT, | 
|  | port->cap_adap + ADP_USB3_CS_2, 1); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | if (request) | 
|  | val |= ADP_USB3_CS_2_CMR; | 
|  | else | 
|  | val &= ~ADP_USB3_CS_2_CMR; | 
|  |  | 
|  | ret = tb_port_write(port, &val, TB_CFG_PORT, | 
|  | port->cap_adap + ADP_USB3_CS_2, 1); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | /* | 
|  | * We can use val here directly as the CMR bit is in the same place | 
|  | * as HCA. Just mask out others. | 
|  | */ | 
|  | val &= ADP_USB3_CS_2_CMR; | 
|  | return usb4_port_wait_for_bit(port, port->cap_adap + ADP_USB3_CS_1, | 
|  | ADP_USB3_CS_1_HCA, val, 1500); | 
|  | } | 
|  |  | 
|  | static inline int usb4_usb3_port_set_cm_request(struct tb_port *port) | 
|  | { | 
|  | return usb4_usb3_port_cm_request(port, true); | 
|  | } | 
|  |  | 
|  | static inline int usb4_usb3_port_clear_cm_request(struct tb_port *port) | 
|  | { | 
|  | return usb4_usb3_port_cm_request(port, false); | 
|  | } | 
|  |  | 
|  | static unsigned int usb3_bw_to_mbps(u32 bw, u8 scale) | 
|  | { | 
|  | unsigned long uframes; | 
|  |  | 
|  | uframes = bw * 512UL << scale; | 
|  | return DIV_ROUND_CLOSEST(uframes * 8000, MEGA); | 
|  | } | 
|  |  | 
|  | static u32 mbps_to_usb3_bw(unsigned int mbps, u8 scale) | 
|  | { | 
|  | unsigned long uframes; | 
|  |  | 
|  | /* 1 uframe is 1/8 ms (125 us) -> 1 / 8000 s */ | 
|  | uframes = ((unsigned long)mbps * MEGA) / 8000; | 
|  | return DIV_ROUND_UP(uframes, 512UL << scale); | 
|  | } | 
|  |  | 
|  | static int usb4_usb3_port_read_allocated_bandwidth(struct tb_port *port, | 
|  | int *upstream_bw, | 
|  | int *downstream_bw) | 
|  | { | 
|  | u32 val, bw, scale; | 
|  | int ret; | 
|  |  | 
|  | ret = tb_port_read(port, &val, TB_CFG_PORT, | 
|  | port->cap_adap + ADP_USB3_CS_2, 1); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = tb_port_read(port, &scale, TB_CFG_PORT, | 
|  | port->cap_adap + ADP_USB3_CS_3, 1); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | scale &= ADP_USB3_CS_3_SCALE_MASK; | 
|  |  | 
|  | bw = val & ADP_USB3_CS_2_AUBW_MASK; | 
|  | *upstream_bw = usb3_bw_to_mbps(bw, scale); | 
|  |  | 
|  | bw = (val & ADP_USB3_CS_2_ADBW_MASK) >> ADP_USB3_CS_2_ADBW_SHIFT; | 
|  | *downstream_bw = usb3_bw_to_mbps(bw, scale); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * usb4_usb3_port_allocated_bandwidth() - Bandwidth allocated for USB3 | 
|  | * @port: USB3 adapter port | 
|  | * @upstream_bw: Allocated upstream bandwidth is stored here | 
|  | * @downstream_bw: Allocated downstream bandwidth is stored here | 
|  | * | 
|  | * Stores currently allocated USB3 bandwidth into @upstream_bw and | 
|  | * @downstream_bw in Mb/s. Returns %0 in case of success and negative | 
|  | * errno in failure. | 
|  | */ | 
|  | int usb4_usb3_port_allocated_bandwidth(struct tb_port *port, int *upstream_bw, | 
|  | int *downstream_bw) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = usb4_usb3_port_set_cm_request(port); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = usb4_usb3_port_read_allocated_bandwidth(port, upstream_bw, | 
|  | downstream_bw); | 
|  | usb4_usb3_port_clear_cm_request(port); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int usb4_usb3_port_read_consumed_bandwidth(struct tb_port *port, | 
|  | int *upstream_bw, | 
|  | int *downstream_bw) | 
|  | { | 
|  | u32 val, bw, scale; | 
|  | int ret; | 
|  |  | 
|  | ret = tb_port_read(port, &val, TB_CFG_PORT, | 
|  | port->cap_adap + ADP_USB3_CS_1, 1); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = tb_port_read(port, &scale, TB_CFG_PORT, | 
|  | port->cap_adap + ADP_USB3_CS_3, 1); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | scale &= ADP_USB3_CS_3_SCALE_MASK; | 
|  |  | 
|  | bw = val & ADP_USB3_CS_1_CUBW_MASK; | 
|  | *upstream_bw = usb3_bw_to_mbps(bw, scale); | 
|  |  | 
|  | bw = (val & ADP_USB3_CS_1_CDBW_MASK) >> ADP_USB3_CS_1_CDBW_SHIFT; | 
|  | *downstream_bw = usb3_bw_to_mbps(bw, scale); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int usb4_usb3_port_write_allocated_bandwidth(struct tb_port *port, | 
|  | int upstream_bw, | 
|  | int downstream_bw) | 
|  | { | 
|  | u32 val, ubw, dbw, scale; | 
|  | int ret, max_bw; | 
|  |  | 
|  | /* Figure out suitable scale */ | 
|  | scale = 0; | 
|  | max_bw = max(upstream_bw, downstream_bw); | 
|  | while (scale < 64) { | 
|  | if (mbps_to_usb3_bw(max_bw, scale) < 4096) | 
|  | break; | 
|  | scale++; | 
|  | } | 
|  |  | 
|  | if (WARN_ON(scale >= 64)) | 
|  | return -EINVAL; | 
|  |  | 
|  | ret = tb_port_write(port, &scale, TB_CFG_PORT, | 
|  | port->cap_adap + ADP_USB3_CS_3, 1); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ubw = mbps_to_usb3_bw(upstream_bw, scale); | 
|  | dbw = mbps_to_usb3_bw(downstream_bw, scale); | 
|  |  | 
|  | tb_port_dbg(port, "scaled bandwidth %u/%u, scale %u\n", ubw, dbw, scale); | 
|  |  | 
|  | ret = tb_port_read(port, &val, TB_CFG_PORT, | 
|  | port->cap_adap + ADP_USB3_CS_2, 1); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | val &= ~(ADP_USB3_CS_2_AUBW_MASK | ADP_USB3_CS_2_ADBW_MASK); | 
|  | val |= dbw << ADP_USB3_CS_2_ADBW_SHIFT; | 
|  | val |= ubw; | 
|  |  | 
|  | return tb_port_write(port, &val, TB_CFG_PORT, | 
|  | port->cap_adap + ADP_USB3_CS_2, 1); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * usb4_usb3_port_allocate_bandwidth() - Allocate bandwidth for USB3 | 
|  | * @port: USB3 adapter port | 
|  | * @upstream_bw: New upstream bandwidth | 
|  | * @downstream_bw: New downstream bandwidth | 
|  | * | 
|  | * This can be used to set how much bandwidth is allocated for the USB3 | 
|  | * tunneled isochronous traffic. @upstream_bw and @downstream_bw are the | 
|  | * new values programmed to the USB3 adapter allocation registers. If | 
|  | * the values are lower than what is currently consumed the allocation | 
|  | * is set to what is currently consumed instead (consumed bandwidth | 
|  | * cannot be taken away by CM). The actual new values are returned in | 
|  | * @upstream_bw and @downstream_bw. | 
|  | * | 
|  | * Returns %0 in case of success and negative errno if there was a | 
|  | * failure. | 
|  | */ | 
|  | int usb4_usb3_port_allocate_bandwidth(struct tb_port *port, int *upstream_bw, | 
|  | int *downstream_bw) | 
|  | { | 
|  | int ret, consumed_up, consumed_down, allocate_up, allocate_down; | 
|  |  | 
|  | ret = usb4_usb3_port_set_cm_request(port); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = usb4_usb3_port_read_consumed_bandwidth(port, &consumed_up, | 
|  | &consumed_down); | 
|  | if (ret) | 
|  | goto err_request; | 
|  |  | 
|  | /* Don't allow it go lower than what is consumed */ | 
|  | allocate_up = max(*upstream_bw, consumed_up); | 
|  | allocate_down = max(*downstream_bw, consumed_down); | 
|  |  | 
|  | ret = usb4_usb3_port_write_allocated_bandwidth(port, allocate_up, | 
|  | allocate_down); | 
|  | if (ret) | 
|  | goto err_request; | 
|  |  | 
|  | *upstream_bw = allocate_up; | 
|  | *downstream_bw = allocate_down; | 
|  |  | 
|  | err_request: | 
|  | usb4_usb3_port_clear_cm_request(port); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * usb4_usb3_port_release_bandwidth() - Release allocated USB3 bandwidth | 
|  | * @port: USB3 adapter port | 
|  | * @upstream_bw: New allocated upstream bandwidth | 
|  | * @downstream_bw: New allocated downstream bandwidth | 
|  | * | 
|  | * Releases USB3 allocated bandwidth down to what is actually consumed. | 
|  | * The new bandwidth is returned in @upstream_bw and @downstream_bw. | 
|  | * | 
|  | * Returns 0% in success and negative errno in case of failure. | 
|  | */ | 
|  | int usb4_usb3_port_release_bandwidth(struct tb_port *port, int *upstream_bw, | 
|  | int *downstream_bw) | 
|  | { | 
|  | int ret, consumed_up, consumed_down; | 
|  |  | 
|  | ret = usb4_usb3_port_set_cm_request(port); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = usb4_usb3_port_read_consumed_bandwidth(port, &consumed_up, | 
|  | &consumed_down); | 
|  | if (ret) | 
|  | goto err_request; | 
|  |  | 
|  | /* | 
|  | * Always keep 1000 Mb/s to make sure xHCI has at least some | 
|  | * bandwidth available for isochronous traffic. | 
|  | */ | 
|  | if (consumed_up < 1000) | 
|  | consumed_up = 1000; | 
|  | if (consumed_down < 1000) | 
|  | consumed_down = 1000; | 
|  |  | 
|  | ret = usb4_usb3_port_write_allocated_bandwidth(port, consumed_up, | 
|  | consumed_down); | 
|  | if (ret) | 
|  | goto err_request; | 
|  |  | 
|  | *upstream_bw = consumed_up; | 
|  | *downstream_bw = consumed_down; | 
|  |  | 
|  | err_request: | 
|  | usb4_usb3_port_clear_cm_request(port); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static bool is_usb4_dpin(const struct tb_port *port) | 
|  | { | 
|  | if (!tb_port_is_dpin(port)) | 
|  | return false; | 
|  | if (!tb_switch_is_usb4(port->sw)) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * usb4_dp_port_set_cm_id() - Assign CM ID to the DP IN adapter | 
|  | * @port: DP IN adapter | 
|  | * @cm_id: CM ID to assign | 
|  | * | 
|  | * Sets CM ID for the @port. Returns %0 on success and negative errno | 
|  | * otherwise. Speficially returns %-EOPNOTSUPP if the @port does not | 
|  | * support this. | 
|  | */ | 
|  | int usb4_dp_port_set_cm_id(struct tb_port *port, int cm_id) | 
|  | { | 
|  | u32 val; | 
|  | int ret; | 
|  |  | 
|  | if (!is_usb4_dpin(port)) | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | ret = tb_port_read(port, &val, TB_CFG_PORT, | 
|  | port->cap_adap + ADP_DP_CS_2, 1); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | val &= ~ADP_DP_CS_2_CM_ID_MASK; | 
|  | val |= cm_id << ADP_DP_CS_2_CM_ID_SHIFT; | 
|  |  | 
|  | return tb_port_write(port, &val, TB_CFG_PORT, | 
|  | port->cap_adap + ADP_DP_CS_2, 1); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * usb4_dp_port_bandwidth_mode_supported() - Is the bandwidth allocation mode | 
|  | *					     supported | 
|  | * @port: DP IN adapter to check | 
|  | * | 
|  | * Can be called to any DP IN adapter. Returns true if the adapter | 
|  | * supports USB4 bandwidth allocation mode, false otherwise. | 
|  | */ | 
|  | bool usb4_dp_port_bandwidth_mode_supported(struct tb_port *port) | 
|  | { | 
|  | int ret; | 
|  | u32 val; | 
|  |  | 
|  | if (!is_usb4_dpin(port)) | 
|  | return false; | 
|  |  | 
|  | ret = tb_port_read(port, &val, TB_CFG_PORT, | 
|  | port->cap_adap + DP_LOCAL_CAP, 1); | 
|  | if (ret) | 
|  | return false; | 
|  |  | 
|  | return !!(val & DP_COMMON_CAP_BW_MODE); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * usb4_dp_port_bandwidth_mode_enabled() - Is the bandwidth allocation mode | 
|  | *					   enabled | 
|  | * @port: DP IN adapter to check | 
|  | * | 
|  | * Can be called to any DP IN adapter. Returns true if the bandwidth | 
|  | * allocation mode has been enabled, false otherwise. | 
|  | */ | 
|  | bool usb4_dp_port_bandwidth_mode_enabled(struct tb_port *port) | 
|  | { | 
|  | int ret; | 
|  | u32 val; | 
|  |  | 
|  | if (!is_usb4_dpin(port)) | 
|  | return false; | 
|  |  | 
|  | ret = tb_port_read(port, &val, TB_CFG_PORT, | 
|  | port->cap_adap + ADP_DP_CS_8, 1); | 
|  | if (ret) | 
|  | return false; | 
|  |  | 
|  | return !!(val & ADP_DP_CS_8_DPME); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * usb4_dp_port_set_cm_bandwidth_mode_supported() - Set/clear CM support for | 
|  | *						    bandwidth allocation mode | 
|  | * @port: DP IN adapter | 
|  | * @supported: Does the CM support bandwidth allocation mode | 
|  | * | 
|  | * Can be called to any DP IN adapter. Sets or clears the CM support bit | 
|  | * of the DP IN adapter. Returns %0 in success and negative errno | 
|  | * otherwise. Specifically returns %-OPNOTSUPP if the passed in adapter | 
|  | * does not support this. | 
|  | */ | 
|  | int usb4_dp_port_set_cm_bandwidth_mode_supported(struct tb_port *port, | 
|  | bool supported) | 
|  | { | 
|  | u32 val; | 
|  | int ret; | 
|  |  | 
|  | if (!is_usb4_dpin(port)) | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | ret = tb_port_read(port, &val, TB_CFG_PORT, | 
|  | port->cap_adap + ADP_DP_CS_2, 1); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | if (supported) | 
|  | val |= ADP_DP_CS_2_CMMS; | 
|  | else | 
|  | val &= ~ADP_DP_CS_2_CMMS; | 
|  |  | 
|  | return tb_port_write(port, &val, TB_CFG_PORT, | 
|  | port->cap_adap + ADP_DP_CS_2, 1); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * usb4_dp_port_group_id() - Return Group ID assigned for the adapter | 
|  | * @port: DP IN adapter | 
|  | * | 
|  | * Reads bandwidth allocation Group ID from the DP IN adapter and | 
|  | * returns it. If the adapter does not support setting Group_ID | 
|  | * %-EOPNOTSUPP is returned. | 
|  | */ | 
|  | int usb4_dp_port_group_id(struct tb_port *port) | 
|  | { | 
|  | u32 val; | 
|  | int ret; | 
|  |  | 
|  | if (!is_usb4_dpin(port)) | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | ret = tb_port_read(port, &val, TB_CFG_PORT, | 
|  | port->cap_adap + ADP_DP_CS_2, 1); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | return (val & ADP_DP_CS_2_GROUP_ID_MASK) >> ADP_DP_CS_2_GROUP_ID_SHIFT; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * usb4_dp_port_set_group_id() - Set adapter Group ID | 
|  | * @port: DP IN adapter | 
|  | * @group_id: Group ID for the adapter | 
|  | * | 
|  | * Sets bandwidth allocation mode Group ID for the DP IN adapter. | 
|  | * Returns %0 in case of success and negative errno otherwise. | 
|  | * Specifically returns %-EOPNOTSUPP if the adapter does not support | 
|  | * this. | 
|  | */ | 
|  | int usb4_dp_port_set_group_id(struct tb_port *port, int group_id) | 
|  | { | 
|  | u32 val; | 
|  | int ret; | 
|  |  | 
|  | if (!is_usb4_dpin(port)) | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | ret = tb_port_read(port, &val, TB_CFG_PORT, | 
|  | port->cap_adap + ADP_DP_CS_2, 1); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | val &= ~ADP_DP_CS_2_GROUP_ID_MASK; | 
|  | val |= group_id << ADP_DP_CS_2_GROUP_ID_SHIFT; | 
|  |  | 
|  | return tb_port_write(port, &val, TB_CFG_PORT, | 
|  | port->cap_adap + ADP_DP_CS_2, 1); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * usb4_dp_port_nrd() - Read non-reduced rate and lanes | 
|  | * @port: DP IN adapter | 
|  | * @rate: Non-reduced rate in Mb/s is placed here | 
|  | * @lanes: Non-reduced lanes are placed here | 
|  | * | 
|  | * Reads the non-reduced rate and lanes from the DP IN adapter. Returns | 
|  | * %0 in success and negative errno otherwise. Specifically returns | 
|  | * %-EOPNOTSUPP if the adapter does not support this. | 
|  | */ | 
|  | int usb4_dp_port_nrd(struct tb_port *port, int *rate, int *lanes) | 
|  | { | 
|  | u32 val, tmp; | 
|  | int ret; | 
|  |  | 
|  | if (!is_usb4_dpin(port)) | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | ret = tb_port_read(port, &val, TB_CFG_PORT, | 
|  | port->cap_adap + ADP_DP_CS_2, 1); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | tmp = (val & ADP_DP_CS_2_NRD_MLR_MASK) >> ADP_DP_CS_2_NRD_MLR_SHIFT; | 
|  | switch (tmp) { | 
|  | case DP_COMMON_CAP_RATE_RBR: | 
|  | *rate = 1620; | 
|  | break; | 
|  | case DP_COMMON_CAP_RATE_HBR: | 
|  | *rate = 2700; | 
|  | break; | 
|  | case DP_COMMON_CAP_RATE_HBR2: | 
|  | *rate = 5400; | 
|  | break; | 
|  | case DP_COMMON_CAP_RATE_HBR3: | 
|  | *rate = 8100; | 
|  | break; | 
|  | } | 
|  |  | 
|  | tmp = val & ADP_DP_CS_2_NRD_MLC_MASK; | 
|  | switch (tmp) { | 
|  | case DP_COMMON_CAP_1_LANE: | 
|  | *lanes = 1; | 
|  | break; | 
|  | case DP_COMMON_CAP_2_LANES: | 
|  | *lanes = 2; | 
|  | break; | 
|  | case DP_COMMON_CAP_4_LANES: | 
|  | *lanes = 4; | 
|  | break; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * usb4_dp_port_set_nrd() - Set non-reduced rate and lanes | 
|  | * @port: DP IN adapter | 
|  | * @rate: Non-reduced rate in Mb/s | 
|  | * @lanes: Non-reduced lanes | 
|  | * | 
|  | * Before the capabilities reduction this function can be used to set | 
|  | * the non-reduced values for the DP IN adapter. Returns %0 in success | 
|  | * and negative errno otherwise. If the adapter does not support this | 
|  | * %-EOPNOTSUPP is returned. | 
|  | */ | 
|  | int usb4_dp_port_set_nrd(struct tb_port *port, int rate, int lanes) | 
|  | { | 
|  | u32 val; | 
|  | int ret; | 
|  |  | 
|  | if (!is_usb4_dpin(port)) | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | ret = tb_port_read(port, &val, TB_CFG_PORT, | 
|  | port->cap_adap + ADP_DP_CS_2, 1); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | val &= ~ADP_DP_CS_2_NRD_MLR_MASK; | 
|  |  | 
|  | switch (rate) { | 
|  | case 1620: | 
|  | break; | 
|  | case 2700: | 
|  | val |= (DP_COMMON_CAP_RATE_HBR << ADP_DP_CS_2_NRD_MLR_SHIFT) | 
|  | & ADP_DP_CS_2_NRD_MLR_MASK; | 
|  | break; | 
|  | case 5400: | 
|  | val |= (DP_COMMON_CAP_RATE_HBR2 << ADP_DP_CS_2_NRD_MLR_SHIFT) | 
|  | & ADP_DP_CS_2_NRD_MLR_MASK; | 
|  | break; | 
|  | case 8100: | 
|  | val |= (DP_COMMON_CAP_RATE_HBR3 << ADP_DP_CS_2_NRD_MLR_SHIFT) | 
|  | & ADP_DP_CS_2_NRD_MLR_MASK; | 
|  | break; | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | val &= ~ADP_DP_CS_2_NRD_MLC_MASK; | 
|  |  | 
|  | switch (lanes) { | 
|  | case 1: | 
|  | break; | 
|  | case 2: | 
|  | val |= DP_COMMON_CAP_2_LANES; | 
|  | break; | 
|  | case 4: | 
|  | val |= DP_COMMON_CAP_4_LANES; | 
|  | break; | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | return tb_port_write(port, &val, TB_CFG_PORT, | 
|  | port->cap_adap + ADP_DP_CS_2, 1); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * usb4_dp_port_granularity() - Return granularity for the bandwidth values | 
|  | * @port: DP IN adapter | 
|  | * | 
|  | * Reads the programmed granularity from @port. If the DP IN adapter does | 
|  | * not support bandwidth allocation mode returns %-EOPNOTSUPP and negative | 
|  | * errno in other error cases. | 
|  | */ | 
|  | int usb4_dp_port_granularity(struct tb_port *port) | 
|  | { | 
|  | u32 val; | 
|  | int ret; | 
|  |  | 
|  | if (!is_usb4_dpin(port)) | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | ret = tb_port_read(port, &val, TB_CFG_PORT, | 
|  | port->cap_adap + ADP_DP_CS_2, 1); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | val &= ADP_DP_CS_2_GR_MASK; | 
|  | val >>= ADP_DP_CS_2_GR_SHIFT; | 
|  |  | 
|  | switch (val) { | 
|  | case ADP_DP_CS_2_GR_0_25G: | 
|  | return 250; | 
|  | case ADP_DP_CS_2_GR_0_5G: | 
|  | return 500; | 
|  | case ADP_DP_CS_2_GR_1G: | 
|  | return 1000; | 
|  | } | 
|  |  | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * usb4_dp_port_set_granularity() - Set granularity for the bandwidth values | 
|  | * @port: DP IN adapter | 
|  | * @granularity: Granularity in Mb/s. Supported values: 1000, 500 and 250. | 
|  | * | 
|  | * Sets the granularity used with the estimated, allocated and requested | 
|  | * bandwidth. Returns %0 in success and negative errno otherwise. If the | 
|  | * adapter does not support this %-EOPNOTSUPP is returned. | 
|  | */ | 
|  | int usb4_dp_port_set_granularity(struct tb_port *port, int granularity) | 
|  | { | 
|  | u32 val; | 
|  | int ret; | 
|  |  | 
|  | if (!is_usb4_dpin(port)) | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | ret = tb_port_read(port, &val, TB_CFG_PORT, | 
|  | port->cap_adap + ADP_DP_CS_2, 1); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | val &= ~ADP_DP_CS_2_GR_MASK; | 
|  |  | 
|  | switch (granularity) { | 
|  | case 250: | 
|  | val |= ADP_DP_CS_2_GR_0_25G << ADP_DP_CS_2_GR_SHIFT; | 
|  | break; | 
|  | case 500: | 
|  | val |= ADP_DP_CS_2_GR_0_5G << ADP_DP_CS_2_GR_SHIFT; | 
|  | break; | 
|  | case 1000: | 
|  | val |= ADP_DP_CS_2_GR_1G << ADP_DP_CS_2_GR_SHIFT; | 
|  | break; | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | return tb_port_write(port, &val, TB_CFG_PORT, | 
|  | port->cap_adap + ADP_DP_CS_2, 1); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * usb4_dp_port_set_estimated_bandwidth() - Set estimated bandwidth | 
|  | * @port: DP IN adapter | 
|  | * @bw: Estimated bandwidth in Mb/s. | 
|  | * | 
|  | * Sets the estimated bandwidth to @bw. Set the granularity by calling | 
|  | * usb4_dp_port_set_granularity() before calling this. The @bw is round | 
|  | * down to the closest granularity multiplier. Returns %0 in success | 
|  | * and negative errno otherwise. Specifically returns %-EOPNOTSUPP if | 
|  | * the adapter does not support this. | 
|  | */ | 
|  | int usb4_dp_port_set_estimated_bandwidth(struct tb_port *port, int bw) | 
|  | { | 
|  | u32 val, granularity; | 
|  | int ret; | 
|  |  | 
|  | if (!is_usb4_dpin(port)) | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | ret = usb4_dp_port_granularity(port); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | granularity = ret; | 
|  |  | 
|  | ret = tb_port_read(port, &val, TB_CFG_PORT, | 
|  | port->cap_adap + ADP_DP_CS_2, 1); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | val &= ~ADP_DP_CS_2_ESTIMATED_BW_MASK; | 
|  | val |= (bw / granularity) << ADP_DP_CS_2_ESTIMATED_BW_SHIFT; | 
|  |  | 
|  | return tb_port_write(port, &val, TB_CFG_PORT, | 
|  | port->cap_adap + ADP_DP_CS_2, 1); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * usb4_dp_port_allocated_bandwidth() - Return allocated bandwidth | 
|  | * @port: DP IN adapter | 
|  | * | 
|  | * Reads and returns allocated bandwidth for @port in Mb/s (taking into | 
|  | * account the programmed granularity). Returns negative errno in case | 
|  | * of error. | 
|  | */ | 
|  | int usb4_dp_port_allocated_bandwidth(struct tb_port *port) | 
|  | { | 
|  | u32 val, granularity; | 
|  | int ret; | 
|  |  | 
|  | if (!is_usb4_dpin(port)) | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | ret = usb4_dp_port_granularity(port); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | granularity = ret; | 
|  |  | 
|  | ret = tb_port_read(port, &val, TB_CFG_PORT, | 
|  | port->cap_adap + DP_STATUS, 1); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | val &= DP_STATUS_ALLOCATED_BW_MASK; | 
|  | val >>= DP_STATUS_ALLOCATED_BW_SHIFT; | 
|  |  | 
|  | return val * granularity; | 
|  | } | 
|  |  | 
|  | static int __usb4_dp_port_set_cm_ack(struct tb_port *port, bool ack) | 
|  | { | 
|  | u32 val; | 
|  | int ret; | 
|  |  | 
|  | ret = tb_port_read(port, &val, TB_CFG_PORT, | 
|  | port->cap_adap + ADP_DP_CS_2, 1); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | if (ack) | 
|  | val |= ADP_DP_CS_2_CA; | 
|  | else | 
|  | val &= ~ADP_DP_CS_2_CA; | 
|  |  | 
|  | return tb_port_write(port, &val, TB_CFG_PORT, | 
|  | port->cap_adap + ADP_DP_CS_2, 1); | 
|  | } | 
|  |  | 
|  | static inline int usb4_dp_port_set_cm_ack(struct tb_port *port) | 
|  | { | 
|  | return __usb4_dp_port_set_cm_ack(port, true); | 
|  | } | 
|  |  | 
|  | static int usb4_dp_port_wait_and_clear_cm_ack(struct tb_port *port, | 
|  | int timeout_msec) | 
|  | { | 
|  | ktime_t end; | 
|  | u32 val; | 
|  | int ret; | 
|  |  | 
|  | ret = __usb4_dp_port_set_cm_ack(port, false); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | end = ktime_add_ms(ktime_get(), timeout_msec); | 
|  | do { | 
|  | ret = tb_port_read(port, &val, TB_CFG_PORT, | 
|  | port->cap_adap + ADP_DP_CS_8, 1); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | if (!(val & ADP_DP_CS_8_DR)) | 
|  | break; | 
|  |  | 
|  | usleep_range(50, 100); | 
|  | } while (ktime_before(ktime_get(), end)); | 
|  |  | 
|  | if (val & ADP_DP_CS_8_DR) | 
|  | return -ETIMEDOUT; | 
|  |  | 
|  | ret = tb_port_read(port, &val, TB_CFG_PORT, | 
|  | port->cap_adap + ADP_DP_CS_2, 1); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | val &= ~ADP_DP_CS_2_CA; | 
|  | return tb_port_write(port, &val, TB_CFG_PORT, | 
|  | port->cap_adap + ADP_DP_CS_2, 1); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * usb4_dp_port_allocate_bandwidth() - Set allocated bandwidth | 
|  | * @port: DP IN adapter | 
|  | * @bw: New allocated bandwidth in Mb/s | 
|  | * | 
|  | * Communicates the new allocated bandwidth with the DPCD (graphics | 
|  | * driver). Takes into account the programmed granularity. Returns %0 in | 
|  | * success and negative errno in case of error. | 
|  | */ | 
|  | int usb4_dp_port_allocate_bandwidth(struct tb_port *port, int bw) | 
|  | { | 
|  | u32 val, granularity; | 
|  | int ret; | 
|  |  | 
|  | if (!is_usb4_dpin(port)) | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | ret = usb4_dp_port_granularity(port); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | granularity = ret; | 
|  |  | 
|  | ret = tb_port_read(port, &val, TB_CFG_PORT, | 
|  | port->cap_adap + DP_STATUS, 1); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | val &= ~DP_STATUS_ALLOCATED_BW_MASK; | 
|  | val |= (bw / granularity) << DP_STATUS_ALLOCATED_BW_SHIFT; | 
|  |  | 
|  | ret = tb_port_write(port, &val, TB_CFG_PORT, | 
|  | port->cap_adap + DP_STATUS, 1); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = usb4_dp_port_set_cm_ack(port); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | return usb4_dp_port_wait_and_clear_cm_ack(port, 500); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * usb4_dp_port_requested_bandwidth() - Read requested bandwidth | 
|  | * @port: DP IN adapter | 
|  | * | 
|  | * Reads the DPCD (graphics driver) requested bandwidth and returns it | 
|  | * in Mb/s. Takes the programmed granularity into account. In case of | 
|  | * error returns negative errno. Specifically returns %-EOPNOTSUPP if | 
|  | * the adapter does not support bandwidth allocation mode, and %ENODATA | 
|  | * if there is no active bandwidth request from the graphics driver. | 
|  | */ | 
|  | int usb4_dp_port_requested_bandwidth(struct tb_port *port) | 
|  | { | 
|  | u32 val, granularity; | 
|  | int ret; | 
|  |  | 
|  | if (!is_usb4_dpin(port)) | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | ret = usb4_dp_port_granularity(port); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | granularity = ret; | 
|  |  | 
|  | ret = tb_port_read(port, &val, TB_CFG_PORT, | 
|  | port->cap_adap + ADP_DP_CS_8, 1); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | if (!(val & ADP_DP_CS_8_DR)) | 
|  | return -ENODATA; | 
|  |  | 
|  | return (val & ADP_DP_CS_8_REQUESTED_BW_MASK) * granularity; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * usb4_pci_port_set_ext_encapsulation() - Enable/disable extended encapsulation | 
|  | * @port: PCIe adapter | 
|  | * @enable: Enable/disable extended encapsulation | 
|  | * | 
|  | * Enables or disables extended encapsulation used in PCIe tunneling. Caller | 
|  | * needs to make sure both adapters support this before enabling. Returns %0 on | 
|  | * success and negative errno otherwise. | 
|  | */ | 
|  | int usb4_pci_port_set_ext_encapsulation(struct tb_port *port, bool enable) | 
|  | { | 
|  | u32 val; | 
|  | int ret; | 
|  |  | 
|  | if (!tb_port_is_pcie_up(port) && !tb_port_is_pcie_down(port)) | 
|  | return -EINVAL; | 
|  |  | 
|  | ret = tb_port_read(port, &val, TB_CFG_PORT, | 
|  | port->cap_adap + ADP_PCIE_CS_1, 1); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | if (enable) | 
|  | val |= ADP_PCIE_CS_1_EE; | 
|  | else | 
|  | val &= ~ADP_PCIE_CS_1_EE; | 
|  |  | 
|  | return tb_port_write(port, &val, TB_CFG_PORT, | 
|  | port->cap_adap + ADP_PCIE_CS_1, 1); | 
|  | } |